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Abstract

This dissertation presents the first experiments on radio frequency (rf) spec-

troscopy of a quasi-two dimensional strongly interacting ultracold atomic Fermi

gas. A 50-50 mixture of spin-up and spin-down atoms is confined in a series

of pancake-shaped traps produced using an optical standing-wave. To make the

system quasi-two dimensional, I adjust the Fermi energy in the weakly confined

direction to be comparable to the harmonic oscillator energy level spacing in the

tightly confined direction. For a perfectly two dimensional system, at low enough

temperature, spin-up and spin-down atoms should form dimers in the ground

state of the tightly confined direction. However, in our quasi-two dimension-

al system I find that the simple dimer theory does not agree with the measured

radio-frequency spectra. Instead, the data can be explained by polaron to polaron

transitions, which is a many-body effect. Here, a polaron is a spin-down impurity

surrounded by a cloud of particle-hole pairs in a spin-up Fermi sea. With this

unique strongly interacting quasi-two dimensional system, I am able to study the

interplay between confinement induced two-body pairing and many-body physics

in confined mesoscopic systems of several hundred atoms, which has not been

previously explored and offers new challenges for predictions.
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Chapter 1

Introduction

My dissertation is on the radio frequency spectroscopy of a quasi-two dimensional

ultracold strongly interacting Fermi gas, which contains a 50-50 mixture of the

lowest two hyperfine states of 6Li, |1⟩ and |2⟩. Strong interactions are achieved

using a magnetically tunable collisional (Feshbach) resonance. An optical stand-

ing wave confines the atom cloud in a series of pancake-shaped traps as shown in

Figure 1.1. The harmonic oscillation frequency νz in the tightly confined direction

is about 25 times ν⊥, where ν⊥ is the oscillation frequency in the weakly confined

transverse plane.

Figure 1.1: CO2 laser standing wave trap (a) and axial energy level (b).µ shows
the chemical potential for N0 atoms in the ground state and N1 in the first excited
state.

The highest occupied energy level in the transverse plane at zero temperature
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is the transverse Fermi energy EF⊥. When all atoms are in the ground axial state,

EF⊥ = hν⊥
√
N , which determines the geometry of the system. Here N is the total

atom number in one pancake, which can be measured experimentally. When EF⊥

is much smaller than the energy spacing hνz in the axial direction, the system

approaches the ideal 2D limit and all the atoms are in the axial ground state.

When EF⊥ is comparable to hνz, the system is quasi-2D and can be described by

using a few axial states as shown in Figure 1.1(b) [1]. In our quasi-2D system,

EF⊥ ≃ 1.5hνz, but more than 90% of the atoms are still in the axial ground state

at zero temperature.

The 2D confinement induces atoms to bind into dimers even when the atoms

would be unbound in free space in 3 dimensions. Several groups have observed

radio frequency spectra, through which the dimer binding energy Eb can be mea-

sured. The measurements agree with dimer theory when EF⊥ ≪ hνz [2] [3]. In

our experiment EF⊥ ≃ 1.5hνz and Eb is magnetically tunable. In the strongly

interacting region near the Feshbach resonance Eb ≃ 0.25hνz. Here we observe a

large discrepancy with dimer theory predictions [4].

Since in the strongly interacting region Eb is comparable to EF⊥, in oth-

er words, the dimer size is comparable to the interparticle spacing, many-body

modification of the dimer binding energy is a possible explanation for our ob-

served discrepancies. This strongly interacting many-body modification does not

exist in a nearly 2D system, where EF⊥ ≪ hνz. In order to have many-body

effects, where Eb ∼ EF⊥, the binding energy needs to be small Eb ≪ hνz and

the system is weakly interacting. The weakly interacting many-body effect gives

no modification to dimer theory since 2D BCS theory [5], which describes the

system, gives the same prediction as dimer theory.
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Table 1.1: Comparison of 2D and quasi-2D systems.

2D Quasi-2D

EF⊥ ≪ hνz EF⊥ ∼ hνz

for EF⊥ ∼ Eb, require Eb ≪ hνz for EF⊥ ∼ Eb, require Eb ∼ hνz

weakly interacting many-body system strongly interacting many-body system

explainable by can not be explained by

dimer theory and 2D BCS theory simple dimer theory

2D BCS theory is not applicable in the strongly interacting region. However,

we find that our data can be explained by transitions between non-interacting

2D polaron states. Here a polaron is an atom in one hyperfine state surrounded

by a cloud of particle-hole pairs in another hyperfine state. Table 1.1 lists the

comparison of 2D and quasi-2D systems. This dissertation is the first study of

pairing in a quasi-two dimensional Fermi gas [4]. Our experiments have spurred

several theoretical works [1, 6, 7] in order to understand how the system changes

in the quasi-2D geometry.

1.1 Background

In order to explain my work, background knowledge of this field is necessary.

In §1.1.1, I will generally introduce some previous research in ultracold Fermi

gases and its importance. In §1.1.2, the key concepts “Feshbach resonance”, by

which the system achieves strongly interaction, and “BEC-BCS crossover” will

be introduced.
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1.1.1 Fermi gases with tunable interactions

Optical methods have been used to control and study atomic systems for a long

time. Currently, a large branch of modern physics is atomic, molecular and optical

(AMO) physics. In AMO physics, laser cooling and trapping of atoms is a rapidly

developing area. In 1997, the Nobel Prize was given for laser cooling and trapping

of neutral atoms. But the real boom in this field started from the realization

of Bose-Einstein condensation (BEC) in 1995, which led to the Nobel price in

2001. This condensation means that when the system is cooled down to a certain

transition temperature all the bosons occupy the ground state in energy space.

Although BEC was theoretically predicted in papers by Satyendra Nath Bose

and Albert Einstein in 1924−25, it took nearly 70 years to be realized. Many

experiments have been done since then to study this novel phase of matter. While

research in cold Bose systems was still active, laser cooling techniques started

being used to cool Fermi gases.

Fermi gases are more important for understanding nature than Bose gases.

Fermions are the building blocks of matter, like protons, neutrons and electrons.

According to Pauli-exclusion principle, only one fermion can occupy one quantum

state. So, even at zero temperature, fermions must pile up in energy space, one for

each energy state, instead of crowding in the ground state like bosons. Although

there is no BEC, ultracold Fermi systems have another novel phase of matter,

superfluid pairs.

Quantum effects become paramount when the system reaches quantum de-

generacy. As the atomic Fermi gas is cooled down, the de Broglie wavelength λT

of the atoms increases since λT = h/(
√
2πmkBT ). We call the system degenerate

when the wave packets of the particles start overlapping with each other. In oth-

4



er words, the de Broglie wavelength of atoms is comparable to the interparticle

spacing, where n3λ
3
T ∼ 1 in a 3D system or n2λ

2
T ∼ 1 in a 2D system. Here n

is the atomic density. Degenerate Fermi gases have been created since 1999 by

using several methods, such as double rf knife evaporative cooling of 40K in a

magnetic trap [8], sympathetic cooling 6Li with 7Li in a magnetic trap [9–11] and

evaporative cooling in an optical dipole trap [12,13].

In 2002, the first degenerate strongly interacting degenerate Fermi gas was

created by our group at Duke in 6Li [14]. Anisotropic expansion in this system

provided an early suggestion of the existence of quantum Fermi superfluid. We

choose the alkali atom 6Li because of its simple atomic structure and the fact that

it has a broad collisional (Feshbach) resonance. We keep it as gas in order to make

the system dilute. In other words, we want the interparticle spacing to be much

longer than the effective range of the atomic potential. This assures that two-

atom collisions dominate, which gives us a simple system to study since we can

ignore collisions involving three or more atoms. This is also very important for

achieving resonant scattering in a Fermi gas, which leads to strong interactions.

In this ultracold Fermi gas, atoms interact with each other by collisions. The

atoms can not see the details of the atomic potential when they collide, since the

de Broglie wavelength is much longer than the effective range R. The atoms only

feel the potential at long length scales, which is described by quantum scattering

theory. The formal way to solve this scattering problem is to do a partial wave

expansion in the angular momentum components l of the incoming and outgoing

waves. Since the atoms move so slowly, l = R/λB ≪ 1, only the lowest order l = 0

wave matters, which is spherically symmetric, so called s-wave scattering. The

atomic potential look like large symmetric balls in collisions. The incoming atom
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can not see any detailed structure of the scattering potential. The strength of the

collisional interaction between the atoms is determined by the s-wave scattering

length for the two spin states. When the interaction between atoms is strong, the

behavior of Fermi system will not depend on the details of the atomic potential.

We call such a gas a unitary Fermi gas. The only length scales that matter in the

system are the average interparticle spacing, which is determined by the density

n, and the thermal de Broglie wavelength λT . The unitarity of the ultracold

Fermi gas allows it share similarity with other strongly interacting Fermi systems

in nature [15–17], such as quark-gluon plasma and neutron matters [18].

Let me take an example of the anisotropic expansion behavior we observed

in our Fermi gas [14]. This unique hydrodynamic behavior is called “elliptic

flow” [14]. Similar hydrodynamic expansion has been observed in the quark gluon

plasma created at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory. The quark-gluon plasma is an extreme form of matter that

is believed to have existed tens of µs after the Big Bang. It is remarkable that

the quark-gluon plasma is 19 orders of magnitude higher in temperature and 25

orders of magnitude higher in density than our ultracold dilute Fermi gas, yet

both systems have similar hydrodynamic behavior and extremely low viscosity.

In addition, there is an interesting connection to string theory, which predicts a

minimum ratio of shear viscosity to entropy density for a broad class of strongly

interacting systems [19].

A high temperature superconductor also has similarity with the strongly in-

teracting Fermi gases. The “high temperature” here is relative to the “ordinary”

or metallic superconductors which usually have transition temperatures close to

absolutely zero. The highest known transition temperature is 138 K which is still
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around 160 degrees lower than room temperature. BCS theory successfully ex-

plained ordinary superconductivity by using loosely bound Cooper pairs formed

by spin-up and spin-down electrons in momentum space. This type of pairing

leads to superfluidity below a critical temperature Tc. This critical temperature

Tc can be raised by increasing the interaction strength between atoms. Em-

ploying a collisional (Feshbach) resonance as discussed below we can tune the

interaction so that Tc is a large fraction of the Fermi temperature TF , roughly

Tc/TF = 0.20 [20–25] in strongly interacting Fermi gases. However, for a metal,

TF is on the order of thousands of degrees Kelvin. If the critical temperature for

superconductivity in a solid scaled the same way as in our Fermi gas, it would be

far above room temperature. The similarity of these two systems can be used to

test current theoretical predictions for high temperature superconductors.

1.1.2 Feshbach resonance in 6Li and BEC-BCS crossover

A Feshbach resonance in the s-wave scattering between two states is the key to

obtain strong interactions [26].The Pauli exclusion principle prevents identical

fermions from s-wave scattering. In order to have interaction, we use a two-

component Fermi gas with atoms in two of the lowest three hyperfine states of

6Li. I will discuss these states in detail in Chapter 2.

Feshbach resonance arise in nuclear physics and is named after physicist Her-

man Feshbach [27]. It was predicted that a Feshbach resonance would exist in

alkali atomic systems in 1993 [28]. Alkali atoms have only one valence elec-

tron (s = 1/2). For a two-atom system, the spin state can be either singlet

(S = s1 + s2 = 0, Ms = 0) or triplet (S = s1 + s2 = 1,Ms = −1, 0, 1). Here S is

the total electron spin number and Ms is the z-component projection.
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Figure 1.2: Relative positions of atomic potentials of singlet and triplet states
around Feshbach resonance. Three different relative positions of energy levels of
singlet bound state (solid horizontal blue line) and triplet scattering state (red
dashed line) are shown. (a) corresponds to BEC side; (b) corresponds to on
resonance; (c) corresponds to BCS side.
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In Figure 1.2, schematics of molecular potentials for both singlet and triplet

states are shown. Bound molecular states exist in the deep singlet potential. Here

we only consider the highest one. For the shallow triplet potential, the incoming

two-atom scattering state is higher in energy than the singlet bound state in the

energy space. When an external magnetic field is applied, the Zeeman shift for

the triplet scattering state changes the relative position of its energy level with

respect to the singlet bound state. Feshbach resonance happens when the energy

of the triplet scattering state is tuned to the singlet bound state energy. In our

6Li atomic system, for high magnetic field, single atoms in hyperfine states |1⟩,

|2⟩ or |3⟩ are mostly ms = −1/2 as shown in Table 2.2 and Figure 2.1. Hence the

total spin state for two colliding atoms state is a triplet state. Electron magnetic

moments dominate while the nuclear moment is 104 times smaller. Since only the

energy of the triplet state can be tuned by external magnetic field, any mixture

of two of these three hyperfine states can have a Feshbach resonance.
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Figure 1.3: S-wave scattering length versus magnetic field for 6Li (1,2) scattering
channels.
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The zero-energy s-wave scattering length would reach infinity on resonance

as shown in Figure 1.3 [29], where interaction between atoms reaches maximum.

Here I only show the 6Li scattering length for hyperfine states 1 and 2 as an

example. I will discuss scattering lengths for other combinations of hyperfine

states in 6Li later in Figure 3.2 in chapter 3.

When the magnetic field is small and the triplet scatting state is still above the

singlet bound state as shown in Figure 1.2(a), atoms tend to fall into the bound

state and form stable molecular dimers. Here Bose-Einstein condensation (BEC)

can exist at low temperature. This corresponds to the left side of resonance in

Figure 1.3 and is called the BEC side. Conversely, when the magnetic field is large

enough to tune the energy of the triplet scattering state below the singlet bound

state as shown in Figure 1.2(c), atoms tend to stay in the scattering state. The

singlet molecular state is unstable and decays into the triplet continuum due to the

hyperfine coupling. At low temperature, atoms can form weakly bound boson-like

Cooper pairs and the Fermi gas turns into a superfluid. This corresponds to the

right side of the resonance in Figure 1.3. Since Cooper pairs are the description

given by the microscopic theory of low temperature superconductivity proposed

by John Bardeen, Leon Neil Cooper, and John Robert Schrieffer(BCS), this side

of the Feshbach resonance is called the BCS side.

The whole region across the Feshbach resonance is the so called BEC-BCS

crossover region. The fact that the system can be tuned smoothly between a

molecular dimer BEC and a BCS superfluid, which is caused by many-body ef-

fects, through the Frshbach resonance makes the BEC-BCS crossover a region of

great interest.
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1.2 Rf spectroscopy in Fermi gases

Radio frequency spectroscopy is the tool we use to study the quasi-2D system.

In §1.2.1, I will give a short introduction of the pairing energy experiments using

the radio frequency spectroscopy. I will also talk about the previous research

on cold gases in reduced dimensions. In §1.2.2, I will give a brief overview of rf

spectroscopy in a quasi-2D Fermi gas.

1.2.1 Previous rf spectroscopy experiments and research

on ultracold gases in reduced dimensions

After the realization of degenerate strongly interacting Fermi gas, several groups

searched for proof of superfluidity and looked for pairing in this system [30–33].

In 2004, the Innsbruck group directly observed the energy gap by using a radio-

frequency(rf) spectroscopy method [34]. A second peak was observed beside the

bare atomic resonance transition through the whole BEC-BCE crossover, which

was interpreted as evidence for pairing and proof of superfluidity. Later in 2006,

pairing in spin imbalanced strongly interacting Fermi gas was studied by Hulet’s

group [35]. In 2007, MIT group used radio frequency(rf) spectroscopy method

to study the imbalanced Fermi gas [36]. They observed pairing of the minority

component for both the normal and superfluid states which means the system

does not need to be superfluid to have pairing as the 2004 paper claimed. They

also used in situ phase-contrast imaging and the inverse Abel transformation [37]

to obtain spatially resolved rf spectroscopy [38]. In their 2008 paper [39, 40],

they did radio frequency(rf) transitions from a mixture of 6Li hyperfine states,

|1⟩ and |3⟩, to the final states, |1⟩ and |2⟩. This method avoids strong final state
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interactions as in the previous experiments working from the mixture of |1⟩ and

|2⟩, since |2⟩ only weakly interacts with states |1⟩ and |3⟩ for magnetic field near

the 1-3 Feshbach resonance.

These works in three-dimensional (3D) 6Li strongly interacting Fermi gas show

the radio frequency(rf) spectroscopy is a powerful tool to study pairing. These

experiments also raised some important problems to consider when using the radio

frequency(rf) spectroscopy method, such as final state interactions and mean field

shifts caused by the inhomogeneous density in the harmonic trapping potential.

On the another hand, experiments on ultracold atomic systems in reduced

dimensions were motivated by finite size effects which are crucial in the physics

of quantum dots [41], in studying how spontaneous emission is modified in cav-

ities [42–44], and in understanding the properties of thin superconducting film-

s [45].

In the solid state context, strongly interacting two-dimensional Fermi gases

were studied in the cuprates, in two-dimensional electron gases in nanostruc-

tures [46], and in thin 3He films [47].

Ultracold atomic systems are impurity-free and tunable. In Bose gases, 1D

to 2D dimensional crossover effects had been studied experimentally in combined

magnetic and optical potentials [48] as well as in optical lattices [49–51]. With

tunable interactions, energy and spin composition, ultracold Fermi gases are ide-

ally suited for exploring pairing interactions in reduced dimensions. [3, 5, 52–55].

Important questions can be studied about the role of dimensionality, finite size

and many-body effects.

Our group chose a quasi-two dimensional system since it plays a pivotal role in

quantum many-body physics. The restriction of motion also profoundly increases
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the role of fluctuations and leads to qualitatively new effects in the interaction

between atoms [15, 56–61]. We focused on directly observing the pairing energy

in this quasi-two dimensional system by using radio frequency(rf) spectroscopy.

Based on zero-temperature two dimensional dimer theory, two-dimensional(2D)

connement can stabilize bound dimers in the the whole BEC-BCS region [5, 57],

while in free space, bound dimers exist only in the BEC regime. These dimers

are called confinement induced dimers.

Experimental studies were done by several groups including our group re-

cently. Köhl’s group in Cambridge studied fermion pairing energy in nearly

two-dimensional 6Li Fermi gas using radio frequency(rf) spectroscopy method

in optical lattice, which is formed by retro-reflected laser beam of wavelength

λ = 1064nm [3]. They observed the confinement induced dimer pairing energy

directly. Zwierlein’s group in MIT studied the evolution of 6Li fermion pairing

from three to two dimensions using radio frequency(rf) spectroscopy as well [55].

They also used optical lattice generated by retro-reflected beam of wavelength

λ = 1064nm. They observe a second peak appear in the spectrum as the dimen-

sion was reduced from 3D to 2D, which corresponds to the confinement induced

dimer pairing energy.

For both Fermi gases in Köhl’s group and Zwierlein’s group, the 2D (ideal gas)

Fermi energies EF⊥ = hν⊥
√
N are very small compared with energy level spacing

in the tightly confined direction hνz, i.e. EF⊥ ≪ hνz, which makes the system

close to pure two-dimensional. While the pairing energy observed experimentally

agreed with theoretical prediction very well in Zwierlein’s group, Köhl’s group saw

some discrepancies, which have been interpreted in terms of 2D polarons [6, 7].

In contrast, our rf spectra in BEC-BCS crossover region with EF⊥ = 1.5hνz show
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large discrepancies from the dimer theory in quasi-two dimensional system [4].

1.2.2 Rf spectroscopy of a quasi-2D Fermi gas

In my thesis, I study pairing in a quasi-two dimensional Fermi gas of 6Li in

standing wave CO2 optical traps with a wavelength λ = 10.6µm as shown in

Figure 1.1. The ratio of the ideal gas transverse Fermi energy EF⊥ = hν⊥
√
N

to the energy level spacing hνz of the tightly conning potential is held nominally

constant, with EF⊥ ≃ 1.5hνz. In this case, the system is not strictly 2D, but is

far from 3D, as at most the first few oscillator states are relevant for many-body

predictions [53].

Figure 1.4: Bare-atom transition from state 2 to 3.

We work with a 50-50 mixture of 6Li hyperfine states 1-2 or 1-3. Radio-

frequency(rf) transitions are driven to initially empty states (for 1-2 mixture, we

drive 2 to 3; for 1-3 mixture, we drive 1 to 2; for 1-3 mixture, we drive 3 to 2).

The depletion of the initial occupied state is measured. We observe a two-peak rf

spectra for all the transitions at low temperature, as shown in Figure 1.5. The left

peak corresponds to the bare atomic transition from 2 to 3 as shown in Figure 1.4.

The broader peak on the right side is caused by the binding energy of 1-2 pairing,

since more energy is needed to break the pair.
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Figure 1.5: Data fitting with dimer transition theory in the BEC region. This
spectrum was taken at 720G. Data are blue dots while red line is theory fitting.

The dimer binding energy Eb can be tuned by an external magnetic field.

Well-below the Feshbach resonance in the molecular BEC region, Eb ≫ EF⊥.

Here the dimers are small compared to the interparticle spacing. The observed

spectra exhibit the expected threshold form and agree with the dimer transition

theory quite well as shown in Figure 1.5.

However, around the Feshbach resonance, a large discrepancy was observed

between the data and the dimer transition theory. We calculate the whole spec-

trum based on dimer theory, which I will discuss in detail in Chapter 3. In

Figure 1.6, I show the dimer theory prediction of the rf spectrum on the top of

the experimental result. We also tried to use 2D BCS theory to explain our data

to include many-body effects. However, it gives the same prediction as the dimer

theory [5].

When we go further in considering many-body effects, we find that the peak

locations in the spectra can be described by transitions between noninteracting

polaron states, i.e., an impurity atom in state 2 or in state 3, immersed in a cloud
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Figure 1.6: Data with dimer transition theory prediction around Feshbach res-
onance. This spectrum was taken at 832G. Data are blue dots while red dashed
line is theory prediction.

of particle-hole pairs in state 1. In Figure 1.7, a schematic shows a 1-2 polaron

to 1-3 polaron transitions. In this regime, where EF⊥ > Eb, the polaron binding

energy is larger than the corresponding dimer binding energy. For the case in

Figure 1.6, the 12 polaron binding energy E12
p = 24.7 kHz, while the 12 dimer

binding energy E12
b = 7.25 kHz. The 13 polaron binding energy E13

p = 13.1 kHz,

while the 13 dimer binding energy E13
b = 0.81 kHz. Near the Feshbach resonance,

polarons are expected to be energetically more favorable than the corresponding

dimers when EF⊥ > Eb [2, 61,62].

Figure 1.7: 1-2 polaron to 1-3 polaron transitions.

We believe that our experimental results exhibit many-body effects in the
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strongly interacting region. Our experiments have spurred several theoretical pa-

pers. Pietilä found that in the limit of weak attraction, the gas can be described in

terms of effective polarons, which qualitatively explained our data. He also found

a crossover from a gas of noninteracting polarons to a pseudogap regime, which

qualitatively explained the differences in the experimental measurements in our

group and Zwierlein’s group [7]. Recently, Parish’s group qualitatively explained

our data showed that higher axial states can substantially modify fermion pairing.

By using a modified BCS theory, they argued that our pairing experiment has

already observed the effects of higher axial states [1].

For transitions starting from a 1-3 mixture, the pairing energy extracted from

the spectra does not agree with the dimer transition theory in the BEC-BCS

crossover. We do not fully understand all of the spectra. However, we believe the

spectra contain information about new many-body effects, which requires more

theoretical work.

1.3 Dissertation organization

I will introduce 6Li hyperfine structure and the calculation of the radio frequency

spectra using Fermi’s golden rule in Chapter 2. Since wave functions for the

initial and the final states of the rf transitions are required for the spectrum

calculation, I will derive these wave functions first by assuming dimer transitions

and then assuming polaron transitions. In Chapter 3, wave functions of the dimer

bound states and the scattering states are derived. Transition frequencies and the

full spectrum will be calculated to fit our data. In Chapter 4, wave function of

2D polaron states are used as the initial and final states for rf transition, and
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polaron transition frequencies are calculated for data fitting. In chapter 5, I

briefly introduce our experimental apparatus and methods, especially the set-up

for the quasi-two dimensional system. The data fits with both dimer theory and

polaron theory are discussed in chapter 6. Conclusions and a summary are given

in the last chapter.
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Chapter 2

Radio frequency Spectroscopy

Radio frequency spectroscopy is a very powerful method to study the properties

of a system. Basically, atoms are induced to jump from one energy level to

another by a rf pulse with an appropriate frequency. In order to understand

how atoms jump and how to extract information about the system from the rf

spectroscopy experiment, we need to know the 6Li hyperfine energy levels and

the elementary theory of coherent rf spectroscopy for two-level systems. Based

on these background knowledge, I will introduce the Rabi frequency and show

how we experimentally measure it. I will also show how we accurately calibrate

the magnetic field by using rf spectroscopy. Finally, using Fermi’s Golden Rule

I will calculate the rf transition rate between initial and final states, with which

we can predict the rf spectrum and fit the experimental data.

2.1 Hyperfine Structure of 6Li and Magnetic Field

Calibration

Here I will calculate the hyperfine states and energies of 6Li in an applied magnetic

field. The 6Li hyperfine structure plays an important role in the rf spectroscopy

experiment, since atoms will be excited among these hyperfine states and the
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energy differences between these states determine what frequency we should use

in the experiment.

Let us start by writing down the Hamiltonian for the 6Li ground state hyperfine

interactions in a magnetic field:

H =
ahf
~2

S · I− µ0

~
(gJS+ gII) ·B, (2.1)

where the first term comes from the hyperfine interaction and the second term

comes from magnetic field Zeeman shift −m ·B. The magnetic moment is m =

µ0

~ (gJS+ gII) and the bias magnetic field B = Bêz. We use accurate parameters

with the values listed below in Table 2.1:

Table 2.1: 6Li hyperfine parameters and g-factors for magnetic moments in Bohr
magnetons.

ground state magnetic hyperfine constant
ahf
h

= 152.1368407× 106 Hz

Bohr magneton µ0

h
= 1.399624604× 106 Hz/G

total electronic g factor gJ = −2.0023010

the nuclear g factor gI = 0.0004476540

For B = 0, H =
ahf
~2 S · I. Then the total spin F = I + S is conserved:

[F,S · I] = 0, where S = 1/2, I = 1. So, F and Fz should be good quantum

numbers and we can use the |(S, I), F,MF ⟩ basis, with S · I = 1
2
(F2 − I2 − S2),

H|(S, I), F,MF ⟩ = En|(S, I), F,MF ⟩
ahf
~2

S · I|(S, I), F,MF ⟩ = ahf
F (F + 1)− I(I + 1)− S(S + 1)

2
|(S, I), F,MF ⟩.

(2.2)
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Here,

F = 3
2

En =
ahf
2

F = 1
2

En = −ahf .

So, there are two F energy levels and the energy difference between them is 3
2
ahf .

For B ̸= 0, H =
ahf
~2 S · I− µ0

~ (gJSz + gIIz)B. We know that

Ḟ =
i

~
[H,F] = µ×B. (2.3)

As B is along the z direction, µ×B is perpendicular to the z direction. Hence,

Ḟz =
i

~
[H,Fz] = 0. (2.4)

Therefore, for B ̸= 0, Fz is still a good quantum number. So we will use the

|mS,mI⟩ basis, while Fz = mS + mI is conserved. In order to work with this

basis, we can write the Hamiltonian as

H =
ahf
~2
IzSz −

µ0B

~
gJSz −

µ0B

~
gJIz +

ahf
2~2

(I+S− + I−S+). (2.5)

Here, I± = Ix ± iIy, S± = Sx ± iSy and IxSx + IySy = 1
2
(I+S− + I−S+). H will

be block-diagonal in this basis if we order the six |mS,mI⟩ based on the value of

Fz. ψ =
∑

i αi|mS,mI⟩i where i = 1, 2, · · · , 6.

Hψ = Eψ (2.6)
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H11 H12 0 0 0 0

H21 H22 0 0 0 0

0 0 H33 H34 0 0

0 0 H43 H44 0 0

0 0 0 0 H55 0

0 0 0 0 0 H66





α1

α2

α3

α4

α5

α6


= E



α1

α2

α3

α4

α5

α6


(2.7)

This allows us to break this 6 × 6 matrix into two 2× 2 matrixes with Fz = ±1
2

and two simple 1× 1 matrixes with Fz = ±3
2
that are easier to solve. Let’s solve

them one by one.

2.1.1 Case I, Fz =
1
2

When Fz =
1
2
, |mS,mI⟩ = |1

2
, 0⟩ or |− 1

2
, 1⟩. Let’s call them |a⟩ and |b⟩ respectively.

Then, |ψ⟩ = α|a⟩+ β|b⟩

 Haa − E Hab

Hba Hbb − E


 α

β

 = 0 (2.8)

Haa =

⟨
1

2
, 0

∣∣∣∣ ahf~2 IzSz −
µ0B

~
gJSz −

µ0B

~
gIIz

∣∣∣∣12 , 0
⟩

= −µ0B
gJ
2

(2.9)

Hbb =

⟨
−1

2
, 1

∣∣∣∣ ahf~2 IzSz −
µ0B

~
gJSz −

µ0B

~
gIIz

∣∣∣∣−1

2
, 1

⟩
= −ahf

2
+ µ0B

gJ
2

− µ0BgI (2.10)
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Hab =

⟨
1

2
, 0

∣∣∣∣ ahf2~2
I−S+

∣∣∣∣−1

2
, 1

⟩
=

ahf
2

√
(S −mS)(S +mS + 1)

√
(I +mI)(I −mI + 1)

=
ahf√
2

= Hba (2.11)

Now, use (2.9)−(2.11) in (2.8) and solve the determinant equation.

(
−µ0B

gJ
2

− E
)(

−ahf
2

+ µ0B
gJ
2

− µ0BgI − E
)
−
a2hf
2

= 0, (2.12)

E± = −1

2

(ahf
2

+ µ0BgI

)
± 1

2

√
9

4
a2hf + (µ0B)2(−gJ + gI)2 + µ0B(−gJ + gI)ahf .

(2.13)

In order to simplify the form of E±, we define q0 ≡ µ0B
ahf

(−gJ + gI), and Z+ ≡

q0 + 1/2, R+ ≡
√

2 + Z2
+ following the notations in paper [63], then

E±
ahf

= −1

4
− µ0B

2ahf
gI ±

R+

2
. (2.14)

Now put E± back in (2.8),

(
−µ0B

gJ
2

− E±

)
α± +

ahf√
2
β± = 0 (2.15)
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We get β± = − 1√
2
(Z+ ∓R+)α±. Then since |α±|2 + |β±|2 = 1,

α− =
1√

1 + (Z+ +R+)2/2
,

β− = − 1√
2

Z+ +R+√
1 + (Z+ +R+)2/2

,

α+ =
1√

1 + (Z+ −R+)2/2
,

β+ =
1√
2

R+ − Z+√
1 + (R+ − Z+)2/2

. (2.16)

We realize α− = β+ and β− = −α+. If we set sin θ+ ≡ α− and cos θ+ ≡ −β−, we

can write two eigenstates with corresponding eigenvalues EcaseI,1 and EcaseI,2 as

in (2.14)

ψcaseI,1 = sin θ+

∣∣∣∣12 , 0
⟩
− cos θ+

∣∣∣∣−1

2
, 1

⟩
, (2.17)

ψcaseI,2 = cos θ+

∣∣∣∣12 , 0
⟩
+ sin θ+

∣∣∣∣−1

2
, 1

⟩
. (2.18)

The definitions of sin θ+ and cos θ+ here are based on the principle that in high

magnetic field cos θ+ terms survive while sin θ+ terms vanish.

2.1.2 Case II, Fz = −1
2

When Fz = −1
2
, |mS,mI⟩ = |1

2
,−1⟩ or | − 1

2
, 0⟩. Let’s still call them |a⟩ and |b⟩

respectively for the calculation. Then, |ψ⟩ = α|a⟩+ β|b⟩. As in case I, we have

 Haa − E Hab

Hba Hbb − E


 α

β

 = 0. (2.19)
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Haa =

⟨
1

2
,−1

∣∣∣∣ ahf~2 IzSz −
µ0B

~
gJSz −

µ0B

~
gIIz

∣∣∣∣12 ,−1

⟩
= −ahf

2
− µ0B

gJ
2

+ µ0BgI (2.20)

Hbb =

⟨
−1

2
, 0

∣∣∣∣ ahf~2 IzSz −
µ0B

~
gJSz −

µ0B

~
gIIz

∣∣∣∣−1

2
, 0

⟩
= µ0B

gJ
2

(2.21)

Hab =

⟨
1

2
,−1

∣∣∣∣ ahf2~2
I−S+

∣∣∣∣−1

2
, 0

⟩
=

ahf
2

√
(S −mS)(S +mS + 1)

√
(I +mI)(I −mI + 1)

=
ahf√
2

= Hba (2.22)

Put (2.20)−(2.22) back in (2.19) and solve the determinant equation.

(
µ0B

gJ
2

− E
)(

−ahf
2

− µ0B
gJ
2

+ µ0BgI − E
)
−
a2hf
2

= 0, (2.23)

E± = −1

2

(ahf
2

− µ0BgI

)
± 1

2

√
9

4
a2hf + (µ0B)2(−gJ + gI)2 − µ0B(−gJ + gI)ahf .

(2.24)

To simplify E±, we define Z− ≡ q0 − 1/2, R− ≡
√

2 + Z2
− following the notations

in paper [63], then

E±
ahf

= −1

4
+
µ0B

2ahf
gI ±

R−
2
. (2.25)

Using E± in (2.19),

ahf√
2
α± +

(
µ0B

gJ
2

− E±

)
β± = 0 (2.26)
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We can get α± = 1√
2
(Z+ ±R−)β±. Then again we use |α±|2 + |β±|2 = 1,

α− =
1√
2

Z− −R−√
1 + (R− − Z−)2/2

,

β− =
1√

1 + (R− − Z−)2/2
,

α+ =
1√
2

R− + Z−√
1 + (R− + Z−)2/2

,

β+ =
1√

1 + (R− + Z−)2/2
. (2.27)

We set sin θ− ≡ β+ and cos θ− ≡ −α+. Then we can write these two eigenstates

with corresponding eigenvalues EcaseII,1 and EcaseII,2 as in (2.25)

ψcaseII,1 = cos θ−

∣∣∣∣12 ,−1

⟩
+ sin θ−

∣∣∣∣−1

2
, 0

⟩
, (2.28)

ψcaseII,2 = − sin θ−

∣∣∣∣12 ,−1

⟩
+ cos θ−

∣∣∣∣−1

2
, 0

⟩
. (2.29)

Again, the definitions of sin θ− and cos θ− here are based on the principle that in

high magnetic field cos θ− terms survive while sin θ− terms vanish.

2.1.3 Case III, Fz = ±3
2

Fz = 3
2
, |mS,mI⟩ = |1

2
, 1⟩ ≡ ψcaseIII,1 and Fz = −3

2
, |mS,mI⟩ = | − 1

2
,−1⟩ ≡

ψcaseIII,2. Since for both of them the Hamiltonian will be simple 1× 1 matrixes,

then Hψ = Eψ.

EcaseIII,1 = E6 =

⟨
1

2
, 1

∣∣∣∣ ahf~2 IzSz −
µ0B

~
gJSz −

µ0B

~
gIIz

∣∣∣∣12 , 1
⟩

=
ahf
2

− µ0B
gJ
2

− µ0BgI (2.30)
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EcaseIII,2 = E3 =

⟨
−1

2
,−1

∣∣∣∣ ahf~2 IzSz −
µ0B

~
gJSz −

µ0B

~
gIIz

∣∣∣∣−1

2
,−1

⟩
=

ahf
2

+ µ0B
gJ
2

+ µ0BgI (2.31)

2.1.4 Summary of 6Li hyperfine structure

Finally, we obtain all six eigenstates and eignevalues. If we list them in the order

of eigenvalues from small to large denoted from E1 to E6, we have:

|1⟩ = ψcaseI,1 = sin θ+|12 , 0⟩ − cos θ+| − 1
2
, 1⟩ E1

ahf
= −1

4
− µ0B

2ahf
gI − R+

2

|2⟩ = ψcaseII,2 = − sin θ−|12 ,−1⟩+ cos θ−| − 1
2
, 0⟩ E2

ahf
= −1

4
+ µ0B

2ahf
gI − R−

2

|3⟩ = ψcaseIII,2 = | − 1
2
,−1⟩ E3

ahf
= 1

2
+ µ0B

2ahf
gJ + µ0B

ahf
gI

|4⟩ = ψcaseII,1 = cos θ−|12 ,−1⟩+ sin θ−| − 1
2
, 0⟩ E4

ahf
= −1

4
+ µ0B

2ahf
gI +

R−
2

|5⟩ = ψcaseI,2 = cos θ+|12 , 0⟩+ sin θ+| − 1
2
, 1⟩ E5

ahf
= −1

4
− µ0B

2ahf
gI +

R+

2

|6⟩ = ψcaseIII,1 = |1
2
, 1⟩ E6

ahf
= 1

2
− µ0B

2ahf
gJ − µ0B

ahf
gI .

Since the phase of the eigenstates can be changed for our convenience, we’d

better make these eigenstates connect to the eigenstates we know when B = 0

seamlessly.

From the beginning of this section, we know that when B = 0, the basis is

|(S, I), F,MF ⟩. Now try to write |(S, I), F,MF ⟩ as the combination in the basis

|mS,mI⟩ and compare with the non zero magnetic field eigenstates we obtain

above when B = 0.
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|(S, I), F, Fz⟩ =
∑

mS ,mI
|mS,mI⟩⟨mS,mI |F,MF ⟩

|(1
2
, 1), 3

2
, 3
2
⟩ = |1

2
, 1⟩ = |6⟩|B=0

|(1
2
, 1), 3

2
, 1
2
⟩ =

√
1
3
| − 1

2
, 1⟩+

√
2
3
|1
2
, 0⟩ = |5⟩|B=0

|(1
2
, 1), 3

2
,−1

2
⟩ =

√
2
3
| − 1

2
, 0⟩+

√
1
3
|1
2
,−1⟩ = |4⟩|B=0

|(1
2
, 1), 3

2
,−3

2
⟩ = | − 1

2
,−1⟩ = |3⟩|B=0

|(1
2
, 1), 1

2
,−1

2
⟩ =

√
1
3
| − 1

2
, 0⟩ −

√
2
3
|1
2
,−1⟩ = |2⟩|B=0

|(1
2
, 1), 1

2
, 1
2
⟩ =

√
2
3
| − 1

2
, 1⟩ −

√
1
3
|1
2
, 0⟩ = −|1⟩|B=0

Only |1⟩ has a −1 phase difference with the known engenstate at B = 0.

For large B, R±, Z± → ∞, sin θ± terms will vanish and cos θ± → 1, then

|6⟩ = |1
2
, 1⟩ |5⟩ = |1

2
, 0⟩ |4⟩ = |1

2
,−1⟩

|3⟩ = | − 1
2
,−1⟩ |2⟩ = | − 1

2
, 0⟩ |1⟩ = −| − 1

2
, 1⟩

Again, only |1⟩ has a −1 phase difference with know engenstate | − 1
2
, 1⟩. So,

we can add a −1 phase to our |1⟩ and get the ideal basis for the hyperfine structure

of 6Li in a magnetic field as shown in Table 2.2.

Table 2.2: Hyperfine energy eigenstates and eigen-energies.

Eigenstate Eigen-energy

|1⟩ = − sin θ+|12 , 0⟩+ cos θ+| − 1
2
, 1⟩ E1

ahf
= −1

4
− µ0B

2ahf
gI − R+

2

|2⟩ = − sin θ−|12 ,−1⟩+ cos θ−| − 1
2
, 0⟩ E2

ahf
= −1

4
+ µ0B

2ahf
gI − R−

2

|3⟩ = | − 1
2
,−1⟩ E3

ahf
= 1

2
+ µ0B

2ahf
gJ + µ0B

ahf
gI

|4⟩ = cos θ−|12 ,−1⟩+ sin θ−| − 1
2
, 0⟩ E4

ahf
= −1

4
+ µ0B

2ahf
gI +

R−
2

|5⟩ = cos θ+|12 , 0⟩+ sin θ+| − 1
2
, 1⟩ E5

ahf
= −1

4
− µ0B

2ahf
gI +

R+

2

|6⟩ = |1
2
, 1⟩ E6

ahf
= 1

2
− µ0B

2ahf
gJ − µ0B

ahf
gI
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Here sin θ± = [1+(Z±+R±)
2/2]−1/2, cos2 θ± = 1−sin2 θ±, and Z± = µ0B

ahf
(−gJ+

gI)± 1
2
, R± =

√
2 + (Z±)2.
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Figure 2.1: Hyperfine energies of 6Li versus magnetic fields. E1 lowest to E6

highest.

In Figure 2.1, we can see that as magnetic field increases, the original degener-

ate states for both F = 3
2
(blue lines) and F = 1

2
(red lines) split into six different

states. In the high magnetic field region the hyperfine energy shifts are approxi-

mately linear with magnetic field (about −1.4 MHz/G for the three lower states)

since the Zeeman shifts will dominate compared with shifts caused by hyperfine

interactions. However, the energy differences between states 1 and 2, or 2 and 3

will vary as the magnetic field changes.

Figure 2.2 shows that how the differences between energy levels change along

with magnetic field in our working region(500G to 1200G). The energy differences

correspond to the resonance frequencies of radio frequency (rf) pulse for the cor-

responding atomic transition. Since there is one to one correspondence between

the magnetic field and the atomic transition frequency, we can use this property

to calibrate the magnetic field in the system. If we take the derivative of the
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Figure 2.2: Atomic transition frequencies of 6Li versus magnetic field for tran-
sition between |1⟩ and |2⟩, and transition between |2⟩ and |3⟩.

energy difference, we can get the accuracy of this calibration method as shown in

Figure 2.3.

The Mathematica file that I use to accurately calculate the hyperfine energies

versus magnetic field is in appendix A.
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Figure 2.3: Derivative of the atomic transition frequencies of 6Li versus magnetic
field for transition between |1⟩ and |2⟩ (top), and transition between |2⟩ and |3⟩
(bottom).

2.2 Coherent Radio Frequency Spectroscopy

Having derived the hyperfine structure of 6Li, we need to talk about the elemen-

tary theory of coherent radio frequency (rf) spectroscopy. Since this is our starting

point for rf epectroscopy experiments. Here we just consider a simple two level

system. We will see that this elementary theory predicts both Rabi oscillation

and peak positions in the spectrum of the simple two level transition, which we
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use to calibrate our rf magnetic field.

Let’s start by writing down the Hamiltonian of an arbitrary system with an

radio frequency (rf) pulse.

H = H0 +H ′(t),

H0|n⟩ = En|n⟩; En = ~ωn. (2.32)

Here H ′(t) = −m · Brf (t) is the magnetic dipole energy caused by the radio

frequency (rf) pulse. We choose radio frequency (rf) magnetic field polarized

along the x direction.

Brf (t) = êxB
0
rf cosωt, (2.33)

m = µ0(gJS+ gII), (2.34)

where m contains both electric-spin and nuclear magnetic dipole moments. B0
rf is

the rf pulse amplitude and ω is the rf frequency. Since the magnetic field B in our

system is along the z direction as I mentioned in the previous section, if the rf pulse

is also along z direction, ⟨n|H ′|k⟩ = ⟨n| −mzB
0
rf cosωt|k⟩ = 0, Mn ̸= Mk, where

|n⟩ and |k⟩ are 6Li hyperfine states. Therefore, the rf pulse must be perpendicular

to z direction to make transitions between states of different totalM =MI +MS.

When we write a state in the eigenstate basis |ψ(t)⟩ =
∑

n an(t)e
−iωnt|n⟩ and

substitute into the time-dependent Schrödinger equation

H|ψ(t)⟩ = i~
∂

∂t
|ψ(t)⟩, (2.35)
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we obtain

∑
n

an(t)e
−iωnt(H0 +H ′)|n⟩ =

∑
n

(i~ȧn + ~ωnan)e
−iωnt|n⟩,∑

n

an(t)e
−iωntH ′|n⟩ = i~

∑
n

ȧne
−iωnt|n⟩. (2.36)

Hitting both sides of equation (2.36) with ⟨k|, we obtain

⟨k|
∑
n

an(t)e
−iωntH ′|n⟩ = i~

∑
n

ȧne
−iωnt⟨k|n⟩ = i~ȧke−iωkt, (2.37)

ȧk(t) = − i

~
∑
n

eiωkntan(t)H
′
kn. (2.38)

Here, ωkn = ωk − ωn, H
′
kn = ⟨k|H ′|n⟩. If we define the Rabi frequency Ωkn by

~Ωkn ≡ ⟨k|mx|n⟩B0
rf , (2.39)

we can write (2.38) as

ȧk(t) = i
∑
n

eiωkntΩknan(t) cosωt. (2.40)

Later on, we will see that when the rf frequency is resonant with the two level

energy splitting there is an atom number oscillation between these levels as time

goes by at this Rabi frequency Ωkn.

In a simple two energy level system as shown in Figure 2.4, we assume the
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 b\

 a\

Ω0

Figure 2.4: A schematic of a two energy level transition.

upper level is |b⟩ and lower level is |a⟩, and ωb − ωa = ω0 > 0.

ȧ(t) =
iΩ

2
e−iω0t(e−iωt + eiωt)b(t) (2.41)

ḃ(t) =
iΩ

2
eiω0t(e−iωt + eiωt)a(t) (2.42)

Since the terms with e±i(ω0+ω)t rapidly oscillate when ω0 + ω ≫ Ω,

∫ t

0

dt
iΩ

2
e−i(ω0+ω)ta(t) ≃ 0. (2.43)

That means after a time integration these terms would not affect a(t) or b(t) too

much. So, we can drop these terms by using the rotating-wave approximation

and get

ȧ(t) ≃ iΩ

2
ei∆tb(t) (2.44)

ḃ(t) ≃ iΩ

2
ei∆ta(t), (2.45)

where ∆ ≡ ω − ω0 is frequency detuning in respect to ω0.
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2.2.1 On Resonance - Rabi Oscillation

When rf frequency is on resonance, ∆ = 0,

ȧ(t) =
iΩ

2
b(t), ḃ(t) =

iΩ

2
a(t). (2.46)

ä(t) +

(
iΩ

2

)2

a(t) = 0, b̈(t) +

(
iΩ

2

)2

b(t) = 0. (2.47)

a(t), b(t) should have the solution forms

a(t) = A cos

(
Ω

2
t

)
+B sin

(
Ω

2
t

)
(2.48)

b(t) = C cos

(
Ω

2
t

)
+D sin

(
Ω

2
t

)
. (2.49)

We can calculate the coefficients A,B,C,D by using the initial conditions a(0) =

1, b(0) = 0. Then, we obtain

a(t) = cos

(
Ω

2
t

)
, b(t) = i sin

(
Ω

2
t

)
(2.50)

| a(t)|2 = cos2
(
Ω

2
t

)
, | b(t)|2 = sin2

(
Ω

2
t

)
. (2.51)

Here | a(t)|2 + | b(t)|2 = 1. So, there is an atom number oscillation between level

a and b along the time axis at the Rabi frequency Ω.

Experimentally, we can measure the Rabi frequency in our two level system.

It is an important parameter for extracting other information about the system.

Let’s use the two level system formed by the two lowest 6Li hyperfine states 1

and 2. We start by having all the atoms in state 2. After finding the resonant rf

frequency ω0 for transition from state 2 to state 1, we record the atom number in
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Figure 2.5: Rabi frequency oscillation at 822 G between |1⟩ and |2⟩. Ω21 =
2π × (234.6± 2.8) Hz
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both states for different rf pulse durations. Figure 2.5 is one set of data showing

how atom numbers oscillate between state 1 and 2 around 822 G. Here the Rabi

frequency is about 234 Hz. Note that the number in state 1 is 180 degree out of

phase with that in state 2 as it should be.

Since the Rabi frequency Ωkn = 1
~⟨k|mx|n⟩B0

rf , it can be affected by both rf

amplitude B0
rf and magnetic dipole matrix element ⟨k|mx|n⟩. Let’s calculate the

magnetic dipole matrix elements for transitions among the three lowest hyperfine

states of 6Li and see how the applied bias magnetic field can change the Rabi

frequency for transitions between them. From table 2.2, we know

|1⟩ = − sin θ+|12 , 0⟩+ cos θ+| − 1
2
, 1⟩

|2⟩ = − sin θ−|12 ,−1⟩+ cos θ−| − 1
2
, 0⟩

|3⟩ = | − 1
2
,−1⟩.

Since mx = (gJµ0Sx + gIµ0Ix)/~ and |gI | is very small compared with |gJ |, we

can ignore the second term, mx ≃ gJµ0Sx/~ ≃ −2µ0
S++S−

2~ .

⟨2|mx|1⟩ = −µ0

~ ⟨−
1
2
, 0|S−|12 , 0⟩(− cos θ− sin θ+) = µ0 cos θ− sin θ+

⟨3|mx|2⟩ = −µ0

~ ⟨−
1
2
,−1|S−|12 ,−1⟩(− sin θ−) = µ0 sin θ−

⟨3|mx|1⟩ = 0.

So, rf transitions can only happen between states 1 and 2 or between states 2 and

3 with Rabi frequencies

Ω21 =
µ0B

0
rf

~
cos θ− sin θ+

Ω32 =
µ0B

0
rf

~
sin θ−. (2.52)

Here sin θ± = [1+ (Z±+R±)
2/2]−1/2, cos2 θ± = 1− sin2 θ±, and Z± = µ0B

ahf
(−gJ +

gI)± 1
2
, R± =

√
2 + (Z±)2. For B = 0, Ω21 =

1
3

µ0B0
rf

~ and Ω32 =
2
3

µ0B0
rf

~ .
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When the magnetic field is high enough that B > ahf/µ0 ≃ 152/1.4 = 108 G,

as in the region we use, from 500 G to 1200 G, Z± = 1.84×10−2×B± 1
2
≃ 1.84×

10−2 × B, R± ≃ Z± and sin θ± ≃ [(Z± + Z±)
2/2]−1/2 = 1/(

√
2Z±), cos θ± ≃ 1.

Hence,

Ω32 = Ω21 =
µ0B

0
rf√

2 ~
1

1.84× 10−2 ×B
. (2.53)

These two Rabi frequencies should be inversely proportional to the bias mag-

netic field B. We can calculate the ratio of the Rabi frequencies for different

magnetic fields based on this relation. Figure 2.6 shows another Rabi frequency

measurement at 526 G for the same transition between states 1 and 2 with same

rf amplitude B0
rf as in Figure 2.5 where B = 822 G. Here the Rabi frequency is

about 363 Hz. Compared with data from Figure 2.5, we have:

(
Ω822G

Ω526G

)
measure

=
234.6 Hz

363.3 Hz
= 0.646(

Ω822G

Ω526G

)
calculate

=
526 G

822 G
= 0.640. (2.54)

Hence, the measured ratio is in very good agreement with the calculated value,

(
Ω822G

Ω526G

)
measure

≃
(
Ω822G

Ω526G

)
calculate

.
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Figure 2.6: Rabi frequency oscillation at 526 G between |1⟩ and |2⟩. Ω21 =
2π × (363.3± 4.5) Hz

2.2.2 Lineshape for coherent Excitation

When there is detuning ∆ ̸= 0, from equations (2.45) we have

ä(t)− i∆ȧ+

(
∆

2

)2

a = 0 (2.55)

b̈(t)− i∆ḃ+

(
∆

2

)2

b = 0. (2.56)

If we assume

a ∼ eiδt, b ∼ e−iδt, (2.57)

we get δ2 −∆δ − (Ω
2
)2 = 0 which gives us δ = ∆

2
± 1

2

√
∆2 + Ω2 ≡ ∆

2
± Ω′

2
. Here,

Ω′ =
√
∆2 + Ω2. Then we can write a(t) and b(t) as

a(t) = ei
∆
2
t(Ae

i
2
Ω′t +Be−

i
2
Ω′t), (2.58)

b(t) = e−i
∆
2
t(Ce

i
2
Ω′t +De−

i
2
Ω′t). (2.59)
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As in the no detuning case, we also can calculate the coefficients A,B,C,D by

using the initial condition a(0) = 1, b(0) = 0. Then we obtain

a(t) = ei
∆
2
t

[
cos

(
Ω′t

2

)
− i

∆

Ω′
sin

(
Ω′t

2

)]
(2.60)

b(t) = i
Ω

Ω′
e−i∆t sin

Ω′t

2
. (2.61)

| a(t)|2 = cos2
(
Ω′t

2

)
+

∆2

Ω′2
sin2

(
Ω′t

2

)
(2.62)

| b(t)|2 =
Ω2

Ω′2
sin2

(
Ω′t

2

)
. (2.63)

We also have | a(t)|2 + | b(t)|2 = 1.
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Figure 2.7: Rf transition fraction versus frequency detuning from the bare atomic
transition.

If we plot |b(t)|2 = 1

1+∆2

Ω2

sin2

(√
1 + ∆2

Ω2
Ωt
2

)
with respect to the dimensionless

detuning ∆/Ω, when Ωt = π which corresponds to the full transition of atoms

from |a⟩ to |b⟩, we can see a obvious peak around 0. This tells us that we have the

maximum transition when rf frequency is on resonance and how the transition
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probability decreases with detuning, as in Figure 2.7. This is the basic principle

of the rf spectroscopy experiment.

However, in our real experiment, the system works in the non-coherent region.

We can not observe the exact shape of the transition peak as in Figure 2.7 with a

π pulse. But we still can see a quite narrow peak at zero detuning as in Figure 2.8

by using a relatively large Ωt which is about 15 times of π.
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Figure 2.8: Atomic transition spectrum from pure state 2 to state 1 at 844.2 G
(76.2846 MHz).

So, on the one hand, experimentally we can find the transition rf frequency

quite accurately from the spectrum, while on the other hand we have the accurate

relation between magnetic field and the transition rf frequency. That makes rf

spectroscopy a perfect way to be used to calibrate the magnetic field.
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2.3 Calculation of Rf transition spectrum using

Fermi’s golden rule

As I mentioned in the end of last section, our real system is not coherent. In

order to calculate the rf transition rate and obtain the rf spectrum, we need to

use Fermi’s golden rule.

A simple golden rule calculation gives the radio-frequency-induced transition

rate out of the initial state to all possible final states

Ri(ωrf ) =
∑
f

Rf←i, (2.64)

where ωrf is the rf frequency, and

Rf←i =
2π

~
|H̃ ′fi|2 δ(Ef − Ei − ~ωrf )

H̃ ′fi = ⟨f |H̃ ′|i⟩

H ′ ≡ H̃ ′32|3⟩⟨2| e−iωrf t + h.c.

= −~Ω32

2
|3⟩⟨2| e−iωrf t − ~Ω32

2
|2⟩⟨3| eiωrf t (2.65)

Here, ⟨f |H̃ ′|i⟩ is the matrix element of the rf perturbation between the final

and initial states. We assume the initial hyperfine state for the atom pair is

|1⟩|2⟩ and final state is pair state |1⟩|3⟩. Ω32 is the Rabi frequency for changing

the hyperfine state of a single atom from the chosen populated state 2 to the

initially unpopulated state 3. In equation (2.65), H ′ is written in the rotating

wave approximation. Only the first term can cause the transition we require.
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We can write the wave-function of the initial and final states as

| i⟩ =
1√
2
(|1⟩a|2⟩b − |1⟩b|2⟩a)|I⟩,

|f⟩ =
1√
2
(|1⟩a|3⟩b − |1⟩b|3⟩a)|F ⟩. (2.66)

Here the atom-pair hyperfine state is anti-symmetric and the relative motion

states(bound or scattering) that are denoted as |I⟩ and |F ⟩ are symmetric in the

interchange of atoms a and b. For hyperfine state part the notations are consistent

with what I used in section 2.1 and subscripts a, b denotes different atoms. Then

the matrix element is

H̃ ′fi = −~Ω32

4
(a⟨1|b⟨3| −b ⟨1|a⟨3|) (|3⟩aa⟨2|+ |3⟩bb⟨2|) (|1⟩a|2⟩b − |1⟩b|2⟩a) ⟨F |I⟩

= −~Ω32

4

[
a⟨1|b⟨3|(|3⟩bb⟨2|)|1⟩a|2⟩b + (−1)2a⟨3|b⟨1|(|3⟩aa⟨2|)|2⟩a|1⟩b

]
⟨F |I⟩

= −~Ω32

2
⟨F |I⟩. (2.67)

Since the center of mass energy does not change in the rf transition, Ef − Ei

is the total change in the atomic hyperfine energy (≡ ~ωfi) plus the change in the

energy of the relative motion of the pair EF −EI . We sum up all the final states

to get the total rate out of initial state

Ri =
2π

~
∑
f

|H ′fi|2δ(Ef − Ei − ~ωrf ). (2.68)
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Then,

∫ ∞
0

dωrf Ri(ωrf ) =
2π

~
∑
f

|H ′fi|2
∫ ∞
0

dωrf δ(Ef − Ei − ~ωrf )

=
2π

~2

(
~Ω32

2

)2∑
F

|⟨F |I⟩|2. (2.69)

From the completeness of final relative motion states, which contain scattering

and bound states,
∑

F |F ⟩⟨F | = 1, we have
∑

F ⟨I|F ⟩⟨F |I⟩ = ⟨I|I⟩ = 1 and the

total rate out of |i⟩ is just

∫ ∞
0

dωrf Ri(ωrf ) =
π

2
Ω2

32 (2.70)

We can define a normalized transition rate I(ω) where

Ri(ωrf ) =
π

2
Ω2

fi I(ωrf ) (2.71)∫ ∞
0

dωrfI(ωrf ) = 1 (2.72)

If we define

ωrf = ωfi + ω, (2.73)

with ω the frequency relative to the (unshifted) free-atom hyperfine transition

frequency ωfi, we can write I(ω) as,

I(ω) =
∑
F

|⟨F |I⟩|2 ~ δ(EF − EI − ~ω), (2.74)

and,

∫ ∞
−∞

dωI(ω) = 1. (2.75)

This normalized transition rate is a concise form compared with Ri(ωrf ). In order
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to calculate the transition rates, we need to find wave functions of |F ⟩ and |I⟩.

They can be either bound state and scattering state of dimers or polarons.
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Chapter 3

Theory of Confinement-induced
Dimers

In §2.3, I derived the rf transition rate by using Fermi’s golden rule. In the

equation (2.75), wave function forms of the initial and final states are required

to calculate the rf transition rate. In this chapter, I will consider dimer theory

and use dimer bound state or scatting state to be the initial and final states of

the rf transition. The transition spectrum can be predicted and will be used to

compare with experimental spectrum in Chapter 6.

In two dimensional systems, atom-pairs exist not only on the BEC side of the

Feshbach resonance as in three dimensions, but also can be stabilized in the BCS

region. This is caused by the confinement of the two dimensional geometry [5,57].

We call these atom-pairs confinement-induced dimers. Our initial motivation

to do the radio frequency spectroscopy experiments was to directly observe the

binding energy of this kind of confinement induced dimer. Since our system is

quasi-two dimensional, we also expect difference from two dimensional system.

First, I will solve the Schrödinger equation for a harmonically-trapped two

atom system by using a time-dependent Green’s function. Then I obtain the

stationary Green’s function and calculate the dimer binding energies. At last, the

wave function forms for the bound state and scattering state will be calculated.
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3.1 Green’s function solution of the time depen-

dent Schrödinger equation

In order to calculate the dimer binding energies and dimer wave functions, first

we need to write down the Hamiltonian of the system and solve the Schrödinger

equation. Here we will use a Green’s function method to solve the Schrödinger

equation.

For the Hamiltonian, we write the kinetic and potential energy of a two-atom

system in a three dimensional harmonic trap:

H(0) =
p2
1

2m
+

p2
2

2m
+
1

2
mω2

xx
2
1 +

1

2
mω2

xx
2
2 +

1

2
mω2

yy
2
1 +

1

2
mω2

yy
2
2 +

1

2
mω2

zz
2
1 +

1

2
mω2

zz
2
2 .

(3.1)

H(0) can be separated into two parts for the center-of-mass motion and the relative

motion:

H(0) =

(
P2

2M
+

1

2
Mω2

xX
2 +

1

2
Mω2

yY
2 +

1

2
Mω2

zZ
2

)
+

(
p2

2µ
+

1

2
µω2

xx
2 +

1

2
µω2

yy
2 +

1

2
µω2

zz
2

)
. (3.2)

Here, Z = z1+z2
2
, z = z1−z2, and similarly for x, y direction,M = 2m, µ = m/2.

Since the center-of-mass motion energy does not change in the rf transition,

only the relative motion part of H(0) needs to be considered, which defined as:

H0 =
p2

2µ
+

1

2
µω2

xx
2 +

1

2
µω2

yy
2 +

1

2
µω2

zz
2. (3.3)

We use pseudo-potential form to describe the short-range s-wave interaction
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between two atoms [64]

V (r)ψ(r) =
4π~2a
m

δ(r)
∂

∂r
[rψ(r)], (3.4)

where r = r1 − r2 and a is the zero-energy s-wave scattering length.

Then the total Hamiltonian for the relative motion of two-atom system is

Hr = H0 + V (r). (3.5)

The next step is to solve the Schrödinger equation. We notice that if we are

using a Green’s function method to solve the Schrödinger equation, the stationary

Green’s function is readily determined from the time-dependent Green’s function

for harmonic confinement. In order to use a time-dependent Green’s function, we

consider the time-dependent Schrödinger equation

[H0 + V (r)]ψ(r, t) = i~
∂

∂t
ψ(r, t), (3.6)

or [
H0 − i~

∂

∂t

]
ψ(r, t) = −V (r)ψ(r, t). (3.7)

To solve this, we use a time dependent Green’s function

[
H0 − i~

∂

∂t

]
G(r, r′, t− t′) = δ(t− t′)δ(r− r′). (3.8)

Then, the solution to equation (3.7) is

ψ(r, t) = ψ(0)(r, t)−
∫ ∞
−∞
dt′
∫
d3r′G(r, r′, t− t′)V (r′)ψ(r′, t′) (3.9)
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Here, [H0 − i~ ∂
∂t
]ψ(0)(r, t) = 0, i.e., ψ(0)(r, t) is the homogeneous solution.

Then, the only thing we need to do is to get the specific form of the Green’s

function and put it back in equation (3.9).

To obtain a causal Green’s function, we add a small decay term ϵ, and solve

for the Green’s function using

[
H0(r)− i~

∂

∂t
− i~ϵ

]
G(r, r′, t− t′) = δ(t− t′)δ(r− r′). (3.10)

Since

G(r, r′, t− t′) =

∫ ∞
−∞

dω G̃(ω, r, r′)
eiω(t−t

′)

2π
, (3.11)

Put (3.13) in to (3.10), we have,

[H0(r) + ~ω − i~ϵ] G̃(ω, r, r′) = δ(r− r′), (3.12)

G(r, r′, t− t′) =

∫ ∞
−∞

dω

2π

eiω(t−t
′)

H0 + ~ω − i~ϵ
δ(r− r′). (3.13)

A formal solution for the causal G(r, r′, t − t′) can be obtained by doing residue

calculus in the complex upper half plane, which is required for convergence when

t > t′,

G(r, r′, t− t′) =
2πi

2π
·
ω + 1

~H0 − iϵ

H0 + ~ω − i~ϵ
e−

i
~H0(r)(t−t′)δ(r− r′). (3.14)

For t < t′, the lower half plane is required, where there is no pole. Then letting

ϵ→ 0, we obtain the causal Green’s function

G(r, r′, t− t′) =
i

~
θ(t− t′)e−

i
~H0(r)(t−t′)δ(r− r′), (3.15)
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where θ(t−t′) enforces causality and H0(r) operates on δ(r−r′). Since δ(r−r′) =∑
r ϕn(r)ϕn(r

′), and H0(r)ϕn = Enϕn, we can write,

G(r, r′, t− t′) =
i

~
θ(t− t′)

∑
n

e−
i
~En(t−t′)ϕn(r)ϕ

∗
n(r
′). (3.16)

We notice that the Green’s function is symmetric in exchange of r ↔ r′. This is

an important property we will use later to obtain the correct form of the Green’s

function.

We can write the Green’s function as,

G(r, r′, τ) ≡ i

~
θ(τ)g(r, r′, τ). (3.17)

g(r, r′, τ) = e−
i
~H0(r)τδ(r− r′) (3.18)

Here τ = t − t′, and g(r, r′, τ) is the time translation operator in position repre-

sentation.

Now we can use the Heisenberg operator

rH(τ) = e
i
~H0(r)τre−

i
~H0(r)τ (3.19)

to operate on g(r, r′, τ) and by solving the form of rH(τ) to calculate the form of

g(r, r′, τ). First, we find the derivative of rH(τ) with respect to τ ,

ṙH(τ) = e
i
~H0(r)τ

p

µ
e−

i
~H0(r)τ . (3.20)
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Then, we take the derivative again. In the z direction,

z̈H(τ) = e
i
~H0(r)τ

i

~

[
1

2
µω2

zz
2,
pz
µ

]
e−

i
~H0(r)τ

= −ω2
zzH(τ). (3.21)

Since the initial conditions are zH(0) = z and żH(0) =
pz
µ
, we have

zH(τ) = z cos(ωzτ) +
pz
µωz

sin(ωzτ). (3.22)

Similar relations hold for the x and y directions.

Now, we see

rH(−τ)g(r, r′, τ) = r′g(r, r′, τ). (3.23)

Hence, with θi = ωiτ ; i = x, y, z; g = gx(x, x
′)gy(y, y

′)gz(z, z
′), we obtain for the

z direction:

(
cosθzz −

sinθz
µωz

~
i

∂

∂z

)
gz(z, z

′, τ) = z′gz(z, z
′, τ). (3.24)

Hence, we have

gz(z, z
′, τ) = Cze

i
~

µωz
sinθz

(cosθz
z2

2
−zz′), (3.25)

where Cz is a constant. Because the Green’s function is symmetric in z ↔ z′ as

we mentioned previously, we should write gz(z, z
′, τ) in a symmetric form:

gz(z, z
′, τ) = Cze

i
~

µωz
sinθz

(cosθz
z2+z′2

2
−zz′). (3.26)
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Since
∫
d3rg∗(r, r2, τ)g(r, r1, τ) = δ(r2 − r1), we have in the z direction,

∫ ∞
−∞

dzg∗z(z, z2, τ)gz(z, z1, τ)

=

∫ ∞
−∞

dzC∗z e
− i

~
µωz
sin θz

(cos θz
z22+z2

2
−z2z)Cze

i
~

µωz
sin θz

(cos θz
z2+z21

2
−z1z)

= |Cz|2
∫ ∞
−∞

dze
i
~

µωz cos θz
sin θz

z21−z22
2 e

iµωz
~ sin θz

(z2−z1)z

= |Cz|2e
i
~

µωz cos θz
sin θz

z21−z22
2 2π~

sin θz
µωz

δ(z2 − z1)

= δ(z2 − z1). (3.27)

Hence we obtain |Cz| =
√

µωz

2πsinθz~ . Then by using
∫∞
−∞ dzgz(z, z

′, 0) = 1, from

equation (3.26) we calculate the phase of Cz. If we write Cz = |Cz|eiϕz ,

∫ ∞
−∞

dzgz(z, z
′, 0) =

∫ ∞
−∞

du√
π
eiu

2

eiϕz = 1, (3.28)

where u =
√

µωz

2 sin θz~(z− z′). Since
∫∞
−∞

du√
π
eiu

2
=

√
i, eiϕz =

√
−i. Then we obtain

the form of gz(r, r
′, τ)

gz(z, z
′, τ) =

√
µωz

2πi~sinθz
e

iµωz
~sinθz

[cosθz
z2+z′2

2
−zz′] (3.29)

as well as gx(x, x
′, τ) and gy(y, y

′, τ). Then, put these back in equation (3.17) to
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obtain the Green’s function.

G(r, r′, t− t′) =
i

~
θ(t− t′)

[( µ

2πi~

)3 ωxωyωz

sin θx sin θy sin θz

] 1
2

·e
iµωx

~ sin θx

[
cos θx

x2+x′2
2
−xx′

]

·e
iµωy

~ sin θy
[cos θy

y2+y′2
2
−yy′]

·e
iµωz

~ sin θz
[cos θz

z2+z′2
2
−zz′] (3.30)

3.2 Bound state and scattering state wave func-

tions

In radio-frequency spectroscopy experiment, the initial and final states for transi-

tions are either scattering eigenstates or bound eigenstates. By using the Green’s

function we have obtained, we can determine the eigenstates and dimer binding

energies as well as the scattering states.

Based on the solution of Schródinger equation (3.9), for the eigenstate ψE(r)

that we want to calculate, we have

ψE(r, t) = e−
i
~EtψE(r)

ψ
(0)
E (r, t) = e−

i
~Etψ

(0)
E (r). (3.31)

So, we can obtain the eigenstate directly from the time-dependent Green’s func-

tion,

ψE(r) = ψ
(0)
E (r)−

∫ ∞
−∞

dt′
∫
d3r′G(r, r′, t− t′)V (r′)e

i
~E(t−t′)ψE(r

′) (3.32)
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From equation (3.32) and (3.17) , we can define a stationary Green’s function

for an eigenstate.

GE(r, r
′) ≡ i

~

∫ ∞
0

dτe
i
~Eτg(r, r′, τ). (3.33)

Then we can write down integral equations for the eigenstate wave functions.

For a scattering state,

ψEs(r) = ψ
(0)
E (r)−

∫
d3r′GE(r, r

′)V (r′)ψE(r
′), (3.34)

where ψ
(0)
E is an input plane wave in free space.

For a bound state,

ψEb
(r) = −

∫
d3r′GE(r, r

′)V (r′)ψE(r
′). (3.35)

there is no input and ψ
(0)
E = 0.

Let’s consider the bound state first. By using the pseudo-potential form for

V (r) (3.4), we can write the bound state as

ψEb
(r) = −4π~2a

m
GEb

(r, 0)
∂

∂r′
[r′ψE(r

′)] |r′→0

= −4π~2a
m

GEb
(r, 0)u′E(0)

= AGEb
(r, 0). (3.36)

whereGEb
is bound state Green’s function, and ψE(r) ≡ uE(r)

r
and ψ

(0)
E (r) =

u
(0)
E (r)

r
.

Here, ψE(r) is proportional to GEb
(r), A is a coefficient. If E has been determined,

we can determine the wave function of the corresponding bound state. So, our

next goal is to find E.
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Hit both sides of (3.36) with ∂
∂r
[r...]|r→0 to obtain,

1 = −4π~2a
m

∂

∂r
[rGEb

(r, 0)]|r→0

= −4π~2a
m

[GEb
(r, 0)−G0(r)]|r→0 (3.37)

Here G0(r) is the part of GEb
that is ∝ 1

r
. Note that ∂

∂r
[rG0(r)] = 0 and GE −G0

is regular at r = 0. (3.37) is a self consistent equation which we can use to

determine E. Let’s find the form of G0(r).

From 3.29 and 3.30, GEb
(r, r′ → 0) is

GEb
(r, 0) =

i

~

( m

4πi~

)3/2 ∫ ∞
0

dτe
i
~Eτ

(
ωxωyωz

sin θx sin θy sin θz

)1/2

·e
imωx
~ sin θx

cos θx
x2

4 · e
imωy
~ sin θy

cos θy
y2

4 · e
imωz
~ sin θz

cos θz
z2

4 . (3.38)

Set ξ ≡ ωzτ , l
2
i =

~
mωi

, βi =
ωi

ωz
, i = x, y, z, E0 =

~ωx

2
+ ~ωy

2
+ ~ωz

2
and E−E0 = −Eb,

where the binding energy Eb = ϵb~ωz > 0. Then,

GEb
(r, 0) =

1

4π~ωzlxlylz

∫ ∞
0

idξ√
4π
e−iϵbξ

(
2

1− e−2iξ

) 1
2

ei cot ξ(
z

2lz
)2

·
(

2

1− e−2iξβx

) 1
2

ei cot(ξβx)(
x

2lx
)2

·
(

2

1− e−2iξβy

) 1
2

e
i cot(ξβy)(

y
2ly

)2
. (3.39)
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By changing to real variables ξ → −iu, we get

GEb
(r, 0) =

1

4π~ωzl3z

∫ ∞
0

du√
4π
e−ϵbu

(
2

1− e−2u

) 1
2

e− coth(u)( z
2lz

)2

·
(

2βx
1− e−2uβx

) 1
2

e− coth(uβx)(
x

2lx
)2

·
(

2βy
1− e−2uβy

) 1
2

e
− coth(uβy)(

y
2ly

)2
. (3.40)

There are three important length scales in the system: r, the distance between

the two atoms; a, the s-wave scattering length and the harmonic oscillator length

scale in the tight confinement direction, lz ≡
√

~/(mωz). For the limit r → 0,

we consider r ≪ a ≪ lz. So that ~2
mr2

≫ ~2
ma2

≫ ~2
ml2z

where ϵb~ωz ≃ ~2
ma2

. Then

~2
mr2

≫ ϵb~ωz ≫ ~ωz. Since the harmonic confinement has no effect at small r

where the kinetic energy dominates, we expect GE(r)| r→0 = G0(r) ∝ 1
r
. But in

(3.40), for ϵb ≫ 1, only terms with small u can survive. So, we can approximately

write coth(u) → 1
u
, 2βi

1−e−2uβi
→ 1

u
, i = x, y, z and since r2 = x2 + y2 + z2,

GEb
(r) =

1

4π~ωz

1

l3z

∫ ∞
0

du√
4πu3

e
−ϵbu− r2

4ul2z . (3.41)

Let s2 = r2

4ul2z
,

GEb
(r) =

m

4π~2r
2√
π

∫ ∞
0

dse
−s2−

(
−r

√
ϵb/l

2
z

2

)2

1
s2

=
m

4π~2r
e−r

√
ϵb/l2z (3.42)

The 3D molecular dimer binding energy is approximately ~2
ma2

when lz ≫ a, where
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the dimer can barely feel the harmonic trap. Hence,ϵb~ωz ≃ ~2
ma2

. Then we get

GEb
(r) =

m

4π~2r
e−r/a. (3.43)

For r ≪ a, GEb
(r) is the G0 we are looking for

G0(r) =
m

4π~2r
, (3.44)

which is exactly the free-particle Green’s function for small r. That means equa-

tion (3.41) will turn into G0’s equation as well when r ≪ a ≪ lz. Hence, we can

write

G0(r) →
m

4π~2lz

∫ ∞
0

du√
4πu3

(3.45)

This is the form of G0 we will put back into (3.37) with GEb
(r) from (3.40)

GEb
(r) =

m

4π~2
1

lz

∫ ∞
0

due−ϵbu√
4πu3

∏
j

(
2βju

1− e−2βju
)1/2e−coth(βju)(xj/2lj)

2

, (3.46)

considering r → 0 which makes the last term of GEb
become 1, we have from

(3.37)

lz
a
=

∫ ∞
0

du√
4πu3

[
1−

∏
j

(
2βju

1− e−2βju

)1/2

e−ϵbu

]
, (3.47)

where we recall βj =
ωj

ωz
. This is the self-consistent function that we can use to

calculate Eb = ϵb~ωz.

I plot ϵb = Eb/(hνz) versus lz/a in Figure 3.1. As lz/a become positive and

large, the difference between blue and red lines, which shows the effect of the

transverse confinement, is not so important as when lz/a is small. That’s because

when lz/a is big, a ≪ lz,
~2
ma2

≫ hνz, the dimer is tightly bound and its size is
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Figure 3.1: ϵb = Eb/(hνz) versus lz/a. The blue lower line is for ν⊥ = 0 with no
transverse confinement. The red upper line is for ν⊥ = νz/25.

very small compared with the harmonic oscillator length scale lz. So, the shape

of the trap would not affect the interaction between the two atoms very much.

Experimentally, we know the magnetic field B and trap frequency νz, so we

can calculate lz =
√

~/(mωz) = (
√
h/(mνz) )/2π and s-wave scattering length

a(B) from the known Feshbach resonance parameters [29]. Solving the integral

equation (3.47), we can get Eb = ϵb~ω. In Figure 3.2, I plot three s-wave scattering

lengths a12, a13, a23 versus magnetic field [29].

In Figure 3.3, I plot the binding energy Eb for 12, 13 and 23 dimer states as a

function of magnetic field. I also show the relative magnitudes by putting them

on the same graph (right bottom graph in Figure 3.3). We can see that the 13

binding energy is always smaller than the 12 and 23 binding energy in the region

from 690 G to 850 G, where we do the rf spectroscopy experiment. The trans-

verse confinement ν⊥ = νz/25, which we have experimentally, will increase the
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Figure 3.2: S-wave scattering lengthes versus magnetic field for the (1,2), (1,3)
and (2,3) scattering channels.

binding energy significantly especially for high magnetic field and small binding

energies. Here I list some binding energies which we will use later to compare

with experimental data in Table 3.1 and Table 3.2.

Now we can go ahead and calculate the bound state and scattering state

wave functions. Since in our system, ω⊥/ωz = 1/25, we use the approximation

ω⊥ ≪ ωz, where βx, βy → 0 while βz = 1. Then, in equation (3.46), 2βxu
1−e−2βxu → 1,

coth(βxu)
x2

4l2x
→ x2

βxu4l2x
= ( x

2lz
)2 1

u
, and similarly for the y direction. In the z

direction, 2βzu
1−e−2βzu → 2u

1−e−2u . So that,

GEb
(r) =

m

4π~2
1

lz

∫ ∞
0

due−ϵbu√
4πu3

(
2u

1− e−2u

)1/2

e− cothu(z/2lz)2e−(
ρ

2lz
)2 1

u . (3.48)

Here ρ =
√
x2 + y2. The bound state should be lower than the harmonic trap

ground state, but very close to it, when the binding energy is small. The ground
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Figure 3.3: Dimer binding energies versus magnetic field when νz = 24.5 kHz.
The solid red, blue and orange lines are for ν⊥ = νz/25 while the purple dash lines
are for ν⊥ = 0 respectively. The graph on the left top shows 12 binding energy.
Red line is for ν⊥ = νz/25 and purple dash line is for ν⊥ = 0; The graph on the
right top shows 13 binding energy. Blue line is for ν⊥ = νz/25 and purple dash
line is for ν⊥ = 0; The graph on the left bottom shows 23 binding energy. Orange
line is for ν⊥ = νz/25 and purple dash line is for ν⊥ = 0; The insets of these three
graphs are the comparison of ν⊥ = νz/25 and ν⊥ = 0 in high magnetic field where
the differences between them are obvious. The graph on the right bottom is the
comparison of 12, 13 and 23 binding energy for ν⊥ = νz/25.
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Table 3.1: Dimer binding energies for νz around 24 kHz. Frequencies and energies
are given in units of kHz. Eb0 is the case for no transverse confinement ν⊥ = 0
while Eb includes the transverse confinement ν⊥ = νz/25.

B(G) νz E13
b0 E13

b E12
b0 E12

b E23
b0 E23

b

688.9 24.5 6.47 7.43 313.9 314.8 458.7 459.7
718.5 26.0 1.95 2.91 144.2 145.3 161.8 162.9
728.5 24.5 1.26 2.13 109.9 110.9 113.4 114.4
748.0 25.0 0.74 1.58 64.90 65.90 56.72 57.82
768.2 24.5 0.45 1.21 36.82 37.80 27.11 28.09
788.5 24.5 0.30 1.03 20.72 21.70 12.98 13.95
808.6 24.0 0.21 0.88 11.63 12.58 6.39 7.33
832.2 24.5 0.17 0.81 6.29 7.25 3.17 4.11
841.7 24.5 0.15 0.78 4.96 5.91 2.15 3.37

state axial wave function is ϕ0(z) = ϕ0(0)e
−( z

2lz
)2 with ϕ0(0) =

1
(2πl2z)

1/4 . For small

ϵb, it is reasonable to assume that the primary component of the bound state

wave function is the projection onto ϕ0(z).

IEb
(ρ) =

∫ ∞
−∞

dz GE(r)ϕ0(z)

= ϕ0(0)
m

4π~2
1

lz

∫ ∞
0

due−ϵbu√
4πu3

e−(
ρ

2lz
)2 1

u Iz(u), (3.49)

where

Iz(u) =

∫ ∞
−∞

dze−(
z

2lz
)2(1+cothu)

(
2u

1− e−2u

)1/2

=

√
π(2lz)2

1 + coth u

(
2u

1− e−2u

)1/2

=
√
4πlzu

1/2. (3.50)
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Table 3.2: Dimer binding energies for νz around 82 kHz. Frequencies and energies
are given in units of kHz. Eb0 is the case for no transverse confinement ν⊥ = 0
while Eb includes the transverse confinement ν⊥ = νz/25.

B(G) νz E13
b0 E13

b E12
b0 E12

b E23
b0 E23

b

688.9 82.5 21.03 24.26 342.0 345.3 487.0 490.3
718.5 81.5 10.36 13.47 170.2 173.5 188.0 191.2
728.3 82.5 8.82 11.94 137.1 140.4 140.9 144.2
748.0 83.5 6.65 9.75 90.31 93.64 81.78 85.11
767.5 82.5 5.13 8.13 60.80 64.07 49.74 53.01
788.3 82.5 4.17 7.11 41.39 44.66 31.27 34.52
809.5 85.0 3.71 6.69 29.76 33.11 21.40 24.72
832.0 82.0 2.97 5.79 20.64 23.85 14.27 17.44
841.7 82.5 2.84 5.66 18.20 21.41 12.49 15.66

Then,

IEb
(ρ) = ϕ0(0)

m

4π~2

∫ ∞
0

du

u
e−ϵbu−

1
u
( ρ
2lz

)2

= ϕ0(0)
m

4π~2
2K0

(
ρ
√
ϵb

lz

)
, (3.51)

where K0 is a modified Bessel function. This is the projection of GE(r) onto

ϕ0(z). Since ϕ0(0)
m

2π~2 is a coefficient, we can write the bound state wave function

as

ψEb
(r) = Aϕ0(z)K0

(√
ϵbρ

lz

)
. (3.52)

Here A is the normalization coefficient. The normalization gives

∫ ∞
−∞

dz

∫ ∞
0

2πρdρ|A|2ϕ2
0(z)K

2
0

(√
ϵbρ

lz

)
= 1. (3.53)

We can get A =
√
ϵb

lz
√
π
. If we define κ =

√
ϵb/lz, the bound state wave function can
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be approximately written as

ψEb
(z, ρ) =

κ√
π
ϕ0(z)K0 (κρ) . (3.54)

Here we have ignored other components from higher axial states like ϕ2, ϕ4, ...

since the binding energy we consider is small compared with ~ωz.

For the scattering state, from (3.34),

ψEs(r) = ψ
(0)
Es
(r)− 4π~2a

m
GEs(r, 0)

∂

∂r′
[r′ψEs(r

′)]|r′→0 (3.55)

Here the Es in the subscript means scattering state energy, E −E0 = Es = ϵ~ωz,

ϵ > 0. Assuming that the scattering occurs in the ground axial state, for Es < ~ωz,

we take Es =
~2k2⊥
m

, the relative kinetic energy in the transverse direction. As we

did for bound state, hit both sides of (3.55) with ∂
∂r
[r...] to obtain,

u′Es
(0) = u

′(0)
Es

(0)− 4π~2a
m

∂

∂r
[rGEs(r)] |r→0u

′
Es
(0) (3.56)

Here uEs = rψEs , and is regular in the origin. So,

u′Es
(0) =

u
′(0)
Es

(0)

1 + 4π~2a
m

∂
∂r

[rGEs(r)] |r→0

(3.57)

Since for the bound state we have 1 = −4π~2a
m

∂
∂r
[rGEb

(r, 0)]|r→0 from (3.37), let’s

replace the 1 in (3.57),

u′Es
(0) =

m

4π~2a
u
′(0)
Es

(0){
− ∂

∂r
[rGEb

(r)] |r→0 +
∂
∂r

[rGEs(r)] |r→0

} (3.58)

In the denominator, subtraction ∂
∂r

[r(GEs −GEb
)] |r→0 cancels out the irregular
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parts ∝ 1
r
in both Green’s functions. And the remaining parts are regular when

r → 0. So, we can write ∂
∂r

[r(GEs −GEb
)] |r→0 = (GEs −GEb

)|r→0.

u′Es
(0) =

m

4π~2a
u
′(0)
Es

(0)

[GEs(r)−GEb
(r)] |r→0

(3.59)

If we put (3.59) back into (3.55), and consider u
′(0)
Es

(0) = ∂
∂r
[rψ

(0)
Es
]|r→0 = ψ

(0)
Es
(0)

since the input state is regular at r = 0, we obtain the simple form

ψEs(r) = ψ
(0)
Es
(r)−

GEs(r)u
′(0)
Es

(0)

[GEs(r)−GEb
(r)]|r→0

= ψ
(0)
Es
(r)−

GEs(r)ψ
(0)
Es
(0)

[GEs(r)−GEb
(r)]|r→0

. (3.60)

We have already done the projection of the bound state Green’s function GEb
onto

ϕ0. In the same way, we can do the projection of the scattering state Green’s

function GEs onto ϕ0. But here we replace Eb by Es, so we should start from

(3.39) and change ϵb → −ϵ. Again, we can make the same approximations based

on ω⊥ ≪ ωz and βx, βy ≪ 1. So, 2βx

1−e2iξβx → 1
iξ
, cot(ξβx)

1
l2x
→ ξ

l2z
, and similarly for

the y direction. Then, we can write GEs(r) as,

GEs(r) =
m

4π~2
1

lz

∫ ∞
0

dξeiϵξ√
4πξ2

(
2

1− e−2iξ

)1/2

ei cot ξ(
z

2lz
)2+ i

ξ
( ρ2

2lz
) (3.61)

Then when we do the projection onto the ground axial state, we have

IEs(ρ) =

∫ ∞
−∞

dzϕ0(z)GEs(r)

= ϕ0(0)
m

4π~2
1

lz

∫ ∞
0

dξe−iϵbξ√
4πξ2

e(
ρ

2lz
)2 i

ξ I ′z(ξ) (3.62)
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I ′z(ξ) =

∫ ∞
−∞

dz e−(
z

2lz
)2(1−i cot ξ)

(
2

1− e−2iξ

)1/2

=

√
π(2lz)2

1− i cot ξ

(
2

1− e−2iξ

)1/2

=
√
4π lz (3.63)

IEs(ρ) = ϕ0(0)
m

4π~2

∫ ∞
0

dξ

ξ
e−iϵbξ+

i
ξ
( ρ
2lz

)2

= ϕ0(0)
m

4π~2
πiH

(1)
0 (k⊥ρ) (3.64)

here, k⊥ is from ϵ = 1
~ωz

~2k2⊥
m

, the relative kinetic energy in unit of ~ωz, and H
(1)
0

is a Hankel function.

We know the input wave function for the first term on the right side of (3.60)

by considering only the l = 0 component of a box-normalized (to area A) plane

wave input state 1√
A
eik⊥·ρ in the transverse direction, i.e.,

ψ
(0)
k⊥
(ρ) =

1√
A
J0(k⊥ρ). (3.65)

Here, A is the area and J0 is a Bessel function. In the z direction, we only consider

the ground axial state. So the input state is

ψ
(0)
Es
(r) = ϕ0(z)

1√
A
J0(k⊥ρ). (3.66)

Then let’s put (3.66), (3.61) and (3.64) into (3.60). We obtain the wave function

for the scattering state. Since

H
(1)
0 (x) = J0(x) + iY0(x), (3.67)
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K0(x) =
iπ

2
[J0(ix) + iY0(ix)], (3.68)

We get

ψEs(r) = ϕ0(z)
1√
A
J0(k⊥ρ)

−
ϕ0(z)ϕ0(0)

m
4π~2πiH

(0)
0 (k⊥ρ)ψ

(0)
E>0(0)

ϕ0(0)
[
ϕ0(0)

m
4π~2πiH

(0)
0 (k⊥ρ)− ϕ0(0)

m
4π~22K0(

ρ
√
ϵb

lz
)
]
|ρ→0

.

Here, ψ
(0)
Es
(0) = ϕ0(0)

1√
A
J0(0) = ϕ0(0)

1√
A
. Using (3.67) and (3.68) in the denom-

inator, we obtain

ψEs(r) = ϕ0(z)
1√
A

[
J0(k⊥ρ)−

πi

πi+ ln( ϵb
ϵ⊥
)
H

(1)
0 (k⊥ρ)

]
(3.69)

for a scattering state of relative kinetic energy
~2k2⊥
m

= ϵ⊥~ωz.

Equations (3.54) and (3.69) give the wave functions of dimer bound state

and scattering state. They can be used as initial and final states to calculate

the radio-frequency(rf) transition spectrum in equation (2.74), which we derived

using Fermi’s Golden rule in Chpter2.
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3.2.1 Bound to bound transition

We assume the transition is from 6Li hyperfine states |1⟩ |2⟩ pair state to a |1⟩ |3⟩

pair state. For a bound to bound transition,

|I⟩ = ϕ0(z)ψ12(ρ) =
κ12√
π
ϕ0(z)K0 (κ12ρ) ,

|F ⟩ = ϕ0(z)ψ13(ρ) =
κ13√
π
ϕ0(z)K0 (κ13ρ) ,

µ =
m

2
, E12

b =
~2κ212
m

, E13
b =

~2κ213
m

,∫ ∞
0

2πρdρ|ψ12(ρ)|2 =
∫ ∞
0

2πρdρ|ψ13(ρ)|2 = 1,

∫
dz|ϕ0(z)|2 = 1

Then the overlap of the initial and final bound states is

⟨F |I⟩ =
∫ ∞
0

2πρdρψ12(ρ)ψ13(ρ) (3.70)

Since ∫ ∞
0

ρdρK0(κ12ρ)K0(κ13ρ) =
ln
(

κ12

κ13

)
κ212 − κ213

, (3.71)

we have

⟨F |I⟩ = =
2πκ12κ13

π

ln
(

κ12

κ13

)
κ212 − κ213

=
2
√
E12

b E
13
b

E12
b − E13

b

ln

√
E12

b

E13
b

=

√
E12

b E
13
b

E12
b − E13

b

ln

(
E12

b

E13
b

)
. (3.72)
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Using this in equation (2.74),

I12b→13b(ω) =
∑
F

|⟨F |I⟩|2 ~ δ(EF − EI − ~ω)

=
E12

b E
13
b

(E12
b − E13

b )2

[
ln

(
E12

b

E13
b

)]2
~ δ(E12

b − E13
b − ~ω), (3.73)

where b in the subscript denotes bound state. In order to make the expression

more concise, we define

q ≡ ln

(
E13

b

E12
b

)
, (3.74)

and

ϵbb ≡
E12

b E
13
b

(E12
b − E13

b )2

[
ln

(
E12

b

E13
b

)]2
=

q2

4 sinh2(q/2)
. (3.75)

Then I12b→13b(ω) can be written as

I12b→13b(ω) = ϵbb ~ δ
(
ω − E12

b − E13
b

~

)
. (3.76)

In the real experiment, we tend to use Hertz instead of angular frequency. So,

it is easier for us to measure the Hertz frequency version for I12b→13b in order to

compare with experimental results. For a bound to bound transition

I12b→13b(ν) = ϵbb δ(ν −
E12

b − E13
b

h
), (3.77)∫ ∞

−∞
dνI12b→13b(ν) = ϵbb. (3.78)

We can see that ϵbb is the frequency integrated bound to bound transition fraction.
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3.2.2 Bound to free transition

For a bound to free transition,

|I⟩ = ϕ0(z)ψ12(ρ) =
κ12√
π
ϕ0(z)K0 (κ12ρ) ,

|F ⟩ = ϕ0(z)ψ13(ρ) =ϕ0(z)
1√
A

J0(k13⊥ ρ)− πi

πi+ ln(
E13

b

E13
f
)
H

(1)
0 (k13⊥ ρ)

 ,
µ =

m

2
, E12

b =
~2κ212
m

, E13
b =

~2κ213
m

, E13
f =

~2k213⊥
m

,∫
dz|ϕ0(z)|2 = 1

We again calculate the overlap of initial and final states

⟨F |I⟩ =
∫ ∞
0

2πρdρ
κ12√
π
K0(κ12ρ)

1√
A

J0(k13⊥ ρ)− πi

πi+ ln(
E13

b

E13
f
)
H

(1)
0 (k13⊥ ρ)


(3.79)

Since H
(1)
0 (k13⊥ ρ) = J0(k13⊥ ρ) + iY0(k13⊥ ρ), we find

∫ ∞
0

ρdρK0(κ12ρ)J0(k13⊥ ρ) =
1

κ212 + k213⊥
, (3.80)

∫ ∞
0

ρdρK0(κ12ρ)Y0(k13⊥ ρ) = − 2

π

ln κ12

k13⊥

κ212 + k213⊥
, (3.81)

∫ ∞
0

ρdρK0(κ12ρ)H
(1)
0 (k13⊥ ρ) =

1

κ212 + k213⊥

(
1− 2i

π
ln
κ12
k13⊥

)
=

1

κ212 + k213⊥

(
1− i

π
ln
E12

b

E13
f

)
. (3.82)

Then, we sum over all the possible kinetic energies for the free states to get the
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total transition rate out of the bound state 12 bound:

I12b→13f (ω)

=~
∫ ∞
0

A

(2π)2
2πk13⊥dk13⊥

∣∣∣∣∫ ∞
0

2πρdρ
κ12√
π
K0(κ12ρ)

1√
A

J0(k13⊥ ρ)− πi

πi+ ln
(

E13
b

E13
f

)H(1)
0 (k13⊥ ρ)

∣∣∣∣∣∣
2

δ(E13
f + E12

b − ~ω)

=~
[
ln

(
E13

b

E12
b

)]2
E12

b

∫ ∞
0

dE13
f

(E12
b + E13

f )2
1∣∣∣πi+ ln
(

E13
b

E13
f

)∣∣∣2 δ(E13
f + E12

b − ~ω)

=
E12

b

~ω2

[
ln

(
E13

b

E12
b

)]2
Θ(~ω − E12

b )[
ln

E13
b

~ω−E12
b

]2
+ π2

. (3.83)

We can use the definition of q = ln(E13
b /E

12
b ) to write I12b→13f (ω) concisely,

I12b→13f (ω) =
E12

b

~ω2

q2Θ(ω − E12
b /~)[

q − ln
(

~ω
E12

b
− 1
)]2

+ π2

. (3.84)

As I mentioned previously, in order to compare with experimental results, we

change the variable from angular frequency into Hertz. Since we defined nor-

malized transition rate I in equation (2.71) as Ri(ω) = π
2
Ω2 I(ω) previously,∫∞

−∞ dνI(ν) = 1 as well as
∫∞
−∞ dωI(ω) = 1. We know that dω = 2πdν, then

I(ν) = 2πI(ω),

I12b→13f (ν) =
E12

b

hν2
Θ(ν − E12

b /h)q
2[

q − ln
(

hν
E12

b
− 1
)]2

+ π2

(3.85)

In equation (3.85), the part
E12

b

hν2
Θ(ν−E12

b /h) predicts a threshold spectrum, shown

as the blue lines in the top two graphs in Figure 3.4, that would be obtained for
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Figure 3.4: Effect of the final state interactions on the bound state to scattering
state transition spectrum is shown for different q. In the two graphs on the top,

the blue solid lines are the same plot I(ν) =
E12

b

hν2
Θ(ν − E12

b /h), and the red dash
lines show the total transition rate for different q after considering about the

logarithm part I(ν) =
E12

b

hν2
q2Θ(ν−E12

b /h)[
q−ln

(
hν

E12
b

−1
)]2

+π2

. In the bottom two graphs, the black

lines show how the logarithm part of the transition rate vary versus the normalized

frequency hν/E12
b for plus and minus q. The reason to choose q = ln

E13
b

E12
b

± 3.9 is

that the q for 2% trap depth at 720G for 12 to 13 transition is about −3.9 and for
13 to 12 transition is about +3.9, where we have experimental result to compare
with.
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Figure 3.5:
∫∞
0
dνI12b→13f (ν) = 1 −

∫∞
0
dνI12b→13b(ν) Frequency integrated

bound state to scattering state transition rate
∫∞
0
dνI12b→13f (ν) in equation (3.85)

(Blue dots) compared with 1 − ϵbb (Red line). ϵbb is the integrated bound to
bound transition rate. The exact overlap of blue dots and red line shows that∫∞
0
dνI12b→13f (ν) = 1− ϵbb = 1− q2

4 sinh2( q
2)

a non-interacting final state, where E13
b → 0 and q2 → ∞. The logarithm part,

shown in the bottom two graphs in Figure 3.4, predicts a significant modification

of the threshold spectrum, shown as the red dash lines in the upper two graphs.

We can see that for normalized bound state to scattering state transition

rate I, the sign of q modifies the shape of the spectrum significantly as shown

in Figure 3.4. However, the frequency integrals
∫∞
0
dνI12b→13f (ν) are the same

as long as the magnitude of q is the same, as shown in Figure 3.5, blue dots.

These blue dots matches the red line very well. The red line shows 1 minus the

integration of bound to bound transition rate
∫∞
0
dνI12b→13b(ν) = ϵbb. We expect

from (2.75),
∫∞
−∞ dνI(ν) = 1.

∫ ∞
0

dνI12b→13f (ν) = 1− ϵbb = 1− q2

4 sinh2
(
q
2

) , (3.86)
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This means that the final states including the scattering final states are complete

and contain only one bound state which is consistent with our ground axial state

assumption.

3.2.3 Summary for the dimer transition rate calculation

In order to compare with the experimental results, we still need to go back to get

the real transition rate R(ν). We know that from equation (2.71) with I(ν) =

2πI(ω)

R(ω) ≡ R(ν) =
π

2
Ω2

fi(rad/s)
1

2π
I(ν). (3.87)

Since Ωfi(rad/s) = 2πΩfi(Hz), the transition rate in sec−1 as a function of rf

frequency in Hz is

R(ν) = π2Ω2
fi(Hz)I(ν). (3.88)

Then we can use the normalized bound to bound transition rate I12b→13b(ν), e-

quation (3.77), and the bound to free transition rate I12b→13f (ν), equation (3.85)

to get

R12b→13b(ν) = π2Ω2
fiϵbb δ

(
ν − E12

b − E13
b

h

)
, (3.89)

R12b→13f (ν) = π2Ω2
fi

E12
b

hν2
q2Θ(ν − E12

b /h)[
q − ln

(
hν
E12

b
− 1
)]2

+ π2

. (3.90)

Later we will fit them with experimental data.
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Chapter 4

Polarons in two dimensions

Besides dimer theory, we also consider many-body physics to explain our exper-

imental results. We notice that zero temperature noninteracting polaron theory

in two dimensions can give us resonances positions in rf spectrum that fit our

data much better than the dimer predictions. In the regime, where EF⊥ > Eb,

polarons are expected to be energetically more favorable than the corresponding

dimers [2, 61, 62] and arise naturally for the initially empty final state [7]. Here I

will describe how we calculate the resonance positions. Later in chapter 6, I will

compare these predictions to our data.

4.1 Calculation of polaron binding energy

A polaron is an impurity immersed in a bath of its environment. Here I mean

a spin-down impurity surrounded by a cloud of particle-hole pairs in a spin-up

Figure 4.1: Schematic of 12 polaron to 13 polaron transition.
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Fermi sea. It arises from collisions between the impurity and atoms in the Fermi

sea. Figure 4.1 shows a schematic of 12 polaon to 13 polaron transition. We

follow Chevy’s three dimensional(3D) calculation of the polaron energy [65] and

modify the calculation for a two dimensional(2D) system.

Let’s start with the hamiltonian for a dilute two component mixture of fermion-

ic atoms interacting via short range potential V (r). Because of the diluteness of

the system, the potential is of short range R compared to the interparticle dis-

tance 1/kF , we can treat the potential as a δ function as in our treatment of

dimers. Then the Fourier transform V (k) of the potential is essentially constant,

which we denote here as U0. In two dimensions, U0 is the interaction strength,

U0 = g0
~2
m
, where g0 is dimensionless, so that U0

A
has dimension of energy.

H =
∑
k⊥σ

ϵk⊥ ĉ
†
k⊥σĉk⊥σ +

U0

A

∑
k1⊥k′

1⊥k2⊥k′
2⊥

ĉ†k′
1⊥↑

ĉ†k′
2⊥↓

ĉk2⊥↓ĉk1⊥↑ δk1⊥+k2⊥,k′
1⊥+k′

2⊥ .

(4.1)

The first part of the hamiltonian is the total kinetic energy of the individual atom

and the second term describes collisions of two atoms with initial momentum

k1⊥ + k2⊥ and final momentum k′1⊥ + k′2⊥. The label σ =↑, ↓ denotes the spin

states. A is the quantization area of the 2D system for box normalized states

and c†, c are the usual creation and annihilation operators for fermions with

momentum k⊥ and spin σ.

In this hamiltonian itself, we don’t have any information about the polaron.

It only describes a system with many-body effects. Chevy proposed a trial wave

function for the Fermi polaron with zero momentum that captures the essential

properties of the polaron [65]. By this polaron state and the Hamiltonian, we can

understand the behavior of the polaron. Here is the 2D version polaron state for
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one impurity spin ↓ atom in a Fermi sea of spin ↑ atoms,

|E↓⟩ = φ0|0⟩↓|FS⟩↑ +
∑

q⊥<kF⊥<k⊥

φ k⊥q⊥|q⊥ − k⊥⟩↓ĉ+k⊥↑ĉq⊥↑|FS⟩↑. (4.2)

In the first term, |0⟩↓ is a spin ↓ impurity with zero momentum, and |FS⟩↑ is

Fermi sea state which also have zero momentum. The second term describes a

simple interaction between the impurity and the Fermi sea. The impurity knocks

a particle with momentum q⊥ out of the Fermi sea and creates a hole. At the

same time it creates a particle with momentum k⊥ above the Fermi momentum

KF⊥. This particle-hole pair Fermi sea has momentum PFS↑ = k⊥ − q⊥ and the

impurity has momentum P⊥↓ = q⊥ − k⊥ which makes the net momentum of the

system is still zero. This state is not the exact eigenstate for a single polaron

since it only contains one simple interaction, however it is a good approximation.

In order to find the polaron eigenstate |E↓ → with energy E↓, the expectation

value of energy is minimized under variation of the parameters φ0 and φ k⊥q⊥

with the constraint of a constant norm

⟨E|E⟩ = |φ0|2 +
∑

q⊥<kF⊥<k⊥

|φ k⊥q⊥ |2 = 1. (4.3)

The quantity to minimize is ⟨E↓|H|E↓⟩ −E↓⟨E|E⟩. The derivation can be found

in Chevy’s paper [65]. Here we just use his result for the 3D case and transfer it

into 2D case by changing the volume of the system V into the area A,

E↓ =
1

A

∑
q⊥<kF⊥

f(E↓,q⊥). (4.4)
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Here

f−1(E↓,q⊥) =
1

U0

+
1

A

∑
k⊥>kF⊥

1

ϵk⊥ − ϵq⊥ + ϵq⊥−k⊥ − E
, (4.5)

where the bare interaction strength U0 = g0~2/m and g0 is dimensionless and

ϵk⊥ = ~2
2m
k2⊥. We can renormalize the 1/U0 using

1

U0

=
1

T2B(k⊥0)
− 1

2A

∑
k⊥

1

ϵk⊥ − ϵk⊥0

. (4.6)

Here, T2B is physical two dimensional T-Matrix element, obtained from our dimer

scattering states

T2B(k⊥0) =
4π~2

m

1

πi+ ln(ϵb/ϵ⊥0)
, (4.7)

and ϵ⊥0 ≡ 2 ~2
2m
k2⊥0 = 2ϵk⊥0

is the relative kinetic energy of a colliding atom-

pair. We can separate the sum of k⊥ in equation 4.6 into two parts
∑

k⊥
=∑

k⊥<kF⊥
+
∑

k⊥>kF⊥
. The

∑
k⊥>kF⊥

part can combine with the second term in e-

quation 4.5 and the
∑

k⊥<kF⊥
part can be written as 1

A

∑
k⊥<kF⊥

→ 1
A

A
(2π)2

k⊥dk⊥dϕ,

1

2A

∑
k⊥<kF⊥

1

ϵk⊥ − ϵk⊥0

=
1

2A

A

(2π)2

∫ kF⊥

0

dk⊥k⊥(2π)
~2
2m

(k2⊥ − k2⊥0)

=
m

2π~2

∫ kF⊥

0

dk⊥k⊥
k2⊥ − k2⊥0

=
m

4π~2
ln

(
k2F⊥

− k2⊥0
−k2⊥0

)
. (4.8)
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Then using equation (4.8) in equation (4.5), we get

f−1(E,q⊥) =
m

4π~2

[
πi+ ln

(
ϵb
ϵ⊥0

)
− ln

(
k2F⊥

− k2⊥0
−k2⊥0

)]
+

1

A

∑
k⊥>kF⊥

[
1

ϵk⊥ − ϵq⊥ + ϵq⊥−k⊥ − E
− 1

2(ϵk⊥ − ϵk⊥0
)

]
(4.9)

Since ϵk⊥−ϵq⊥+ϵq⊥−k⊥ = ϵk⊥−ϵq⊥+ ~2
2m

(q2⊥+k
2
⊥−2q⊥ ·k⊥) = 2ϵk⊥− ~2

m
q⊥k⊥ cosϕ

and U0 should be real, we choose ln(−1) = −πi to cancel the πi term in the first

part of f−1

f−1(E,q⊥) =
m

4π~2

[
πi+ ln

(
ϵb
ϵ⊥0

)
− πi− ln

(
2ϵF⊥ − ϵ⊥0

2ϵ⊥0

)]
+

1

(2π)2

∫ ∞
kF⊥

dk⊥k⊥

∫ 2π

0

dϕ

[
1

2ϵϵk⊥−
~2
m
q⊥k⊥ cosϕ− E

− 1

2(ϵk⊥ − ϵk⊥0
)

]
(4.10)

For the first part in the right side of equation (4.10)

ln

(
ϵb
ϵ⊥0

)
− ln

(
2ϵF⊥ − ϵ⊥0

ϵ⊥0

)
= ln

(
ϵb

2ϵF⊥

)
− ln

(
2ϵF⊥ − ϵ⊥0

2ϵF⊥

)
. (4.11)

We have

f−1(E,q⊥) =
m

4π~2

{
ln

(
ϵb

2ϵF⊥

)
− ln

(
1− k2⊥0

k2F⊥

)
+

4π~2

m

1

(2π)2

∫ ∞
kF⊥

dk⊥k⊥

∫ 2π

0

dϕ ·

·

[
1

~2
m
(k2⊥ − q⊥k⊥ cosϕ− m

~2E)
− 1

~2
m
(k2⊥ − k2⊥0)

]}

=
m

4π~2

[
ln

(
ϵb

2ϵF⊥

)
− ln

(
1− k2⊥0

k2F⊥

)
+ I

]
. (4.12)

78



Here

I =
1

π

∫ ∞
kF⊥

dk⊥k⊥

[∫ 2π

0

dϕ

k2⊥ − q⊥k⊥ cosϕ− m
~2E

− 2π

k2⊥ − k2⊥0

]
. (4.13)

If we let k⊥ = xkF⊥ and y = q⊥/kF⊥

I =
1

π

∫ ∞
1

dxx

[∫ 2π

0

dϕ

x2 − xy cosϕ− E
2ϵF⊥

− 2π

x2 − k2⊥0/k
2
F⊥

]
. (4.14)

Since
∫ π

0
du

1+a cosu
= π√

1−a2 ; a
2 < 1 and ϵ ≡ E

ϵF⊥
, ϵ < 0 is the dimensionless polaron

binding energy,

I =
1

π

∫ ∞
1

dxx

[∫ 2π

0

dϕ

(x2 − ϵ
2
)− xy cosϕ

− 2π

x2 − k2⊥0/k
2
F⊥

]
=

2π

π

∫ ∞
1

dxx

[
1√

(x2 − ϵ/2)2 − x2y2
− 1

x2 − k2⊥0/k
2
F⊥

]
.

If we let u = x2, du = 2x dx,

I =

∫ ∞
1

du

[
1√

(u− ϵ/2)2 − uy2
− 1

u− k2⊥0/k
2
F⊥

]
. (4.15)

Since (u − ϵ
2
)2 − uy2 = (u − ϵ

2
− y2

2
)2 − ϵ

2
y2 − y4

4
, let V = u − ϵ/2 − y2/2 and

G = ϵ
2
y2 + y4

4
,

I =

∫ ∞
1− ϵ

2
− y2

2

dV

[
1√

V 2 −G
− 1

V + ϵ
2
+ y2

2
− k2⊥0/k

2
F⊥

]
. (4.16)

Since we know
∫

dx√
R
= 1√

c
ln(2

√
cR+ 2cx+ b) for R ≡ a+ bx+ cx2, the first part

of I can be treated for R with a = −G, b = 0, c = 1, x = V . So,
∫

dV√
V 2−G =

79



ln(2
√
V 2 −G+ 2V ). Then,

I =

{
ln
[
2
√
V 2 −G+ 2V

]
− ln

[
V +

ϵ

2
+
y2

2
− k2⊥0
k2F⊥

]}∣∣∣∣∞
V=1− ϵ

2
− y2

2

= ln(4V )− ln(V )− ln(2)

− ln

√(1− ϵ

2
− y2

2

)2

− ϵ

2
y2 − y4

4
+

(
1− ϵ

2
− y2

2

)+ ln

(
1− k2⊥0

k2F⊥

)

=ln(2) + ln

(
1− k2⊥0

k2F⊥

)
− ln

[√(
1− ϵ

2

)2
− y2 +

(
1− ϵ

2
− y2

2

)]
(4.17)

Since y = q⊥/kF⊥ , ϵ = E/ϵF⊥ ,we put I in equation (4.17) back into f−1 in

equation (4.10) and get

f−1(E, q⊥) =
m

4π~2

{
ln

(
ϵb
ϵF⊥

)
− ln

[√(
1− ϵ

2

)2
− y2 +

(
1− ϵ

2
− y2

2

)]}
.

(4.18)

We can see that f−1 is independent of kF⊥ as it should be. Then let’s go back to

equation (4.4) to calculate the polaron binding energy,

E↓ =
1

A

A

(2π)2

∫ kF⊥

0

dq⊥2πq⊥f(E↓, q⊥)

=
1

2π

∫ kF⊥

0

dq⊥q⊥f(E↓, q⊥)

=
k2F⊥

2π

∫ 1

0

dy yf

(
ϵ =

E⊥
ϵF⊥

, y

)
=
k2F⊥

2π

4π~2

m

∫ 1

0

dy y

ln
(

ϵb
ϵF⊥

)
− ln

[√(
1− ϵ

2

)2 − y2 +
(
1− ϵ

2
− y2

2

)] . (4.19)

If we set u = y2, we can get a dimensionless expression of polaron binding energy
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ϵ = E⊥
EF⊥

,

ϵ ≡ Σ(ϵ) = −2

∫ 1

0

du

−ln
(

Eb

EF⊥

)
+ ln

[√(
1− ϵ

2

)2 − u+
(
1− ϵ

2
− u

2

)] . (4.20)

This equation will determine the zero momentum polaron energy, where Eb is the

corresponding dimer binding energy and EF⊥ is the local Fermi energy, which is

different from the ideal gas Fermi energy that we can determine experimentally

from the number of atoms and trap harmonic oscillator frequencies.
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Figure 4.2: Polaron binding energy. Dimensionless ϵ = E/EF⊥ versus
ln(Eb/EF⊥) where Eb is the dimer binding energy and EF⊥ is the local Fermi en-
ergy. The blue solid line is plotted based on equation 4.20 and the red dashed line

is based on the approximate expression given in the paper [66] Ep =
−2EF⊥

ln

[
1+2

EF⊥
|Eb|

] .
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4.2 Approximate equation for polaron binding

energy and quasiparticle weight

In Figure 4.2, ϵ versus ln(Eb/EF⊥) is plotted as a blue solid line based on equa-

tion (4.20). In paper [66], an approximate equation for the polaron binding energy

and Eb/EF⊥ is given, which has simple form,

Ep =
−2EF⊥

ln
[
1 + 2

EF⊥
|Eb|

] . (4.21)

Here, Ep is the polaron binding energy. I also draw it in Figure 4.2 by using red

dashed line.

From the figure, we can see that where ln(Eb/EF⊥) is less than 0, ϵ calcu-

lated from equation (4.20) and equation (4.21) are very close. In Table 4.1 and

Table 4.2, I list the dimer binding energy Eb and polaron binding energy Ep we

calculated for 12 and 13 mixtures for different magnetic fields. When the magnet-

ic field is around 834 G which corresponds to Feshbach resonance of 12 mixture,

both ln(E12
b /EF⊥) and ln(E13

b /EF⊥) are indeed less than 0. So, the approximate

analytical form of polaron binding energy, equation (4.21) is precise enough to

be used around 834 G and it has relatively concise form, which can help us un-

derstand how polaron binding energy Ep affected by other parameters easier. In

equation (4.21), when EF⊥ ≪ |Eb|, Ep → −Eb. We can see the same trend as Eb

becomes bigger in Table 4.1 and Table 4.2. Physically, when the dimer binding

energy is so big that the two atoms involved in the interaction can not see the in-

teractions with other atoms very well, the polaron binding energy tends to become

the dimer binding energy and many body effects are surpressed. So, the dimer
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Table 4.1: Polaron binding energy for νz around 24 kHz. Frequencies and en-
ergies are given in units of kHz. Ep is a polaron binding energy while Eb is the
corresponding dimer binding energy. EF⊥ is the local Fermi energy here. We
assume EF⊥ = λ1 ·EFmeas while EFmeas = hν⊥

√
N is the ideal gas global Fermi en-

ergy we determine from the total number of atoms Natom and the trap oscillation
frequency ν⊥. Here λ1 = 0.67.

B(G) νz EF⊥ E12
b ln

(
E12

b
EF⊥

)
E12

p E13
b ln

(
E13

b
EF⊥

)
E13

p E12
b − E13

b E12
p − E13

p

718.5 26.0 26.2 145.3 1.71 158.4 2.91 -2.19 17.6 142.3 140.8

728.5 24.5 24.6 110.8 1.50 124.0 2.13 -2.45 15.4 108.7 108.6

748.0 25.0 29.8 65.9 0.79 84.7 1.58 -2.94 16.3 64.3 68.4

768.2 24.5 25.7 37.8 0.39 55.0 1.21 -3.05 13.7 36.6 41.3

788.5 24.5 27.5 21.7 -0.24 40.7 1.03 -3.29 13.8 20.7 26.8

808.6 24.0 29.6 12.6 -0.86 32.4 0.88 -3.52 14.1 11.7 18.3

832.2 24.5 27.5 7.25 -1.33 24.7 0.81 -3.52 13.1 6.44 11.6

841.7 24.5 25.8 5.91 -1.47 22.0 0.78 -3.49 12.4 5.13 9.65

binding energy should be the limit of polaron binding energy when EF⊥ ≪ |Eb|.

In Table 4.1 and Table 4.2, we can not measure local Fermi energy EF⊥ directly.

We just assume EF⊥ = λ1 ·EFmeas where EFmeas = hν⊥
√
N is the ideal gas global

Fermi energy we can measure in the center of the gas. λ1 is a single parameter

which we use to fit our data by using the polaron binding energy. As you can see

in the experimental chapter, this single parameter fitting works very well around

the 12 Feshbach resonance when we choose λ1 to be 0.67.

Another thing which is worth mentioning is the polaron quasiparticle weight:

Z ≡ |φ0|2 =
[
1− ∂Σ(ϵ)

∂ϵ

]−1
ϵ=

E↓
EF⊥

(4.22)

For rf transitions between impurity states 2 to 3 in a bath of atoms in state 1, the

momentum of the impurity does not change. We therefore assume the coherent
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Table 4.2: Polaron binding energy for νz around 82.5 kHz. Frequencies and
energies are given in units of kHz. Ep is a polaron binding energy while Eb is
the corresponding dimer binding energy. EF⊥ is the local Fermi energy here.
We assume EF⊥ = λ1 · EFmeas while EFmeas = hν⊥

√
N is the ideal gas global

Fermi energy we determine from the total number of atoms Natom and the trap
oscillation frequency ν⊥. Here λ1 = 0.67.

B(G) νz EF⊥ E12
b ln

(
E12

b
EF⊥

)
E12

p E13
b ln

(
E13

b
EF⊥

)
E13

p E12
b − E13

b E12
p − E13

p

688.9 82.5 75.7 345.3 1.52 385.5 24.3 -1.14 73.6 321.0 311.9

718.5 81.5 80.5 173.4 0.77 224.5 13.5 -1.79 61.6 160.0 163.0

728.5 82.5 79.8 140.4 0.56 192.7 11.9 -1.90 58.8 128.5 133.9

748.0 83.5 81.4 93.6 0.14 149.2 9.75 -2.12 55.9 83.9 93.3

768.2 82.5 97.1 64.1 -0.42 130.8 8.13 -2.48 60.1 55.9 70.7

788.5 82.5 99.1 44.7 -0.80 111.3 7.11 -2.63 58.8 37.5 52.5

808.6 85.0 79.9 33.1 -0.88 86.5 6.69 -2.48 49.4 26.4 37.0

832.2 82.0 88.7 23.7 -1.31 80.4 5.79 -2.73 51.3 18.1 29.1

841.7 82.5 92.6 21.4 -1.46 79.4 5.66 -2.79 52.6 15.8 26.7

part of the spectrum is given by

I(~ω) = Z2Z3 δ[~ω − Ep3 + Ep2], (4.23)

Where Z2Z3 = |φ∗03φ02|2 is the square of the overlap integral between the part of

the initial and final polaron states that yields the coherent part of the spectrum.

The product of the quasiparticle weights for the 1-2 and 1-3 polarons determine

the strength of the transition. Figure 4.3 shows the quasiparticle weight Z versus

ln(Eb/EF⊥). As I mentioned previously, we are working in the region where

ln(Eb/EF⊥) is smaller than 0. Z in this region is quite large. Especially, around

834 G, we find both Z2 and Z3 are close to unity based on the data in Table 4.1

and Table 4.2. Hence, we expect that the overlap between the initial and final

polaron states is strong and that transitions between polaron states should make

an important contribution to the spectrum.
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Figure 4.3: Polaron quasiparticle weight versus ln(Eb/EF⊥) where Eb is the
dimer binding energy and EF⊥ is the local Fermi energy.
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Chapter 5

Experimental Methods

In this chapter, I first talk about my understanding of the basic experimental

methods. Then I introduce what is new in setup of quasi-two dimensional optical

traps. Last but not least, I will talk about the method of measuring experimental

parameters. Some interesting results of the parametric resonance experiment

would be shown as well.

5.1 Basic experimental procedure

Since we do experimental physics, the most important thing for us is to find a

way to realize our plans in the lab which includes setting up and manipulating the

apparatus. Understanding the methods and principles of the experiment is the

key point to do trouble shooting on a daily basis and making the whole system

work reliably.

Simply speaking, all the experiments we are doing in the lab require three

steps: atom sample preparation, designed experimental probing and resulting

signal collection. We use computers to control the whole process automatically.

One cycle of an experiment can be done within one minute. We can repeat the

same experiment or change parameters for each cycle easily. The short time scale
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of one cycle also allows us to finish a set of experiment cycles within a reasonable

time over which the experimental environment does not change too much.

The atom sample preparation and resulting signal collection are usually the

same or very similar for different experiments, while the experimental probings

are quite different. I will introduce basic experimental methods and techniques

along with each of them and list some experiments I have been done to show the

versatility and limitations of our system.

5.1.1 Atom sample preparation

The atom sample preparation requires: producing a hot atom beam from an atom

source, and cooling down and trapping atom samples.

Since the Fermi atom we are using, 6Li, is solid in the room temperature, we

can safely keep it inside the vacuum system when it is not in use. We connect a

little thumb sized oven bucket to the vacuum system which holds about 2 grams

of lithium. A little bit goes a long way. This amount can last for more than 4

years of everyday use. When we need to use the atoms, we make them evaporate

into a gas by heating the bucket up to about 400◦C. The hot gas will go through

a small hole on the side of the bucket, which connects to a long stainless metal

tube nozzle to form a hot atom beam moving toward the main chamber where we

trap atoms.

Our ultimate goal is to decelerate the fast moving atoms and make them stand

still in the main chamber area in order to realize cooling and trapping. We use

three steps to reach that goal. First, along the direction that the hot atoms fly,

we have a Zeeman slower, which can significantly decelerate atoms (2× 106m/s2)

in the direction along the nozzle to the main chamber area and make them slow
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enough to be trapped in the magneto-optical-trap (MOT), which is our second

step. The MOT is located in the center of main chamber area and is formed by a

pair of anti-Helmholtz coils and six laser beams red detuned with respect to D2

line of 6Li. It slows down atoms in all directions to the Doppler limit of 140 µK as

they enter the MOT area. A MOT slows and traps atoms in a manner similar to

molasses. We have “optical’ molasses here. Consult previous dissertations in this

group for more details about Zeeman slower and MOT [67,68]. Although slowed

in the optical molasses, the atoms still have an opportunity to walk away from

the MOT area by random walking. And due to the existence of Doppler limit, we

need to cool them down much further to reach degeneracy. So next, we let atoms

collide and evaporate in a container formed by an optical trap, which is our third

step. The collision interaction between atoms makes some of them have higher

energy than the others. In the evaporation, atoms with energy higher than the

container’s edge escape from the trap, leaving atoms with lower energies trapped

inside the container. The optical trap which we use as the container is formed by

focusing a powerful CO2 laser beam and the focal point is located inside the MOT.

We call it far off-resonance dipole trap (FORT). Here we use a Feshbach resonance

to increase the interaction between atoms to enhance collisions, which makes the

evaporation more efficient. We artificially lower the edge of the container to let

more atoms with relatively higher energies escape. We call this method forced

evaporation. After evaporation, the atoms can be cooled down to the order of 10

to 100 nK.

When we are working with 1-2 mixture, we normally do evaporation at the

Feshbach resonance around 834 G where atoms have a very strong interactions.

Then we smoothly shift magnetic field to wherever we want the experiment to take
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place. By using this method, we can get reasonably cold samples for a magnetic

field range from 720 G up to 1200 G for 1-2 mixtures. Actually, when we switch

the magnetic field to the BEC region after evaporation, we see a heating of the

atoms. The lower magnetic field we switch to, the bigger the heating effect can

be. If we go lower than 720 G the heating is so serious that atom sample can

not be used for cold experiment any more. 1200 G is the upper limit of our high

field magnet system, which is formed by a pair of water-cooled coils. For the

experiments that need to be done in a lower magnetic field, like 528 G, where the

s-wave scattering length of 12 mixture is zero, and the interaction between atoms

is zero, we do the evaporation at around 300 G, where there are interactions

between atoms, and then move upward to 528 G to avoid heating. There is a

narrow Feshbach resonance for 1-2 mixture around 544 G [69], which we normally

avoid when shifting the magnetic field after evaporation, since that also causes

heating.

If we do experiments with 1-3 mixtures, we also start with a 1-2 mixture

sample. Instead of doing evaporation in the 1-2 mixture, we use rf transitions to

transfer all the atoms in state 2 into state 3 around 528 G and then do evaporation

around the Feshbach resonance of the 13 mixture at 690 G to cool down the

sample.

After these three steps of cooling and magnetic field shift, we end up with

cold degenerate atom samples in the magnetic field where we want to do the

experiment.

The all-optical approach we used in our experiments is ideally suited to explor-

ing atomic gases with magnetically tunable interactions. We use two kinds of laser

beams to realize cooling and trapping. One is a resonant red beam λ = 671nm for
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Zeeman slowing and for the MOT. The other is an infrared beam of the far off-

resonance optical trap(FORT). The red beams are from a single dye laser, which

has output power around 800 mW. This is a multi-purpose beam. We split its

output into several pieces to form the MOT, to serve as the beam going through

Zeeman slower, which we call the slowing beam, and the beam to create absorb-

ing imaging, which we call the camera beam. The infrared beam is from a very

powerful CO2 laser, which is more than 50 W when it reaches the main chamber.

We only use these two lasers to complete all steps of a typical experiment. This

makes our experimental setup very simple. However, both of the lasers have some

disadvantages. Although the dye laser is powerful enough for everything we need,

it is not very stable, since it is very sensitive to the change of room temperature

and vibrations. Relocking the dye laser during the day several times is inevitable.

The CO2 laser is invisible and quite strong, so that it can easily burn a person’s

hand when the size of the beam is small. That makes the alignment of the CO2

laser is very challenging.

5.1.2 Designing experimental probes

After preparing the cold atom sample, we can start doing the real experiment.

This part of the cycle is the most exciting and creative one, since for different

experiments we need to come up with different plans to realize our measurement

and modify software and hardware to physically make the cycle run correctly and

smoothly. Let’s take a look at some simple experimental sequences after sample

preparation.

For rf spectroscopy experiments, we use one digital signal to trigger an rf func-

tion generater and send a pulse through an antenna inside the vacuum chamber
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to excite rf transitions. As I mentioned earlier, the pure transition between two

hyperfine energy levels is used to calibrate the magnetic field. And the transitions

in ultracold atom mixtures give us very interesting spectra, which I discuss in this

dissertation.

For parametric resonance experiments, we add perturbation oscillation fre-

quency (order of kHz) from a function generater to the CO2 laser amplitude in

order to modulate the optical bowl holding the atoms. When the oscillation

frequency matches twice the internal frequency of the trap, the resonance will

continuously excite the atoms to higher energy levels and the heating effect is

seen by monitoring the width of the atom cloud. A digital signal is used as a

trigger signal to control when and how long the perturbation is added. We use

this experiment to characterize the optical trap.

For breathing mode experiments, CO2 laser amplitude will be decreased quick-

ly and then reincreased to the original level to excite the internal frequencies of

the trapped cloud. This is another experiment we use to get the oscillation fre-

quencies of atoms in the trap. The amplitude change accomplished with an analog

signal and generated by a function generator, triggered by a digital signal. Each of

these three experiments can be used as one part of more complicated experiments

as far as we organize the time sequence well.

So, the control of our system is actually a number of digital and analog signals

organized by following a certain time sequence. These signals are applied to

different parts of the system. In our lab, we control the system from a computer

by sending digital and analog commands. There are many different ways to realize

this kind of control as long as the speed and amplitude of the command signal is

good enough. In my lab, we use a 32 digital channel computer card, multiplexer,
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GPIB controls and fast digital delay/ pulse generators to reach the goal. I describe

these briefly:

(1) 32 digital channels. The signal directly come from computer through a

32 channel digital card. The digital card can produce either 0 or 5V voltage for

each channel. Since the channels are directly powered from the computer, they

can not supply high current. We use some of the channels directly as switches

and trigger signals in the system. The others are used to select the output of a

multiplexer, which controls red laser beam intensities and frequencies. The signal

timing accuracy of the 32 channels is 100 µs.

(2) Multiplexer. We are using a home made multiplexer to send most analog

signals we need to the system, as well as some digital signal with large current. As

I mentioned, some of the 32 digital channels will serve as selection signals to choose

an output from several analog and digital input signals of the multiplexer. That

means we turn some of the digital commands into analog commands by using

the multiplexer. The multiplexer has external power, therefore it can provide

large current. Since it is controlled by 32 digital channel, it has the same timing

accuracy of 100 µs.

(3) GPIB controls. By using GPIB connecting cord, we directly send analog

signals, in addition to the ones from the multiplexer, to the equipment that sup-

ports GPIB controls. For example, when we try to lower the trap depth of the

CO2 laser beam in order to increase the efficiency of evaporation, we use GPIB

control to send a lowering curve to the function generator, which controls the

amplitude of the laser. How fast the GPIB board can transfer data depends on

the amount of information we send. It can reach several Mega Bytes per second.

(4) Fast digital delay/ pulse generators. We use several DG535 digital de-
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lay/pulse generator from Stanford Research Systems. They have tens of ps delay

resolution from channel to channel, which is much better than what we need

(around 1µs). We use these to control the parts of time sequence that need high

accuracy in the experiment, like absorption imaging.

Our group also has another lab using an upgraded 24 digital channel com-

puter card which is faster, 8 analog channels and GPIB controls to control the

experiments. Although the equipment is different, the principles for the control

are the same.

The software program I have been using to compile the commands in the

computer is Labview, while the other lab in our group is now using Matlab.

For different experiments, we change the time sequences for each signal channel

directly in the computer and use software program to compile the information

and send it to the 32 channel computer card and GPIB control system.

5.1.3 Signal collection

For almost all of our experiments, we use a CCD camera to take absorption images

of the atom cloud for data collection. At the end of the experiment, we turn off

the trap and let the atom cloud expand for a short time in order to reach a size

that is large enough to be taken by our camera system. A small portion of red

beam from dye laser is used as the so called camera beam that will shine directly

on to the camera through the atom cloud. The camera takes a shadow image of

the atom cloud. And at the same time, atoms absorb photons from the beam and

gain energy to fly away. We take one shot immediately after the camera beam

is shined on the cloud, which contains the shadow of atoms and the background.

Then we wait until the atoms disappear (30ms) to take another shot of only the
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reference beam. Subtraction of these two images is the raw image of atoms. Our

CCD detector consists of a 1024 × 1024 array of high resolution pixels measuring

13 µm on each side. But the real resolution of our image depends on the lens

system in front of the CCD detector which we are trying to improve. Hopefully

in the near future, we will use increased resolution to take in situ images for a 2D

system.

The imaging part is the same for different experiments. Then we analyze data

images by using the software program Igor to fit the column density and deter-

mine the information we want. Normally, we want to monitor either the shape

change of the atom cloud or the change of the atom number. For example, in

the rf spectroscopy experiments, we monitor atom number in a certain hyperfine

state and the largest change of atom number corresponds to the resonant rf fre-

quency. For parametric resonance experiments, we monitor the width of atom

cloud in a certain direction after excitation and the largest width corresponds to

a perturbation frequency which is resonant.

5.2 Quasi-2D optical trap set up

The uniqueness about my work is that the system is quasi-two dimensional. In

order to create quasi-two dimensional Fermi gas, we modify the optical layout

of CO2 laser beam in two places labeled in Figure 5.1. Figure 5.1 is the optical

layout for generating a three dimensional CO2 laser optical trap, which can be

found in Bason’s dissertation [70], who built our lab with Le [71]. The names of

optics have been labeled in the figure and all optics in the CO2 laser path are

made out of zinc-selenide.
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Figure 5.1: Optical layout for generating the CO2 laser beams. In order to
realize quasi-two dimensional trap, we make two changes in the optical layout for
three dimensional trap highlighted by using red dash squares. The original layout
is from Bason’s dissertation [70].
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In the layout of three dimensional optical trap, after coming out of the laser

source, the CO2 laser beam goes through an acousto-optic modulator(AO) which

can fast shift light frequency using sound waves, at the same time shift the di-

rection of propagation by a small angle to the first order of the beam from the

original direction which is the zero order. By changing the amplitude of the sound

waves, we can control the amplitude of the laser beam in the first order. Then,

the vertical and horizontal curvatures of the first order laser beam would be ad-

justed to the same by using two cylindrical lenses, C1 and C2 in Figure 5.1. Before

expanding through a telescope formed by lenses L1 and L2, the laser beam would

go through a thin film polarizer. This polarizer is used to protect the laser source

by reflecting the back going laser beam to a beam dump. The polarization of this

back going beam has been rotated by 90 degree using a rooftop mirror on another

side of the chamber.

In quasi-two dimensional trap layout, we create CO2 laser standing wave by

reflecting beam directly back without changing polarization by using a mirror

instead of the rooftop mirror. We still need to protect the laser source by reflecting

the back-going beam out to the beam dump. Therefore, we replace one of the big

mirror in the beam path into a special mirror with λ/4 phase retarding coating

which can rotate light polarization by 45 degree with plane polarized light at 45

degree to the plane of incidence. The beam polarization would be rotate once

again to the same direction 45 degree when it goes back, which add up to 90

degree to be reflected out to the beam dump by the thin film polarizer.

To align the backing going CO2 laser beam perfectly match the incoming beam

and make the standing wave trap stable in a big challenge. In Figure 5.2, the

3D and 2D trap shapes are shown. We measure the axial trap frequency in the
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3D trap

Axial

2D trap

Figure 5.2: Schematic of 3D and 2D traps along axial direction. Radial direction
is perpendicular to axial direction. Here I use blue curve to show the potential
shapes and pink area to show how atoms fill in the potentials.

quasi-two dimensional traps after alignment, which is supposed to be twice as

the radial trap frequency in the single beam trap, by using parametric resonance

which I will talk later. In our case, the ratio can be more than 1.9, which shows

a very good alignment considering the energy loss in the beam path.

5.3 Measurement of experimental parameters

I want to mention other experiments we need to do along with the radio frequency

spectroscopy experiment in order to get the information we need to complete

our research. Some of the experiments I have already mentioned previously in

this dissertation, like magnetic field calibration and Rabi frequency measurement.

Here I will emphasis the reason we do them once again.
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5.3.1 Magnetic field calibration

As we mentioned in the end of subsection 2.2.2, we can accurately calibrate the

magnetic field of the system by using radio frequency spectroscopy. This is the

experiment we need to do daily and with any other experiments in different mag-

netic field, since it can give us the accurate magnetic field to calculate parameters

we need in the data analysis.

5.3.2 Rabi frequency measurement

I also mentioned Rabi frequency measurement in the same chapter, subsection 2.2.1.

This is another important experiment we need to do in advance. Comparing with

calibration of magnetic field, we do not need to check Rabi frequency every day

as long as the setup is the same. The Rabi frequency will help us decide the

time duration and intensity of the radio frequency pulse we should use in the

experiment.

5.3.3 Trap frequency measurement : Parametric resonance

To characterize the trap, we precisely measure the harmonic oscillation frequencies

each day, since they may change slightly from day to day based on the CO2 laser

alignment and power. There are several ways to get the trap frequencies. We

normally use parametric resonance [68].

We know that there should be three different resonant frequencies for the

x, y, z axes of the trap. In our quasi-2D trap, the axial direction (z direction)

is tightly confined and the radial direction, x, y directions, are symmetric and

relatively loosely confined as shown in Figure 5.2.
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Before perturbation

hΝ

After perturbation

Figure 5.3: Principle of parametric resonance. The red disk represents one
atom. Before the perturbation, it is sitting in the ground state of a certain
direction. When the perturbation hν matches the energy level spacing, the atom
can continuously absorb photons and jump to higher energy level.

The experimental procedure is as follows. After preparing the sample of ultra-

cold atoms, we add a perturbation with frequency ν into the trapping CO2 laser

intensity in order to excite the trap resonant frequencies. It normally in the order

of kHz which is very small compared with the CO2 laser frequency (28.3 THz).

When we scan ν, if ν matches one of the trap parametric resonant frequencies,

the atoms in the trap will be excited and continuously jump to the higher energy

level in that direction as Figure 5.3 shows. We can easily observe this kind of

excitation by measuring the width increases of the atomic cloud in that direction

after turning off the CO2 trap, since the width of the cloud is determined by the

atom energy in that direction. This is the principle of parametric resonance.

In our quasi-2D system, the expansion of the axial direction for each pancake

is very fast and impossible to see, since the axial width is much smaller than

1µm. But as long as interaction between atoms in the sample is large enough,

the energy excitation in one direction can be transferred to other directions by
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Figure 5.4: Radial and axial parametric resonance for quasi 2D 1-2 mixture
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collisions. So, we can observe the expansion in radial direction as well when ν

matches the resonant frequency in axial direction. In Figure 5.4, we have 50-

50 1-2 mixture atom sample and both radial and axial parametric resonance are

observed by measuring the radial width change of atom cloud at around 300 G.
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Figure 5.5: Axial parametric resonance for quasi 2D 12 mixture observed
through radial width expansion for 780G, 811G and 834G at 2% trap depth.
The clouds are allowed to expand to a bigger size at the corresponding magnetic
field in order to take picture. We notice significant change of the peak shapes for
different magnetic fields.

The parametric resonance is a quite interesting experiment itself. We do the

same experiment for 50-50 1-2 mixture at different magnetic field and notice the
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shape of the resonance peak varies with change of magnetic field. In Figure 5.5, I

show three axial parametric resonance data in different magnetic fields from BEC

region to around Feshbach resonance. We notice significant change of the peak

shapes. The 780 G one has a sharp edge on the right side while the 834 G one has

a sharp edge on the opposite side. We still do not yet understand the mechanism

of this shape change.

5.3.4 Determining the bare atomic transition frequency

As I mentioned previously, we need to determine the bare atomic transition fre-

quency while we do the rf spectroscopy experiments for a certain magnetic field.

We need to check for mean field shift in its location.

Let’s take a 12 to 13 rf transition experiment for example. We measured

the pure 2 to 3 transition without atoms in state 1 in advance to determine

where is the real atomic transition frequency without mean field shift. This is

actually the magnetic field calibration. We also do the 12 to 13 transition in a

hot mixture of 1-2 atoms where there are almost no atom pairs and we should

only see the bare atomic transition peak in the spectrum. We also change the

trap depth of the system from 2% (νz =24 kHz) to 100%(νz =180 kHz) in 12 to

13 rf transition experiments for shift in the location of the atomic transition peak

in the spectrum. We notice that the atomic transition frequency lines up with

the left side peak in the spectra and there is almost no change for different trap

depth and temperature. Figure 5.6 and 5.7 are the data for different trap depth.

Hence for our experiments, we conclude that the mean field shift of the bare-atom

transition frequency is negligible. So we can use it as a reference point.

102



A
to

m
nu

m
be

r
in

st
at

e
3
H´

10
3 L

HaL Νz=25 kHz

-20 -10 0 10 20
15

20

25

30

35

40

45

HbL Νz=127 kHz

-20 -10 0 10 20
0

5

10

15

20

Frequency HkHzL
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Chapter 6

Radio Frequency Experiment

In this chapter I will present all the rf experimental data and compare to the

theoretical spectra based on dimer and polaron transitions theories respectively.

We will see that dimer transition theory can not perfectly explain our experi-

mental data. However, we notice that it dose give a reasonable approximation to

experimental data when the dimer binding energy is much more bigger than 2D

Fermi energy of the system.

For the polaron theory fits, we use the ratio of the local Fermi energy to the

ideal gas global Fermi energy in the center of the trap as the only fitting parameter

λ1. This produces us a nice fit to all of the data for a single value of λ1 λ1.

By doing the fitting to the data we can tell which effect dominate our system.

6.1 Dimer transition spectra

We will discuss the fits based on dimer transition theory first. Before we show

experimental data, I want to use a set of schematics for transitions among the

two-atom energy levels, to show what types of resonances we expect to see in the

rf spectra for different experiments. In Figure 6.1, on the left side, single-atom

and two-atom energy levels are shown with all the possible rf transitions between
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Figure 6.1: Rf transitions between two-atom energy levels. The labeled transi-
tions on the left side correspond to the resonances on the spectra shown on the
right side. Here the spectra only show the shapes and relative positions of the
resonances. Drawings are not to scale.
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them. Here, bare atomic transitions are our references in the spectra. On the right

side, I listed three different rf spectra corresponding three different transition sets.

In the first spectrum on the top, the rf spectrum for transition from states 1-2 to

states 1-3 are shown as the depletion of state 2. Experimentally, we can achieve

that by scanning rf frequency near the bare 2 to 3 atomic transition frequency

(transition frequency 3⃝ in Figure 6.1). When the rf signal is a π pulse for the

coherent case or is much stronger and longer that the time over which become

incoherent, we should see resonances (The maximum atom loss) on the spectrum

corresponding to transitions between energy levels.

The bare atomic transition resonance is around 70 ∼ 85 MHz. If there is mech-

anism for bound states to exist, we should see additional resonances for bound

states in the spectrum. I label rf transitions on the left and the corresponding

spectra on the right side by using arrows and numbers with the same colors.

For the second and third spectra, the experiments start from a 1-3 atom pair.

And the rf frequency range we use are around 3 to 2 atomic transition resonant

frequency (transition frequency 3⃝ in Figure 6.1) for the second spectrum and

around 1 to 2 atomic transition resonant frequency (transition frequency 6⃝ in

Figure 6.1) for the third spectrum. The drawings of spectra are not to scale. I

only use it to show the shapes and relative position of each peak based on dimer

transition theory. As we mentioned in the dimer theory, the bound to scattering

state transition resonance should have a threshold shape and a long tail caused by

kinetic energies, while the bound to bound transition resonance should be quite

symmetric.

Based on the schematics, it seems that the shapes of all three spectra are

similar. But in the real experimental results they are quite different. Since the
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transition strengths are different for different transitions, the relative amplitudes

of the resonances vary significantly, which will change the shape of the spectrum.

Further, in the real experiments, dimer transitions may not dominate and we need

to consider other interactions to explain the spectrum, like polaron transition.

Now, let’s move on to the real data for all these three experiments and compare

with the theoretical predictions initially using dimer theory. For experiments in

a 1-2 mixture, we have data range from 720 G to 844 G, while for experiments

with a 1-3 mixture, the data range from 670 G to 720 G. I want to group them

separately, since for different mixtures, the atoms have quite different initial and

final state interactions.

6.1.1 Dimer fits for experiments in 1-2 mixtures

The Feshbach resonance for a 1-2 mixture is around 834 G. We cool down the

atoms in the strong interacting region around 834 G by doing evaporation and

shift the magnetic field to wherever we need to do the experiment. Below 834

G, on the BEC side, the system can have tightly bound molecular dimers, while

around the resonance and even above the resonance the dimer binding energy is

quite small compared to the Fermi energy in 2D, as we have seen in Figure 3.3.

For example, consider 2% trap depth (νz = 24.5 kHz), the 1-2 dimer binding

energy vary from around 150 kHz at 720 G to around 5 kHz at 844 G. However,

the 2D Fermi energy in our system is nominally the same EF⊥ = 1.5hνz while

dimer binding energy changes with the magnetic field. This gives us two extreme

conditions on the two ends of the magnetic field range we use, from 720 G to 844

G. Around 720 G, the dimer binding energy, E12
b =145.25 kHz, is much larger than

the Fermi energy, 38.93 kHz. Around 842 G, the dimer binding energy, E12
b =5.91
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kHz, is much smaller than the Fermi energy, 38.52 kHz.

We did not go below 720 G since the heating is serious when shift the magnetic

field from 834 G. Although we can go further up into the BCS region, the 2D dimer

binding energy for magnetic field higher than 844 G is too small to be resolved

in the spectrum.

Tightly bound dimers at 720 G

Let’s look at the 720G data first. In Figure 6.2, 6.3 and 6.4, I show two theoretical

fits for each of the three different trap depths data, 2%, 20% and 50%, respectively.

Since the dimer binding energy is much larger than our 2D Fermi energy, especially

for low trap depth, we believe dimer theory should work very well here. The

predicted dimer transition spectra we derive in Chapter 3, equation (3.89), (3.90),

R12b→13b(ν) = π2Ω2
fiϵbb δ

(
ν − E12

b − E13
b

h

)
, (6.1)

R12b→13f (ν) = π2Ω2
fi

E12
b

hν2
q2Θ(ν − E12

b /h)[
q − ln

(
hν
E12

b
− 1
)]2

+ π2

, (6.2)

and the bound to bound transition fraction, (3.75)

ϵbb =
E12

b E
13
b

(E12
b − E13

b )2

[
ln

(
E12

b

E13
b

)]2
=

q2

4 sinh2(q/2)
. (6.3)

are used to fit the data. Here q = ln
(

E13
b

E12
b

)
For 2% trap depth data, we notice the bound to bound transition fraction ϵbb =

0.27, and bound to scattering state transition should dominate. If we only include

the bound to scattering state transition in the fitting, the theoretically predicted

spectrum matches the real spectrum quite well as shown by the red solid line in
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(a) Fit to the data contains only dimer bound state to scattering state transi-
tion. The broadening of the resonance on the right is as small as the broadening
of the atomic transition resonance on the left.
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(b) Fit to the data contains both dimer bound state to scattering state tran-
sition and bound to bound transition. Bound to bound transition fraction
ϵbb = 0.27.

Figure 6.2: Dimer theory fits of 12 to 13 rf transition spectrum at 718.5 G for 2%
trap depth with νz = 24.5 kHz (red curves). The origin of the x axis corresponds
to the bare 2 to 3 atomic transition frequency for 718.5 G, 82.472 MHz.
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(a) Fit to the data contains only dimer bound state to scattering state transi-
tion. The broadening of the resonance on the right is as small as the broadening
of the atomic transition resonance on the left.
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(b) Fit to the data contains both dimer bound state to scattering state tran-
sition and bound to bound transition. Bound to bound transition fraction
ϵbb = 0.60.

Figure 6.3: Dimer theory fits of 12 to 13 rf transition spectrum at 718.5 G
for 20% trap depth with νz = 82.5 kHz (red curves). The origin of the x axis
corresponds to the bare 2 to 3 atomic transition frequency for 718.5 G, 82.472
MHz.
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(a) Fit to the data contains only dimer bound state to scattering state transi-
tion. The broadening of the resonance on the right is as small as the broadening
of the atomic transition resonance on the left.
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(b) Fit to the data contains both dimer bound state to scattering state tran-
sition and bound to bound transition. Bound to bound transition fraction
ϵbb = 0.70.

Figure 6.4: Dimer theory fits of 12 to 13 rf transition spectrum at 718.7 G
for 50% trap depth with νz = 135 kHz (red curves). The origin of the x axis
corresponds to the bare 2 to 3 atomic transition frequency for 718.7 G, 82.470
MHz.
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Figure 6.2 (a). However, after including the bound to bound transition based on

the bound to bound transition fraction ϵbb, the predicted spectrum does not give

the right shape of the peak any more as shown in Figure 6.2 (b). For 20% and 50%

data in Figure 6.3 and 6.4, I try to draw the same predicted spectra by including

only bound to scattering state transition for in subfigure(a) and including both

bound to scattering state and bound to bound transitions in subfigure(b). We

notice that for each trap depth, neither of these two fits matches the experimental

data very well, but the bound to bound transition part gives a better fit in the

threshold region for the 20% trap depth, where we expect a large bound to bound

transition fraction (ϵbb = 0.60).

Dimer spectra near the Feshbach resonance, around 834 G

We notice around Feshbach resonance, the spectra show the similar shapes and

behavior as shown in Figure 6.6, 6.7 and 6.8. So, I want to show the comparison

between the theory and the data in this area by using a representative one, spectra

at 832 G where we have data for four different trap depths, 2%, 20%, 50% and

100%. At 832 G, the bound to bound transition should dominate because of

the big transition fraction ϵbb as I label in Figure 6.5. I plot the whole spectra

predicted by dimer theory on the top of 832 G data including only bound to

bound transition in red dashed lines while the red solid lines include both bound

to bound and bound to scattering state transitions as shown in Figure 6.5. For

each spectrum data shown as blue dots, we can see two major resonances. The

left ones correspond to bare atomic transitions from state 2 to 3. The broader

one on the right side should correspond to dimer transitions. The shape of the

broader resonance is quite symmetric which is consistent with the shape of bound
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Figure 6.5: Dimer theory fits of 12 to 13 rf transition spectra at 832 G. The
origin of the x axis corresponds to the bare 2 to 3 atomic transition frequency
81.708 MHz, dashed red curves are fits containing only bound to bound transition,
while solid red curves are the fits containing both bound state to scattering state
transition and bound to bound transition.
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Figure 6.6: Positions of resonances predicted by dimer theory compare with 12 to
13 rf transition spectra around 810 G for different trap depths. The origin of x axis
shown as red solid lines corresponds to the bare 2 to 3 atomic transition frequency,
while the red dotted lines show the calculated positions of dimer bound state to
scattering state transitions and the red dashed lines show the calculated positions
of dimer bound to bound transitions. (a) 808.6 G (81.8455 MHz),νz = 24.5 kHz,
2% trap depth; (b) 809.5 G (81.84 MHz), νz = 82.5 kHz, 20% trap depth.
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Figure 6.7: Positions of resonances predicted by dimer theory compare with 12 to
13 rf transition spectra around 832 G for different trap depths. The origin of x axis
shown as red solid lines corresponds to the bare 2 to 3 atomic transition frequency,
while the red dotted lines show the calculated positions of dimer bound state to
scattering state transitions and the red dashed lines show the calculated positions
of dimer bound to bound transitions. (a) 832.2 G (81.7065 MHz), νz = 24.5 kHz,
2% trap depth; (b) 832.0 G (81.7076 MHz), νz = 82.5 kHz, 20% trap depth; (c)
831.9 G (81.7082 MHz), νz = 135 kHz, 50% trap; (d) 831.3 G (81.7116 MHz),
νz = 179 kHz, 100% trap depth.
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Figure 6.8: Positions of resonances predicted by dimer theory compare with 12
to 13 rf transition spectra at 841.7 G for different trap depths. The origin of
x axis shown as red solid lines corresponds to the bare 2 to 3 atomic transition
frequency (81.653 MHz), while the red dotted lines show the calculated positions
of dimer bound state to scattering state transitions and the red dashed lines show
the calculated positions of dimer bound to bound transitions. (a)νz = 24.5 kHz,
2% trap depth; (b)νz = 82.5 kHz, 20% trap depth.
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to bound transition resonance, which should dominate. However, neither the red

solid lines nor the red dashed lines match the data.

We also saw the disagreement of dimer theory prediction in the data fitting

with other magnetic fields around Feshbach resonance.

In Figure 6.6, 6.7 and 6.8, I list data at three magnetic fields: 811 G, 832 G

and 842 G for different trap depth. For each set of data, I put data in different

trap depths in the same scale for x axis in order to compare the relative positions

and separation between resonances. Instead of plotting the whole spectrum like at

832G, I just labeled the resonace positions of theoretical prediction based on dimer

theory. We can see the obvious disagreements in this way. The red solid lines are

the bare atomic transition from 2 to 3, which are the references. I use red dotted

lines to show position of dimer bound to scattering state transition resonances

and red dashed lines to show the bound to bound transition resonances. I plot

the 832 G data once again here in order to compare with other two data sets.

Dimer spectra between 720 G and 811 G

From 720 G, where the 12 dimer binding energy is much larger than the transverse

Fermi energy, to 842 G, where the 12 dimer binding energy is much smaller than

the transverse Fermi energy, it seems that the dimer transition theory show more

disagreement with the data. Around Feshbach resonance, no matter how we do

the fitting, the prediction can not explain the data. Although at 720 G for 2%

trap depth, the bound state to scattering state transition part can fit the data

quite well, the full spectrum predicted by the theory has different shape from the

data.

If we take a look at the dimer theory predictions of the resonance positions
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Figure 6.9: Positions of resonances predicted by dimer theory compare with 12 to
13 rf transition spectra around 730 G for different trap depths. The origin of x axis
shown as red solid lines corresponds to the bare 2 to 3 atomic transition frequency,
while the red dotted lines show the calculated positions of dimer bound state to
scattering state transitions and the red dashed lines show the calculated positions
of dimer bound to bound transitions. (a) 728.5 G (82.3939 MHz),νz = 24.5 kHz,
2% trap depth; (b) 728.3 G (82.3954 MHz),νz = 82.5 kHz, 20% trap depth.
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Figure 6.10: Positions of resonances predicted by dimer theory compare with 12
to 13 rf transition spectra at 748.0 G for different trap depths. The origin of x axis
shown as red solid lines corresponds to the bare 2 to 3 atomic transition frequency
(82.2482 MHz), while red dotted lines show the calculated position of dimer bound
to scattering state transition and red dashed lines show the calculated position of
dimer bound to bound transition. (a)νz = 24.5 kHz, 2% trap depth; (b)νz = 82.5
kHz, 20% trap depth.
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Figure 6.11: Positions of resonances predicted by dimer theory compare with
12 to 13 rf transition spectra around 770 G for different trap depths. The origin
of x axis shown as red solid lines corresponds to the bare 2 to 3 atomic transition
frequency, while the red dotted lines show the calculated positions of dimer bound
state to scattering state transitions and the red dashed lines show the calculated
positions of dimer bound to bound transitions. (a) 768.2 G (82.106 MHz), νz =
24.5 kHz, 2% trap depth; (b) 767.5 G (82.1108 MHz), νz = 82.5 kHz, 20% trap
depth.
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Figure 6.12: Positions of resonances predicted by dimer theory compare with
12 to 13 rf transition spectra around 790 G for different trap depths. The origin
of x axis shown as red solid lines corresponds to the bare 2 to 3 atomic transition
frequency, while the red dotted lines show the calculated positions of dimer bound
state to scattering state transitions and the red dashed lines show the calculated
positions of dimer bound to bound transitions. (a) 788.5 G (81.9714 MHz), νz =
24.5 kHz, 2% trap depth; (b)788.3 G (81.9727 MHz), νz = 82.5 kHz, 20% trap
depth.
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between 720 G to 811 G, we can see the trend that the fit is getting worse as the

magnetic field increases. Here I list the data for 730 G, 750 G, 770 G and 790 G

in the Figure 6.9, 6.10, 6.11 and 6.12.

6.1.2 Dimer fits for experiments in 1-3 mixtures

For experiment starting from 13 mixture, we also start by preparing 50-50 1-

2 mixture. After having the balanced 1-2 mixture in the standing wave trap

of inferred CO2 laser beam directly transferred from MOT, we turn on the high

magnetic field and set it to be about 528G, where the 1-2 s-wave scattering length

is around zero and there is no interactions between atoms in state 1 and 2. Then

we cut down the backgoing CO2 laser beam in the non-interacting region and

try to avoid heating which may happen in other magnetic fields. Then we start

sending a rf pulse with a frequency sweep(10 ms, 10 kHz) to completely transfer

atoms from state 2 to state 3. Then we shift the magnetic field from 528 G to

690 G where is the Feshbach resonance of 1-3 mixture to do evaporation. After

evaporation, we will have cold enough atoms for our experiments. We measured

that the ratio of atom numbers in state 1 and 3 is about 1 : 0.95, which is good

enough for requirement of balanced mixture. Then we switch magnetic field from

690G to anywhere we want to do experiment. Then the standing wave will be

turned on for the quasi 2D experiments.

Here I want to mention that in the preparation of 1-3 mixture, we did not use

π pulse of rf signal. Because this way requires very high stability of the system

magnetic field in order to stabilize the transition frequency (within 1kHz), which

is too challenging to us right now. Maybe after building up the magnetic field

stabilization system, we can try this method one more time.
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Figure 6.13: Positions of resonances predicted by dimer theory compare with
13 to 12 rf transition spectra at 669.2 G for different trap depths. The origin of
x axis shown as red solid lines corresponds to the bare 3 to 2 atomic transition
frequency for 669.2 G, 82.895 MHz, while red dotted lines show the calculated
positions of dimer bound state to scattering state transitions and red dashed lines
show the calculated positions of dimer bound to bound transitions. (a) νz = 24.5
kHz, 2% trap depth; (b)νz = 82.5 kHz, 20% trap depth.
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Figure 6.14: Positions of resonances predicted by dimer theory compare with 13
to 12 rf transition spectra at 688.9 G for different trap depths. The origin of x axis
shown as red solid lines corresponds to the bare 3 to 2 atomic transition frequency
for 688.9G, 82.718MHz, while red dotted lines show the calculated positions of
dimer bound state to scattering state transitions and red dashed lines show the
calculated positions of dimer bound to bound transitions. (a) νz = 24.5 kHz, 2%
trap depth; (b)νz = 82.5 kHz, 20% trap depth.
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Figure 6.15: Position of resonance predicted by dimer theory compares with 13
to 12 rf transition spectrum at 718.5 G, 2% trap depth, νz = 24.5 kHz. The origin
of x axis shown as red solid line corresponds to the bare 3 to 2 atomic transition
frequency for 718.5G, 82.472MHz, while red dotted line shows the calculated
position of dimer bound state to scattering state transition and red dashed line
shows the calculated position of dimer bound to bound transition.
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Figure 6.16: Positions of resonances predicted by dimer theory compare with 13
to 23 rf transition spectra at 688.9 G, 2% trap depth, νz = 24.5 kHz. The origin
of x axis shown as red solid line corresponds to the bare 1 to 2 atomic transition
frequency for 688.9 G, 76.032 MHz, while red dotted line shows the calculated
position of dimer scattering state to bound state transition and red dashed line
shows the calculated position of dimer bound to bound transition.
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In terms of the dimer theory fits for rf transition in 1-3 mixture, I list the 1-3

to 1-2 transition spectra for 670 G, 690 G and 720 G and mark the predicted

resonance positions based on dimer theory on top of them in Figure 6.13, 6.14

and 6.15. And the 1-3 to 2-3 transition spectrum for 690 G data in Figure 6.16.

We can see that there are still disagreements. But since the dimer binding energy

for these data are much larger than the 1-2 mixture case, the relative discrepancy

is not that much.

For 720G, we have data start from both 1-2 mixture and 1-3 mixture, and at

different trap depths. I put them together in Figure 6.17 and make the x axis

scale the same in order to compare. We can see that the positions of resonances

in Figure 6.17 (a) and (b) are almost in the same place, but the shapes of spectra

are quite different.

By changing the magnetic field and mixture of initial states, we obtain different

combination of initial and final dimer binding energies for different rf transition

experiments. We notice that the dimer transition theory can not explain these

spectra very well, especially for cases with small initial dimer binding energies.

For experiments start from 50-50 1-2 mixture, around 1-2 Feshbach resonance,

some of the distances between resonances in the data are almost twice as much

as the prediction.

Besides using the subtraction of dimer binding energy, like E12
b − E13

b , to

compare with the data, we also try to add some scale factors in the subtraction,

like trying to fit λ12E
12
b − λ13E

13
b to the data by changing λ12 and λ13. However,

we can not find any fixed scale factors.

In order to find a more reasonable explanation for these spectra, we considered

about other interactions between atoms. In the next section I will show you the

127



fits based on polaron transition theory.
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Figure 6.17: Positions of resonances predicted by dimer theory compare with rf
transition spectra at 718.5 G for different trap depth. The origin of x axis shown
as red solid lines corresponds to the bare atomic transition frequency between
state 2 and 3 for 718.5 G, 82.472 MHz, while red dotted lines show the calculated
positions of dimer bound state to scattering state transitions and red dashed lines
show the calculated positions of dimer bound to bound transitions. (a) 13 to 12
transition for 2% trap depth, νz = 24.5 kHz; (b) 12 to 13 transition for 2% trap
depth, νz = 24.5 kHz; (c) 12 to 13 transition for 20% trap depth, νz = 82.5 kHz;
(d) 12 to 13 transition for 50% trap depth, νz = 127.5 kHz.
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6.2 Polaron transition spectra

When the transverse Fermi energy is larger than the dimer binding energy, EF⊥ >

Eb, the interparticle spacing is comparable to the dimer size and many-body

effect should show up. In our rf spectroscopy experiments around 1-2 Feshbach

resonance at 834 G, EF⊥ > E12
b > E13

b .

We consider two dimensional non-interacting polaron as the many-body effect

and notice that the polaron binding energy, Ep, is much larger than the cor-

responding dimer binding energy Eb. That means polarons are expected to be

energetically more favorable than the corresponding dimers.

Since we have 50-50 balanced 1-2 mixture to start with in the rf transition,

we only assume final states to be 1-3 polaron states and keep the initial states

to be dimer bound states or scattering states. Here 1-3 polaron is an atom in

state 3 surrounded by a cloud of particle-hole pairs in state 1. However, since 1-3

polaron binding energy is so large that E12
b − E13

p is negative and it predicts the

additional resonance on the left side of the atomic transition resonance, which is

not what we observe on the spectra. We are forced to treat the initial state to be

polaron as well.

We calculate the polaron binding energy by using equation (4.20), which I

derived in Chapter 4. Here, the polaron binding energy is a function of the 2D

local Fermi energy EF local and the dimer binding energy Eb

ϵ ≡ Σ(ϵ) = −2

∫ 1

0

du

−ln
(

Eb

EF⊥

)
+ ln

[√(
1− ϵ

2

)2 − u+
(
1− ϵ

2
− u

2

)] . (6.4)

Since we don’t know the 2D local Fermi energy, we assume that the average

130



local Fermi energy is proportional to the ideal gas global Fermi energy

EF (2D local) = λ1EF (2D ideal gas) (6.5)

which we can determine experimentally by measuring the total atom number per

pancake in the quasi-two dimensional trap, EF (2D ideal gas) =
√
Nperpancake h ν⊥,

where ν⊥ =
√
νx · νy. The proportional parameter λ1 is the only fitting parame-

ter. We find that by using one value of λ1, λ1 = 0.67, the predictions of broad

resonance positions based on polaron transitions match with the resonance posi-

tion on all the 12 to 13 transition spectra at 810 G, 832 G and 842 G for different

trap depths as shown as thick red dashed lines in Figures 6.18, 6.19 and 6.20.

6.2.1 Data fitting to extract resonance separations

In order to compare the subtraction of polaron binding energy E12
p −E13

p with the

data, we need to extract resonance separations from the data by fitting them to

a two peak function. Here I will give some details about how we choose the two

peak function.

In Figures 6.18, 6.19 and 6.20, I list all the spectra fits we have for the com-

parison. The positions of the bare atomic transition resonances are labeled as

vertical red solid lines on the spectra. They are determined from the bare atomic

rf transition experiment from state 2 to 3 without any atom in state 1. We also

measure the atomic transition resonance positions in different trap depths and

different temperatures for transitions from 1-2 mixture to 1-3 mixture. We notice

that the bare atomic transition resonances are in the same place no matter how

we change the parameters.
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Figure 6.18: Fits of the rf spectra around 811G to extract resonance separation
and polaron transition predictions. The vertical red solid lines mark the bare
atomic transition resonances. Red solid curve along the data (blue dots) are the
fits based on the equation (6.7) and (6.12). The thick red dashed lines are the
predicted broad resonance positions based on polaron transitions. (a) 808.6G
(81.8455MHz),νz = 24.5 kHz, 2% trap depth; (b) 809.5G (81.84MHz), νz = 82.5
kHz, 20% trap depth.
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Figure 6.19: Fits of the rf spectra around 832G to extract resonance separation
and polaron transition predictions. The vertical red solid lines mark the bare
atomic transition resonances. Red solid curve along the data (blue dots) are the
fits based on the equation (6.7) and (6.12). The thick red dashed lines are the
predicted broad resonance positions based on polaron transitions. (a) 832.2 G
(81.7065 MHz), νz = 24.5 kHz, 2% trap depth; (b) 832.0 G (81.7076 MHz),νz =
82.5 kHz, 20% trap depth; (c) 831.9 G (81.7082 MHz), νz = 135 kHz, 50% trap;
(d) 831.3 G (81.7116 MHz),νz = 179 kHz, 100% trap depth depth.
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Figure 6.20: Fits of the rf spectra at 841.7G to extract resonance separation
and polaron transition predictions. The vertical red solid lines mark the bare
atomic transition resonances (81.653 MHz). Red solid curve along the data (blue
dots) are the fits based on the equation (6.7) and (6.12). The thick red dashed
lines are the predicted broad resonance positions based on polaron transitions.
(a)νz = 24.5 kHz, 2% trap depth; (b)νz = 82.5 kHz, 20% trap depth.
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For the bare atomic transition resonances, we notice that most of them exhibit

a fast rise and a tail toward higher frequency. We believe this shape is caused by

the mean-field shift and should be fitted using a threshold function. The broad

resonances on the right side of the spectra are quite symmetric. A symmetric

peak function should be used to fit it. The combination of these two functions

will serve as the two peak function for the whole spectrum fitting.

In this dissertation, I simply choose half of a Lorentzian function

f(x) = Θ(νa)
w/2

(x− νa)2 + (w/2)2
(6.6)

to be the the threshold function for the atomic transition resonances. Here Θ(νa)

is a step function and νa is the atomic transition frequency. w is the width of the

Lorentzian shape. Then broaden it in a convolution,

I1(ν) ∝
∫ ∞
0

dx
f(x)

π

w′/2

(x− ν)2 + (w′/2)2
. (6.7)

where w′ is the width of the broadening.

The polaron binding energy Ep is different in different places of the atom cloud

because of the different local Fermi energies EF (2D local). I integrate E
12
p −E13

p in

a two dimension plane to serve as the symmetric peak function for the fits of the

broad resonances on the right side of the spectra. To simplify the expression of

polaron binding energy, I use the approximate function (4.21) instead of the exact

funciton (4.20). I can get E12
p − E13

p for a certain local Fermi energy EF (2D local),

ν0(EF ) =
1

h

[
2EF (n⊥)

ln(1 + 2EF

E12
b
)
− 2EF (n⊥)

ln(1 + 2EF

E13
b
)

]
. (6.8)
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Then I integrate over the 2D atomic density distribution n⊥(ρ) to get the total

spectrum.

I2(ν) =
1

N

∫ σF

0

2πρ dρ n⊥(ρ)
1

π

w′′/2

[ν − ν0(EF )]2 + (w′′/2)2
, (6.9)

where

EF =
~2

m
2πn⊥ , n⊥ = n0

(
1− ρ2

σ2
F

)
. (6.10)

Here N is the 2D total atom number, σF is the Fermi radius of the 2D system

and w′′ is the full width of broadening Lorentzian lineshape. Then

EF (ρ) = EF (0)

(
1− ρ2

σ2
F

)
, dEF = −2ρdρ

(
EF (0)

σ2
F

)
(6.11)

We can write the spectrum (6.9) as

I2(ν) ∝
∫ EF (0)

0

dEFEF
1

π

w′′/2

[ν − ν0(EF )]2 + (w′/2)2
(6.12)

Since I do not know the maximum local Fermi energy EF (0), I just assume it

is proportional to the ideal gas Fermi energy we can measure experimentally,

EF (0) = λ2EF ideal gas 2D. EF ideal gas 2D =
√
Npersite h ν⊥, where ν⊥ =

√
νx · νy, λ2

is a fitting parameter. The function I1(ν) + I2(ν) is the two peak function I use

in Figures 6.18, 6.19 and 6.20 to fit the spectra. The fits can tell us the peak

frequencies of the broad resonances. By subtracting the bare atomic transition

frequencies we measured experimentally, we extract the resonance separations.

In our paper [4], we used another two peak function to fit the data. A threshold
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function was derived from the mean field shift,

I(ν) =
1

2
(

1
L13

− 1
L13+q

)(
1 + 1

L13
+ 1

L13+q

) , (6.13)

where

2qe−L13

L13(L13 + q)
− h(ν − νa)

E13
b

= 0 , q = ln

(
ϵ13b
ϵ12b

)
. (6.14)

Here, νa is the bare atomic transition frequency. And a simple Lorentzian func-

tion, which is symmetric, was used to fit the broad resonance. Although different

fitting functions are used, the separations between resonances we extract from the

data are very similar as shown in Table 6.1.

The fact that we can use two different fitting functions to extract almost the

same resonance separations shows that the separations are reliable for next step

comparison with polaron theory.

6.2.2 Polaron transition prediction

In Table 6.1, I list the measured frequency shifts based on both the fits we use

in our paper as ∆νmeas1 and the fits I show in Figures 6.19, 6.18 and 6.20 as

∆νmeas2. These two frequency shifts are consistent with each other although

from different fits. Then we can compare the measured frequency shifts with the

calculated results based on the accurate polaron binding energy function (4.20),

which we obtain in Chapter4. I list the accurate calculation result as ∆νpolaron1

with λ1 = 0.67 in Table 6.1. Here, λ1 is the only fitting parameter compared

with the measured value. And for all of the eight sets of data around Feshbach

resonance, the prediction based polaron-polaron transition match the frequency
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Table 6.1: Frequency shift ∆ν from the bare atomic transition frequencies to
the second resonances on the 12 to 13 rf spectra near 12 Feshbach resonance. The
corresponding axial trap frequency is νz. Two measured values of ∆ν based on
two fits are compared to the values calculated assuming a transition from a 1-2
polaron to a 1-3 polaron. ∆νmeas1 corresponds to the fit in our paper [4] and
∆νmeas2 corresponds to the fit I use in this dissertation. ∆νpolaron1 is calculated
from polaron binding energy function (4.20) with λ1 = 0.67 while ∆νpolaron2 is
from the approximate function (4.21) with λ1 = 0.54.

B(G) νz(kHz) ∆νmeas1(kHz) ∆νmeas2(kHz) ∆νpolaron1(kHz) ∆νpolaron2(kHz)

809 24.0 18.7 20.0 18.3 18.6

810 85.0 37.1 36.4 37.0 38.3

842 24.5 10.1 10.3 9.7 9.5

842 82.5 27.2 28.1 26.7 26.8

832 24.5 12.3 12.6 11.6 11.6

832 82.0 28.3 28.0 29.1 29.5

832 135 38.8 38.8 42.8 43.4

831 179 44.5 43.6 48.3 49.8

shifts quite good. We believe the polaron transition should play an important

part in the spectrum.

I also list the calculation result based on the approximated polaron binding

energy function (4.21) as ∆νpolaron2 in the table with λ1 = 0.54. Although here

the λ1 is different, we can see that ∆νpolaron1 and ∆νpolaron2 are quite close. That

means the subtraction of the polaron binding energies given by the approximated

function is very close to the accurate calculation, although there should be no-

ticeable difference from the accurate calculation for the polaron binding energy

itself.
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6.3 Spectra for different temperatures and atom

numbers

Besides changing magnetic field and trap depth, we also change other parameters

in the quasi 2D rf spectroscopy experiment to see how spectrum change according-

ly. Here I will show you the spectra for different temperatures and atom numbers

of the system.

6.3.1 Spectra for different temperatures

We change the temperature of the system before we apply rf pulse to make the

transitions. In Figure 6.21, we have two 12 to 13 transition spectra at 832 G.

For spectrum in Figure 6.21 (a), it is colder compared with 6.21 (b) while other

parameters are nominally the same. We can see that the second resonance on the

right side is more obvious when the system is colder. I list the positions of the

polaron transition peaks in purple dot-dashed lines and the dimer transition peaks

in red dotted and dashed lines. We can see that when system temperature is low,

the broad resonance position match with the polaron transition resonance very

well. However, when the system temperature become higher, the broad resonance

position moves to the left a little bit. And in the place where the dimer transition

should be, there is a abrupt shape change of the spectrum.

We also have the experimental data for different temperatures at 842G for

both 2% and 20% trap depths. In Figure 6.22, we can see that the spectrum has

the similar change as in 832G data when system temperature increases. And in

Figure 6.23 where I list three different temperatures, we can see the change of

spectrum shape more clearly.
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Figure 6.21: 12 to 13 rf spectra for different temperatures at 832 G, 2% trap
depth, νz = 24.5 kHz. Temperature of the system in (a) is lower than that in
(b). We set the origin of x axis to be 81.7076 MHz corresponding the bare 2 to
3 atomic transition frequency shown as red solid lines. Red dotted lines are the
calculated positions of dimer bound state to scattering state transition resonance
while red dashed lines correspond dimer bound to bound transition resonance.
Positions of polaron transition resonances are shown as purple dot-dashed lines.

I need to mention that for these rf spectra taken around 1-2 Feshbach reso-

nance, the dimer transition predict same resonance positions for different spectra,

as long as the optical trap depths are the same. However, the polaron transition

resonance position would vary since it depends on atom number per site in the

2D system which is different for different cases. So, In Figure 6.21, 6.22 and 6.23,

for one set of data, the red lines are always line up in different subfigures while

the position of purple dot-dashed lines are slightly different.

We also turn the temperature knob around 1-3 mixture Feshbach resonance

around 690 G for 1-3 to 1-2 rf transition. In Figure 6.24, I show two spectra
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Figure 6.22: 12 to 13 rf spectra for different temperatures at 841.7 G, 2% trap
depth, νz = 24.5 kHz. Temperature of the system in (a) is lower than that in (b).
We set the origin of x axis to be 81.653 MHz corresponding the bare 2 to 3 atom
transition frequency shown as red solid lines. Red dotted lines are the calculated
positions of dimer bound state to scattering state transition resonance while red
dashed lines correspond dimer bound to bound transition resonance. Positions of
polaron transition resonances are shown as purple dot-dashed lines.

with different temperatures for 2% trap depths. Here, the 12 dimer binding

energy is too big to let polaron transition dominate. Therefore, I only label the

resonance positions for dimer transitions. We can see that although the dimer

theory can not predict the exact positions of the resonance on the right side,

the error (around 30kHz) is quite small considering the resonance on the right

is very far away from the atomic transition resonance (more than 300kHz). And

while the temperature increase, it is obvious that the tail on the left side of the

atomic transition resonance becomes smaller and for the resonance on the right

side, the left part of it become smaller as well. These changes are consistent with
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Figure 6.23: 12 to 13 rf spectra for different temperatures at 842.4 G, 20% trap
depth, νz = 82.5 kHz. From data (a) to (c), temperature of the systems increases.
We set the origin of x axis to be 81.6492 MHz corresponding the bare 2 to 3 atom
transition frequency shown as red solid lines. Red dotted lines are the calculated
positions of dimer bound state to scattering state transition resonance while red
dashed lines correspond dimer bound to bound transition resonance. Positions of
polaron transition resonances are shown as purple dot-dashed lines.
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Figure 6.24: 13 to 12 rf spectra for different temperatures at 690 G, 2% trap
depth, νz = 24.5 kHz. Temperature of the system in (a) is lower than that in (b).
We set the origin of x axis to be 82.718 MHz corresponding the bare 3 to 2 atom
transition frequency shown as red solid lines. Red dotted lines are the calculated
position for dimer scattering state to bound state transition resonance while red
dashed lines correspond dimer bound to bound transition resonance.
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the dimer transition assumption, which predicts that the transition from initial

dimers should be suppressed with the decreasing of the dimer number while system

temperature increases.

6.3.2 Spectra for different atom numbers

Then let’s take a look at another parameter, number of atoms. Here we want

to change the number of atoms per pancake in the 2D system Npancake since it

will change the Fermi energy of the system as well. Compared with the obvious

change of the spectrum shape when the system temperature varies, the change of

the spectrum is quite small when we try to change Npancake. In Figure 6.25, we

have data at around 1-2 Feshbach resonance, 832 G for different Npancake. System

of Figure 6.25(b) has almost twice Npancake as system of Figure 6.25(a) has. In

subfigure (c), I put both spectra in and scale them vertically to show the shape

difference. We can see a tiny shift of the broader peak in subfigure (b) with respect

to the one in (a). And for both spectra, the polaron transition theory predict the

resonance positions quite well.
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Figure 6.25: 12 to 13 rf spectra for different atom number per pancake of quasi-
2D system at 832.1 G, at 20% trap depth. (a) and (b) are data with different
atom number per pancake while (c) is the comparison of the shape of (a) and (b).
We set the origin of x axis to be 81.7071 MHz corresponding the bare 2 to 3 atom
transition frequency shown as red solid lines. Red dotted lines are the calculated
positions of dimer bound state to scattering state transition resonance while red
dashed lines correspond dimer bound to bound transition resonance. Positions of
polaron transition resonances are shown as purple dot-dashed lines.
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Chapter 7

Conclusion

7.1 Summary of the dissertation

This dissertation presented the experimental results of radio-frequency spectroscopy

in a unique geometry, quasi-two dimensional Fermi gas with EF⊥ = 1.5hνz, as well

as theoretical fitting. Although, 50-50 two component mixture is employed, we

notice that the two dimensional non-interacting polaron transition theory fit our

data much better than the corresponding dimer transition theory in the regime

where EF⊥ is comparable to Eb.

This is the first study of pairing in a quasi-two dimensional Fermi gas where

we believe that our experimental results show many body effect in the strongly

interacting region. Our experiments have spurred several theoretical works.

At least three theory groups tried to fit our data. Our polaron transition

interpretation is supported by some of them, while other possible consequences

have been discussed, like effects of higher axial states by using BCS theory. More

theoretical work is required to fully understand our data.
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7.2 Outlook

Based on my current work, the quasi-two dimensional system we explored has

such a unique geometry which changes the system from pure 2D in a way we do

not fully understand.

Next step, we can employ high resolution imaging system to take in situ images

of atoms and to study the hydrodynamic expansion in this unique system. This

may help us to find a reliable method to measure the temperature of the quasi-two

dimensional system. For the radio frequency spectroscopy experiment, we also can

do more accurate measurement with high resolution imaging by considering the

inhomogeneous density in the harmonic trapping potential.

Based on the apparatus we have, we can add some equipments to give us more

freedom to play with the system. For example, by adding one or two lasers we can

modify the dimensionality even further. If we can upgrade the magnets system

with fast response, interaction between atoms can be changed with no time. I

believe more interesting experiments can be done in the near future.

Ultracold Fermi gas is such an amazing system that many researchers jump

into this exciting field and do research experimentally and theoretically in order

to understand its properties and interplay with Bose system. There were only six

pioneer experimental groups in the ultracold Fermi gas field including our group

around 2000. Till now, there are more than 200 research groups in the world

studying ultracold atoms experimentally and theoretically. It is for sure that the

investigation in this field has endless potential.
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Appendix A

Mathematica file for 6Li
hyperfine structure

PROGRAM DESCRIPTION:

This Mathematica 8.0 program calculates 6Li Hyperfine energies in a certain
magnetic field, plots the energy level versus magnetic field, at last shows energy
difference in some particular magnetic fields. Here energies are given in units of
the hyperfine constant, a, where 3a/2 = 228.2MHz is the F = 3/2−F = 1/2
splitting at B = 0. Note that mu0 ∗ B/a = 92.00 ∗ B is the shift of a Bohr
magneton per Tesla in units of a. Energies are plotted from E1 to E6 with
E1 lowest.

gI = .0004476540 (* see Rev.Mod.Physics Vol .49 No .1, 1977 *);

gJ = -2.0023010(* see Rev.Mod.Physics Vol .49 No .1, 1977 *);

mu0 = 9.2740154 10^-24;

h = 6.6260755 10^-34;

\[Mu]0 = 1.399624604*10^10 (* Bohr magneton in Hz/T *)

a = 152.1368407 *10^6 (* Hz *)

q = \[Mu]0/a*(-gJ + gI)/2

zp[B_] := 1/2 + 2*q*B

rp[B_] := Sqrt[2 + (zp[B])^2]

sp[B_] := 1/Sqrt[1 + (zp[B] + rp[B])^2/2]

cp[B_] := Sqrt[1 - sp[B]^2]

zm[B_] := -1/2 + 2*q*B

rm[B_] := Sqrt[2 + (zm[B])^2]

sm[B_] := 1/Sqrt[1 + (zm[B] + rm[B])^2/2]

cm[B_] := Sqrt[1 - sm[B]^2]
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energy1[B_] := -1/4 - rp[B]/2 - gI \[Mu]0 B/(2 a)

energy2[B_] := -1/4 - rm[B]/2 + gI \[Mu]0 B/(2 a)

energy3[B_] := 1/2 + gJ \[Mu]0 B/ (2 a) + gI \[Mu]0 B/ a

energy4[B_] := -1/4 + rm[B]/2 + gI \[Mu]0 B/(2 a)

energy5[B_] := -1/4 + rp[B]/2 - gI \[Mu]0 B/(2 a)

energy6[B_] := 1/2 - gJ \[Mu]0 B/ (2 a) - gI \[Mu]0 B/ a

Plot[{energy1[B/10000], energy2[B/10000], energy3[B/10000],

energy4[B/10000], energy5[B/10000], energy6[B/10000]}, {B, 0, 1200},

PlotRangeClipping -> True, Frame -> True,

FrameLabel -> {Style["Magnetic field (B)", FontSize -> 13],

Style["Hyperfine energies in units of \!\(\*FractionBox[\(a\), \(h\

\)]\)", FontSize -> 12]},

PlotStyle -> {Red, Red, Blue, Blue, Blue, Blue}]

a*(energy2[0.08341] - energy1[0.08341])

a*(energy2[0.0830] - energy1[0.0830])

a*(energy3[0.08414] - energy2[0.08414])
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phase coherence in a 2d lattice of Bose-Einstein condensates. Phys. Rev.
Lett., 87:160405, 2001.

[51] Belén Paredes, Artur Widera, Valentin Murg, Olaf Mandel, Simon Fölling,
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