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Abstract

This thesis introduces optical phase space distributions, i.e., the joint position and
momentum distribution of a light field. These distributions provide a new conceptual
framework for the study of light propagation in multiple scattering media. Since light
is predominantly scattered rather than absorbed in many biological tissues, interest
in light scattering studies has recently been revived for application to biomedical
optical imaging. Thus, improving the understanding of light transport in a multi-
ple scattering medium will impact current biomedical imaging techniques such as

coherence tomography.

In this thesis, a method for directly measuring optical phase space distributions
using a novel heterodyne imaging scheme is developed. The heterodyne method can
be implemented with either coherent or low-coherence-length light. It is shown that
the detected voltage is given as the convolution of the Wigner distribution of the
light field of interest with that of a reference field when measuring the mean square
heterodyne beat signal. It is further shown using Fourier optics theoretical methods
that the center position and momentum of the reference field in the heterodyne
scheme can be scanned by translating optical elements. Thus, the optical phase
space distribution is mapped out in position and momentum as a smoothed Wigner
distribution with resolution determined by the spatial width and diffraction angle
of the reference field. In addition, implementation of the heterodyne scheme using
low coherence length light permits selection of the path length of detected photons,

effectively giving timing resolution.

Wigner distributions are shown to obey rigorous transport equations which are
derived from the underlying wave equations. Thus, measurement methods based on

Wigner distributions can be placed on a firm theoretical footing. The properties of

v



Wigner distributions are illustrated using measured optical phase space distributions
for Gaussian beams from a coherent source as an example. Since Wigner distributions
are sensitive to the coherence properties of the light field, optical phase space distri-
butions can be used to characterize the light from a variety of sources. A method of
coherence characterization is developed that recovers the parameters of the Gaussian
Schell-model, a mathematical description of partially coherent light. This method is
applied to characterize the light sources used in the scattering studies presented in

this thesis.

Light scattering is investigated in three experiments. These studies employ the
heterodyne scheme to measure the optical phase space distribution of light emerging
from turbid media. Coherent light from a helium neon laser is used to explore the field
transmitted through a turbid medium consisting of 5.7 um polysyrene spheres in a
water-glycerol mixture. The momentum distribution of the transmitted field contains
three components: a sharp ballistic peak, a narrow diffractive pedestal and a broad
background. The narrow diffractive pedestal is seen to attenuate more slowly than the
ballistic light as the concentration of scatterers is increased. The data are in excellent
agreement with a theoretical model that explains the behavior of the pedestal by

including multiple diffractive scattering and treating large angle scattering as a loss.

Light from broadband superluminescent diodes is used to explore the propaga-
tion of low coherence length light in multiple scattering media. Optical phase space
distributions are presented for the light transmitted through varying concentrations
of polystyrene spheres for different photon path lengths within the medium. It is
shown that narrow momentum distributions are obtained for path lengths slightly
longer than those of ballistic light. It is believed that this light can be used for
biomedical optical imaging. The final study presented in this thesis examines low

coherence length light which has been backscattered by a turbid medium. Optical



phase space distributions are presented for various photon path lengths within the
medium. The data are shown to agree with a theoretical model which is cast in the

form of a Wigner distribution for comparison to experiment.
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Chapter 1
Introduction

Tomographic imaging employs a wave field to obtain information about multiple
cross-sectional planes of an object to reconstruct its three dimensional form. The
cross-sectional planes can be probed using various types of waves, such as a sound
wave or an electromagnetic wave. When an optical field is used as the probe, the
coherence properties of the light can be exploited to isolate contributions from each
individual plane. This method is termed coherence tomography. Although coherence
tomography can be applied to learn about the structure of any object, it has been
particularly useful in biomedical imaging applications.

This dissertation provides a new conceptual framework for studying and improv-
ing coherence tomography through the measurement of the optical phase space dis-
tribution of a light field. An optical phase space distribution describes the joint
measurement of the momentum and position of a light field in a plane transverse to
its direction of propagation. Phase space distributions are important for coherence to-
mography because they are sensitive to the phase and amplitude of the optical field
emerging from a biological medium. Thus, they provide information not available
with conventional intensity measurements.

A simple optical system has been developed that permits direct measurement of
the phase space distribution of an optical field. The method is applied to the funda-
mental study of light propagation in turbid media. A turbid medium is any medium
where light is predominantly scattered instead of absorbed, as is the case in many
biological tissues. The study presented here will further the use of coherence tomog-

raphy in biological imaging. As an introduction to this work, I begin by outlining



the importance of using optical fields for medical imaging. This is followed by a brief
description of the method used to measure optical phase space distributions in this

study.

1.1 Motivation

Biomedical imaging techniques seek to detect and diagnose abnormalities within hu-
man tissues. Recently, optical methods have received increased attention as a po-
tentially powerful diagnostic tool in medical imaging [1-9]. Although several other
modalities exist for imaging parts of the body, such as x-ray imaging, x-ray com-
puted tomography (CT), magnetic resonance imaging (MRI) and ultrasound, each
technique possesses specific limitations that optical imaging can avoid. For example,
high energy x-rays can ionize tissue making them potentially harmful for routine di-
agnostics. By contrast, optical radiation is non-ionizing and thus safer for repeated

exposures.

Optical imaging is particularly promising because it is quite sensitive to abnormal
metabolic processes that may signal tumor formation in some cases [1,2]. X-ray
imaging is not sensitive to these chemical changes in that it only reveals the structural
damage caused by them. For this reason, x-rays may not detect small, early tumors,
which are the most treatable, nor detect the differences between benign and malignant
tumors [3]. Insensitivity to chemical processes also limits the usefulness of ultrasound
and MRI. In addition, factors such as the poor spatial resolution of ultrasound and the
high cost of MRI equipment necessarily restrict these methods to specific applications.

Optical biomedical imaging techniques rely on the measurement and interpreta-
tion of the optical field that has passed through human tissue. This can be much
more complex than interpreting x-ray or MRI images because radiation at or near
optical frequencies is highly scattered by biological materials. Two approaches can
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be taken to image in the presence of multiple scattering. The first relies on selectively
detecting only ballistic photons, i.e., those that have passed through the tissue with-
out being scattered. This can be accomplished by time-gating [4,5], or exploiting a
source with a short coherence length [6-8], to select out photons with a specific path
length within a scattering medium. The second approach is to utilize the photons
which have been multiply scattered [9]. The use of scattered photons to learn about

the scattering medium is referred to as the inverse problem [3].

In clinical implementations, biomedical optical imaging methods make use of po-
sition dependent intensity measurements where light is collected via an optical fiber
with a broad angle of acceptance. Thus, potentially useful information contained in
the angular distribution and spatially varying phase of the field is ignored. Further
understanding and refinement of optical biomedical imaging methods can be gained
by measuring joint position and momentum (angular) distributions of light trans-
mitted through biological tissues. These joint position and momentum distributions
are termed optical phase space distributions and are well suited for studying the

propagation of light in multiple scattering media.

1.2 Optical Phase Space Distributions

We have developed a technique for measuring optical phase space distributions based
on heterodyne detection. In heterodyne detection, a weak optical field is mixed
with a strong reference beam and the total power is measured. The reference beam,
referred to as a local oscillator (LO), is offset in frequency from the signal beam.
Mixing the two serves to enhance the signal. The measured beat signal arises from

the interference of the signal and LO fields in the plane where they are detected. The



spatial overlap of the LO and signal fields determines the beat amplitude,

Vi — / €2 o (2)Es(x), (1.1)

where the corresponding y integral has been suppressed. In this expression, £ repre-
sents the spatially varying part of the optical field. An important feature of our tech-
nique is that we measure the mean square beat signal <|VB|2>. I will show in Chapter
4 that this offers many advantages from both practical and theoretical standpoints.
Of particular importance is that the mean square beat signal can be written elegantly
in terms of the Wigner distributions of the signal and LO fields.

In 1932, Wigner [10] introduced a wave-mechanical phase space distribution in
quantum mechanics. It was first adapted to describe optical fields by Bastiaans in
1978 [11]. For a wave field varying in one spatial dimension, £(z) the Wigner phase

space distribution is given by [12]

W(x,p) :/%exp(iep)(é’*(x+e/2)5(a:— €/2)), (1.2)

where z is the position, p is a wavevector (momentum), and (...) denotes a statistical

average. The expression for the mean square beat signal is given by

<|VB(on,po)|2> = /dﬂc dpWio(x — 2o, p — po)Ws(z, p), (1.3)

where Wi is the Wigner distribution of the LO field and Wy is that of the signal field.
The optical phase space distribution is mapped out as a contour plot by scanning the
center position x, and center momentum p, of the LO Wigner distribution,.

Wigner phase space distributions are important for studying the propagation of
light in turbid media because they obey rigorous transport equations. The transport
equations are derivable from the underlying wave equations for the optical field as

I will demonstrate in Chapter 3. Thus, measurement methods based on Wigner
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Figure 1.1: Transmission vs. concentration of 10% intralipid solution. Points -
data; solid line - theory.

distributions can be placed on a firm theoretical footing. Wigner distributions are
also important because they are sensitive to the coherence properties of light. This
allows the study of the propagation of optical coherence in turbid media. It has been
suggested that coherence tomography based on measurement of Wigner phase space

distributions may yield new avenues for medical imaging [13].

The method I have developed has an extremely high dynamic range. It can
detect signal beams over a range of 130 dB with sub-femtowatt sensitivity [14]. Asa
demonstration of the dynamic range, Figure 1.1 shows the results of an initial study
of simple transmission measurements using optical phase space measurements in the

forward direction (z, = p, = 0). The mean square beat intensity is measured for

transmission through varying concentrations of Intralipid solution, a soy emulsion

often used in turbid media studies for its tissue-like properties. The points represent



measured transmission data (Table A.1). The solid line represents a theoretical model
given by Equation 6.20. It is discussed in detail in Chapter 6 (section 6.3). The
lowest transmission level detected in this experiment was 2.5x10~!3 of the incident
0.5 mW signal beam. The measured power at this lowest level is 1.25x107¢ W and

corresponds to a flux of approximately 300 photons per second.

As Equation 1.3 shows, the measured mean square beat signal is the convolution
of the Wigner distribution of the signal field with that of the LO, i.e., the signal
Wigner distribution is smoothed by the Wigner distribution of the LO. The position
resolution of the smoothed Wigner distribution is given by the spatial size of the L.LO
and its momentum resolution is given by the LO diffraction angle. In the case of a
gaussian LLO beam, the position and momentum width have a minimum uncertainty
product and thus cannot be varied independently. Although a smoothed Wigner
distribution is coarse grained and therefore contains less information than the true
Wigner distribution, optical phase space measurements can still provide substantial
sensitivity to the coherence properties of a light field in many cases of practical

interest.

Mean square beat signals, as measured in our experiments, are sensitive both to
ballistically transmitted light and to light that has been multiply scattered into the
mode of the local oscillator [14]. This is in contrast to mean beat signals, which
are only sensitive to unscattered, ballistic light. The difference between mean and
mean square beat signals has been discussed previously for homodyne detection [15].
Both scattered and unscattered light can be used for biological imaging, but through
different approaches. Ballistic light is most desirable for imaging, but is highly atten-
uated in thick samples. Therefore, scattered light, which is attenuated more slowly,
must be used to image through thicker samples. To illustrate the sensitivity of our

method to both ballistic and scattered light, Figure 1.2 shows an optical phase space
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Figure 1.2: Measured optical phase space distribution for light transmitted through
a turbid medium.

distribution as a contour plot in position x, and momentum p, in units of the optical
wavevector k. This plot shows both the ballistic and scattered light emerging from a
sample of polystyrene spheres in a water/glycerol mixture The ballistic light is the
narrow island in the center of the plot centered at zero transverse momentum. The
broad ellipse surrounding it is the scattered light. This example is discussed further

in section 6.2.1.

The Wigner distribution of scattered light is of interest because it contains infor-
mation about the form factor of the scattering object. To exploit this information,
it is desirable to isolate low order scattered light which still retains substantial infor-
mation about the scatterer. Isolation can be accomplished by suppressing multiple
or diffuse scattering as much as possible. In comparison to other detection methods
that collect light over a broad range of angles, heterodyne detection has high angular

resolution. This angular resolution allows selective suppression of multiply scattered



light because of its broad angular distribution compared to the narrow angular pro-
file of light arising from low-order scattering. In addition, the heterodyne technique
permits the use of either coherent or low-coherence-length light sources, the latter
allowing further suppression of diffuse scatter by timing resolution [16]. Thus, this

method will complement current studies of low order light scattering [17-19].

Measurements of optical phase space distributions are particularly relevant to
current optical coherence tomography (OCT) methods [6-8]. In OCT, the light
reflected from a biological sample is measured using a low-coherence-length source.
The coherence length of a source is inversely proportional to its bandwidth. Thus,
a source with a bandwidth in the range of tens of nanometers will have a coherence
length of a few microns. When using a broadband source for interferometry, as in
OCT, the optical path of the two beams used must be aligned within the coherence
length of the source to yield an interference signal. In OCT, a sample is placed in
the path of one of the beams in the interferometer and a variable optical path delay
is included in the other. By varying the path length of the reference beam, a specific
path length for light reflected from the sample is selectively detected. This results in
a depth resolution that depends on the coherence length of the light source. For a
coherence length of a few microns, the resolution corresponds to that obtained using
time gating and a short laser pulse of a few tens of femtoseconds in duration. Our
heterodyne method also can be implemented using a low-coherence-length source and
thus can impact OCT in a number of ways.

The optical phase space method can be used to provide additional information
about light propagation in biological materials that is missing in OCT measurements.
The difference is that our method measures the mean square beat signal compared
to the mean beat signal measured in OCT, thus, our method can study scattered

light while OCT cannot. In addition, the optical phase space method examines both
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the spatial and angular distributions of a light field while OCT only measures its
position dependent intensity. Finally, our method also provides information about
the coherence properties of light fields. Therefore, it can be used to conveniently
characterize the coherence properties of the low-coherence-length light sources used in
OCT. As new low-coherence-sources are being continually developed for applications
such as OCT, a means for quickly and easily characterizing their coherence properties
is necessary. Knowledge of the coherence properties of the input light field are a
needed reference when interpreting the measurements made in OCT. The method of
characterizing the coherence properties of a light source are presented in Chapter 5

as well as example characterizations for coherent and low-coherence-length sources.

The capability to sort the light emerging from a turbid sample by specific phase
space parameters makes our system particularly useful for studying several anomalous
effects that have been observed with OCT that hinder its capabilities. For example, it
has been shown recently that multiple small angle scattering increases the amplitude
of the effective probe field over that expected for simple exponential decay of the
ballistic light. The probe field contains a distorted wavefront that causes structures
small compared to the transverse coherence length of the unscattered input beam to
be enhanced compared to large ones [20]. Another example of anomalous behavior
seen in OCT is a consequence of using a low coherence length source. The low
coherence length light necessarily selects only a certain range of spatial frequencies
to be detected. This selection also tends to favor small scale structures over larger
ones [21]. A more complete description of OCT methods is presented in section 2.4.3
while the particular applied problems mentioned here are addressed in section 7.4.3

of this thesis.

As an illustration of the capabilities of the optical phase space method, Fig.

1.3 and Fig. 1.4 show the measured Wigner distributions for low-coherence-light
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Figure 1.3: Measured optical phase space density for x = 0 and p = 0 as a function
of photon path length. The scatterer concentration is p = 1.5 x 107 /cm?.

transmitted through a sample of polystyrene spheres in a water/glycerol mixture.
Fig. 1.3 shows the measured optical phase space density for zero transverse position
(x,) and zero transverse momentum (p,) for different path lengths within the medium.
The path lengths are measured relative to the ballistic light at zero delay, indicated by
the arrow in the figure. Here we see that the ballistic light is attenuated by a factor

of 6_27'2

= 1.5 x 107'2 compared to a sample with no scatterers. This represents
a relatively high attenuation as it approaches the limit of detectable light levels
using our method. Although the ballistic light is still present, its peak magnitude is
lower than that of the scattered light detected at non-zero path delays. This figure
illustrates two key attributes of our method. First, our method can measure both
ballistic and scattered light over a large dynamic range. Second, it illustrates that
different path lengths can be selectively detected by using a low coherence source.

The mechanics and consequences of using a low coherence source in our scheme are

discussed in more detail in section 4.1.2.

As a further illustration of the capabilities of our system, Fig. 1.4 shows measured

optical phase space distributions in position (z,) and momentum (p,) for the same
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Figure 1.4: Measured optical phase space distributions in position, x, and momen-
tum, p, for fixed path lengths relative to the ballistic light. (A) zero path delay (B)
a path delay of 0.1 mm. Concentration p = 1.5 x 107 /cm?®.

source and sample. Figure 1.4(A) shows the distribution when the signal and LO
paths are matched to within the coherence length of the source. This distribution
is dominated by ballistic light that is localized at zero transverse position and mo-
mentum. For clarity, it is indicated by an arrow. When a path delay of 0.1 mm is
introduced in the LLO path, the measured distribution becomes dominated by low-
order scattered light as shown in Fig. 1.4(B). Although the scattered light is spread
out in position and momentum compared to the ballistic light, it remains relatively
narrow in momentum compared to the diffuse light measured at longer path delays.
This light may still be useful for imaging applications. Fig. 1.4 demonstrates that our
system can measure the position and momentum distribution of light with a chosen

path length within a turbid sample. The example shown here is explored in more
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detail in section 7.2.3.

In summary, our system offers several advantages for studying light propagation
in turbid media. First, by measuring the mean square heterodyne beat, our detected
signal can be related to the Wigner distribution of the field of interest. This places
our measurements on a firm theoretical footing, as the Wigner distribution rigorously
incorporates the phase and intensity information of an optical field. Second, the
heterodyne method is an extremely sensitive and selective detection scheme. It offers
high dynamic range, allowing sub-femtowatt signals to be detected. It possesses
high angular and position resolution as governed by the form of the local oscillator.
Heterodyne detection also offers high longitudinal resolution when implemented with
a broadband low-coherence source. The ability to select the phase space parameters
of the detected light permits detailed study of its coherence properties. Finally,
optical phase space measurements can selectively detect both ballistic and scattered
light. Thus, our method can be used to obtain the maximum information about the
light field emerging from a multiple scattering medium. This knowledge can be used
to improve understanding and enhance imaging for a variety of current biological

imaging studies and applications.

1.3 Overview of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, an overview of past
light scattering studies and light scattering theories is presented. This provides per-
spective on the current understanding of light propagation in scattering media and to
see how this work can contribute to that understanding. A cursory overview of cur-
rent optical medical imaging methods is included in this chapter as well. Chapter 3
presents a discussion of Wigner distributions and their properties. As illustrative ex-
amples of these properties, measured optical phase space contour plots are presented
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for gaussian beams from a coherent source in various configurations. An example
of deconvolution of an optical phase space distribution to recover the true Wigner

distribution is also shown in Chapter 3.

The heterodyne method for measuring smoothed Wigner phase space distribu-
tions as contour maps is presented in Chapter 4. The heterodyne method can be
used to measure smoothed Wigner phase space distributions for a optical fields from
a variety of light sources. Chapter 5 outlines a method for characterizing the coher-
ence properties of a given light source using optical phase space distributions. The
characterization method is then used to measure the coherence properties of the light
sources used in the experiments. This serves not only as a needed reference but also

to demonstrate the utility of the method in characterizing optical fields.

The first of three turbid media studies is presented in Chapter 6. This study
examines the measured optical phase space distributions obtained for light from a
coherent source that has been transmitted through a turbid medium. The data
are analyzed using approximate solutions to the transport equation for the Wigner
distribution in a turbid medium. Physical insights on the theoretical model used to
analyze the data are discussed in the final section of this chapter. Chapter 7 presents
a turbid media study of the optical phase space distributions for low-coherence light
that has been transmitted through a multiple scattering medium. Although, no
detailed theoretical model has been developed to interpret the data at present, trends
which are evident in the data are presented. The discussion section of this chapter
relates this study to current medical imaging methods.

The third and final turbid media study, presented in Chapter 8, examines the
optical phase space distributions for light from a low-coherence source that has been
backscattered from a turbid medium. The data are analyzed using a model that

examines the field propagation under the assumption of isotropic scattering. The
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theoretical model is cast in the form of a Wigner distribution for comparison to the
data. The results are discussed in terms of the propagation of optical coherence
in a multiply scattering medium. Chapter 9 concludes this thesis with a summary
of this work and discusses its potential application to current biomedical imaging

techniques.
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Chapter 2
Background

To assess the present status of light scattering studies, I began by surveying current
techniques used in biological imaging. Along the way, I uncovered various experimen-
tal techniques used in light scattering experiments ranging from short pulse studies to
coherence techniques to diffusion wave spectroscopy. I also studied a variety of theo-
retical treatments, such as the Mie solution for an electromagnetic field scattered by
a dielectric sphere. While new advances in understanding are still being made today,

some properties of light scattering have been known for over a century.

I begin this chapter with a brief historical perspective on the scientific study of
light scattering. Any topic with over a hundred years of history would take volumes
to fully explore; therefore, this perspective only covers the beginnings of light scat-
tering studies. Included in this section is a bibliography of reference books that are
suitable places for beginning literature searches. These references are the well-known
guidebooks for the field of light scattering. The second section presents different
theoretical approaches that have been used to explain light scattering. It begins with
scattering from a single particle, and includes multiple scattering from the radiative
transport and diffusion approximation viewpoints. Finally, I conclude the chapter
by discussing a variety of experimental methods that are currently in use to employ

light in biological imaging applications.
2.1 Beginnings

The earliest inquiries into the scattering of light were conducted in an attempt to
explain the color of the sky. The first scientific study of light scattering is attributed
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to Tyndall in 1869 [22], although thinkers such as DaVinci (ca. 1500) and Alhazen of
Basra (ca. 1000) suggested that the blue sky was due to the “reflection” of light [23].
Tyndall observed a bluish color in the light scattered from particles smaller than the
wavelength of the incident light. This phenomenon was explained by Rayleigh in 1881
who showed that the scattering of light by small particles is inversely proportional to
the fourth power of the wavelength. The preferential scattering of short wavelengths
accounts for the blue color of the sky although such an explanation may not satisfy

the curiosity of a child: “Why is the sky blue?”

A significant theoretical advance in understanding light scattering was finding
the solution for the distribution of light scattered by a sphere, known as the “Mie
solution.” This theory gives the exact solution for the scattering of electromagnetic
radiation by a dielectric sphere as presented in Mie’s 1908 paper. The mathematics of
this theory are straightforward yet cumbersome. However, with the modern aid of the
computer and readily available programs, the Mie solution can easily be calculated
[24].

Although the history of the application of light scattering is too broad to sum-
marize completely, several reference books present overviews on the subject from
different perspectives. Among those I have found helpful are Light Scattering by
Small Particles by H. C. van de Hulst [25], Wave Propagation and Scattering in Ran-
dom Media, Vols. 1, IT by A. Ishimaru [26] and Absorption and Scattering of Light
by Small Particles by C. F. Bohren and D. R. Huffman [24].

Light Scattering by Small Particles by H. C. van de Hulst is an early reference on
light scattering originally published in 1957 [25]. In addition to presenting theoretical
treatment of the scattering of light by a variety of particle types and sizes, it outlines
some of the earliest applications of light scattering in the fields of chemistry, physics,

meteorology and astronomy. As this text dates from before the advent of the laser, the
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light scattering applications it presents make use of white light filtered by wavelength
or polarization and hence have limited applicability to modern light scattering studies
using lasers. However, it is useful for appreciation of historical perspective and for
its theoretical treatments of single scattering for a large number of different types of
particles.

Wave Propagation and Scattering in Random Media, Vols. 1, IT by A. Ishimaru is
based on a set of lecture notes from a graduate engineering course in wave propagation
in random media published in 1978 [26]. It covers single and multiple scattering
theory, presenting several perspectives on how to treat theoretically the transport of
waves in random media. While few specific applications are actually detailed, the
text is intended for engineers and thus it presents theoretical treatments for a wide
variety of experimentally useful configurations. Of particular use as a reference is
Chapter 3, which presents scattering characteristics for several multiple scattering
media, including biological materials.

Lastly, Absorption and Scattering of Light by Small Particles by C. F. Bohren and
D. R. Huffman [24], is a more modern text, published in 1983. It presents the usual
theories on single scattering as an introduction to the properties of light scattering by
bulk matter. The experimental detail of this last text makes it particularly useful to
an experimentalist. It contains several Fortran computer programs for calculating Mie
solutions, results for angular scattering experiments and a discussion of applications

of light scattering, including scattering by biological materials.

2.2 Theoretical Background

2.2.1 Single Scattering

When a wave is incident on a single particle, the incident power is scattered into
all directions with varying scattering amplitudes f(#). The distribution of these
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amplitudes by angle is known as the differential cross section do/dS). The scattering
amplitude is related to the differential cross section by do/dQ = |f(0)|°. Integrating
this distribution over all angles yields the scattering cross section og. The scattering
cross section approximates the total cross section o when absorption is negligible,
the case which is focused on in this work. The albedo of a scattering medium is
defined as the scattering cross section divided by the total cross section. Thus, this

condition can be specified by the albedo of the particles approaching unity.

An interesting property of cross sections is that it approaches twice the geometric
cross section o, when the particle size is much greater than a wavelength. This is
known as the extinction paradox [25]. This seeming paradox can be explained by
identifying the fluxes of energy involved in the scattering process. All energy falling
on the object is scattered from the incident wave, giving a cross section equal to oy,
the geometric area of the object. In addition, there will be diffraction at the edges
of the shadow cast by the object. The light that forms this diffraction pattern is
also removed from the incident flux, again accounting for a cross section equal to oy.
Thus the actual cross section is roughly twice the geometrical cross section.

The exact scattering and differential cross sections can be calculated using the Mie
solution. With the aid of a Fortran computer program from Bohren and Huffman [24]
which is well known in the light scattering field, the exact scattering solution of a
dielectric sphere can be calculated by specifying the index of refraction n relative
to the background medium, and size of the sphere a, as well as the wavelength of
incident light A. The calculated Mie solutions presented in Chapter 5 show that the
total cross section can be slightly more or less than twice the geometrical cross section
for particles large compared to the wavelength of incident light.

The Mie solution provides good numerical results for angular scattering profiles.

However, several useful approximations can be employed under certain conditions
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when an analytic form of the differential cross section is needed. When the scatterer
size is much smaller than the wavelength of incident light, the scattering is known as
Rayleigh scattering. In this approximation, the field inside the sphere is assumed to
be constant and uniform. The angular scattering dependence in this approximation
resembles an electric dipole oriented in the direction of the incident field and the
amplitude has the familiar A™* dependence. Another case that has an approximate
solution is when the relative dielectric constant e, = (ny/n;)” of the scatterer is close
to unity, indicating that the index of the object ns is nearly the same as the index of
the background material n;. This is called Rayleigh-Debye or Born approximation
scattering and is valid for large or small scatterers provided (e, — 1) ka < 1, where k
is an optical wavenumber. In this situation, the field inside the scatterer is approxi-
mated by the incident field, allowing for calculation of the scattered field for several
geometries of scatterers.

A third approximate solution is the WKB (Wentzel-Kramers-Brillouin) interior
wave number technique, valid for (¢, — 1) < 1 and (¢, — 1) ka > 1. In this case,
the field inside of a large scatterer is approximated by a field that has propagated
through it according to the change of index of refraction at the interface between the
particle and its surroundings. Also, for (e, — 1) < 1, there is no change of angle at
the interface and the interior wave travels at the same angle as the incident wave. In
this approximation, the total cross section can be found using the forward scattering

theorem or optical theorem and is given by

4
or = = Im[f (0 = 0)]. (2.1)

Lastly, I note that this approximation is not accurate for small particles and the

Rayleigh or Born solution should be used [26].
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2.2.2 Radiative Transport Theory

Radiative transport theory is based on phenomenological observations and makes use
of a heuristic quantity known as the specific intensity. This quantity is the average
power flux density at a given position within a unit solid angle in a given direction
5. The specific intensity is often identified as the Fourier transform of the mutual
coherence function although since it is a heuristic quantity, the relation has never

been rigorously shown.

The transport characteristics of the specific intensity are governed by the equation
of transfer, a differential equation analogous Boltzmann’s equation in the kinetic

theory of gases. The equation of transfer is given as [26]

A

dI
E;’ S popl(r.8) + % / p(8,8)I(r,8)dY, (2.2)

where I(r,8) is the specific intensity at position r moving in the direction of unit
vector §. In this equation, the left hand side represents the change in specific intensity
over a volume element ds, while the right hand side represents the effects of scattering.
The first term on the right hand side is negative, indicating a loss of specific intensity
in element ds due to scattering. The loss arises from the number of particles within the
unit volume, specified by the density p, each removing specific intensity via its total
extinction coefficient op. The second term is positive and thus represents additions
to the specific intensity due to scattering. In this term, intensity is scattered into the
direction 8§ from § by the phase function p(8,8"). The phase function is simply the
differential cross section do/dS2 normalized by the total cross section or; its name
has its origins in astronomy where it refers to lunar phases. The phase function does
not relate to the phase of a wave [26]. The contributions are summed over all possible
incident directions §' via the integral over the 47 solid angle indicated by the variable
(. The integral is weighted by the number of particles p in the volume element and
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the cross section each subtends or.

There are no known exact analytical solutions to the equation of transfer. How-
ever, there are useful approximate solutions in special cases. If the particles are large,
the equation of transfer (Eq. 2.2), can be approximated by a parabolic differential
equation that can be solved through Fourier transform methods. This approximation
is often referred to as the small angle approximation [27]. If the particles are small
compared to a wavelength or the particles are sufficiently dense, the specific intensity
becomes isotropic and the diffusion approximation can be used as discussed in the

next section.

2.2.3 Diffusion Approximation

In situations where there are high densities of scatterers, much greater than 1%
volume fraction, the equation of transfer (Eq. 2.2) can be approximated by a diffusion
equation. By assuming that the scattering has become nearly isotropic such that the
angular dependence of the scattering is nearly constant, the specific intensity can be
approximated as [26]

Tu(e,8) = Us(r) + -Falr) -5, (2.3)

where Uy represents the average diffuse intensity and Fy(r) - § represents the diffuse
flux in the direction §. Modelling light transport by using Equation 2.3 is known
as the diffusion approximation. Using this approximation, a diffusion equation can
be derived from the equation of transfer. The fundamental steady state diffusion

equation takes the form [26]
2 3 3 ~
V2Uq4(r) — 3porpoUs(r) = —Epat,qE(r) + EV -SE(r). (2.4)

Here F(r) represents the angle integrated source function, p is the density of scatter-

ers, d, is the absorprtion cross section and oy, represents the transport cross section.
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The transport cross section accounts for the anisotropy of the scattering and is related

to the total cross section by:

Otr = UT(l — g)v (25)
where g is the average of the cosine of the scattering angle.

The average diffuse intensity U; can be completely described using Eq. 2.4 by
including suitable boundary conditions. The diffuse flux Fy4(r) can be found from Uy
using conservation of power arguments, enabling calculation of the specific intensity.
The diffusion approximation has been employed to solve a number of light transport
problems. For example, a current biomedical imaging technique employing diffuse
photon density waves uses the diffusion approximation to model the propagation of

light in thick turbid media [9]. This method is discussed further in section 2.4.2.

2.3 Recent Developments

2.3.1 Enhanced Backscatter

In 1984 a new coherent effect of light scattering by a random medium was observed
by Kuga and Ishimaru [28]. In this effect, the intensity backscattered from a dense
distribution of scatterers is seen to have a sharp peak in the retroreflected direction.
The backscattered peak is found to be twice as large as that predicted by transport
theory and thus it is called enhanced backscatter. Enhanced backscattering is not
predicted by radiative transport theory, which deals with intensities. Instead, analysis
of the problem using optical fields shows that the effect arises from the interference of
coherent time-reversed paths. An example of time-reversed paths is shown in Figure

2.1.

Coherent effects had been predicted previously, but only small effects had been

observed experimentally [29,30]. The clear interference effect observed by Kuga
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Figure 2.1: Enhanced backscattering through time reversed paths.

and Ishimaru sparked renewed interest in the subject. A recent review article in
Progress in Optics Vol. XXIX [31] discusses the theoretical understanding of en-
hanced backscattering in optics. It presents theories of the origin, shape, and mag-
nitude of the backscattering peak and discusses related effects. For example, the
enhanced backscattering effect has been linked to the weak localization of light in a
random medium [32, 33].

More recent studies of enhanced backscattering have explored various character-
istics of the effect. Using ultrafast pulses, temporal and angular profiles of enhanced
backscattering have been measured [34,35] and the effects of finite coherence length
have been examined [36]. Of particular interest is a recent theoretical discussion of
the effect of partial spatial coherence on enhanced backscatter [37] which is used in
conjunction with an earlier theoretical work [38] to analyze the experimental backscat-

tering data in section 8.2.

2.4 Current Studies for Biomedical Applications

There are several methods actively being developed for medial imaging applications.
In this section, I will present brief discussions of three of the most promising tech-
niques. These include time domain methods which employ short light pulses, the use
of amplitude modulated light in frequency domain methods, and optical coherence
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tomography (OCT) which exploits the coherence properties of broadband light.

2.4.1 Time Domain Methods

One avenue currently being explored for biological applications employs short laser
pulses to measure either the reflected or transmitted intensity for different propa-
gation times in turbid media. In these experiments a laser pulse, typically of sub-
picosecond to tens of picoseconds pulse duration (10713~ 107! s), is incident on a
multiply scattering sample. The transmitted intensity is recorded using a streak
camera yielding a time resolved record. In a multiple scattering medium, the scat-
tered light takes longer to traverse the medium than unscattered light. Thus, this
method can be used to isolate the ballistic light from multiply scattered light. The
time resolved method for studying turbid media was first initiated by the research
group of R. R. Alfano at the Institute for Ultrafast Spectroscopy and Lasers at the
City College of New York. The earliest experiments using this method sought to
simply confirm previous theories on pulse propagation in random media [39] or note
the properties of tissues [40].

Further experiments using time resolved methods focused on imaging objects
within turbid media. One experiment [41] uses a time of flight method to exam-
ine only the photons which are unscattered or weakly scattered. In this technique,
the early arriving photons are selectively detected using a triggered streak camera.
Another experiment uses a triggered streak camera to measure time-resolved fluo-
rescence to image objects embedded in a turbid medium [42]. Using other means
of time gating leads to improvements in resolution and signal-to-noise. For exam-
ple, experiments using an optical shutter known as an ultrafast Kerr gate result in

submillimeter resolution [4] and 100 dB dynamic range [43] for imaging applications.

Efforts to implement time-resolved imaging methods in clinical applications has
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driven scientific inquiry into more practical areas. Recent studies have centered
around resolution enhancements [44,45], studies of inhomogeneity contrasts [46-48],
and image reconstruction algorithms [49-51]. Currently, time resolved methods are
beginning to be employed clinically. Their application to the characterization of
normal and cancerous breast tissues shows the potential to provide much more infor-

mation than even x-ray (conventional) mammography provides [52,53].

2.4.2 Frequency Domain Methods

Methods such as time gating seek to extract weakly scattered or unscattered photons
from the total intensity. However, with thick turbid media a vanishingly small number
of these photons are detectable. Thus, a second area which has substantial interest for
potential application to biological applications employs diffusing photons [9]. Photons
are termed diffuse if they have undergone enough scattering so that their direction
of propagation has become randomized. Imaging applications employ diffuse light in
the form of diffuse photon density waves which are travelling waves of energy density.
These waves are produced by introducing amplitude modulated light into a multiple

scattering medium and thus are referred to as frequency domain methods [54].

As the potential use for biomedical imaging applications of diffuse photon den-
sity waves became apparent, scientific studies examined their basic wavelike prop-
erties. For example, diffuse photon density waves were seen to undergo refraction
at a boundary [54], to undergo scattering and wavelength transduction [55], and to
produce interference patterns [56]. Such fundamental investigations gave rise to more
directed studies of particular configurations for imaging applications. These included
investigations of their properties as the frequency of the amplitude modulation was
varied [57], and in the presence of absorbing and reflecting objects [58]. Other studies

presented schemes on how to localize objects using diffuse photon density waves [59].
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The first experimental images of inhomogeneities embedded in turbid media based
on frequency domain methods were published in 1995 by the research group of Arjun
Yodh at the University of Pennsylvania [60].

As the technology matured, studies began to turn toward clinical implementa-
tions. At a recent conference where I presented my work, Advances in Optical Imag-
ing and Photon Migration, held March 8-11, 1998, in Orlando, Florida many sessions
were devoted to the fundamental and clinical studies of diffusive photon optical imag-
ing. Several results were presented that employed diffuse photon density waves for
non-invasive characterization of breast tumors [61-63]. These studies were capable
of locating tumors as small as 1 cm in diameter but more importantly were able to

characterize the chemical processes occurring within the diseased tissue.

2.4.3 Coherence Methods

Perhaps the most promising biomedical imaging method currently being developed is
Optical Coherence Tomography (OCT). In this method, the coherence properties of
a broadband light source are exploited to select the time of flight of detected photons.
In this respect it is similar to time resolved methods; however, OCT is implemented
with continuous wave broadband sources thus eliminating the need for the costly and
complex generation of ultrashort pulses.

The OCT technique is an extension of previous work done with low-coherence
reflectometer systems specialized to allow high-speed, continuous motion longitudinal
scanning and a transverse scanning mechanism. The term OCT was popularized in
the publications by the research group of James G. Fujimoto at the Massachusetts
Institute of Technology, a group responsible for much of the pioneering research in
OCT. The method is based on a Michelson interferometer which uses a low coherence

source and fiber optics to deliver the beam. The reflected light from a sample placed
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in one arm of the interferometer is recombined with the reflections from a reference
mirror. Interference is observed only between the coherent components of these two
reflections. Thus, when using a source with a low coherence length, the interference
signal arises only from light that has travelled the same optical path in the tissue as
the optical path specified by the reference arm [64]. The envelope of the interference
pattern is recorded with high dynamic range by scanning the reference mirror at
a fixed velocity and demodulating the photocurrent at the corresponding Doppler
shifted frequency [65].

The method is particularly useful when combined with confocal microscopy to
obtain high resolution images. The combination, known as Optical Coherence Mi-
croscopy (OCM), employs a high numerical aperture objective to focus the light to a
tight focal spot. This improves the transverse resolution of the imaging system allow-
ing individual cells to be imaged compared to OCT, which only resolves histological
tissue layers [7,66].

As a mature technology, OCT has been used to study a variety of tissue char-
acteristics. It has been used to measure the index of refraction of various human
tissues [67], to image the beating heart of an African frog [68], to study internal

organs using a catheter-endoscope [69,70], and for retinal imaging [71].

2.5 Optical Phase Space Distributions

The biomedical imaging techniques discussed above all rely on position based inten-
sity measurements to learn about the light field emerging from a biological sample.
These methods neglect the potentially useful information contained in the momentum
distribution of the light. By measuring the joint position and momentum distribution
of the light field, optical phase space distributions obtain the maximum information
about the light field of interest.
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In addition, optical phase space distributions are related to the Wigner distrib-
ution of the light field. This is important because rigorous transport equations can
be derived for the Wigner distribution from the underlying wave equation. While
light transport is usually explained using heuristic treatments like those discussed in
this chapter, studies based on Wigner distributions can be treated rigorously. The
next chapter presents Wigner distributions and their properties to illustrate their

importance to light scattering studies.
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Chapter 3
Wigner Distributions and their properties

The Wigner distribution is a wave-mechanical phase space distribution that is ap-
plicable to the study of the propagation of light in turbid media. At first glance, the
Wigner distribution appears to behave simply as a classical phase space distribution
in position and momentum. However, the Wigner distribution contains information
about the wave nature of the optical field that it describes. This relationship allows
rigorous derivation of transport equations for the Wigner distribution based on the
underlying wave equation. The details of this derivation are presented in this chapter.
As an introduction to Wigner distributions, I present a discussion of their proper-
ties and then demonstrate their characteristics using measured optical phase space

distributions as an illustrative example.

3.1 Wigner Distributions

The Wigner distribution is a wave-mechanical phase space distribution function that

is applicable to coherence tomography. It is defined by (Eq.1.2)

W, p) = / 2 expliep) (€ (x + e/ (x — ¢/2). (3.1)
This is the definition of the Wigner distribution for the wave field £. Here z indi-
cates position, p indicates momentum, and (...) indicates a statistical average. It is
easy to show that [dpW(z,p) = (|€(x)|?), the position distribution of the inten-
sity, and [ dx W (z,p) = (|€(p)[?), the corresponding momentum distribution. The
Wigner distribution plays a role closely analogous to a classical phase space distri-
bution in that it is a real function containing position and momentum information
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about the wave field. This analogy breaks down when one considers that the Wigner
distribution can have negative values.

Wigner distributions are particularly useful for theoretical modeling of light prop-
agation in turbid media because they bridge the gap between the wave and particle
natures of light. In free space, the Wigner distribution appears to propagate in
straight lines as though it obeys geometrical ray optics. However, the Wigner dis-
tribution is Fourier transform related to the two-point coherence function so it also
contains information about the spatial coherence of the wave field. Thus, its free
space propagation properly accounts for diffraction. As an initial illustration of this
dual nature, I present the propagation of the Wigner distribution through a distance

d in free space by Fresnel diffraction and Fourier optics.

3.1.1 Propagation in free space

In Fourier optics, the propagation of an optical field in free space is regarded as a
linear dispersive spatial filter. Thus, for propagation over a distance d, the amplitude
of the field in the plane z = d is written as the convolution of the linear transfer

function A with the field amplitude in the plane z = 0 [72] and is given by
E(zg,z=4d) = /h(xd, 2 =d;To, 2 = 0)E(x,, 2 = 0)dz,. (3.2)

Here only one transverse spatial dimension is included but parallel arguments for
a second transverse dimension y; can easily be included. The transfer function h
can be determined directly from the wave equation using Green’s function methods.
However, in the case where the region of interest about the z axis is small compared to
the distance d, a paraxial approximation to this transfer function can greatly simplify

the mathematics. In the paraxial case the transfer function is given by [72]

hxa,z = d; T, 2 =0) =~ exp (ikroq) , (3.3)

2mid
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where £ is the optical wavevector and r,q is the distance between the point x, and
the point 4. I note that the sign conventions used here are for a field propagating
as e~“! but this analysis also could be done for a field propagating as et™? as is
done in Goodman [72]. The transfer function can be further simplified by using the

Fresnel approximation. Here the distance r,q, which is defined as:

2
Foq = d\/l + <x y xd) , (3.4)

is assumed to be approximated adequately by the binomial expansion as:

1+% <‘r"dxd>2]. (3.5)

This allows the transfer function to be written as:

k k
h(z4,2 = d; o,z = 0) ~ 4/ 5 OXP {Zﬁ [(zo — Id)Q} } ; (3.6)

multiplied by a phase, exp (ikd). This phase is important when considering the

T‘Odﬁd

overall phase of the field but I will neglect it here as I am only tracing the effects of
propagation on the transverse Wigner distribution. Using Eq. 3.6, one can relate the

field amplitude in the plane z = d to that in the plane z = O:

B(ra, 2 = d) — \/E / d, exp [z% (20 — xd)ﬂ Bz, 2 =0).  (3.7)

Equation 3.7 can be used to find the transverse Wigner distribution in the plane

z = d, in terms of the transverse Wigner distribution in the plane z = 0:
de . .
W(zg,pa,z =d) = gy exp(iep)(E*(xg + €/2,2 = d)E(xq — €/2,2 = d)). (3.8)
T

Substituting the expression for the field amplitude in the plane z = d from Eq. 3.7
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yields:

W(xg,pa,z=d) = /Eexp(zep) (3.9)

V/;if_//dxoexp l o o——xd——e/2){‘ﬁf(xo,z::0)
y vg;_/dcmpP%—@:w+d@} Bz, = = 0).

This expression can be simplified to give:

W(zg,pa,z=d) = /—exp i€p /dwo/dwoﬂ (3.10)

X exp {Z—-(x raa ez, xd»} E* (20,2 = 0)

X

2d

X exp {4—2% (2 — 2z, + €(a, — xd))] E(z),z=0).

The integration over € will yield a delta function as

de . k , k ,
- N — e —_— — 2 . .
/ o exp(iep) exp [z 2de(xo + 1z Qxd)} ) <p + 5 (2o + xd)> (3.11)

The resulting expression is

k (z,+ 2!
W(za,pa,z =d) =55 /dxo/dxf)é {p+ p (m —;—xo — ﬂcd)] (3.12)

k
X exp [—i— (z2 — 2xomd)} E* (25,2 =0)

2d

X  exp [—H% (22 — 22, xd)] E(z),z=0).

This expression is more tractable when the following variable transformations are

made:

To=2+n/2

v (3.13)

The Jacobian of this transformation is 1 so it amounts to a simple substitution. With

some simplification, Eq. 3.12 can now be written as
k k
W(xa,pa,z =d) = dx dn—5 D+ 2% ST (3.14)
X exp {—zdn (x — xd)] E*(x+n/2,z=0)E(x —n/2,z =0).
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Using the delta function, the z integration can be easily carried out to yield

d .
Weapaz=d) = [ FLesplin) (315)

d d
(B*(@a— Lp+n/2.2 =0 B@a— £p - n/2,2=0)).

The right hand side of Eq. 3.15 can be identified as the Wigner distribution of the field
amplitude in the plane z = 0 with the spatial variable transformed to x4 — (d/k) p.
Thus the output distribution W’ can be written in terms of the input distribution W

for the propagation over a distance d as:

d
W/(‘rdvpdv = d) - W('xd - Epdvpdv = 0) - W(xmpm z = 0) (316>

This relation shows that the transverse Wigner distribution in the plane z = d can be
written as the same transverse Wigner distribution in the plane z = 0 with the spatial
argument, z,, replaced by x4 — (d/k) p. Alternatively, the Wigner distribution in the
plane z = 0 (W (z,p)) can be viewed as changing its spatial arguments to become
W'(z + (d/k) p,p) as it propagates to the plane z = d. This alternative relation for

propagating a Wigner distribution forward can be written as:

d
W (%o, Doy 2 = 0) = W (x, + 7 DorPor 2= d) = W'(z4, pa, z = d). (3.17)

This is an extremely useful means of propagating an optical field. While it appears
to propagate via straight line motion akin to ray optics, the Wigner distribution
properly accounts for the wave nature of light also. As Eq. 3.16 was derived using
Fresnel diffraction, clearly the Wigner distribution includes diffraction effects in its

propagation.
3.1.2 Propagation through a lens

For propagation through a lens it can also be shown with Fourier optics that the
Wigner distribution is transformed simply through a translation of its arguments. In
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Fourier optics, a lens is treated as a phase transformer. The field amplitude after a

lens E’ can be related to the input field amplitude E by:
E'(z) = t(z)E(x). (3.18)

Here t represents the thickness function of the lens and serves to introduce a spatially
varying phase to the field amplitude. For a lens of focal length f, the thickness

function is given in the paraxial approximation by [72]

t(x) = exp [iknA] exp {—z% xQ] : (3.19)

where k is the optical wavevector, n is the index of refraction of the lens material

and A is the thickness at the lens center.

The transverse Wigner distribution for the field that has passed through a lens

of focal length f can be found by inserting Eq. 3.18 into Eq. 3.1. This gives the

Wigner distribution in terms of the input field F(z)

Wz, p) — / ;l—; expliep) (#*(z + €/2) E*(x + ¢/2)t(x — ¢/ E(x — ¢/2)).  (3.20)

Inserting the expression for the thickness function (Eq. 3.19) and simplifying yields

W(z,p) = / g—; exp(iep) exp (@6% x> (E*(x+€/2)E(x — €/2)). (3.21)

The right hand side of this equation can be identified as the Wigner distribution of
the input field amplitude with the momentum argument shifted to p + (k/f) . The

Wigner distribution emerging from the lens W’ can thus be written as:

W'(z,p) = W(z,p+ %v), (3.22)

where W is the Wigner distribution entering the lens. While these results appear

to be identical to propagation via ray optics, the Wigner distribution does properly
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take into account wave effects as this result was obtained by examining the phase of
the field. Again, the alternative view could be taken that the Wigner distribution at
the lens input W(z,p) is transformed by the lens to become W’(z,p — (k/f) ) at

the output. This relationship can be written as

W(x,p) = W (z,p— ?fc) (3.23)

Using the two simple propagation laws derived in this section: Eq. 3.16 and Eq.
3.22, the Wigner distribution can simply and quickly be traced through any optical
system consisting of lenses spaced over arbitrary distances. This approach offers an
advantage over using ray optics in that it properly includes all the wave effects as the
field propagates. The utility of these laws will be demonstrated in tracing the effects

of the imaging systems presented in sections 4.1.1 and 4.1.4.

3.2 Examples of smoothed Wigner distributions

As a demonstration of the characteristics of Wigner distributions, I have measured
optical phase space distributions for Gaussian beams with different radii of curvature
as well as for a source consisting of two mutually coherent gaussian beams [73].
Optical phase space distributions are a form of smoothed Wigner distributions where
the optical (signal) beam of interest is smoothed by convolution with a window of
finite resolution. In the case of the heterodyne method, the signal beam is smoothed
by the local oscillator (LO) with spatial resolution given by the spatial extent of
the LO and momentum resolution given by its diffraction angle. This relationship is
derived using Fourier optics in section 4.1.1.

In principle, a smoothed Wigner distribution can be obtained using pinholes, one
near the source to determine the position and a second pinhole, widely separated from
the first, to determine the momentum. In such a case, the Wigner function of the
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transmitted light is smoothed by convolution with the Wigner function for the two
separated pinholes. For the heterodyne method, the Wigner function for the local
oscillator is Gaussian in momentum and position, yielding a minimum uncertainty
product. However, the position and momentum resolution cannot be varied indepen-
dently in either case. The smoothed Wigner distribution is therefore coarse grained
and contains less information about the phase and amplitude of the field than the true
Wigner distribution. The true Wigner distribution can be determined experimentally
by Fourier transforming the two-point coherence function [74], as measured either by
shearing interferometry [75], or through tomographic inversion of intensity measure-
ments made in a number of planes [76]. These arrangements offer an advatage in
that the position and momentum resolution can be independently controlled but can
be difficult to implement experimentally. In cases of practical interest such as the
light transmitted through biological materials, the smoothed Wigner distributions
obtained by the heterodyne method have sufficient resolution to provide substantial

sensitivity to both the coherence and intensity of the transmitted field.

The first example I present to illustrate the properties of Wigner distributions is
the elementary case of a Gaussian beam from a coherent source. This is followed
by the case of two spatially separated mutually coherent co-propagating beams, an
example which nicely illustrates how the smoothed Wigner distribution is sensitive
to the coherence properties of the detected light. Finally, as a demonstration of
recovery of the true Wigner distribution, I show using Fourier analysis that a mea-
sured smoothed Wigner distribution can be deconvoluted to obtain the true Wigner

distribution within the limits imposed by the noise present in the measurement.
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3.2.1 Measured Smoothed Wigner Distributions for Gaussian
Beams

A Gaussian beam has a slowly varying field of the form £ (z) oc exp (—2?/(2w?) + ikz?/(2R)).
The corresponding normalized Wigner distribution is given by inserting this field into

Equation 3.1

Wa(z,p) = %exp (—i—i) exp [—wQ(p — %)2} (3.24)

where w is the 1/e intensity width, R is the wavefront radius of curvature and the
distribution has been normalized to unity. To illustrate the phase space character-
istics of such a distribution, I present measured smoothed Wigner distributions for
Gaussian beams with varying radii of curvature. In the examples shown in Figures
3.2-3.4 the signal field is gaussian so Wg(x,p), the corresponding Wigner distribu-
tion, takes the form of Eq. 3.24. The Wigner distribution of the signal beam is
convoluted with that of the LO beam to yield optical phase space distributions. This
relationship is derived rigorously in section 4.1.1. The LO beam is chosen also to be
gaussian, positioned so that its waist overlaps with the signal field of interest. Then

Wiro(z,p) = Wa(z,p) is given by Eq. 3.24 with w = 380 ym and R = oc:

1 x?
Wal(z,p) = — exp <_E> exp [—w2p2} ) (3.25)

The signal beam waist and radius of curvature are determined by inserting a lens in
the signal path. This focuses the input beam to a waist wg = 35 um at a distance L
behind the signal input plane where the optical phase space distribution is measured.
This arrangement is shown in Figure 3.1.

Figure 3.2 shows measured optical phase space contours obtained by scanning
the LO center position and center momentum as indicated on the axes of the plot.
The momentum is given in units of the optical wave vector p./k and thus can be
interpreted as the angle relative to the axis of propagation in milliradians. For the
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Figure 3.1: Illustration of the distance between the beam waist and input plane.

case where the waist of the signal beam is in the detection plane (L = 0), the optical
phase space ellipse has its principal axes oriented vertically and horizontally as in
Fig. 3.2. The disparate sizes of the LO and signal beams in this example causes
the position width of the distribution to be dominated by the LO width and the
momentum width to be dominated by the signal beam. The phase space contours
are seen to rotate as the distance L in Fig. 3.1 is changed. The phase space ellipse
rotates clockwise (counterclockwise) for L > 0 (L < 0) indicating positive (negative)
curvature. Figure 3.3 shows the optical phase space distribution for L = 5 cm. This
distribution is for a diverging beam with a positive radius of curvature, R > 0 at the
detection plane. The rotation of the phase space ellipse is a simple consequence of the
correlation between the momentum and the position for a beam with curvature, as
shown in Eq. 3.24. As one would expect for a diverging beam, the mean momentum
shifts to the right (p > 0) for the right side of the beam (x > 0). Figure 3.4 shows the
distribution for . = —5 cm, which corresponds to a converging beam with a negative
radius of curvature, R < 0. These results clearly demonstrate how the measured
optical phase space distributions are sensitive to the spatially varying phase of the

field.
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Figure 3.2: Measured smoothed Wigner phase space contours for a Gaussian beam
at its beam waist.

Another instructive example of optical phase space contours is the case of two mu-
tually coherent, spatially separated Gaussian beams. The two parallel propagating
beams are generated using an interferometer which allows variable spatial separa-
tion. A simplified schematic of this interferometer is shown in Figure 3.5. In this
arrangement, the output beamsplitter is rotated an angle § away from 45°, creating
two diverging beams. The beams are transformed by a cylindrical lens with its back
focus at the face of the output beamsplitter. The result is two parallel propagating
focused beams, spatially separated by a distance d, in the detection plane of the
imaging system. Here the detection plane is indicated by the lens, L2 (this lens is la-
belled consistently with the scheme presented in Chapter 4 - Figure 4.1). The Wigner

distribution for two focused Gaussian beams separated by a distance d is given by

Ws(x,p) = Wa(zr — d/2,p) + Wa(x + d/2,p) + 2Wea(z, p) cos(dp + ¢),  (3.26)
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Figure 3.3: Measured smoothed Wigner phase space contours for a diverging
Gaussian beam. The radius of curvature is positive here (R > 0).
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Figure 3.4: Measured smoothed Wigner phase space contours for a converging
Gaussian beam. The radius of curvature is negative (R < 0).
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Figure 3.5: Interferometer for generation of two parallel beams spatially separated
by a distance d. The output beamsplitter is rotated away from 45° by an angle 6.

where W¢ denotes the Wigner distribution for either Gaussian beam at its waist as
given by Eq. 3.25. A particularly interesting feature of this distribution is that the
cosine term is dominant at x = 0 and negative values are obtained as p is varied for
a spatial separation d larger than the beam diameter.

Figure 3.6 shows the measured optical phase space contours for two input beams
separated by d = 1 mm and of 1/e intensity radii of 110 gm. In the central region, the
intensity oscillates with nearly 100 percent modulation but remains positive definite
as it must [77]. The two-peaked position profile for p = 0 is shown in Figure 3.7(A)
along with the oscillating momentum profile for x = 0 midway between the two
intensity peaks in Figure 3.7(B). The solid curve shows the theoretical fit to the
momentum distribution with a signal beam 1/e width of 103 pm, which is consistent

with diode array measurements within 10 percent.

3.2.2 Deconvolution of Smoothed Wigner Distributions

The measured smoothed Wigner distributions are positive definite as they must be

[77]; however, as noted in the introduction to this chapter, the Wigner distribution
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Figure 3.6: Measured smoothed Wigner phase space contours for two spatially
separated mutually coherent beams.

itself can be negative. The detected smoothed Wigner distributions are actually
convolutions of the Wigner distribution of the signal beam with that of the LO beam.
This relationship is derived in detail in Chapter 4 (Eq. 4.20). In principle, one can
recover the true Wigner distribution of the signal beam through deconvolution using
Fourier transform methods if one knows the form of the Wigner distribution of the
LO beam.

The Fourier transform of convolution of two signals is equal to the product of the

Fourier transforms of each signal. For two signals f(¢) and g(t), we can write

Sf(1) *g] = fw)gw), (3.27)

where S indicates Fourier transformation, % indicates convolution, and f(w) (§(w))
denotes the Fourier transform of f(¢) (g(t)). The original signal f(¢) can be recovered
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Figure 3.7: Position and momentum profiles for two mutually coherent spatially
separated beams. (A) position profile for momentum p = 0, (B) momentum profile
at position x = 0. Dotted curves, data; solid curve, theory.

by Fourier transforming the convoluted signal, dividing by the Fourier transform of

the window function g(t) and then inverse Fourier transforming back. This can be

written as:

£(t) =9~ (3.28)

1 [M}
gw) |’
As an illustration of how this may be done for smoothed Wigner distributions, let
us consider once again the case of two mutually coherent spatially separated gaussian
beams. This case is particularly interesting because the true Wigner distribution for
this beam configuration has negative values. Figure 3.8 shows a measured smoothed
Wigner phase space contour for two spatially separated beams. This distribution
differs from that shown in Figure 3.6 in that it has improved resolution and signal-
to-noise which will improve the deconvolution process. The reduction in noise was

accomplished by averaging each point for a longer interval than normal (10 sec vs. 3

sec) which reduces the effects of transient noise introduced as the L.O center position
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Figure 3.8: Measured smoothed Wigner phase space distribution for two spatially
separated beams with improved resolution and signal-to-noise.

and momentum are scanned. In this case we wish to recover the negative Wigner
distribution that exists in the region of the signal distribution between the two beams.
The smoothed Wigner distribution remains positive here due to the spatial width of
the LO beam which causes it to always overlap with both spatially separated beams.
In order to see a negative distribution, we must deconvolve the two distributions in
position for each profile in momentum. No deconvolution is necessary in momentum
because the resolution is already adequate to resolve the fringe at x = 0.

We begin the deconvolution process by Fourier transforming the position distrib-

ution for each of n measured momentum values:

S [Weo(w,p = pn) * Ws] = Wio(k,p = p)Ws(k, p = py), (3.29)

where x is Fourier transformed into the spatial frequency k. The resulting distribu-
tion must then be divided by the Fourier transform of the LO Wigner distribution
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for each particular momentum value. The form of the LLO Wigner distribution is
Gaussian in both position and momentum, therefore Fourier transforming the posi-
tion distribution yields a function that is Gaussian in the spatial wavevector k. This
property causes problems in the deconvolution operation as dividing by a Gaussian
distribution causes the high spatial wavevectors to be weighted more heavily than
the small ones. Thus, high spatial frequency noise degrades the signal when one
Fourier transforms the signal back to position space. To overcome this difficulty, a
small positive valued constant € is added to the Fourier transform of the LO Wigner
distribution which effectively sets the spatial resolution that is recovered. The de-

convolved signal Wigner distribution for the momentum component p,, is then given

by
L[S Wro(z,p = pn) * W]
Wro(k,p =pn) + €

To illustrate the effectiveness of this method, Figure 3.9 shows the momentum profile

x

WS('Iap :pn) =

(3.30)

for z = 0 of the smoothed Wigner distribution shown in Figure 3.8 (dotted line) and
the recovered Wigner distribution of the signal beam Wg(z = 0, p) (dashed line). The
positive constant € used for this deconvolution was set to be 1/e, effectively setting
the spatial resolution to be the 1/e spatial width of the LO beam. Reducing this
constant, in an effort to improve resolution, introduces noise to the deconvolution

process and degrades the recovered distribution.

3.3 Transport equation for the Wigner distribu-
tion in free space

In free space, Wigner distributions obey a simple propagation law: The convective
derivative is zero. This follows from the wave equation in the slowly varying amplitude
approximation. The rigorous connection between the Wigner distribution and the
wave equation allows turbid media studies employing the Wigner distribution to be
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Figure 3.9: Deconvolution of smoothed Wigner distribution of two mutually co-
herent spatially separated beams. The dashed line is the original smoothed Wigner
distribution and the solid line is the momentum profile of the recovered true Wigner
distribution for a position halfway in between the two beams.

placed on a firm theoretical footing. As discussed previously, this offers advantages
over heuristic treatments which correctly identify the transport of photons as particles
but neglect their wave nature. In this section I will derive the transport equation for

the Wigner distribution in free space from the wave equation.

I begin with the scalar wave equation for the electric field F(Z,t)

ViE(Z,t) — la—QE(:? t)=—u 8—2P(f t). (3.31)
’ c2 Ot? ’ °ot? ’

In a multiple scattering medium the polarization P(%,¢) can vary in time and space
but it is zero in free space. Thus, the wave equation is written as

. 1 9
ViE(Z,t) — EﬁE(f, t) = 0. (3.32)

Next, I make the approximation that the electric field can be separated into a nar-

rowband frequency and a slowly varying amplitude which I can write as

E(Z,t) = E(T,t)e ™", (3.33)



In this approximate form, w is the center frequency and £ is the slowly varying field
amplitude. Because £ is assumed to vary slowly, its second derivative in time can be
taken as zero. Using the slowly varying field approximation, Eq. 3.33 can be inserted

into the wave equation (Eq. 3.32) to yield

2 —
T w 1. 08 t)
VZE(Z,t) + = E(Z,t) + = (2iw) s

(3.34)

Arranging this into another form and defining w?/c® = k?, the time derivative of £

can be written as
0E(Z,t ic?
g;’ ) _ % (V2 + k?) £(7,1), (3.35)

the wave equation for the slowly varying field amplitude £.
To find the evolution equation for the Wigner distribution I begin by taking the
total time derivative of the three dimensional Wigner distribution. Analogous to

Eq. 1.2, the three dimensional Wigner distribution is defined by

W(f,ﬁ,t):/(;lﬂ; exp(i€- p) EX(X + €/2,1)E(X — €/2,1), (3.36)

where Z denotes position and p is a wavevector (momentum) and the statistical

average has been suppressed. Taking its time derivative yields:

OW (Z, P, t) d*€
TGt = [ g oot w >
<‘95 <“”;€/2’t)5(f5/2,t)+5*(f+€/2,t)g—i(f5/2”5))-

The expression for the time derivative of £ (Eq. 3.35) can be inserted into this

expression to obtain:

(Ve + K2) EX(EF + E/2,)E(F — €/2,1)
—EN (T4 E/2,1) (V2o + k) E(F — &/2,1)],
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which reduces to:

OW(Z,p,t) / &
IRCLE

x[( HE/QS (¥ + €/2, t)) (7 —€/2,1)

—EX(T+ €/2,1) (VE_gnl (T — &/2,1))).

exp(ie- ) (;f) (3.39)

The term in brackets can be rewritten as the divergence of a current:

Vo (E+E/2,1)) E(Z—€/2,t) — ENT+E/2,1) (Va_enE (T — €/2,1))]

[(V
= Vg [(VzEX(T+€/2,1)E(F — €/2,t) — EX(T+E/2,1)VzE(Z — €/2,1)], (3.40)

where € is taken to be a constant so that Vgig/g = Vz. Using this expression, the

time derivative of W (Eq. 3.39) can be written as

W(EF) (i) [ &
SR - < s / g S 7 (3.41)

2w

 [(FoE5(T + &/2,0)E(T — /2, 1) — EXT + &/2,1)T:E(T — /2, 1))

This can be further simplified by making the following substitutions:

—

TE(F—/2,) = —20E(F— &/2,1) (3.42a)

VE* (T +€/2,t) = 2VL*(T+€/2,). (3.42b)

Using Eq.3.42a and 3.42b, the time derivative of W (Eq. 3.41) now becomes

oW (Z,pit)  [—ic®\ 5 d3e .
5 = ( Vz /(2#)3 exp(i€- p) (3.43)

w

X [(Fe&*(F+ €/2,)E(T — €/2,t) + E*(F + &/2, 1) TLE(T — €/2,1)),

which can be rewritten as

oW (Z,p,t) —ic®\ o d3e e o e o L
:< Vf-/ 5 exp(i€-P)Ve(EX(T+€/2,1)E(T—€/2,t)). (3.44)

w (2m)
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The integral can be carried out via integration by parts subject to the boundary
condition that £(Z £ €/2,t) goes to zero as € goes to infinity. The result of this

integration yields

OW (Z,7,1) _ (w > (—ip) / = exp(iE-p)E*(T+/2, 1) (F—/2,1). (3.45)

w

By employing the definition of the three dimensional Wigner distribution (Eq. 3.36)

and simplifying, this becomes

— 5 T, 1). (3.46)

This can be further simplified by using the relation w = ck, where the wavevector

k = |p]. Equation 3.46 now can be written as
= —cp- VzW(Z, pt). (3.47)

Using the fact that cp is simply the velocity, the expression for the evolution of the

Wigner distribution in free space can be written as
+ - VzW(Z,p,t) = 0. (3.48)

This expression shows that the convective derivative of W is equal to zero for free
space propagation. It gives the straight line propagation of the arguments as discussed
above. This transport equation can be interpreted as the conservation of the total

phase space density in free space.

3.4 Summary

This chapter has illustrated the basic properties and utility of the Wigner distribution.
The examples of measured smoothed Wigner distributions shown here were obtained

using the heterodyne imaging system presented in the next chapter. In addition, the
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next chapter derives in detail the relationship between the Wigner distributions and
optical phase space distributions. This link is important as it allows light scattering
studies based on optical phase space distributions to be treated using the language

of Wigner distributions as will be shown in later chapters.

20



Chapter 4
Experimental Setup

In this chapter, I will describe a simple optical heterodyne technique that we have
developed for directly measuring smoothed Wigner phase space distributions as op-
tical phase space contour plots with high dynamic range. The experimental scheme
presented is initially implemented for a coherent light source and further modified
for a low-coherence-length light source. Particular aspects of each configuration are
discussed. The smoothed Wigner distributions obtained with this setup are always
positive definite [77] but the true Wigner distribution of the signal field can be recov-
ered through deconvolution within the resolution imposed by the noise in the system

as shown in section 3.2.2.

The first section of this chapter provides an overview of the scheme of the hetero-
dyne imaging system. Included in this section is a discussion that relates the detected
signal to the Wigner distributions for the signal and local oscillator (LO) fields. Also
included are the corrections needed to use a low coherence source, a brief discussion
on the consequences of using a thick imaging lens, and the modifications made to
the system to examine light backscattered from a turbid sample. This section is
concluded with a description of the motion control system used to scan the various
elements that dictate the phase space detection parameters. The second section of
the chapter presents the detection apparatus used in the heterodyne imaging system.
Included in this section are descriptions of the various components used to convert
the optical signals to the recorded electronic voltages. I begin the description of the

experimental setup by describing the heterodyne imaging system.
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Figure 4.1: Scheme of heterodyne imaging system for measuring optical phase space
distributions.

4.1 Heterodyne imaging system

The imaging scheme of the heterodyne experiments shown in Fig. 4.1 employs either
a coherent or a low-coherence-source. The beam from the source is split into a
local oscillator (LO) and a signal beam which is input to the sample. The relative
frequency between the LO and the signal beam are determined by acousto-optic
modulators that differ in drive frequency by 10 MHz. The signal beam is mixed with
the LO at a 50-50 beam splitter (BS2). The two outputs from the beamsplitter are
monitored using photodiode detectors. Technical noise is suppressed by employing a
standard balanced detection system [78]. In such a configuration, the photodiodes are
connected so as to subtract their photocurrents. As the heterodyne signal undergoes
a 180° phase shift upon reflection by the beam splitter, the beat signals from the two

outputs of the beamsplitter add together.

The beat signal at 10 MHz is amplified then measured with an analog spectrum
analyzer. The spectrum analyzer measures the root mean square of the electronic
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signal. This signal consists of the sums of squares of voltages arising from the het-

erodyne beat signal and noise present in the detection system

VRMS - \/ VvBg + V]\Zfoz'se‘ (41)

An important feature of the experiments is that the analog output of the spectrum
analyzer, which is proportional to Vgass, is squared using a low noise multiplier [79].
The multiplier output is fed to a lock-in amplifier that subtracts the mean square
signal and noise voltages with the signal beam on and off [80]. In this way, the mean
square electronic noise and LLO shot noise are subtracted in real time, and the lock-in
output is directly proportional to the mean square beat amplitude |Vp[?. In the next
section, I will show that the mean square beat signal is directly proportional to the
overlap of the Wigner phase space distributions for the local oscillator and signal

fields at the input lenses L1 and L2 [73].

4.1.1 Measurement of Smoothed Wigner Distributions

The beat amplitude Vg is determined in the paraxial ray approximation by the spatial
overlap of the local oscillator (LLO) and signal (S) fields in the plane of the detector,

z = zp [81-84] and is given by
Vy — / ' €20(2!, 20)Es (@, 21), (4.2)

where z’ denotes the transverse position in the detector plane with the corresponding
y integration suppressed. In this expression, £ is the field amplitude with the band
center frequency phase factor removed. The LO center position can be varied by
scanning the mirror M1 (Fig. 4.1). When M1 is translated off-axis a distance d, the

LO field has its spatial argument shifted to give

Vis(dy) = / €2 (2 — du, 20)Es (2, 21). (4.3)
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In order to keep the .LO beam physically on the detector while d, is varied, the
detector plane is located in the focal planes of the input achromatic lenses, .1 and

L2.

Using Fourier optics, the fields in the detector plane can be related to the fields in
the source planes (z = 0) of lenses L1 and 1.2, which have equal focal lengths f = 6
cm. After passing through their respective lens, the LLO and signal fields each acquire

a spatially varying phase as given by Eq.’s 3.18 and 3.19

Erolx —dgyz = 0)=exp {—z% £U2:| Ero(x —dg,z =0), (4.4a)
Es(x,z = 0)=exp {—z% T } Es(z,z=0). (4.4b)

When the input lens L2 (Fig. 4.1) is translated off axis by a distance d,,, the spatially
varying phase acquired by the signal field (Eq. 4.4b) is altered and the field emerging

from lens 1.2 becomes:

Es(x,z=0) =exp {z% (x —d )2} Es(x,z2=0). (4.5)

The fields in the planes of the detectors can now be calculated using Equation 3.7

to propagate the fields a distance d = f. The fields in the detector plane are

Ero(@' —dy,zp) = “2m /dazexp i— x—x)Q} (4.6a)

X exp |:—Z—a: } Ero(x, 2 =0),

Eo(a' 2p) — \/7 / dmexp z— m—x)] (4.6b)

X exp |:’Lﬁ (x —dp) ] Es(x,z =0).

2

The quadratic phases that depend on z* cancel in these expressions because the

detector plane is in the focal plane of the lenses, L1 and L2. Canceling these terms
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in Eq.’s 4.6a and 4.6b yields

: k ko
Ero(x' —dyg,zp) = i exp [ 2f 2} (4.7a)

. k /
X /d:vexp {zﬁ:m] Ero(z,z=0),

o) - [ [

21

-k
"of

X /dw exp {z%x(m' — dp)} Es(x,z=0).

(2% — df,)] (4.7b)

Inserting these expressions into Eq. 4.3, the quadratic phases in z’ cancel, leaving:

Ve(dg, dy) = %exp {z—dﬂ/dm/dazlexp {z xlx}ELO(azl, =0)

« / dzy exp {i?a@(x’ - dp)} E(2, 7 = 0). (4.8)

Carrying out the integration over 2’ yields a delta function as

/ da’ exp {i?w'(xl ~ xg)}  9n8(21 — ). (4.9)

Thus, equation 4.8 can now be written as

Ve(ds, dy) = fcexp [z%dﬂ /dmg exp [i?(.@dp)} Es(xe,2=10) (4.10)

X /da:lgzo(xl —dg, 2 =0)0(z1 — z2).

The integration over x; can now be carried out simply to yield:

Vi(daody) = ;exp{QI} ] / vy exp [_i%@dp)] (4.11)

x Efo(re —dy,z=10)Eg(x2,2=0).

Rearranging this expression and taking its magnitude squared, yields the mean square

beat amplitude for a narrowband field

2
V(dy, dy)|* o ‘/d:v Eiolx —dy, 2 =10)Es(z, 2 =0) exp(—ik%x) . (4.12)
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Here x replaces xo and denotes position in the source plane. The effects of lens
thickness on the location of the source plane are discussed in section 4.1.3. For
simplicity, the corresponding ¥y integrals are suppressed as is the statistical average.
For a coherent source, it is reasonable to assume that the Rayleigh and coherence
lengths of the LO and signal fields are large compared to d,, so that the translation
of M1 simply shifts the center of the input LO field without significantly altering the
LO optical path length prior to 1. When this is not the case, a translating corner
cube (C in Fig. 4.1) can be added to the LO arm to compensate for path length
changes arising from translating M1. The phase factor due to the translation of L2 is
neglected in Equation 4.12 but the additional phase requires the use of additional path
length compensation when a low coherence source is used, the specific corrections are
detailed in the next section (4.1.2).

The mean square heterodyne beat signal as given by Equation 4.12 easily can be
shown to be the convolution of the Wigner distribution of the signal field with that
of the LLO. T begin by explicitly writing out the magnitude squared of the detected

signal

\V(dy, dy)? o /dm Eiolx —dy,z=0)Es(z, 2 =0) exp(z’k%m) (4.13)

X /daz’ Ero(@ —dgy,z=0)E4(x', 2 =0) exp(+ik%x’).

The following variable transformations are made:

T =2,+n/2,

IR (4.14)

The Jacobian of this transformation is 1 so it amounts to a simple substitution. The
beat signal can be written in terms of these variables as
Valdsudp)! o [ doo [ dn€joleo+n/2 - do) rofes —n/2- ) (415)
X €3 1/2) sl +/2) exp(-ik L)
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For simplicity, the notation that the LO and signal fields are in the source plane (z =

0) has been dropped. Recalling the definition of the Wigner distribution (Eq.1.2),

Wz, p) — / g—;exp(iepxg*(x F /2 — €/2)), (4.16)

from Chapter 1, I note that it is the Fourier transform of the two point coherence

function. Thus the inverse transform is given by
£+ ¢/2E(x — ¢/2) — / dpexp(—iep)W (x, p). (4.17)

Using this definition to replace the signal fields in Eq. 4.15, the beat signal becomes

Vi(d, d)P o /d%/dn €2 (@0 +1/2 — o) Ero(To — n)2 — da)  (4.18)

i / dp exp(—inp)Wis(z, p) exp(—z'k%m.

Again using the definition of the Wigner distribution (Eq. 4.16), the LO Wigner

distribution can be written as

oy _ [dn i dy
WLo(x—dz,p+k7) = /2ﬂ_exp {m(pjtkf)] (4.19)

X Ero(®o+1n/2 —dy) Ero(ro — 1/2 — dy).

Using this expression for the Wigner distribution of the L.LO in Eq. 4.18, the mean
square heterodyne beat signal (Eq. 4.12) can now be rewritten (again suppressing

the y integration) as

k
Vi (de, )2 ox / 2 dpWio(w = dp + ) W), (4.20)

where Wg(x, p) is the Wigner distribution of the signal field in the plane of .2 (z = 0),
given by Eq. 4.16, and Wro(x,p) is the LO Wigner distribution in the plane of L1.
Equation 4.20 shows that the mean square beat signal is the convolution inte-
gral of the LO and signal field Wigner phase space distributions. Hence, the optical
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phase space distributions measured in the experiments are smoothed Wigner distrib-
utions [77]. Scanning the positions of M1 by d, and L2 by d,, using stepper translators
yields an optical phase space contour map of Wg with resolution limited in position
by the LO diameter and in momentum by the LO diffraction angle. This method
permits position measurement over a range +1 cm, and momentum measurement
over a range +300 mrad. Including both transverse dimensions (z and y) the mean

square beat signal S can be rewritten as
A9 A 22 12 - sk I
S(dyz,dyT) = /d T d°py Wro(Z, — da2,p) + ?dp.r) Ws(Z1,pL). (4.21)

Here, the subscript L denotes the direction perpendicular to the propagation axis.
The transverse Wigner distribution at the exit of the sample (z = L) is given in terms

of the three dimensional Wigner distribution by

Ws(Z1,pL) = /dpz Ws(z = L,%1,p). (4.22)

Recalling Eq. 3.36, the three dimensional Wigner distribution is defined by

P
W(F,p.t) — / ﬁ explie- §) E*(F + €12, E(F — /2, 1), (4.23)

where Z denotes position and p'is a wavevector (momentum).

The transverse Wigner distributions that appear in Eq. 4.20 have an important
property. Since, the transverse momentum p’ is conserved in propagation between
media of different indices of refraction, the transverse Wigner distribution does not
change in propagating between the sample and the air. This is a consequence of
the boundary condition that yields Snell’s law: the momentum in the plane of the
interface is conserved although the magnitude of the total momentum vector changes.
Hence, the angles of incidence and refraction must be different. The change in angle
must be included when analyzing Wigner distributions which have propagated from
inside the sample cell to air before being detected.
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4.1.2 Corrections for Low Coherence Source

When a low-coherence source is used in the heterodyne imaging system, the LO and
signal optical paths must be equal to within the coherence length of the source. In
order to equalize the path lengths, a corner cube (C in Fig. 4.1) is included to allow
the LO path length to be varied relative to that of the signal beam. Moving the
corner cube by a distance d., changes the LO path length by Al = 2d,.

As described in the previous section, when an optical phase space distribution is
measured, the position and effective momentum of the LLO are scanned by moving
optical elements. Moving these elements introduces small changes in the relative path
lengths of the two beams. These path length changes are compensated by adjusting
the LO path length to keep the difference between the two beam paths at a constant
fixed value, Al'.

To calculate the corrections needed for using a low coherence length source, the
arguments used in the previous section must be modified to include the broad range
of frequencies that are present. This is accomplished by expressing the light field as

a sum over its Fourier components wy = ck/n,
B(x.t) = / dusbi(x 1, 2)erE=2/0) (4.24)

where the &’s are the slowly varying amplitude of the frequency component wy. It
is assumed that the &’s are delta-correlated such that (£;&,/) is only nonzero for

wy = wy. The heterodyne beat can be written using this definition of the field as

Ve = /dw’ Ejo(2',zp) Es(2, zp) (4.25a)
= /dm’/dwkg,:w(x,zD)ei“”“(t_z/C_Al/c) (4.25D)

/ dw;cgk:g (1‘, ZD)eiiw;c (t7Z/C)7

X
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where 2/, is in the plane of the detector z = zp. In this expression, the corresponding
y integration has been suppressed as well as the statistical average. The correlation
of the &’s allows the double integral over LO and signal beam frequencies to be
reduced to a single integral. Once this correlation is assumed the common phase

—wrll/e the phase factor due to the variable

factors can be eliminated, leaving only e
delay introduced in the LLO path. Thus the expression for the heterodyne beat in the

plane of the detectors is
Ve = /dw'/dwkg,:w (2, 2p)Exg (T, 2p) e rAe, (4.26)

Similar to the derivation in the previous section, the fields in the plane of the detectors
can be related to the field in the source plane (z = 0) of the input lenses, L1 and L2
(Figure 4.1), by using Fourier optics methods. The resulting expression differs from
Eq. 4.12 only in that the phase factors now can no longer be neglected. The mean

square beat amplitude using light from a low coherence source is thus:

Vis(da, dy, AP x| / da / A€, (& + dy, 2 = 0)e 8/ g (2! 2 = (4.27)

x exp(—ik G )exp(ik%az')ﬁ
2fo fo

In this expression there are two additional phase factors that are direct consequences
of moving lens L2. Each of these phase factors has a physical interpretation (Figure
4.2). The first term, exp(—ik dg /2f,) represents the phase acquired by the signal
beam as it propagates an additional path length relative to the LO from lens L2 to
the detector. In Figure 4.2(A) we see that when L2 is moved a distance d, and the
detected signal field remains on axis (z = 0), the detected light travels along path
BD where D represents the position of the detector. Light traveling along BF has
travelled a distance f,, as will any light propagating from the plane of a lens to its focal
point. The difference between paths BD and BF is simply f,(1 — cosf) =~ f,6%/2.
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Figure 4.2: Physical meaning of correction terms: (A) Term 1: d / 2f, (B) Term
2: xdy/ fo.
Since the LO path length is also f, (L1 is not translated), the detected light (BD)
has travelled a distance 62f,/2 = df) / 2fo less than the LO, effectively increasing the
LO path.

The second term, exp(ikd,x/f,), represents the change in distance travelled by
off axis light (x # 0) when lens L2 is moved a distance d,. In Figure 4.2(B), the

light is detected along CD and path CF is of length f,. Using the Pythagorian

theorem, the length CD = fo\/ (1 —d2/f2+ 2zd,/ f2) which can be approximated
as CD ~ f, — d2/2fo + xdp/ fo. Thus the path length difference between the LO
path CF = f, and the signal path CD, is d2/2fo — xdy/ f,. These factors are both
included as corrections to keep the path difference between the two beams constant
when optical phase space measurements are made. In turbid media studies, the
signal beam undergoes multiple scatterings before being detected, causing it to be
much broader in both position and momentum than the LO beam. In this case the
position of the LO, d,, can be substituted into the correction term and the effective

path difference between the beams is given by:

d?  d.d
Al = Al + L2 - =F 4.28
of T, (4.28)
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This is the quantity that must be kept constant to ensure that the path length
difference between the LO and signal beams remains fixed as optical phase space
measurements are made in turbid media studies. This correction term must be mod-
ified slightly when the LO and signal beams are of comparable diameters as is the
case in the beam characterization studies presented in Chapter 5. The modification
depends on the specific form of the &’s and simply introduces a scaling factor to the
last term in equation 4.28.

The heterodyne beat signal can now be written in terms of the overlap between

the complex amplitude of the signal field and that of an effective L.O field:
Vis(da dyy AV o |/dx /dwké’k (@ ey A ) Eug (', 2 = ). (4.20)

In this expression, the complex amplitude of the effective LO field is defined as

<S‘I{:LO( + dl‘? Al, d ) = SI:Lo(T + dz; z = 0) —’kaAl/C (430)
; d,
x exp(—ik=—2) exp(ik-Lx
(i) exp(ik ),

where &, is the complex amplitude of the frequency component of the LO field,
wg = ckpo as defined by Eq. 4.24. The effective LO field specifies the transverse
profile of the LO field and includes all the phase factors introduced by the shifts
dg,d,, and Al'. Starting with Eq. 4.29 an expression for the heterodyne beat can

now be given as the overlap of two wigner distributions:

\Va(dy, dy, AU')|? /dwk/dx/deS Ty Zoy W) (4.31)

XWio(x +dg, 2o + Al's p + kf— , WE)-

Here W], is the Wigner distribution of the frequncy component of the effective LO
field, wy and Wy is that of the signal field. This form is useful because the Wigner
distribution for the signal field emerging from a turbid medium can be calculated
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in many practical situations. However, using the Wigner distribution for the signal
field to calculate the detected signal can be problematic when using a low coherence
source. This is due to the fact that to calculate the Wigner distribution for a given
field (Eq. 4.16), the field must be correlated with itself. A heterodyne beat, on the
otherhand, is truly a correlation between the LO and signal fields. Thus, in order
to rigorously incorporate the effect of an LLO path delay Al’, the optical phase space

distribution must be calculated using fields as in Equation 4.29.

4.1.3 Thick Achromatic Lenses

The achromatic lenses used for imaging in the heterodyne scheme (L1, L2 in Fig. 4.1)
are thick lenses. The Melles Griot catalog specifies the thickness of the 01 LAO 079
Achromats as 12.5 mm at their centers. Thus the detection plane cannot be assumed
to be at the center as if it were a thin lens. Instead, one must use the principal plane
to determine the detection plane. When using a thick lens, the object and image
distances are measured from the front and back principal planes respectively, H and
H' respectively [85].

Figure 4.3 shows that although a turbid sample can be placed extremely close to
the imaging lens, the transmitted light still propagates a distance d from the sample
to the front principal plane. Although this distance is small, it must still be accounted
for in theoretical treatments. Typical sample cell to lens distances are 1-2 mm. For
the lenses used in my experiments, the distance between the input face of the lens and
the front principal plane is specified as 1.6 mm. Thus, the total distance d between

the lens and sample is 1-2 mm in air plus 1.6 mm in glass.
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Sample Lens | f

Figure 4.3: Front and back principal planes for a thick lens H and H’. It is assumed
that a single refraction occurs in the front principal plane for rays travelling left to
right. Also indicated are the effective focal length of the lens f and the distance d
between the sample and the front principal plane.

4.1.4 Modifications for Backscattering Experiments

The imaging system presented in Fig. 4.1 is configured to measure the light trans-
mitted through a turbid sample. However, a problem that is also the subject of
scattering studies is the distribution of light backscattered from a multiple scattering
medium. To study backscattered light, the imaging system must be reconfigured.
Fig. 4.4 shows that inserting a beamsplitter between the input lens .2 and the sam-
ple permits the detection of light backscattered by a turbid medium. The input beam
is rerouted to enter the appropriate port of the beamsplitter.

One problem with this configuration is that the distance between the sample and
input lens has increased greatly from the transmission measurement configuration.
The propagation over this distance causes the Wigner distribution to be altered. As
equation 3.17 shows, when a Wigner distribution propagates, its spatial argument is

translated by an amount that depends on it momentum argument. Thus, the Wigner
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L2 Beamsplitter Sample

Figure 4.4: Modifications for measurement of light backscattered from a turbid
sample. Lens 1.2 is the input lens of the heterodyne imaging system (Fig. 4.1). The
arrows indicate the beam path.
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Figure 4.5: The Wigner distribution in an image plane: the position distribution in
the image plane replicates that in the object plane, but the momentum distribution
is altered.

distribution in the plane of [.2 is not identical to that which emerged from the sample.
In order to reproduce the original Wigner distribution in the plane of the input lens,
a simple imaging system is used.

A single lens can produce an image of a spatial light distribution. For example, an
object a distance 2f from a lens of focal length f will create a spatial image a distance
2f past that lens. However, a Wigner distribution is not reproduced in the same way.

Figure 4.5 shows the propagation of a Wigner distribution for this arrangement. A
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Wigner distribution W (x, p) that propagates a distance 2f will have its  arguments
changed to = + (2f/k)p as shown by Eq. 3.17. Thus the Wigner distribution in the

plane just before the lens is

Wi,z = 2f) = Wiz + 2Lp.p, = = 2f). (4.32)

This equation shows that for free space propagation the final Wigner distribution
retains the same form as the initial distribution. However, the position in the final
plane, 2/, is simply related to the position and momentum in the initial plane.

The effect of passing through the lens can be calculated using Eq. 3.23. The
Wigner distribution after the lens is related to the initial distribution through another
simple translation of its arguments. When it passes through the lens of focal length

f, the momenta are changed by p — p — (k/f)x, yielding

W' p") = Wiz + %(p_ éx),p— ?a;) (4.33)
_ 2, k.
= W(=e+—p.p 7 )-

Subsequent propagation over an additional distance 2 f yields the Wigner distribution
in the image plane in terms of the input distribution. Again using Eq. 3.17, the final

distribution in the image plane is

k k
Witaspy) = Wi+ 2+ Lp= S+ 2oy 2+ 2 430
~ W(ea,—p— )

Thus, while a single lens will reproduce the spatial distribution as an inverted image,
the momentum distribution will not be replicated correctly.

An imaging system that reproduces both the position and momentum of a Wigner
distribution is pictured in Fig. 4.6. Here we see that the Wigner distribution in the

object plane, Wy(z, p) is transformed to

WaCra,pr) = W(e+ 2p.p) (4.35)
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Figure 4.6: Wigner distribution imaging system. The Wigner distribution in the
source plane is replicated with arguments negated in the image plane.

after propagation over a distance f. The first lens alters the momentum distribution,

yielding:
Walespa) = Wiat 4o 52).p - 72) (4.30)
— wil,,_k

at its output. The subsequent propagation over a distance 2f results in a Wigner

distribution of

Walaa,p) = W(p.p— 5o+ 2p) (4.37)
- WppTa)

The second lens changes the momentum arguments, yielding at its output face:

fook ko k

Wi, ps) = W(E(p — ?@a —(p— ?CU) - ?CU) (4.38)
= W(—z+ %p, —p).

Finally, propagation over the remaining distance f, restores the position argument:

Wylespr) = W((o+ip)+1p p) (4.39)
= W(—ZC,—p),
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thus reproducing the original Wigner distribution with its arguments inverted. By
inserting this lens combination between the input lens L2 and the beamsplitter in
Figure 4.4, the Wigner distribution at the output face of the sample is imaged at the

input lens of the heterodyne imaging system.

4.1.5 Motion Control System

The measurement of optical phase space distributions is accomplished by translation
of optical elements. The variables d, d,, and d. respectively indicate the positions
of a mirror, lens and retroreflector (Figure 4.1). These elements are all mounted on
translation stages driven by computer controlled linear actuators. The motion control
system is based on the MotionMaster 2000 (MM2000) system from Newport Research
Corporation (NRC). The MM2000 is an advanced motion controller card that plugs
directly into a PC. The main board supports up to four “piggy-back” plug-in modules
each of which controls one axis of motion via a stepping or DC servo motor. In our
system the MM2000 is configured to control three axes of motion using DC motors.
Each motor controls an 850F Series Linear Actuator also from NRC which provides

the linear translation needed for the experiments.

The MM2000 system can be controlled using Labview software from National In-
struments with drivers downloaded from the world wide web (http://www.natinst.com).
This software permits a high level of motion control using commands issued with a
PC. The command set includes directives to change the distance, direction, speed
and acceleration of each move. The commands are sent from the controller card to
a Universal Interface Box (UIB) from NRC. The UIB directs commands to each axis
of motion and supplies power to the motors.

The 850F Series Linear Actuators are long travel, high resolution linear actuators.

They are capable of two inches of total travel with 0.05 ym resolution. The software
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directs the motion by commanding the actuators to move a given number of 0.05
pm steps, so they effectively act as stepper motors. The resolution is accomplished
with a precision-rolled leadscrew combined with a high ratio gearbox. The actuators
incorporate a manual actuation knob for coarse adjustment with the motor power
off. Care must be taken not to manually adjust the actuator position with the power
applied or damage will result to the gearhead. The simplest method to ensure that
the motor is unpowered is to unplug the cable from the UIB before manually adjusting

the position.

The actuators typically have approximately 15 pum of backlash. That is, upon
changing the direction of motion, the motor must spool for approximately 300 steps
before motion resumes. Using the backlash compensation feature of the controller
software, the bidirectional repeatability is better than 1 pm. Travelling in one di-
rection, the overall accuracy of the motors is better than 0.1 percent of the total
travel. The high precision, repeatability and accuracy of the motion control system
is essential for our experiments, particularly when using a source with a coherence

length of only a few microns.

4.2 Detection Apparatus

The detection system is a sensitive detection method used in measuring optical quan-
tum noise previously in our laboratories [86]. Figure 4.7 shows a schematic which
traces the signal from the point it is detected by the photodiodes, D1 and D2, through
the transimpedece amplifier to the spectrum analyzer. The signal is then squared
using a low noise multiplier and finally fed to a lock-in amplifier. This section will
discuss each of these components in detail. The final analysis in this section will
trace the heterodyne beat signal giving the lock-in amplifier reading V;; in terms of
the power of the heterodyne beat Pg.
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Figure 4.7: Block diagram illustrating the signal flow through the components of
the detection apparatus.

4.2.1 Photodetectors

The optical signal is converted to a photocurrent by two EG&G FFD-040B photodi-
odes connected so that their outputs subtract (Fig. 4.7). These diodes were originally
chosen for their small capacitance (1.8 pF) and are each reverse-biased by 22.5V bat-
teries to increase their response time. As shown in Figure 4.8, the diodes have been
mounted in an aluminum fitting which positions each diode directly at the output
of the cube beamsplitter (BS2 in Fig.4.8) used to mix the LO and signal beams.
This allows the use of input lenses (L1, L2 in Fig. 4.8) with short focal lengths and
therefore large numerical apertures. The aluminum mount has been directly attached
to the circuit board that contains the amplification electronics. The photocurrent is
converted to a voltage by a CL.LC425 wide bandwidth operational amplifier configured

as a transimpedance amplifier.

4.2.2 Transimpedence Amplifier

The CLC425 transimpedance circuit (Figure 4.9) for this experiment was designed

to maximize its response at 10 MHz (the frequency of the heterodyne beat signal)
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Figure 4.8: Schematic of diode mount positioning relative to optical elements of the
heterodyne imaging scheme (Fig. 4.1).

yet remain stable. The 2.3 pF capacitor in this circuit stabilizes it by cancelling
the pole caused by the photodetector capacitance at the input. However, it also
causes the amplifier response to roll off at higher frequencies. In order to utilize
the lowest possible capacitor and thus increase the amplifier bandwidth, a 50 ohm
resistor is needed in series at the output, (Figure 4.9). The resistor further stabilizes
the circuit by isolating the output from any capacitive loading that is introduced
when monitoring the output with either an oscilloscope or spectrum analyzer. The
increased stability permits a small capacitor to be used in the feedback path thus
widening the bandwidth of the amplifier. Figure 4.10 shows the frequency response of
the modified amplifier when the 2.3 pF capacitor is used in the feedback path. This
response curve was obtained by measuring the shot noise level at each frequency and
comparing it with predicted values. The amplifier rolloff at 10 MHz for the modified

configuration is 0.722 times that of its zero frequency response as indicated.
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Figure 4.9: Schematic of transimpedence amplifier.
4.2.3 Spectrum Analyzer

The amplifier output is fed to a spectrum analyzer, Hewlett Packard model # ESA-
LL1500A. Although the final output on the display of the instrument is digital, the
spectrum analyzer is itself analog and can be configured to include an analog video
output (option A4J). This is an essential component of the analyzer as we rely on
squaring the analog output to yield a signal that measures smoothed Wigner distri-
butions and to allow us to subtract electronic noise in real time. An unfortunate
drawback of this analog video output is that it is specified as uncalibrated. This
means that the signal at the video output is proportional to the input signal but that
the proportionality varies depending on the reference level set on the front panel.
The change in scaling must be measured and accounted for every time the spectrum

analyzer amplitude scale is changed.

A second feature of the spectrum analyzer which is not ideal for our purposes is
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Figure 4.10: Frequency response F(v) of transimpedence amplifer, normalized to
zero frequency response F(0).

its automatic alignment. The unit is designed to perform automatic frequency and
amplitude alignments with every scan and make small adjustments to the display
data using digital processing. These small adjustments account for the difference
between the analog video output and the true readings given on the unit’s display
screen. The auto-alignment feature causes the analog video output to be blanked
occasionally during refresh so it must be disabled when the analog output is being
continually monitored. As a result, the unit must be manually aligned using the “align
now all” feature before measurements are made. According to the spectrum analyzer
reference manual, once the unit is at a stable temperature for ninety minutes, it will
meet noise and accuracy specifications if the “align now all” routine is run every

hour.
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Figure 4.11: Squarer ciruit employing a low noise multiplier.
4.2.4 Lock-in Amplifier

The analog video output is squared using a low noise multiplier (Analog Devices
AD534) in a circuit designed previously in our laboratories [86]. The circuit (Fig.
4.11) feeds the signal from the spectrum analyzer into both inputs of the multiplier.
The multiplier thus produces a signal proportional to the square of its input. The
output of the squarer is filtered before being sent to a lock-in amplifier, EG&G
Princeton Applied Research Model 124A which was loaned to us by Dr. Henry
Everitt. The lock-in is referenced to an electronic square wave signal at 483 Hz which
is also used to chop the signal beam via the acousto-optic modulator. Thus the 14kHz
low pass RC filter between the multiplier and lock-in amplifier (Fig. 4.11) allows the
chopped signal at 483 Hz to pass with 0.99 efficiency but still removes any noise

present at higher frequencies.

4.2.5 Detected signal

To calculate the lock-in input voltage due to an optical heterodyne beat signal at
the detectors, we must trace the signal through our detection apparatus (Fig. 4.7).
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Initially, we must calculate the power of the heterodyne beat signal, Pg for a given
signal beam and LO powers, Ps and Ppp, respectively. Using simple phasors for the

LO (ELp) and signal field (Es), we can write the signal as:

|Epo + Es|* = |Erol> + |Es|” + (ELoES) + c.c. (4.40)

<EL0E§‘> +cc = <\/ PLO ei(w—*—&)t\/ PS e_th> +c.c (441)
= 2v/ProPscos (6t)

= Ppgcos(6t).

Here w is the optical frequency, ¢ is the 10 MHz difference frequency and c.c. denotes
a complex conjugate. I have defined the power of the heterodyne beat signal, Pg =
2/ ProPs. Equation 4.41 only accounts for the interference between the LO and
signal beams as their DC components are subtracted off using the balanced detector

arrangement.

The heterodyne beat power Pg incident on the detector generates a photocurrent
i =npPp

where 7p is the responsivity of the photodiodes. At the wavelength of a helium neon
laser beam (A = 633 nm) the responsivity was experimentally found to be 0.32 A/W,
while for the low-coherence-length sources (A &~ 850 nm) the responsivity was found
to be 0.54 A/W. The transimpedance amplifier produces an output of F(v) R 7 where
R = 10 kQ is the feedback resistance and F(v) = 0.722 is the frequency response of
the amplifier (Figure 4.10). Finally an efficiency e must be included to account
for wavefront alignment. Typically, for two identical helium neon laser beams the
heterodyne efficiency was greater than 0.90. For broadband sources or two beams of

different diameters, it is much more difficult to achieve good wavefront alignment and

75



this figure was usually in the range of 0.40 to 0.60. The output of the transimpedance

amplifier is thus given by:
Ve =np X Pg X R X F(V) X Npet- (4.42)

This is the amplitude of the heterodyne beat signal as measured with an os-
cilloscope. The spectrum analyzer divides this voltage by 2 due to its 50 €2 input
impedance in parallel with the 50 () resistor at the output of the transimpedance
amplifier (Fig. 4.9) and again by /2 because it measures the root-mean-square of
the sinusoidal heterodyne beat. Thus on the spectrum analyzer, the voltage of the
beat signal is read as Vgq = Vp/(2v/2). By setting the spectrum analyzer to a fre-
quency span of zero, the beat signal can be monitored using the analog video output.
The output of the spectrum analyzer divides the signal voltage by the voltage for
the full scale deflection, also called the reference level, V,.¢, to yield a signal as a
scaled voltage from 0 to 1V. As mentioned previously, the analog video output is

uncalibrated so a scale factor 1y, must be included. Thus the signal at the output is:

V:T/saVSA: nsaVB :nsaXQVPLOPSXT]DXF(V)XRX”?het
‘/;‘ef ‘/7‘ef : 2\/i ‘/ref : 2\/§

(4.43)

The scale factor 7y, is determined by dividing the signal voltage by the reference
level as measured via the spectrum analyzer’s GPIB interface and comparing it to
the video output. This scale factor will remain constant as long as the amplitude
scale is unchanged. The output signal is fed to the low noise multiplier which is
configured to give the input signal squared and divided by 10V. The signal which is
fed to the lock-in is given by Vi = V:2/10V. The resulting signal depends linearly
on the power of the signal beam Pg as well as on the power of the LO beam Ppp.
The analog output of the lock-in is monitored by our laboratory computer using an

analog to digital converter input. By incorporating all of the above mentioned scale
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factors, our recorded signal is then proportional to the magnitude of the beat note
squared, [Vp|*.

The heterodyne method presented in this chapter is suitable for measuring the
optical phase space distributions for a variety of light fields. The following chapter

presents a method for coherence characterization of an arbitrary light source based

on optical phase space distributions.
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Chapter 5

Beam Characterization using Optical
Phase Space Distributions

The heterodyne technique for measuring optical phase space distributions can be im-
plemented using light from a variety of sources. The experimental data presented in
Chapter 6 are obtained by employing light generated by both coherent and low coher-
ence length sources. The coherence properties of these sources vary widely, ranging
from the coherent helium neon laser to the low coherence length superluminescent
diode. The character of the source used in a light scattering study will influence the
measurements that are made. Therefore, knowledge of the coherence properties of
an input light source is a necessary reference in studies exploring the propagation of
optical coherence in multiple scattering media. In this chapter, I present a means of
beam characterization using measurements of optical phase space distributions. This
is followed by characterizations of the sources I have used in light scattering studies.
I begin with a discussion of coherence and the mathematical model used to describe

the coherence properties of our light sources.

5.1 Coherence Properties

There have been three types of light sources I have employed to study light scattering.
They can be classified by their coherence properties. The first source I used was a
helium-neon laser beam. Light from a helium-neon laser is nearly completely coherent
both longitudinally and transversely.

Longitudinal or temporal coherence refers to the coherence of a beam along its
axis of propagation. It is often characterized by a coherence length, the largest path
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length difference which can be introduced between two beams for which interference
fringes can still be observed. It is well known that the coherence length is inversely
proportional to the bandwidth of the light used [87]. Transverse or spatial coherence
describes the coherence of a beam perpendicular to its axis of propagation. It can be
characterized by a tranverse coherence length, the largest lateral shear between two
beams which still produces interference fringes.

The remaining two sources I have used are broadband light sources known as
superluminescent diodes (SLD). These sources are characterized by a large bandwidth
and thus low longitudinal coherence. However, they do not suffer from poor spatial
coherence as do other broadband sources, such as LED’s. The first type of SLD’s I
used were commercially available sources purchased from the Anritsu Corporation of
Japan. These are fairly broadband sources with good spatial coherence characteristics
but produce relatively low output power, limiting their usefulness. This aspect was
improved in the other sources used in my experiments which were novel high-power,
extended bandwidth SL.D’s supplied to us by the Sarnoff Corporation of Princeton,
NJ. The extended bandwidth of these sources corresponds to an extremely short
longitudinal coherence length, a property which is very useful for selecting photon
path lengths in light scattering studies. However, the very low coherence length and

increased power also come with a cost of decreased spatial coherence.

5.1.1 Gaussian Schell-Model Source

Both longitudinal and spatial coherence refer to the correlation between two fields.
Mathematically, one can specify these correlations using the cross-spectral density,

defined here for a frequency component w,

W(z,2',w) = (E* (z,w) E (2/,w)) . (5.1)
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A reaonable model to use for our purposes is the beam generated by a Schell-model
source. This type of source is capable of generating a narrow angle beam despite

being only partially coherent. The cross-spectral density for this model is given by

Mandel and Wolf [87] as:

, x? + 22 x—a')? ik .
W(z, x',w) o exp {—T} exp [—%] exp [ﬁ(ﬁ - xz)} ) (5.2)

In this model, 2a is the intensity width of the beam, o is the transverse coherence
length, k is the optical wavevector and R is the radius of curvature of the wavefront.
In this model, it is assumed that the beam is relatively well collimated and near its
beam waist, which describes the case of interest. The first two terms in this model
are Gaussian distributions, one is a function of the sums of z? and z'? and the other
of the difference between x and 2’. For this reason, the model is known as a Gaussian
Schell-model. The final term accounts for the spatially varying phase due to the
wavefront curvature.

To apply this model to our method of optical phase space measurement, I recall

Equation 4.27:

Va]* o | /dx /dwk (& (@ +dy,z=0)Erg(z,2=0)) (5.3)
, dz d
“wrAl/e oxp(—ik=L) exp(ik-L£z)|?,

2fo Jo

where d, is the spatial shift of the LO, d,/f, is the momentum shift of the LO, Al

Xe

is the change in path length between the LO and signal beams and f, is the focal
length of the imaging lenses. This expression for the detected beat signal depends
on the integral of cross-spectral densities over frequency components, wy’s. The
frequency distribution is taken to be Gaussian, of width Awy and centered about
w,. Inserting the frequency distribution and the Gaussian Schell-model for the cross
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spectral densities into Eq. 5.3, the detected beat signal can be rewritten as,

d
Va]? |/d$ /dwk x e WRAC oy (—i k2f )exp(zk? x) (5.4)
X exp {— 2 } exp {— 552

s« esxp {%@ et dm)Q)} exp [— (W'L;,(f )] 2

The spatial (x) integral can be performed, which leaves:

1 1 K2a? (d, dy\”
2 oAb B Gp Ay
|VB|* o |exp { dz(8a2 + 202)} /dcu;C exp [ 5 (fo R>

—iwpAl/c d2 d Wk — Wo ? 2
xe RS exp(—i 2f )exp(szf 2) €Xp | — Ao |

(5.5)

Realizing that the Gaussian frequency distribution will cause wy, &~ w,, I set k = k, (as
wk = ck) in this expression.This allows the integral over frequencies to be performed

as a Fourier transform. The result is a simple expression for the mean square beat

signal:
11 dy, dg\° (AkAL')?
2 2 2 2 x
|VB| X exp |:dZ(Z¢,2 + ;):| eXp [ ]{? (fo E) exXp [T (56)
Here, T have set Al' = Al + ;—;2; -3 f” which is the path difference between the

LO and signal beams as defined in section 4.1.2 (Eq. 4.28). Additionally, in this
expression the dependence on the the frequency bandwidth, Awg, has been replaced
by a spread of wavevectors, Ak = Awy/c. Equation 5.6 gives the heterodyne beat
signal as a function of the scanned variables: d,, d, and Al’, and depends only on

the bandwidth of the source and the beam parameters specified in Eq. 5.2: a, o, and

R.
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1) Helium-Neon Laser

Meles Griot #05 LHP 141

Min. Power Output: 4mW Tem00 CW
Mode Spacing 438 MHz

Wavelength: 632.8 nm

2) Anritsu SLD’s

Anritsu # SD1S101C, serial nos. C1246, C1178
Test power output: 1.5 mW

Current for 1.5 mW: 83mA, 69mA

FWHM Bandwidth: 12.3 nm, 16.3 nm

Center Wavelength: 851 nm, 852 nm

3) Sarnoff SLD’s

David Sarnoff Research Center #CD 1247 - VFS, diode ID nos. A2, A10
Test conditions operating current: 728mA, 640mA

Power Output after columnation lens: 28 mW

FWHM bandwidth: 44 nm
Center Wavelength: 832 nm

Table 5.1: Source manufacturer specifications.

5.2 Source Characterizations

The method of coherence characterization uses optical phase space measurements to
determine the properties of a light source [88]. Scanning the phase space parameters
of the detected heterodyne beat signal allows the determination of the parameters of
the Gaussian Schell-model source as well as the longitudinal coherence length using
one set of measurements. The method of determining these source characteristics
from the phase space measurements is presented in the next section using the co-
herent, helium-neon source as an example. The method is then applied to both the
Anritsu and Sarnoff SLD’s. Their properties are presented in the subsequent sec-
tions. The specifications of the light sources used in my experiments as given by the

manufacturers are listed in Table 5.1.
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Figure 5.1: Low resolution phase space contour plot for a single mode He-Ne laser
beam. Each position step is 150 pym and each momentum step is 0.25 mrad.

5.2.1 Method of Coherence Characterization using coherent
light: Helium-Neon source

Figure 5.1 shows measured optical phase space contours, |Vz(d,,d,)|?, for the single-
mode He-Ne laser beam obtained by scanning d, and d, with the path difference
between the LO and signal, Al’, held at zero. As discussed in section 3.2.1, the
orientation of the ellipse indicates that the beam is diverging, i.e. it has a positive
radius of curvature, R > 0. Plotting the transverse momentum distribution for
d; = 0, the dotted veritcal line in Figure 5.1, yields a Gaussian distribution with a
1/e momentum width p;e/k, = (dp/ f5)17e = 0.375 mrad. Setting d, = 0 and Al' =0

in Eq. 5.6, the heterodyne beat intensity drops to 1/e, for

dp = I{J:(;L (dp)l/e : (57)
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The intensity width, 2a, can now be determined by

2a = 2 2 (5.8)

ko (dp>1/e kopl/e.

In the case of the He-Ne laser beam, this yields an intensity width of 0.54 mm, which

agrees with measurements of the beam profile made with a diode array. Similarly, by
plotting the position distribution for zero transverse momentum (d, = 0), as shown
by the solid horizontal line in Figure 5.1, a Gaussian distribution is again seen. Here
the 1/e width, (d;),,, = 0.37 mm. This is smaller than the intensity 1/e width due
to the curvature of the LO and signal beam wavefronts.

The effect of wavefront curvature can be seen in the pictorial representation in
Figure 5.2. This cartoon shows the effects of scanning d, and d, on the overlap of
LO and signal beam wavefronts. In this illustration, the wavefronts are represented
by two identical rectangles of finite thickness and their overlap as the gray shaded
area. Fig. 5.2(A), shows the decrease in wavefront overlap when a shear Az = d, is
introduced between the two beams. Fig. 5.2(B) shows that for curved wavefronts,
the overlap is decreased for an identical shear.

The radius of curvature of the wavefront R can be determined from the position
distribution at zero transverse momentum (d, = 0). As shown by Equation 5.6, for

d, = 0, the beat intensity drops to 1/e for

11 K2\ P
d, = (472 S > = (o), (5.9)
Since we have previously determined the parameter a from the p; /. width, the (d,), Je
width depends only on o, the transverse coherence width and R the wavefront radius

of curvature. For the case of the He-Ne laser beam, the wavefront is completely

spatially coherent so that o > 2a. This allows R to be determined by

1 1 —1/2
R = koa ((dz)?/e — @) . (510)
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Figure 5.2: Pictorial interpretation of the overlap of two identical wavefronts when
a shear or relative angle is introduced between them.
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From the He-Ne laser beam data shown in Figure 5.1, R is found to be 1.36 m.

For beams which have only partial spatial coherence, the assumption that o >
2a is not valid. The effects of a transverse coherence length o, smaller than the beam
diameter, 2a are shown in Fig. 5.2(C). In this cartoon, the graded area represents the
coherent area and the shaded area shows that for the same shear Ax, the overlap is
decreased compared to the fully spatially coherent wavefronts shown in Fig. 5.2(A).
For such a case, the transverse coherence width, o, must be determined before R can

be found. Recalling Eq. 5.6,

1 1 d, dy\>
2 2 2 92 m
|VB|* o exp {—dz(@ + ;)] exp [—koa (f_i — E)

exp [—%] , (5.11)

I note that by integrating |V|? over all momentum displacements (d,), I can remove

the dependence on the wavefront curvature (R). This yields a signal

1 1
2
|Vi|* o exp [—dz(@ + ;)} : (5.12)
for Al’ = 0. This momentum-integrated signal now depends only on a and ¢. This can
be realized from the experimental data by summing all of the d, values in the optical

phase space distribution for each position d,. This will yield a gaussian distribution

with a 1/e width of

1 1\ V2
(dz)1)e = (@ + ;) : (5.13)

This allows determination of ¢ provided that a is already known. Once ¢ has been
found, it can be inserted into Eq. 5.8 to find the wavefront radius of curvature, R.

Because o > 2a for the He-Ne laser beam, the momentum-integrated signal did not

yield a value for (d;), Je significantly different than the spatial width 2a, as expected
for a spatially coherent beam.

To complete the characterization of the coherence, the longitudinal coherence
length is also needed. The coherence length is conventionally defined as the range
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of path length differences between two beams for which an interference pattern is
observed at an intensity greater that half the maximum intensity. It is related to the
source charcteristics by

l ~ 2In2 A2

. 5.14
7T A)\FWHM ( )

where A, is the center wavelength of the source and AApw gas is the full width at
half maximum of the source wavelength distribution. In our method, according to

Eq. 5.6 the beat intensity drops to 1/e for

V2

A=Y=
b=

= Alp, (5.15)

where Ak is the 1/e width of the wavevector distribution. Since k = 27/, the

wavevector distribution is related to the wavelength distribution as

A)\l/e: 7T A)\FWHM
A2 v1In2 A2

Using Eq.’s 5.14 and 5.16, the parameter our method measures is related to the

Ak =2 (5.16)

coherence length as

l. v21n2 )\g
v2In2 T ANrwHM

For the He-Ne beam, Table 5.1 lists the center wavelength as A\, = 632.8 nm

Alg =

(5.17)

and the Melles-Griot catalog specifies the laser linewidth approximately as Av ~ 1
MHz. Using the fundamental relation ¢ = v\, the linewidth can be related to the
wavelength spread as

Av = cﬁ—; (5.18)
Thus the He-Ne beam has a wavelength bandwidth of A\ ~ 107® nm which corre-
sponds to a coherence length of [, > 100 m. This coherence length is obviously too
long for our method to measure as Al’ can be scanned 2” at most. However, for
sources with coherence lengths of a few microns, our method is very useful as shown

in the SLD characteristics in the next section .
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Figure 5.3: Measured optical phase space distribution for Anritsu SLD beam.
5.2.2 Low Coherence Source: Anritsu SLD

Figure 5.3 shows the measured optical phase space contours, |Vz(d,, d,)|?* for a typical
beam generated by an Anritsu superluminescent diode (SLD) after collumation and
beam-shaping. As with the optical phase space contours for the He-Ne beam, the data
in Fig. 5.3 is obtained by scanning d, and d, while keeping the difference between
the LLO and signal path lengths, Al’, at zero. The Anritsu SLD’s typically have a
bandwidth of AApw gy =10-16 nm and a center wavelength of A\, = 852 nm. The
data presented in Fig. 5.3 were taken for a power output of 1.5 mW produced by a
driving current of 85 mA.

Proceeding with the coherence characterization as before, the momentum distri-
bution at zero transverse position (d, = 0) is seen to be gaussian with a 1/e width
P1/e/ko = (dp/ fo)17e = 0.32 mrad. Substituting this value into Equation 5.8 the inten-

sity width is found to be 2a = 0.85 mm. For zero transverse momentum, the position
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Figure 5.4: Mean-square heterodyne signal plotted as a function of effective path
delay Al’ for the Anritsu SLD at two different driving currents. The power output
at 85 mA is 1.5 mW and at 110 mA is almost 4 mW.

distribution has a gaussian 1/e width (d;)1/. = 0.24 mm, signifigantly smaller than
the calculated spatial 1/e width, 2a, of 0.85 mm. This is because the beam from the
SLD not only has a curved wavefront, but also possesses a finite transverse coherence
width, 0. As illustrated in Fig. 5.2, both of these effects will diminish the wavefront

overlap which contributes to the heterodyne beat.

To determine the transverse coherence width, o, the data are summed over d,

for each value of d,. This results in a gaussian with a 1/e width (d),,, = 0.83 mm.
Using 2a = 0.85 mm and Eq. 5.13, we find that ¢ = 4 mm. Since the 1/e transverse
coherence width is approximately 5 times larger than the 1/e spatial width, the
output of the Anritsu SLD is deemed to be spatially coherent. Lastly, I note that
since o and 2a are known, the 1/e width of the position distribution can be used to

deduce that the radius of beam curvature R is 0.78 m by using Eq. 5.10.

The longitudinal coherence characteristics of the Anristu SLD are examined by
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holding d, and d, constant and scanning Al’. The beat intensity drops to 1/e for
Al' = 264 ym = Alg. By Eq. 5.17, the corresponding coherence length is [,
= 31.1 pm. This agrees with the coherence length found by inserting the center
wavelength (A, = 852 nm) and bandwidth (AApw gy = 10.3 nm), as measured
with a monochrometer, into Equation 5.14. The measured bandwidth is slightly less
than the 12.3 nm specified by the manufacturer as some bandwidth is lost due to
aperaturing in collumation and beam shaping. These measurements were made at an
output power of 1.5 mW which corresponds to a driving current of 85 mA. Although
increasing the driving current results in increased power, the longitudinal coherence

characteristics began to degrade for currents greater than 85 mA.

To examine this degradation, Al’ scans were taken at two different driving currents
over a range of 1 mm. As shown in Fig. 5.4, the scans for driving currents of 85 mA
and 110 mA are markedly different. At 85 mA, secondary peaks appear which are
6 orders of magnitude lower than the primary peak at zero path delay. These peaks
indicate coherence between LLO and signal beams for nonzero path differences. At
110 mA, the secondary peaks become only a factor of 100 smaller than the primary
peak, and repeat every 0.45 mm. This periodicity suggests that the secondary peaks
arise from multiple reflections within the diode package. The secondary peaks are
extremely undesirable for imaging applications based on detecting heterodyne signals
because they degrade the longitudinal resolution of the measurement. The secondary
peaks seen here are eliminated for the novel high power, extended bandwidth SLD’s

from the Sarnoff Corporation which are characterized in the next section.

5.2.3 Low Coherence Source: Sarnoff SLD

The optical phase space contour plot for a typical beam coming from a high power,

extended bandwidth Sarnoff SLD is shown in Figure 5.5. As with the previous contour
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Figure 5.5: Measured optical phase space distribution for Sarnoff SLD beam.

plots, the data are obtained by scanning d, and d, while holding Al" fixed at zero.
These SLD’s have bandwidths of 40-50 nm, a center wavelength of 830 nm and can
produce 50-100 mW with adequate heat sinking. The data shown are obtained for a
driving current of 640 mA, producing an output power of 28 mW. These are the test
conditions specified by the manufacturer.

To begin the coherence characterization of the Sarnoff SLD beam, the momentum
distribution at zero transverse position (d, = 0) is plotted. Its distribution is gaussian
with a 1/e width pi/e/ko = (dp/fo)17e = 0.27 mrad. Using this value in Equation
5.8, the intensity width of the beam is found to be 2a = 0.98 mm. The position
distribution at zero transverse momentum (d, = 0) is found to be gaussian with a
1/e width of (d;)1/e = 0.24 mm, which for the same reason as the Anritsu SLD is
signifigantly smaller than the calculated spatial 1/e width, 2a, of 0.98 mm. This is
due to the curved wavefront and finite transverse coherence width, o, of the beam

from the Sarnoff SLD. Both of these characteristics serve to diminish the wavefront
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Figure 5.6: Mean-square heterodyne signal plotted as a function of effective path
delay Al for the Sarnoff SL.D

overlap, as illustrated in Fig. 5.2.

The transverse coherence width, o, is determined by summing the data over d,
for each value of d,. The resulting distribution is gaussian with a 1/e width @1 Je =
0.37 mm. Using this value and the intensity width 2a = 0.98 mm in Eq. 5.13, o is
found to be 0.4 mm. The radius of curvature, R, is found to be 0.61 m using Eq.
5.10. For the Sarnoff SLD, the transverse coherence width is only 40% of the spatial

beam width. Thus it is concluded that this source does not have a fully spatially
coherent output.

The longitudinal coherence of the Sarnoff SLD is characterized by scanning Al’,
the path difference between the LO and signal beams, while d, and d, are held fixed
at zero. Figure 5.6 shows the data from a scan of path delays from 0 to 3 mm.
The bandwidth for the SLD was measured at the source to be AApwagy = 44 nm

with a center wavelength A\, = 832 nm using a monochrometer. For these spectral
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characteristics, the coherence length is calcluated using Eq. 5.17 to be [, = 7 pm,
which corresponds to an expected 1/e width of Alg = 5.9 ym. From the data in
Fig. 5.6 however, the beat intensity is seen to drop to 1/e for Al' = 7.4 ym = Alp.
This is signifigantly longer than the expected 1/e width as the optics used did not
have enough bandwidth for this source. As with the phase space contour plot, the
longitudinal coherence characteristics of this SLD were determined using an output

power of 28 mW produced by a driving current of 640 mA.

Figure 5.6 shows that secondary peaks in the longitudinal coherence scan for
the Sarnoff SLD are a factor of 10® smaller than the primary peak. This is an
improvement over the longitudinal coherence characteristics of the Anritsu diode
operating at both high and low powers. While the Sarnoff SLD offers extremely high
power and improved longitudinal coherence characteristics, it suffers from decreased
spatial coherence which make it less useful for certain imaging applications. For
example, optical coherence tomography relies on a tightly focused beam to achieve
high spatial resolution. For spatially incoherent beams such as that generated by the
Sarnoff SLD, tight focusing cannot be achieved. If the spatially coherent portion of
the beam from the Sarnoff SLD is selected by setting an aperature at 40% of the
beam diameter, the output power is decreased to 4.5 mW. While this power is still
greater than that produced by the Anritsu SLD, the decreased spatial coherence of

the Sarnoff SLD does hinder its utility.

To summarize, Table 5.2 lists the coherence characterization results for the three
types of sources used in my experiments. The parameters listed in this table cor-
respond to those used in the Gaussian Schell-model (Eq. 5.6) and also includes
the output power, wavelength distribution and coherence length (Eq. 5.14) for each

source.
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Source: | He-Ne laser beam Anritsu SLD Sarnoff SLD
Output Power: 4 mW 1.5 mW @85mA | 28 mW @640mA
Beam width, 2a: 0.54 mm 0.85 mm 0.98 mm
Transverse coherence
length, o: 00 4 mm 0.4 mm
Radius of wavefront
curvature, R: 1.36 m 0.78 m 0.61 m
Center wavelength, A,: 632.8 nm 852 nm 832 nm
FWHM bandwidth,
ANrw HM: <107% nm 10.3 nm 44 nm
Coherence length, [.: >100 m 31.1 pm 7 pm

Table 5.2: Summary of source coherence characteristics.
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Chapter 6

Multiple diffractive scattering in
transmission

This chapter presents a study of measured optical phase space distributions for light
from a coherent source which has been transmitted through a turbid medium. The
transmitted momentum distributions exhibit three components, a ballistic peak, a
narrow pedestal and a broad background. The narrow pedestal is found to decay
more slowly than the ballistic peak as the concentration of scatterers is increased.
This behavior is explained with a simple theory that includes multiple diffractive

scattering but treats large angle scattering as a loss.

The first section of this chapter begins by presenting a brief review of the exper-
imental setup as configured for this transmission study. The basic characteristics of
the turbid media used as scattering samples are presented in this section as well. The
second section of this chapter presents the experimental data for the study. Initially,
optical phase space contour plots are presented for a narrow collimated He-Ne beam
transmitted through turbid media for various concentrations of scatterers. This data
contains interesting features in its momentum distribution which are investigated
further using a large diameter input beam. The large beam prevents the input beam
size from limiting the detected angular (momentum) scattering characteristics. The
data obtained using the large diameter He-Ne beam are also included in this section.
The data are analyzed using a theoretical model derived from the transport equation
for the Wigner distribution. The model is derived in detail in section 6.3. Finally, the
chapter concludes with a discussion of the physical interpretation of the theoretical

model.
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6.1 Experimental Setup

6.1.1 Heterodyne detection scheme for a coherent source

Figure 6.1 shows the experimental scheme as configured to measure the light from
a coherent source transmitted through a turbid sample. In this scheme, the signal
beam at frequency w is incident on a scattering sample. The light emerging from
the sample is mixed with a strong local oscillator (LO) at frequency w + 10 MHz
at a beamsplitter (BS2), resulting in a heterodyne beat signal. The beat signal
is detected using photodiodes configured in a balanced detection arrangement As
shown in detail in section 4.1.1, by squaring the detected beat signal, the overlap
of the Wigner distributions for the LO and signal fields is measured. In addition,
scanning mirror M1 and lens L2 allows the effective center position and momentum
of the LO to be varied respectively. Thus the optical phase space distribution of the
signal field is mapped out as a function of L.LO position and momentum. The detected
signal is given in terms of the Wigner distributions of the L.O and signal fields by Eq.

4.21 as
A N 25 32 - A o k A g
S(dz’t, dp) = /d T d 2N WL()(LL‘J_ - dz.T,p_L + ?dpil?) Ws(il?J_,pJ_). (61)

In this expression, d, is the shift of mirror M1, d,, is the shift of lens L2 and f is the

focal length of lenses .1 and L2.

6.1.2 Turbid medium

To learn how to interpret the optical phase space distribution of light emerging from
a turbid sample, scatterers with known characteristics are needed. Biological samples
can have particles of various sizes and optical properties which make them difficult
to model as scatterers. Thus they would make a poor choice for an initial study
such as this. We chose a turbid medium consisting of latex microspheres (n = 1.59)
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Figure 6.1: Experimental scheme for transmission experiments.

in a water/glycerol mixture. Monodisperse size distributions of latex microspheres
are available in a variety of particle sizes and concentrations from companies such
as Polysciences, Inc of Warrington, PA and Duke Scientific Corp. of Palo Alto, CA.
The scattering characteristics of these particles can easily be modelled using the Mie

solution [24] provided their size and index of refraction are known.

The particles are suspended in a mixture of 75% water and 25% glycerol. This
mixture is chosen to produce neutral buoyancy for the microspheres. The index of
refraction of the mixture is found to be 1.36 by passing a He-Ne laser beam through a
triangular container similar to an equilateral triangular prism. By noting the angular
deviation caused by adding the mixture, the index of refraction is measured to within
0.3% of published values for this mixture at this wavelength. This index of refraction
of the medium results in a relative refractive index of 1.17 for the latex microspheres
compared to the medium. Data were taken for varying concentrations of spheres in
water /glycerol in a precision 1”7 diameter cylindrical cell of optical path length L = 10

111111,
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Figure 6.2: Mie differential cross section for scattering from 11.4 pym diameter
polystyrene spheres with parameters n, = 1.17, n, = 1.36, and Az, = 633 nm.
Large spheres are specifically selected for the transmission studies to give highly
forward peaked scattering . The scattering characteristics are determined using the
Mie solution for scattering of light by a dielectric sphere [24] for each size particle and
wavelength of light used. In the coherent source experiments (section 6.2), the wave-
length of the He-Ne beam in air is Ay; = 632.8 nm and the spheres used have a radii
of 5.7 micrometers. The Mie solution for these parameters gives a total scattering
cross section o, that is 1.98 times the geometrical cross section, i.e., 0g = 202 um?. It
is assumed that there is no absorption. The theoretical angular distribution (differen-
tial cross section) is shown in Fig. 6.2. The peak amplitude has been normalized to 1.
The angles are the transverse momenta given in units of the photon wavevector, k,,
in vacuum. These angles have been multiplied by 1.36 to account for the propagation
from the water/glycerol mixture into air where they are detected. The differential
scattering cross section shows a central diffractive peak that is nominally gaussian.

Its half width at 1/e is 31.6 mrad which corresponds to a width of 23.2 mrad in
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the medium. This distribution is highly peaked in the forward direction with a low
amplitude broad background that is not visible here. This characteristic is implied
by the average of the cosine of the scattering angle, which for these spheres is found

to be (cosf) = 0.92.

6.2 Experimental Data

6.2.1 Measured phase space distributions

Initially, we have measured the optical phase space distribution for transmission
of a narrow, collimated gaussian beam through a turbid medium of 5.7 um radius
polystyrene sphere in a 25% glycerol/75% water mixture. Fig. 6.3 shows a measured
phase space contour plot (log scale) for a 0.5 mm diameter input beam to the sample.
Here, the concentration of spheres is p = 2x 10° /cm?®, and the ballistic contribution is
attenuated by exp(—4). The ballistic light appears as a narrow island in the center of
the contour plot. A narrow pedestal appears around the ballistic contribution. Both
the pedestal and the broad large angle scattering contribution exhibit a correlation
between momentum and position as expected for a diverging localized source. This
divergence corresponds to a wavefront curvature of 2.1 cm, approximately the distance
between the input face of the sample and the input plane of lens L2 (see Fig. 6.1),
where the signal Wigner distribution is sampled. Fig. 6.4 shows the phase-space
contours at higher concentration, p = 6 x 10%/cm?, where the ballistic attenuation
is exp(—12). In this case, the momentum and position distributions broaden. (Note
the increased horizontal and vertical scales). The correlation between position and
momentum indicates a wavefront curvature of 1.5 cm, corresponding to a source
located near the center of the cell. At higher concentrations the source position

appears to move toward the sample output face.
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Figure 6.3: Measured optical phase space distribution (log scale) for light transmit-
ted through a turbid medium for p = 2 x 10%/cm?® (ballistic attenuation: exp(—4)).
The central island is the ballistic contribution.

6.2.2 Momentum distributions of diffractive pedestal

To explore in detail the shape and amplitude of the pedestal shown in Fig. 6.3,
we have measured the optical phase space distributions for transmission of a large
diameter input beam through the sample (¢ = 3.8 mm half width at 1/e intensity).
In this case, the LO beam is small in diameter (a, = 0.38 mm) compared to the
input beam, so that the output Wigner distribution is nearly independent of position
x over the LO diameter. Further, the momentum width of the local oscillator is small
compared to the width of the momentum distribution of the scattered light. In this
case, the measured mean square heterodyne beat signal S(d, = 0, ?dp) (Eq. 6.1),
determines approximately the true transmitted Wigner distribution of the scattered
light, We(z = 0,p = ?dp), excluding the ballistic contribution that is sharply peaked
in the forward scattering direction.

For fixed LO position d, = 0, plots of S(d, = 0, %dp) = Ws(z = 0,p
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Figure 6.4: Measured optical phase space distribution (log scale) for light transmit-
ted through a turbid medium for p = 6 x 10%/cm? (ballistic attenuation exp(—12)).
The central island is the ballistic contribution.

are shown for various concentrations of 5.7 pum radius spheres ranging from p =
0.4 x 10%/cm? to p = 6 x 105/cm?®. In general, the scattering distribution is seen to
have three components: a ballistic peak, a central narrow pedestal and a broad back-
ground. The ballistic contribution is not shown, as it is orders of magnitude larger
than the narrow pedestal and the broad background. The half width at 1/e intensity
of the ballistic peak is 0.4 mrad, which is much narrower than the widths of the
scattered light distributions. At low concentrations, the scattered light data shows
a diffractive peak, Fig. 6.5, that agrees with the Mie solution. As the concentration
is increased, Fig. 6.6, the diffractive peak is seen to broaden and attenuate while the
broad background becomes more prominent, until in Fig. 6.7 the diffuse background
becomes comparable to the diffractive component. Here, the ballistic component is

still a factor of 10 larger than the pedestal, and is not shown.

The experimental angular distributions, Wg(z = 0,p = ?dp), are fit to two com-
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Figure 6.5: Measured optical phase space distribution ~ W(x = 0,p) for
p = 0.4 x 10%/cm3 (linear scale, ballistic contribution: exp(—0.8), not shown). The
theoretical prediction is shown as a solid curve. Vertical scale is 10~ of the signal
with no scatterers present.

ponent curves (solid lines) consisting of a narrow central pedestal and a broad diffuse
background. As discussed above, the ballistic contribution is ignored, as it is localized
near the origin. The central pedestal in the two component curve arises from mul-
tiple diffractive scattering. The shape of this component (normalized to 1 at p = 0)
is determined using the theory described in detail in section 6.3.3. The amplitude
of this component is left as a free parameter and is later compared to the predicted

value. The broad background, which is not of interest here, is modeled as a Gaussian
distribution in p with an undetermined amplitude.

Fig. 6.5 shows the angular scattering distribution Wg(z = 0,p = ?dp) for a
scatterer concentration of p = 0.4 x 10¢/cm? (vertical scale is 107° of the signal with
zero scatterers present). The transverse momentum p is given in units of the optical
wavevector in air k,. The position x is in mm. This figure shows data points which

are taken for angles § = p/k in the range from -225 to +75 mrad. However, the fitted
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Figure 6.6: Measured optical phase space distribution ~ W(x = 0,p) for
p = 2 x 10°/cm? (linear scale, ballistic contribution: exp(—4), not shown). The
theoretical prediction is shown as a solid curve. Vertical scale is 107 of the signal
with no scatterers present.

curves (solid line) are done for the data outside 430 mrad, as interference with the
gaussian tail of the ballistic light distribution causes these points to be unreliable.
The ballistic peak is attenuated at this concentration by exp(—0.8) and is not shown
in this figure as it is orders of magnitude larger than the scattered light.

Fig. 6.6 shows the angular scattering distribution at a higher concentration, p =
2% 10%/em? (vertical scale is 107° of the signal with zero scatterers present). Here we
can see the broad diffuse background become significant while the central pedestal
has broadened slightly. The ballistic light at this concentration has been attenuated
by exp(—4) and again is not shown here as it is orders of magnitude larger than the
scattered intensity.

In Fig. 6.7, the angular scattering distribution is shown for a scatterer concentra-
tion p = 6 x 10° /em?® (vertical scale is 1077 of the signal with zero scatterers present).
In this plot, we see the broad background has become comparable in magnitude to
the central pedestal. At this concentration the ballistic light has been attenuated by
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Figure 6.7: Measured optical phase space distribution ~ W(x = 0,p) for
p = 6 x 10°/cm? (linear scale, ballistic contribution: exp(—12), not shown). The
solid curve shows the theoretical prediction. Vertical scale is 107 of the signal with
no scatterers present.

exp(—12), an order of magnitude larger than the scattered light, so again it is not

shown.

To explore how the amplitude of the central pedestal varies with concentration, the
maximum amplitudes for each of the fitted curves are shown in Fig. 6.8 as a function of
scatterer concentration (Table A.2). These are compared to the predicted amplitude
(solid line) with no free parameters as given by Equation 6.52. For comparison, the
amplitude of the ballistic peak as a function of scatterer concentration is shown in
Fig. 6.9. Over most of the range of scatterer concentrations, the amplitude of
the central pedestal, Fig. 6.8, is found to decay exponentially with an attenuation

coefficient that is 656% of that found for the ballistic.
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Figure 6.8: Amplitude of the narrow pedestal arising from multiple diffractive scat-
tering as a function of scatterer concentration p. The solid curve shows the prediction
with no free parameters. Note that the amplitude of the pedestal decays with an ex-
tinction coefficient that is 0.65 of the ballistic extinction coefficient of Fig. 6.9.
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Figure 6.9: Amplitude of the ballistic component as a function of scatterer conectra-
tion p. The solid line shows the prediction for exponential decay with the extinction
coefficient determined from the total scattering cross section.
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6.3 Theory

In this section, a theoretical model is developed to explain the data shown in section
6.2.2. The theoretical treatment begins by considering the evolution equation of
the Wigner distribution in a multiple scattering medium. The treatment employs a
Green’s function approach to predict the transmitted optical phase space distribution
in terms of the input distribution. As an initial demonstration of its utility, the
Green’s function approach is used to predict the Wigner distribution transmitted
through a turbid medium in the limit of a highly scattering sample such as Intralipid
solution (Fig. 1.1). This limit allows an approximate form of the scattering kernel
to be used. The model is used to explain the experimental data for transmission of a
coherent source through Intralipid solutions of varying concentration shown in Figure

1.1.

The Green’s function is also used to predict the output momentum distribution for
the transmission of a large diameter coherent input beam through a sample of large
diameter spheres, as is the case for the data in section 6.2.2. These two criteria are
important as they allow certain approximations to be made in the theoretical treat-
ment. The large diameter of the spheres results in sharply forward peaked scattering.
This allows the scattering kernel to be modeled as a narrow gaussian distribution cor-
responding to the diffractive component of the scattering. Thus the transport can
be viewed in this treatment as multiple diffractive scattering. In addition, the input
beam is assumed large in diameter compared to the LO beam, so that the system
exhibits approximate translation invariance across the output face of the sample [89].

These conditions are approximately satisfied in the experiments.
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6.3.1 Transport equation for the Wigner distribution in a
scattering medium

In general, the transport equation for the Wigner distribution can be somewhat
complicated, exhibiting nonlocal scattering [13,90]. However, when the Wigner dis-
tribution varies slowly in its spatial argument compared to an optical wavelength, the
transport equation is approximately local and is identical in structure to the usual ra-
diative transport equation for the specific intensity [13,90]. As a first approximation,

this equation is used to model the data.

The evolution equation for the Wigner distribution can be divided into two parts:

oW (. pt) _ <M> n <M) (6.2)
ot dt ) pres dt ) scarr.

In this expression one component accounts for the free space evolution and one com-
ponent accounts for the evolution due to scattering. The free space evolution of the
Wigner distribution was derived in section 3.3. Recalling Eq. 3.48, the free space

evolution is given by
+ - VzW(Z,p,t) = 0. (6.3)

The velocity given in the above expression is related to the momentum by

62

V= ——7. 6.4
v ngwp (64)

Here, ¢/n, is the velocity in the medium and w is the optical frequency. Thus the

free evolution term in Eq. 6.2 is given as

2
niw

2
(M> W@ (6.5)
dt FREFE

Provided that the Wigner function is slowly varying compared to an optical wave-

length, the scattering term can be modelled as a collistion integral, which can be
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written as [91]:

dw c o o
(W) = ——ur(P)W(Z,p,t) + / &P K (pp"\W(Z,p,t).  (6.6)
SCATT.

No
In this expression, pp(p) is the total scattering coefficient. It is the sum of the

scattering and absorption coefficients,

BT = ps + Ha (67)

and can be related to the total cross section or(p) by

pr(p) = por(p), (6.8)

where p is the density of scatterers. K (p,p”’) is the scattering kernel, it is related to

the differential scattering cross section do/dS) by

2 — =/ 2
Lo C p-—p do
K@m)—pﬂw5< ; )a; (6.9)

o

An energy conserving delta function is included so that the kernel describes elastic

scattering. Note that

C

s/ i c
[ EFEGE) = post@) = Zns() (6.10)

The origin of the two terms in Eq. 6.6 can be understood heuristically. The first
term represents the loss of phase space density of momentum p’ due to collisions with
the particles in the unit volume (p) at position Z, each subtending a total cross section
or. The second term represents the arrival of phase space density due to collisions

changing the momentum to p from all other momenta p”’.

Using these results, the approximate transport equation is given by

- = - - & e —
e VaW(Z,00t) = ——pur(B)W(Z,5.t) (6.11)
+ / &K (5, 5)W (. 5.1).
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This equation is analogous to the transport equation used in phenomenological ra-
diative transport theory [26]. The two equations have the same structure when the
Wigner distribution is assumed to vary slowly over the scale of an optical wavelength.
Physically, this criteria implies that the scattering is local, i.e. the position Z does
not change during the scattering process. Provided that this key assumption is met,
Equation 6.11 can be used to correctly model the propagation of light in multiply

scattering media in many situations.

6.3.2 Transmission via Green’s function approach

Green’s functions for the transport equation (Eq. 6.11) are easily obtained by Fourier
transform methods [26] with the approximations that the total scattering rate is
independent of momentum and the kernel is a function of p— p”’ only. For a time-

independent solution, the Green’s function, G, satisfies

d3ﬁIIK(ﬁ— ﬁl) Gp(l_", fl;ﬁ”,ﬁl)

N
S
<
8
_|_
=
S
~
S
\;Hl
8]
=
&

— 87— 28— 7). (6.12)

The solution to this equation is given by [91]

= =, = = d3§ 7 Lo o =/ Lo s o
Gp(Z, 2 p,p") = 2n)p | @) exp (iq - (¥ — ') +ir'- (p—p")) (6.13)

Ny [

I
— dl exp(—ilq-p'/k) exp [—/ dl’ a(r7 + cj’l'/k)] ,
0

¢ Jo

where k = n,w/c is the magnitude of the optical wavevector. Here,

n%ﬂ(ﬂ = n%uT — K(7), (6.14)
and
R - / BAF exp(—iF- Ap) K(Ap). (6.15)
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The Green’s function can be viewed as a transfer function which propagates the
Wigner distribution within the scattering medium. Thus, the Wigner distribution at
the output face of the scattering sample (z = L) can be calculated in terms of the

input distribution. The relation is given by:
!
We(L,Z1:p) — / P27, / 5 LEGy (1, L& 2 5 Wz #5). (6.16)

This method can be used to find the output distribution in a variety of situations
when an explicit form of the Green’s function can be realized. Finding an analytic
form of the Green’s function can be difficult as the [ and I’ integrals in Eq. 6.13 can
only be performed numerically when the exact form of the scattering kernel is inserted
into fi(7). Instead, approximate forms of the scattering kernel are often used to find
an approximate Green’s function. Useful forms of the Green’s function can be found
by considering the limiting cases of scattering kernels which are either very broad in
momentum or very narrow in momentum compared to the momentum distribution

of the Wigner distribution of interest.

For a collimated Gaussian beam, the corresponding Wigner distribution is narrow
in momentum. For an input distribution which is narrow in momentum, such that
p’ ~ kZ, the corresponding Fourier transform variable, 7, becomes large. In the
limiting case of ¥ — o0, corresponding to an infinitely narrow input momentum

distribution, K (7) goes to zero. Eq. 6.14 then shows that

C C
—A(F) = —pr. 1
—u7) i (6.17)

o

Physically, this makes sense as the ballistic light, which is narrow in momentum, will
decay with the maximum attenuation coefficient pr.
In the opposite limit of a Wigner distribution that is very broad in momentum

(narrow in the conjugate variable 7) compared to the scattering kernel, the kernel
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can be expanded in powers of 7. Assuming the kernel is a symmetric function of 7,

the scattering kernel can be written as

i - ",
lr) = pr = K(F) = pta + pr 5 K77, (6.18)

where

62 = 2(1 — cosb), (6.19)

which reduces to the mean square scattering angle for small angle scattering. Eq.

6.18 arises in the limit of a highly scattering sample.

The two limiting cases discussed above can be applied to explain the propagation
of bimodal Wigner distributions containing both broad and narrow features. Two
component distributions are common in transmission through a medium containing
scatterers comparable in size to a wavelength. In such a case, the ballistic light,
representing one component is narrow in momentum compared to the scattering
kernel while the incoherent background, representing the second component, is broad
compared to the scattering kernel. The transmitted distribution can be found by
treating the overall transmitted Wigner distribution as the sum of a broad and a
narrow component. Each transmitted component can then be found using Eq. 6.16,
by inserting the approximate kernels given by Eq.’s 6.17 and 6.18 for the kernel in
the respective Green’s function for the narrow and broad components.

The approach of using a two component distribution can be used to explain the
distribution transmitted through a scattering medium of length L containing particles
comparable to the size of the wavelength of incident light. In such a situation, the
measured heterodyne beat S(d,z,d,z) for d, = 0,d, = 0 is divided into a narrow

component, Sy, representing the ballistic light and Sp representing the incoherent
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background. The overall signal is found to scale with concentration as [91]

S(Ov 07 :UT)

= S S 6.20
SO0, vt (6.20)

2 72 — oL
7 (1P L) (kL)

In this expression, the measured beat intensity is normalized to the beat intensity for
no scatterers present. The mean square scattering angle 62 is defined in Eq. 6.19 and
the total attenuation coefficient is related to the scattering and absorption coefficients
by Eq. 6.7. The scattering and absorption coefficients depend on the concentration

of scatterers p by

Hs = PO (621&)

o = pPOg. (6.21b)

This model was found to agree with the data (Fig. 1.1) for transmission through

varying concentrations of Intralipid solution [14].

6.3.3 Multiple diffractive scattering

The experimental data for transmission of a large diameter beam through a sample
of large scatterers is seen to have three components: a ballistic peak, a central narrow
pedestal and a broad background (section 6.2.2). The following model describes the
evolution of the central narrow pedestal which is identified as arising from multiple
diffractive scattering.

For Mie scattering from large diameter (11.4 pm) spheres, the differential scat-
tering cross section, Fig. 6.2, exhibits a large diffractive scattering component that is
forward peaked. In addition, there is a component that scatters broadly into 47 solid
angle. This corresponds approximately to the geometric (classical) scattering cross
section. According to the Mie differential scattering cross section, approximately
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65% of the total scattering cross section arises from the broad part and 35% from the
diffractive part. In this case, the kernel can be modeled as having two distinct com-

ponents, denoted as Ky and K g respectively, where N denotes the narrow diffractive

kernel and B the broad kernel:
K(p,p') = Kn(p,p") + Kp(p,p"). (6.22)

It is convenient to divide the Wigner phase space distribution into the three

components seen in the experimental data:
W = Wgarr + Wp + Wp. (623)

Here, Wg4rr denotes the narrow contribution arising from purely ballistic propa-
gation of the input phase space distribution with attenuation at the total loss rate.
Wp denotes the phase space distribution of the narrow pedestal that arises from dif-
fractive scattering. Wp denotes a broad background contribution arising from large
angle scattering. An evolution equation can be derived for each of these components.
The derivation is closely related to those employed in previous studies of small angle
scattering [92].

For a time independent distribution, the evolution equation (Eq. 6.11) takes the
form

c? -

— N & — — - - —
B TWE D) = (W () + / B K (7,5 )W (E. §). (6.24)

n2w
The evolution equations for the three components are derived by inserting Eq.’s 6.22

and 6.23 into this expression and identifying the terms which contribute to each

component.

The ballistic contribution has a very narrow momentum distribution compared to

the width of both Ky and K. Hence, the integral term in Eq. 6.24 can be neglected
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in its propagation and W4 obeys the equation

—

cp
nok

- - c .
Ve Waarn(¥,p) = ok Wpart(Z,p). (6.25)
Using Eq.s 6.22, 6.23, and 6.25 in Eq. 6.24 yields an equation for the narrow pedestal
arising from small angle scattering:

cp
Mo

. . c . . S .
TWeld'p) = o We@. ) + [ a5 Knlip") We(@. 7

N

+/d3}7lKN(ﬁ;ﬁl) Wear(Z,7"). (6.26)

The last term on the right hand side in Eq. 6.26 arises from small angle scattering
of the ballistic phase space distribution. It acts as the source for the pedestal. The
first integral term on the right hand side describes multiple scattering of the phase
space distribution of the pedestal. This equation can be straightforwardly solved by

Green’s function methods as shown below.

Similarly, the broad phase space component obeys the equation

p
Mo

o

- ~ c . . L L L
-V Wg(Z,D) = Tk WB($7@+/d3pI[KN(p,pI) + Kp(p,p")| Wa(Z,p")

+/d3}7/ Kg(,0") Weart(@, ') + We(Z,p")]. (6.27)

The first integral term on the right hand side of Eq. 6.27 contains the large angle
scattering kernel that causes multiple scattering of the broad phase space distribution.
The narrow kernel causes scattering within W and does not cause attenuation of Wg.
In this case, the decay rate of Wy is approximately (¢/n,)ur— [ d*p"K(p,p’). Large
angle scattering of the ballistic and narrow pedestal distributions acts as the source
for the broad component of the phase space distribution. The sum of Eq.’s 6.25,
6.26, and 6.27 reproduces Eq. 6.24 with the two component kernel. Eq. 6.27 will not
be needed, as the phase space distribution for the narrow pedestal, Wp is of interest
here.
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The phase space distribution for the ballistic component obtained by solving
Eq. 6.25 is given by

z

Weart(z, Z1;D) ~ exp(—purz) WgALL(z =0,7, — Eﬁl;ﬁ). (6.28)

Here, we have assumed that the input beam is a collimated gaussian laser beam with
a half width at 1/e intensity a and that p, ~ k and v, ~ ¢/n,. The input distribution

just inside the medium at z = 0 is given by

0 = 1 2? +y° 2/, 2 2
Wearr(z2=0,71;p) ~ 6(p. — k)ﬁ exp | ———3— —a (pz +p,) |- (6.29)

Note that W§ 4, is normalized so that [d*T,d*pWp, .. (Z,p) = 1. The total ex-
tinction coefficient ur = por in Eq. 6.28 arises from the total scattering cross section

and absorption.

The distribution for the diffractive pedestal, Wp is readily found using a Green’s
function method to solve Eq. 6.26 With Eq. 6.28 for the ballistic component, the
source term for the phase space distribution of the narrow pedestal in Eq. 6.26 is
given by

S(E.7) = / &5 Kn(5.7) Waaro(Z, 7). (6.30)

The phase space distribution for the narrow pedestal of Eq. 6.26 is given by
Weld. ) = [ B2 05 G@. 757 7) S ), (6.31)

Where the Green’s function (Eq. 6.13) takes the general form

= St o ot d?ﬁ’ d*7 Y = )
Gp(Z, 2 p,p") = 2n) | @np exp (i (¥ — ') +ir- (pP—p"))  (6.32)

ne [

!
X — dl exp(—ilq- p'/k) exp {—/ dl’ p(7 + cj’l'/k)} ,
0

¢ Jo

In order to obtain an explicit form of the Green’s function for the pedestal G, an
expression for the scattering kernel is needed. The diffractive component of the Mie
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scattering solution is approximately gaussian in shape, and yields a differential cross

section of the form

do oy [_ (Aﬁm} |

= SN2 _ v
|f(p7p )| - dQ ﬂ_gg X 03})2 (633)

Here, oy is the cross section for diffractive scattering. 6, is the scattering diffraction
angle, of order 0, ~ 2/(kag), where ag is the radius of the scatterer and p = k =
new/c is the wavevector in the medium. The scattering angle is § = |Ap |/p where
Ap, = p|—p’ is the momentum change transverse to the z direction. The differential

cross section is normalized so that

do & anN 92
O— ~ 2 — —— | =on.
/d df2 /0 Wedeﬂeg o { 93} oW
Using Eq. 6.33, the collision kernel (Eq. 6.9) can be simplified for small angle

scattering. With §(p?/2 — p’2/2) = 8(p — p')/k =~ 6(p. — p.)/k, the collision kernel

K takes the approximate form:

L. L. c 1 Ap)?
En(pp") = Kn (= 7") = = 8(p = p2) —r oxp [—( 92;2) ] (6.34)

where puy = poy is the attenuation coefficient for diffractive scattering. The diffrac-

tive kernel is normalized so that

/ BAF Ky (AP) = ni,w. (6.35)

o

With this approximate kernel, the Green’s function, Eq. 6.13, is determined using

i(7), Eq. 6.14. In this case, i(7) is independent of r,, so that

21.2

L o, i
fi(7L) = pr — piv exp [—T(Ti + Ti)} = pr — K'(71). (6.36)

The source for the narrow pedestal, S(Z,p), Eq. 6.30, is

. c exp(—purz) z? +y?] 6(p. — k) Pz + 1,
S(@p) = —pn — 3 exp {_ a2 R

Ng Ta

(6.37)
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Here, we have assumed that the input field 1/e radius, a, is sufficiently large that the
diffraction angle of the input field 2/(ka), satisfies 2/(ka) << 0,, as is the case in our
experiments. Note that the source is nonzero only in the medium, so that 0 < z < L,
where z = L is the output face of the sample.

The phase space distribution for the pedestal, Wp is now easily determined from
Eq. 6.31. Since i(7.) (Eq. 6.14) is independent of r,, the r, and ¢, integrals in
the Green’s function (Eq. 6.13) are readily carried out and yield delta functions,
6(p, —pl,) and 6]l — (z — 2")k/p.]. With the source function, Eq. 6.37, p, = k so that
| =22 =L 2 for 2= L. Using Eq.s 6.15 and 6.36 for K'(7), it is straightforward

to obtain
Wp(L,Z,;p) = 6(p, — k) exp(—prlL) (6.38)
g . g L -
X / W exp(iqL - T1) /W €xp (”1 “pL— aiq 2/4)
L 5 L—2z' N
« / i K71 + (L — )\ /K] exp / dl K7, + G /k)
0 0
The 2’ integral in Eq. 6.38 is just
L ~
exXp |:/ dllKl(FJ_+q_’J_ll/k):| — 1.
0

Hence, the phase space density, Wp, is given by
0 2 2
5 €Xp (iq- &L —alq’/4)  (6.39)

(2m)
x/% exp(iF| - 1) {exp [/OL dl K (7, +q1l’/k)} _ 1}.

As shown in Equation 6.1 the heterodyne signal measures the convolution of

We(L,7135) = 8(pe— k) exp(—prl) /

transverse Wigner phase space distributions. For the phase space distribution of the

pedestal, the transverse distribution at the detection plane Wp(L,Z,,p)) is given by

WP(LafJ_;@ - 6(pz - k) WP(LafLaﬁL)' (640)
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To check the normalization of Wp(L,Z,, P ), note that integrating Eq. 6.39 over &
and P yields delta functions in ¢, and 7. Using K’ (0) = py which follows from

Eq. 6.14, one then obtains

/ P27, / 2p W(L, 71, 51) = expl—prl) (exp(uwL) —1)  (6.41)

— exp(—psL) — exp(—prL).

Here, ug = pur — py is the attenuation coefficient arising from large angle scattering
and absorption, i.e., the minimum attenuation rate for the pedestal phase space
distribution. This attenuation rate occurs when the pedestal is broad in transverse
momentum compared to the diffractive kernel, but narrow compared to the large
angle scattering kernel. In this case, large angle collisions and absorption are effective
in attenuating Wp but diffractive collisions are ineffective, as they cause scattering
within the distribution. The source of the pedestal is just the diffractive scattering
probability pydz’ times the intensity of the ballistic component, exp(—puzz’). The
pedestal contribution decays as exp[—up(L — 2’)]. Hence, one expects an integrated

output intensity given by

/0 dz'uy exp(—prL) exp[—up(L — 2')] = exp(—upL) — exp(—urL),  (6.42)

in agreement with Eq. 6.41.

When the input field 1/e radius a is sufficiently large that a/L >> 6,, Eq. 6.39
can be further simplified. Note that ¢; ~ 1/a and !’ is at most L in the argument of
K'. Then the maximum value of ¢, I'/k is L/(ka). The maximum value of r is of
order 2/(k#,), since K’ — 0if 7, > 2/(kf,). If a/L >> 6,, the ¢, dependence in the
argument of K’ can be neglected and the ¢, integral performed to obtain a gaussian

spatial distribution identical to that of the input field. This is consistent with the

assumption of a being large enough to achieve approximate translation invariance.
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The phase space distribution for the pedestal then takes the simple form

o exp(—Z2 /a®
WP(L,.ZL'J_,}?J_) = Mexp(—uqql)) (643)

Ta?
d2—’ 92]{2—'2
X / W exp(if, - P'1) {exp [,uNL exp <°T“)] — 1} .

In the limit that uyL >> 1, the gaussian in the exponent appearing in Eq. 6.43
can be expanded to lowest order in 72 to give a gaussian function of r; for which
the 1/e width is of order 2(6,kv/unL)™ . In this limit, multiple diffractive scattering
causes momentum diffusion. As long as (a/L)* >> unL(0,k/2)?, i.c.e, the mean
square width of the momentum distribution for py L scatterings is smaller than the
mean square angular aperture of the illuminated volume, the approximations used to
obtain Eq. 6.43 remain valid.

The 7| integral in Kq. 6.43 can be simplified by introducing the dimensionless

variable 77, = 6,kr| /2 Using 7, - p1 = n.1py cos ¢ and d% 177 = n,dn, dp, we have n

/ QW@ ex ,2p cos ¢ 2P
o or P\ O\ ,k

Then, the transverse Wigner distribution for the pedestal is given by

exp(—1z? /a?)
m202k2a?

*© 2p,
dn, 2n, J,
X/O ML 211 0(77¢9k

Here, the transverse position is x; = /2 + y? and similarly for the transverse

Wp(L,z,,p1) = exp(—purL) (6.44)

) {exp [,UNL exp(— } — 1}

momentum p,. The normalization of Eq. 6.44 is identical to that of Eq. 6.41, as is

. 2p. T po,20(n1)
2 _ T2
/dpJ_JO (meok>_29"k o

For the 11.4 pm spheres, the scattering diffraction angle obtained from the Mie

readily shown using

solution is 0, = 23.2 mrad. The extinction coefficient uy = 0.35ug arises from
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diffractive scattering only, where pg = pog is the extinction coefficient corresponding
to the total scattering cross section, i.e., the ballistic extinction coefficient excluding
absorption.

Recalling Eq. 6.1, the expression for the measured mean square beat signal when

a coherent source is used is given in terms of the transverse Wigner distributions for

the LO and signal fields as
k
S(dy, dy) — / BFEFWio(Fs — di iy + ) Ws(FLFL). (6.45)

With the LLO displaced in position and momentum along the # axis only, the trans-

verse Wigner distribution for the LO field is given by

k 1 [_ (m—dm)2+y2]

Wio(ZL — deZ,pL —dpy—2%) = —exp 5 (6.46)
a

" fo 2 o
X exp {—aﬁ ((pm - dpfﬁ)2 +p§>} :

The measurements in this specific case are carried out using an LO half width
at 1/e intensity a, that is small compared to the spatial extent of the signal field,
so that a, << a. Further, the diffraction angle of the LO is small compared to the
scattering diffraction angle, 2/(ka,) << 6,. Thus, the Wigner distribution of the LO
is sharply peaked both in position and momentum compared to that of the scattered
signal field. Since the LO Wigner distribution of Eq. 6.46 is normalized to unity,
the mean square beat signal for the pedestal can be evaluated using Eq. 6.45 with

Eq. 6.46 given by the approximation

— A = k A k
Wio(Zy — dy2, P — dpf—x) ~ §(x —dy) 6(y) 6(ps — dpf_) 5(py)- (6.47)
Hence, we obtain
k
Se(war,pu) = We(L,z = dg,y = 0;pz = dp?apy =0), (6.48)
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where we take p; = /p2 + p2 = |dyk/f,| in the transverse Wigner distribution for
the pedestal, Wp.

As a reference level, the ballistic contribution to the mean square beat signal is

determined by using Eq. ’s 6.28, 6.29, and 6.46 in Eq. 6.45:

a2

o

T
SpaLr(Ta, pyu) = 32 XP {aﬁp?u - %] exp(—prL). (6.49)

Diffraction of the input beam is negligible in the experiments and is therefore not
included in Eq. 6.49.

The experimental data in section 6.2.2 show measured smoothed Wigner phase
space distributions that are plotted as the mean square beat signal divided by the
maximum ballistic mean square beat signal (for zero concentration at x = p = 0).

The latter is given by

a2

SuBALL = niQLetﬂ_Q—oalg’ (6.50)
where 7 is the heterodyne efficiency for detection of the ballistic light. In the
experiments, a/a, = 10 and the heterodyne efficiency is found to be 0.4, due to
difficulty in matching wavefront curvatures for beams of such disparate diameters.
For the pedestal, only scattered light that is mode matched to the LO is detected.
Thus, the heterodyne efficiency for detection of the scattered light is unity.

With Eq. 6.44 and Eq. 6.48, the smoothed Wigner distribution for the pedestal
and the diffuse background normalized to Sy parr, is given by

SMBALL

= A(p) Fp(p1,p) + B exp (—p1/(Apg)?) (6.51)

Here, B is the amplitude and Apg is the width of the broad background component
that is fit to the data. A(p) is the magnitude of the pedestal mean square beat signal

normalized to Sy parry:

A(p) = exp(—prL)

T2 02242 / dni 2n, {exp [,UNL exp(—ni)} — 1} . (6.52)
nHet o o 0
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Fp(p,) is the shape of the pedestal normalized to 1 at p, = 0:

We(r, =0,p,)
F = 6.53
PP = e = 0,0 = 0) (6:33)

where Wp(z1,py) is given by Eq. 6.44. This theoretical result was found to agree

very well with the data presented in section 6.2.2 as discussed below.

6.4 Discussion

Eq. 6.44 describes the Wigner phase space distribution, Wp(x,p,) for a pedestal
that arises from multiple diffractive scattering. This pedestal has a much broader
momentum distribution than the Wigner distribution for the ballistically transmitted

field from which it arises.

Eq. 6.44 has a simple physical interpretation. Wp(z,,p,) can be expanded as a
power series in py L that explicitly displays the distributions for various numbers of

multiple scatterings:

exp(—z?% /a?)

Wp(L,z1,p1) = B R— exp(—(ur — pn)L) (6.54)
S (unL)" exp[—p? /(nd3k?)]
8 ; (v L) n! Tno2k? '

Note that z, = \/m and similarly for p, . For each term, there is a normalized
gaussian momentum distribution of width 6,k/n in the z and y directions. This
describes a random walk distribution for n momentum changes of magnitude 6,k.
exp(—punL)(unL)™/n! is a Poisson distribution describing the probability of n scat-
terings, with 7 = py L the mean number of scattering events. With exp(—puy L) incor-
porated into the probability of n scatterings, the pedestal decays as exp|—(ur—pun)L].
The factor ugp = pur — py is just the extinction coefficient arising from large angle

scattering (and absorption).
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Note that the missing n = 0 term in Eq. 6.54 that is nonzero for uyL = 0 repre-
sents the ballistic contribution that was treated separately in determining the mean
square beat signals of Eq. 6.1. Separation of these contributions is convenient since
the momentum distribution of the ballistically transmitted light is narrow compared
to that of the local oscillator (LO) beam while the momentum distribution for Wp is
broad compared to that of the LLO for the conditions of the experiment..

For uy L >> 1, Wp is approximately a single gaussian distribution. In this case,

we can approximate

explunL exp(—n7)] — 1~ exp[uyL(1 — n?)].

Here, uyL >> 1 assures that n? << 1 over the dominant region of integration. In

this limit, the Wigner distribution for the pedestal is given by

exp—p?/(un LOIK?)]
mun LO?k?

27,2
exp —x“/a
P T oxpl(—(pir — i)

WP(L,«TJ_,pJ_) - (655)

wa

Eq. 6.55 describes a momentum distribution for a random walk with 7 = uy L steps
of size ,k. This result arises because the width /7 of the Poisson distribution of
Eq. 6.54 is small compared to n for n >> 1. Hence, the term in Eq. 6.54 with n =n
dominates, yielding Eq. 6.55. Neglecting absorption, the pedestal decays as pur—uy =
1B, the extinction coefficient arising from large angle scattering, as described above.
Note that Eq.’s 6.54 and 6.55 are valid only for small angle scattering. Further, the
input beam half width at 1/e intensity, a, must be large enough so that 0,v/unL <<
a/L. Hence, there is negligible expansion of the input beam.

Theoretical Wigner phase space distributions S(x = 0,p) have been fit to the
data of Fig.’s 6.5 - 6.7 using Eq. 6.51. The fits are shown as smooth curves. The
broad background is fit using the phenomenological constants B and Apg and is

not of interest here. However, the shape of the narrow pedestal is obtained from
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the Eq. 6.53 using the experimentally determined parameters: LO half width at 1/e
a, = 0.38 mm, half width at 1/e for the input beam to the sample a = 3.8 mm, and
cell length L = 1 cm. The index of refraction of the background medium is n, = 1.36.
The optical wavevector in the medium is k = n,k, where k, = 27/, is the wavevector
in the air, with A\, = 0.63 um the HeNe laser wavelength. The heterodyne efficiency
defined in Eq. 6.50 is 7pe; = 0.4. From the Mie solution, Fig. 6.2, we find that the half
width at 1/e of the central diffractive peak in the medium is 6, = 23.2 mrad. The total
scattering cross section, og = 202 um?. The diffractive cross section oy is estimated
from the area under the diffractive peak (for 0 < 6 < 0.1 rad) to be 0.35 0, while the
remaining classical scattering cross section, obtained by integrating the differential
cross section from € = 0.1 to 7 rad is found to be 0.65 og. The density p of scatterers
is determined from the known volume fraction of the polystyrene spheres. Initially,
the amplitude of the narrow pedestal A(p) is taken to be a free parameter that yields
the best fits to the data. The figures show that very good fits are obtained.

Fig. 6.8 shows the amplitude A(p) obtained from the fits as a function of scatterer
concentration, p. Also shown is the prediction, based on Eq. 6.52. The prediction for
the amplitude of the pedestal that arises from multiple diffractive scattering is found
to be in very good agreement with the data using no free parameters.

For comparison, the decay of the ballistic signal with scatterer concentration is
shown in Fig. 6.9. The ballistic signal decays exponentially according to exp(—ugL),
where ug = pog as expected. By contrast, the pedestal arising from near forward dif-
fractive scattering decays much more slowly, as shown in Fig. 6.8. For concentrations
beyond the maximum amplitude, this signal decays approximately exponentially with
an attenuation coefficient, ug = 0.65us.

It is not difficult to understand why the diffractive pedestal decays more slowly

than the ballistic signal. Diffractive momentum changes tend to scatter photons
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within the momentum distribution of the diffractive pedestal. Only large momentum
changes are effective in scattering photons outside the momentum distribution of
the pedestal. Hence, the pedestal decays with the attenuation coefficient pp that
arises from the large angle scattering cross section. By contrast, both small and
large angle momentum changes are effective in scattering photons out of the very
narrow momentum distribution of the ballistic light. Hence, the ballistic distribution
must decay with the extinction coefficient corresponding to the total scattering cross

section, lg.
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Chapter 7
Low order scattering in transmission

This chapter presents a transmission study of optical phase space distributions using
a low coherence length light source to generate the input beam to the turbid sample.
Use of a low coherence length source in the heterodyne scheme permits selection of
photon path lengths within the medium, effectively giving timing resolution. This
capability is exploited to separate ballistic and low order scattered light from multiply
scattered diffuse light.

The first section of this chapter begins by describing the configuration of the
heterodyne scheme for use of a low coherence source. The section also includes
the specific parameters of the turbid medium used in this study. The next section
presents measured optical phase space distributions for low coherence light trans-
mitted through a turbid medium. The data are presented for various concentrations
of scatterers, different input beam diameters and as a function of the photon path
length within the medium. Although no detailed theory has been developed to fully
explain this data, certain trends in the data are identified. A discussion of these

trends is presented in the final section of this chapter.

7.1 Experimental Setup

7.1.1 Heterodyne detection scheme for a low coherence source

The experimental scheme configured for transmission experiments using a low coher-
ence source is shown in Figure 7.1. In this arrangement, the low coherence length
signal beam at center frequency w is incident on a scattering sample. The light
transmitted through the sample is mixed with a strong local oscillator LO at center
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Figure 7.1: Experimental scheme configured for transmission experiments using a
low coherence source.

frequency w + 10 MHz at beamsplitter BS2. A heterodyne beat signal is produced
when the optical path lengths of the LO beam and the light emerging from the sam-
ple are matched to within the coherence length of the source. The LO path length
can be varied by moving retroreflector, C, by a distance d.. This permits selective
detection of the light transmitted through the sample by its path length within the
medium. In addition, scanning mirror M1 by a distance d, and lens L.2 by a distance
d,, allows the effective center position and momentum of the LO to be varied respec-
tively. Thus the optical phase space distribution of the signal field is mapped out as
a function of LO position and momentum for a given path length. Scanning mirror
M1 and lens .2 also introduces changes in optical path lengths. These changes must
be compensated for in order to keep the relative path difference between the LO and

signal paths constant. The path difference between the two paths is given by Eq.
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4.28 as

dy  dud,
2fo  fo’
where Al = 2d. and f, is the focal length of the imaging lenses .1 and L.2. The

Al' = Al +

(7.1)

mathematical derivation and physical origin of these two correction terms is given in
section 4.1.2.
The measured mean square heterodyne beat signal can be given in terms of the

overlap of the Wigner distribution of the signal field and that of an effective L.O field

\VB(dy, dp, Al') /dwk/dx/dp (Ws(z, 2o, w) (7.2)
X Wio(x + dg, 20 + Al'sp+ dpk/ fo, wh)) -

In this expression, Wg(z, z,,wg) is the Wigner distribution for the frequency compo-

nent wy of the signal field specified in the input plane, i.e. in the principal plane of

lens .2 as discussed in section 4.1.3. The Wigner distribution for the effective L.O

field is also specified in the input plane (principal plane of lens L.1) but includes the

shifts d, dp, and Al’ which allow the center position, momentum and path delay of

the LO beam to be varied. The amplitude of the effective LO field is given in Eq.
4.30 as

Erro (@ +do, Al dy) = & (2 + da, 2 = 0)e™ rBY/° (7.3)

2

dp
x exp(—ik=—=)exp(ik—2x
Cikgp) etk 7

As discussed in section 4.1.2, in order to rigorously calculate heterodyne beat sig-

nals for low coherence light, the beat signal given in terms of fields is needed. The

expression is given in Eq. 4.27 as

|VB(dI,dp,Al ‘/dw /dwké'k (' + dy,z =0)e —iwAlfe g (2, 2=0)
2 d 2
X exp exp(ik-2a')| . 7.4
(~ik3 ) exp(ih ) (7.4
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This can be simplified by using the definition of the effective LO field (Eq. 7.3) to

yield
2

|Vi(dz, dp, Al')|* o ‘/dm' /dwké’,;zo (' +dy, Al'ydp) Egg (2, 2 = 0) (7.5)

as given in Eq. 4.29.

7.1.2 Turbid medium

For the low coherence source transmission experiments, slightly smaller spheres (ra-
dius = 4.9 pum) are used than those in the coherent source experiments. This is simply
due to variations in the sizes available from the manufacturers which were found to
vary up to 10%. The latex microspheres (n = 1.59) are suspended in a mixture
of 25% glycerol and 75% water which provides neutral buoyancy. As discussed in
section 6.1.2, the mixture was found to have an index of (n = 1.36). Thus the index
of the spheres relative to the background medium is given by n = 1.17. In addition,
the parameters of the experiment also changed as the low coherence length SLD’s
have different wavelengths than the HeNe laser beam. The characteristics of the two
low coherence sources were discussed in detail in sections 5.2.2 and 5.2.3. Table 5.2
gives a center wavelength of A, = 832 nm, for the Sarnoff SLD and A,; = 852
nm for the Anritsu SLD. As the source and sphere characteristics varied significantly
from those in the coherent source experiments, it was necessary to calculate angular
scattering characteristics for the new parameters. Although the center wavelength of
the Anritsu and Sarnoff SLD’s varied by 20 nm, the scattering characteristics were
found to be very similar at both wavelengths. The scattering cross section oswas
found to be 2.42 times the geometrical cross section, i.e., og = 181 ym? for an inci-
dent wavelength A\, = 852 nm (for the Anritsu SLD). The scattering cross section
is found to be slightly smaller for an incident wavelength of Ag; = 832 nm (for the
Sarnoff SLD) but is still og = 181 um? to three significant digits. The theoretical
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Figure 7.2: Mie differential cross section for scattering from 9.8 um diameter
polystyrene spheres with parameters n, = 1.17, n, = 1.36, and Ay = 852 nm.
angular distribution (differential cross section) for these spheres is shown in Fig. 7.2.
The angular distribution shown here is very similar to those shown in Fig. 6.2 with
slight changes due to the longer wavelength (in this figure A\; = 852 nm was used).
Again, the angles shown in this plot have been multiplied by 1.36 to account for the
propagation from the water/glycerol mixture into air where the light is detected. The
central peak again is seen to be nominally gaussian. Its half width at 1/e is 53.9 mrad
which corresponds to a width of 39.6 mrad in the medium. For A, = 832 nm, the
average of the cosine of the scattering angle was found to be (cosf) = 0.93 and for
Aair = 832 nm, it was found to be (cos ) = 0.91. However, the variation is simply due
to rounding errors. Both of these values are close to the mean cosine of the scattering
angle found for the coherent source. This figure is significant as it indicates that for

any of the sources used, the large spheres are highly forward scattering.
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7.2 Transmission Data

Measurement of optical phase space distributions with a low coherence source permits
selection of the optical path length in the medium for the detected light by changing
the LO path outside the medium. Hence, phase space distributions can be obtained
for zero path delay to study ballistic propagation and for nonzero path delay to study
low order and multiple scattering contributions. In this section data are presented
using two low coherence sources. Initially, a superluminescent diode (SLD) from
Anritsu was used to perform transmission experiments. Subsequent experiments
used an extended bandwidth, high power superluminescent diode from Sarnoff. The
characteristics of each of these sources is discussed in detail in Chapter 5 and their

properties are summarized in Table 5.2.

7.2.1 Momentum distributions for low order scattering

Initial studies with the Anritsu SLLD employed a large diameter (1/e width = 3.1
mm) beam to the turbid sample for comparison to the coherent source data shown
in section 6.2.2. The input beam is approximately ten times as large as the LO
beam (1/e width = 0.31 mm). The coherence length of this source (I, = 31.1.um
from Table 5.2) corresponds to a longitudinal resolution of Alg = 26.4 um using
Eq. 5.17. In this arrangement, the phase space distribution of the field transmitted
through a weakly scattering sample of 4.9 ym radius polystyrene spheres at a density
of p = 1.5 x 10%/cm? is measured. The ballistic light is attenuated by a factor
of exp(—2.7) at this concentration. Fig. 7.3 shows momentum (angular) scans as
a function of path delay Al’ with the LO centered at transverse position d, = 0.
It shows a two peak structure in the momentum distributions, with the two peaks

moving out to larger angles for increasing path delay. A momentum scan is shown
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Figure 7.3: Momentum distribution as a function of the path delay between LO
and Signal beams (Log scale).

for a path delay Al'’ = 0.1 mm, Fig. 7.4, which corresponds to the slice indicated by
the dotted line in Fig. 7.3. The theoretical fit to the data shown in Fig. 7.4, given

by Eq. 7.42, is described in more detail in section 7.3.1.

7.2.2 Momentum distributions for thicker samples

Propagation of low coherence light through thicker turbid samples (p = 1.15 X
107 /cm?®) for the large diameter input beam yields interesting results. At this concen-
tration, the ballistic light is attenuated by a factor of exp(—20.6). The scattered light
has a gaussian angular distribution which increases in width with increasing path
delay. Figures 7.5 - 7.7 show typical angular distributions for the scattered light at
various L.LO path delays. For zero L.O path delay (Al' = 0), Fig. 7.5, the ballistic
light can be seen as the point that lies well above the gaussian curve. Increasing the
LO path delay results in the gaussian distribution for the momenta of scattered light

increasing in width. Fig. 7.6, shows the angular distribution for a LO path delay
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Figure 7.4: Momentum distribution for a 0.1 mm LO path delay relative to signal
beam. [Indicated by dotted line in Fig. 7.3]. Dashed line-data; solid line-theory.
Vertical scale is 1077 of the signal with no scatterers present.

Al'=0 mm

Figure 7.5: Momentum (angular) distribution of scattered light for a path delay
Al' = 0 mm. Vertical scale is 107 of the signal with no scatterers present.
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Figure 7.6: Momentum (angular) distribution of scattered light for a path delay
Al' = 0.2 mm. Vertical scale is 107 of the signal with no scatterers present.

Al' = 0.2 mm and Fig. 7.7 shows the angular distribution for A’ = 0.4 mm. An
interesting trend becomes evident when one examines the 1/e width of the gaussian
distribution as a function of path delay. Fig. 7.8 shows that this width increases lin-
early with path delay until approximately 300 mrad which represents the maximum
angular aperture of our system (Table A.3). In this data, a five-fold increase in
the width of the momentum distribution is observed when the optical path length
in the medium is increased from 1 cm to 1.06 c¢m, representing only a 6% increase
in path length. As of the time this thesis was written no theory has been developed
to explain the transition from ballistic propagation or single scattering to this linear

growth regime nor the subsequent transition to the diffusion regime.
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Figure 7.7: Momentum (angular) distribution of scattered light for a path delay
Al = 0.4 mm. Vertical scale is 107 of the signal with no scatterers present.
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Figure 7.8: Width (half width at 1/e) of the gaussian distribution of the scattered
light as a function of path delay Al'.
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7.2.3 Time-resolved optical phase space distributions for thin
samples

To complete the transmission studies, optical phase space measurements are made for
a narrow collimated low coherence length beam transmitted through turbid samples of
4.9 pm radius spheres of various concentrations. In these experiments the high power
Sarnoff SLD is used as a light source. The Sarnoff SLD has an extended bandwidth
which results in a extremely low coherence length, [, = 7um. This corresponds to
a longitudinal resolution of Alg = 5.9 pym by Eq. 5.17. However, as discussed in
section 5.2.3, the bandwidth of the optical elements used in the heterodyne imaging
system limit the longitudinal resolution to Algp = 7.4 pm. Here the Sarnoff SLD
is used to produce signal and LO beams of the same size (1/e width = 0.98 mm).
The data in this section consist of longitudinal scans of the L.O path delay for zero
transverse momentum and position (x = 0, p = 0) and optical phase space contour

plots in position and momentum taken for different LO path delays (Al’).

At low concentrations of scatterers, (p =1 x 10°/cm? to 4 x 106/cm?) the phase
space distributions are dominated by ballistic light. These concentrations correspond
to ballistic attenuations of exp(—1.8) to exp(—7.2) respectively. To characterize the
behavior of the transmitted light in this regime, I will use the optical phase space
distributions obtained for p = 1.9 x 10%/cm? as an example. Figure 7.9 shows a
longitudinal scan as the LO path is lengthened relative to the signal path from 0 to
1 mm for a sample at this concentration (solid line) . This scan is very similar to
that for no scatterers but scaled by the overall ballistic attenuation of exp(—3.5). For
comparison, the dashed line in Figure 7.9 shows a scan with the sample cell removed
and scaled by this factor. There are noticeable differences between the two scans.
First, the scan with the scattering sample present has an increased amplitude for

delays of 0.1 to 0.5 mm compared to the scan with the sample removed. This is due
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Figure 7.9: Measured optical phase space density at x = 0, p = 0 as a function
of LO path delay. Solid line: p = 1.9 x 108/cm?; dashed line - no sample (ballistic
attenuation - exp(—3.5)).

to dispersion introduced by the glass walls of the cell and the background medium of
the sample. Phase space measurements in position and momentum confirm that with
the scatterers present, the signal at this range of delays is due to ballistic light (shown
in the data in Figure 7.11). Second, there are ripples in this scan due to vibrations
which arise when the 1LO path length is scanned. These have been eliminated in
the presented data through averaging. The ripples can be avoided by using a slower
velocity setting for the translator which controls the LO path delay. However, slowing
the velocity causes the longitudinal scans to take much longer. This is unacceptable
for collecting turbid media transmission data because long scans permit drifts in

optical power.

Figures 7.10-7.12 show optical phase space contour plots for transmission through
a scattering sample of concentration p = 1.9 x 10®/cm?® for various LO path delays.

As with the longitudinal scan, the optical phase space contours for low concentration
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Figure 7.10: Measured optical phase space distribution (x,p) at zero LO path de-
lay (Al = 0) for scatterer concentration p = 1.9 x 10°/cm?. (Log scale; ballistic
attenuation - exp(—3.5))

samples are dominated by ballistic light. Figure 7.10 shows the measured optical
phase space distribution for equal LO and signal path lengths (Al’ = 0) on a log scale.
The ballistic light is represented by the narrow island at zero transverse momentum.
The grey area which surrounds it represents scattered light. The plot uses a log scale
because the scattered light is several orders of magnitude lower than the ballistic light.
Scattered light is seen in this plot as the increase in path length due to scattering
can still be smaller than the coherence length of the source. Therefore even though

the LO and signal paths are equal, scattered light is still seen.

As the LO path length is increased, the ballistic light continues to dominate the
transmitted phase space distribution. Figure 7.11 shows the measured optical phase
space contours for Al’ = 0.2 mm on a log scale. Again, the ballistic light is shown
as the narrow island at zero transverse momentum. The scattered light, represented

by the grey area surrounding the ballistic, has grown in position and momentum bur
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Figure 7.11: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.2 mm for scatterer concentration p = 1.9 x 108/cm?. (Log scale; ballistic
attenuation - exp(—3.5))

remains orders of magnitude smaller than the ballistic light. It is clear from this plot

that the signal at z = 0, p = 0 is due to ballistic light by the characteristic shape in

phase space.

The phase space distribution for the scattered light continues to grow in position
and momentum as the LO path length is increased until a remarkable feature emerges
at Al'’ = 0.6 mm. Figure 7.12 shows the measured optical phase space distribution
for p = 1.9 x 106/cm? at this path delay. In this contour plot, the ballistic light,
represented by the white diamond in the center of the plot, is still dominant.
However, the scattered light has split into a two peak distribution, each peak centered
at zero transverse momentum and +2.5 mm in position. The distribution appears
to be diverging from these two points. As the path delay is increased further, the
centers of the two peaks remain at zero transverse momentum but move further off

axis, i.e., away from zero position. The two peak distribution finally fades into the
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Figure 7.12: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.6 mm for scatterer concentration p = 1.9 x 10°/cm?. (Log scale; ballistic
attenuation - exp(—3.5))

background at a path delay of 1 mm. For higher concentrations, the two peaks in
position consistently appear for path delays between 0.5 and 1.0 mm. These peaks
are discernible at concentrations of up to p = 7.5 x 10°/cm?, over the same range
of path delays. At the time of this writing, no detailed theory has been devised to

explain this phenomenon but it is believed to be similar in origin to the two peak

distribution shown in section 6.2.2.

At intermediate concentrations, p = 5 x 106/cm? to 1.5 x 107/cm?, the ballistic
and scattered light emerging from the turbid sample are of comparable magnitude.
This can be seen in the measured optical phase space density for x = 0 and p = 0
as the LO path is increased.  Fig. 7.13 shows a scan of Al’ for a concentration of
p =12 x107/cm3. At this concentration, the ballistic light has been attenuated by
exp(—21.6). It is represented in this plot by the sharp peak at zero path delay and the

scattered light is shown as the tail that extends for increasing [.LO path delays. This
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Figure 7.13: Measured optical phase space density for x = 0, p = 0 as a function
of LO path delay Al’ for p = 1.2 x 10”/cm? ( ballistic attenuation - exp(—21.6)).

is confirmed in the optical phase space measurements in position and momentum.
Figure 7.14 shows the measured phase space distribution for Al’ = 0 on a log scale.
The ballistic light is seen as the small island at zero position and zero transverse
momentum. It is identified by its characteristic shape. In this plot, it appears smaller
in position compared to the ballistic light at lower concentrations (Fig.’s 7.10 and
7.11). This is due to the lower amplitude, off-axis tails of the ballistic light becoming
overwhelmed by the scattered light, shown as the gray bands extending in position
and momentum.

For this intermediate concentration, the scattered light becomes dominant at in-
creased LO path lengths (as shown in the LO path delay scan in Fig. 7.13). This
transition is seen in the phase space contour plots. Fig. 7.15 shows the measured
optical phase space distribution for an LO path delay, Al’ = 20 pym. In this contour
plot, there is no ballistic component and only scattered light is seen. This distribu-

tion is displayed on a linear scale as the scattered light only varies over one order of
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Figure 7.14: Measured optical phase space distribution (x,p) for LO path delay

Al = 0 for scatterer concentration p = 1.2 x 107 /cm?. (Log scale; ballistic attenuation
- exp(—21.6))
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Figure 7.15: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.02 mm for scatterer concentration p = 1.2 x 107 /cm? (Linear scale; ballistic
attenuation - exp(—21.6)).
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Figure 7.16: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.2 mm for scatterer concentration p = 1.2 x 107 /ecm? (Linear scale; ballistic
attenuation - exp(—21.6)).

magnitude. The lighter spots seen here are due to variations in the measured beat
intensity which become more obvious on the linear scale. Unlike the distributions
obtained for lower concentrations, no two peak structure emerges for longer LLO path
delays. Instead, the scattered light is seen to grow broader in both position and mo-

mentum. As an example, Figure 7.16 shows measured optical phase space contours
for the same concentration with an LO path delay, Al’ = 0.2 mm on a linear scale.
For the optical phase space distributions at this intermediate concentration (p =
1.2 x 107 /cm?®), the position width at zero transverse momentum is a gaussian distrib-
ution for all LO path lengths. The fitted width of the position distribution versus L.LO
path delay is plotted in Figure 7.17 (Table A.4). The 1/e width of this distribution

is seen to grow as

Az o(mm) oc 0.551/1 + 0.034 x Al'(pm). (7.6)
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Figure 7.17: Width of the position distribution at zero transverse momentum versus
LO path delay for p = 1.2 x 107 /cm?® (ballisticattenuation— exp(—21.6)). Solid line -
emprical fit to data.

where Al’ is the LO path delay, as usual. This relation was found by using a least-
squares fit to the data and is shown as the solid line in Fig. 7.17. The momentum
distribution at zero position is not fitted as easily. The angular distribution appears
to be a flattened gaussian distribution. As an example of this type of distribution,
Figure 7.18 shows the measured momentum distribution at zero position for this

concentration with an LO path delay, Al’ = 0.2 mm.

7.2.4 Time-resolved optical phase space distributions for low
order scattering in thick samples

At high concentrations of scatterers (p > 1.5 x 107/cm? ), the magnitude of the
scattered intensity transmitted through the sample becomes greater than that for
the ballistic light. Fig. 7.19 shows a scan of the measured optical phase space density
for x = 0 and p = 0 as the LO path length is increased for p = 1.5 x 107 /cm?®. In this
plot, the ballistic light, indicated by the arrow at zero LO path delay, is still present
but has a peak magnitude lower than the peak magnitude of the scattered light. The

ballistic light has been attenuated by a factor of exp(—27.2) for this concentration.
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Figure 7.18: Momentum distribution at zero position for Al’ = 0.2 mm and

p=1.2x107/cm?® (ballistic attenuation - exp(—21.6)).

While the thickness of this sample begins to test the limits of ballistic imaging, it is
possible to probe denser samples by making use of low-order scattered light. Figures
7.20 and 7.21 show measured optical phase space distributions for two different path
delays using this concentration. When the LLO and signal paths are matched to
within the coherence length of the source (Al = 0), the distribution is dominated
by the ballistic light, indicated by the arrow in Fig. 7.20. For an LO path delay of
Al' = 0.1 mm, the scattered light dominates the contour plot (Fig. 7.21). What
is most notable about this phase space distribution is that it is still fairly narrow in
momentum indicating that it may still be useful for imaging applications.

The spatial width of the distributions for high concentrations is found to grow in a
similar manner as those for intermediate concentrations. Figure 7.22 shows the fitted
1/e width of the position distributions at zero transverse momentum for varying LO
path delays (Table A.5). The solid line shows a curve fitted to these spatial widths,

it is given by

Az .(mm) oc 0.551/1 + 0.022 x Al'(pm). (7.7)
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Figure 7.19: Measured optical phase space density for x = 0, p = 0 as a function
of LO path delay Al’ for p = 1.5 x 107/cm? (ballistic attenuation - exp(—27.2)).
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Figure 7.20: Measured optical phase space distribution (x,p) for LO path delay
Al = 0 for scatterer concentration p = 1.5 x 10”/cm?® (Linear Scale; ballistic attenu-
ation - exp(—27.2)).
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Figure 7.21: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.1 mm, for scatterer concentration p = 1.5 x 107 /cm? (Linear scale).
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Figure 7.22: Width of the position distribution at zero transverse momentum versus

LO path delay for p = 1.5 x 107 /cm3(ballistic attenuation— exp(—27.2)). Solid line -
curve fit to data.
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Figure 7.23: Momentum distribution at zero position for A’ = 0.1 mm and
p=1.5x 107 /cm? (ballistic attenuation - exp(—27.2)).

Again, the trend of the momentum distributions is not easily identified. At these
high concentrations, the transverse momentum distributions at zero position appear
to be nominally gaussian. As an example of this type of distributions, Figure 7.23
shows the momentum distribution at zero position for a path delay of Al’ = 0.1 mm
at this concentration. Fitting the data with a gaussian distribution, the least squares
fit is minimized for a gaussian with a width of approximately 50 mrad. Further
theoretical analysis is needed to correctly model the change in width of the angular
distributions.

At higher concentrations, the ballistic light is completely overwhelmed and cannot
be discerned in either the path delay scans nor contour plots. However, by introducing
a small delay into the LLO path, narrow momentum distributions can still be measured
at these high concentrations. Fig. 7.24 shows a scan of the measured optical phase
space density for x = 0 and p = 0 as the LO path length is increased for p = 1.8 x

107 /em®. This concentration corresponds to a ballistic attenaution of exp(—32.6),
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Figure 7.24: Measured optical phase space density for x = 0, p = 0 as a function
of LO path delay Al’ for p = 1.8 x 107/cm? (ballistic attenuation - exp(—32.6)).
however the zero intensity at zero path delay indiates that no measureable ballistic
light is transmitted. In spite of this fact, optical phase space distributions can still be
measured which have narrow momentum profiles by introducing small path delays
in the LO path. Figures 7.25, 7.26 and 7.27 show measured optical phase space
distributions for three different path delays using this concentration. = No contour
plot is presented for zero LO path delay as there is no measureable phase space
density at that path delay.

Figure 7.25 shows the measured optical phase space distribution for an LO path
delay of Al'’ =0.05 mm. In this figure the scattered light is fairly narrow in momen-
tum, indicating that it retains information about the scattering medium. Figure 7.26
shows the distribution transmitted through the same sample for a slightly longer de-
lay of Al’ =0.10 mm. This distribution has grown in both position and momentum
compared to the distribution shown in Fig. 7.26. Finally, Figure 7.27 shows the dis-

tribution for an LO path delay of Al’ = 0.30 mm. This distribution is substantially
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Figure 7.25: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.05 mm, for scatterer concentration p = 1.8 x 107 /cm?® (Linear Scale; ballistic
attenuation - exp(—32.6)).
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Figure 7.26: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.10 mm, for scatterer concentration p = 1.8 x 107 /cm? (Linear Scale; ballistic
attenuation - exp(—32.6)).

150



H
o
o

Momentum (1'8 K)
o

-100

-1.5 0 1.5
Position (mm)

Figure 7.27: Measured optical phase space distribution (x,p) for LO path delay
Al' = 0.30 mm, for scatterer concentration p = 1.8 X 107 /cm?® (Linear Scale; ballistic
attenuation - exp(—32.6)).

broader in position and momentum than the distributions at shorter path delays.
Examining the momentum width of these distributions does not yield a clear
trend in the growth. Figure 7.28 (Table A.6) shows the width of the momentum
distribution at zero position for increasing LO path delay. This plot shows that for
a small LO path delay, the momentum width remains small but increases for larger
LO path delays. It is difficult to identify a trend in this data as the fits to the
individual momentum curves tend to not be very good. These fits may be improved
by increasing the averaging time during data collection to reduce noise. The width of
the spatial distribution at zero transverse momentum for this concentration is shown
in Figure 7.29 (Table A.7) for various LO path delays. The solid line shows a curve

fitted to these spatial widths, it is given by

Az /.(mm) o 0.754/1 + 0.013 x (Al'(um) — 62). (7.8)

151



I )

o o

-9 9
[ ]

(10° k)

Momentum Width
3

a1
—
.

0.1 0.2 0.3 0.4 0.5
Delay,Al' (mm)

Figure 7.28: Width of the momentum distribution at zero position versus LO path
delay for p = 1.8 x 107 /cm? (ballistic attenuation— exp(—32.6)).
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Figure 7.29: Width of the position distribution at zero transverse momentum versus
LO path delay for p = 1.8 x 107 /cm? (ballistic attenuation— exp(—32.6)).
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Figure 7.30: Scaling of the position width model “A” parameter (Eq. 7.9) with
concentration. Solid line - empirical fit to data.

7.2.5 Position width trend

Analysis of the increase in width of the spatial distribution with increasing L.O path

delay for various concentrations of scatterers leads to the following empirical result:

Azy.(mm) oc A\/1+ B x (Al'(pym) — C). (7.9)

The trends of the A, B, and C' parameters were identified by plotting the values
obtained by fitting a curve of the form of Eq. 7.9 to the data at each concentration.
Examining the trend in the A parameter as a function of concentration of 4.9 micron
spheres (Fig. 7.30, Table A.8), the parameter was found to scale with concentration

as:

A=0.55+0.44(1.2 — ¢)?,1.2 < ¢ < 2.0 (7.10)

where c is the concentration in units of 107 scatterers per cm®. This function is plotted

as a solid line in Figure 7.30. The values of the B parameter, obtained by fitting the
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Figure 7.31: Scaling of the position width model “B” parameter (Eq. 7.9) with
concentration. Solid line - empirical fit to data.

data to the model (Eq. 7.9) at various concentrations, is shown in Figure 7.31 (Table
A.9). In this figure, the solid line represents an empirical model for the B parameter.

It was found to scale as

0.049

B=- pm~t 1.2 < ¢ < 2.0 (7.11)

where again the concentration c is in units of 107 scatterers per cm?®. Finally, the C
parameter in Eq. 7.9 accounts for the fact that although Al’ is measured relative to
the ballistic light, at concentrations greater than 1.2 x 107/cm? phase space distri-
butions are not observed until longer delays are introduced in the LO path. This

offset of Al’ was found to scale roughly as
C =262pum(c—1.2)%, 1.2 < ¢ < 2.0 (7.12)

where ¢ is again concentration in units of 107 scatterers per cm?. This relation is

shown as a solid in the plot for the fitted C' parameter as a function of scatterer
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Figure 7.32: Scaling of the position width model “C” parameter (Eq. 7.9) with
concentration. Solid line - empirical fit to data.

concentration in Figure 7.32 (Table A.10). At the time this thesis was written, no

model has been devised to explain these trends.

7.3 Theory

Although no detailed theory has been developed to fully model the propagation of
low coherence length light in a multiple scattering medium, the two peak distribution
seen in the data in section 7.2.1 can be understood by using perturbation theory to
devise a model. In this treatment, single scattering is treated as a perturbation to

the free space propagation of the Wigner distribution.

7.3.1 Wigner distribution for weak scattering of low coher-
ence light

For a large diameter, low coherence length beam incident on a weakly scattering

medium, a two peak structure is seen in the angular distribution of the transmitted
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distribution (section 7.2.1). The two peak distribution can be modeled by treating
the scattering as a first order perturbation to the free space propagation. In this case
the Green’s function for the free space evolution equation is needed. Recalling Eq.

6.5, the unperturbed Wigner distribution evolves in free space according to

0 c2 - or o o
g + —p- Vg | WO(Z,p,t) =0. (7.13)
Thus the Green’s function for this evolution will obey

8 02 - = - =) — = / — —/ — —/
(at o Vf> G (T, %5 9,975 1, 1) = 6(F — 7)6(p — p). (7.14)

The solution to this equation is found using Fourier methods [26] and is given by [91]

(,2

(%@Mﬂﬁﬁ%xﬂzéP—x—n——@—ﬂ)&*—ﬂ@@—ﬂ% (7.15)

n2w
where the step function in time, ©(¢ — t'), ensures that causality is maintained.
Equation 7.15 can be interpreted as reproducing the apparent straight line motion
of the Wigner distribution. As illustrated in section 3.1.1, the Wigner distribution
appears to travel in straight lines yet properly takes into the wave nature of the field.
Treating the scattering as a first order perturbation to the free space evolution,

the distribution resulting from a single scattering is given by

W'(z,p,t /d?”'/d?”'a (z, 2" p,p'st, 1) (7.16)
/d3 //K(—»/ —»//)Wo(—»/ =/ t,).

Here K(p’,p") is the scattering kernel as defined in Eq. 6.9. It is related to the
differential cross section do/dS2. Inserting the Green’s function (Eq. 7.15) into this

expression, the distribution takes the form

W' (z / ™ / d*p' K (p (7.17)

)
X W7, p(z—z) ',ﬁ'tfv””),
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where v, is the velocity in the Z direction and is given by

C Dy

ny, k

Vy, =

(7.18)

The expression for the scattered distribution (Eq. 7.17) can be further simplified
by assuming that the input distribution is sharply peaked about the Z direction
compared to the width of the scattering kernel, K(p,p”’). Under this assumption of
an input beam which is narrow in momentum, the distribution for the scattered light

becomes

— o
Bpwez, Bz ), 2t 2
p ? 7p7
Dz Uy

dz’'

[v:]

W'(Z,5,t) = K (7, k?) ). (7.19)

7.3.2 Heterodyne beat signal

To model the two peak distribution seen in the experimental data, the Wigner distri-
bution of the scattered field must be convoluted with that of the effective LO field.
An effective LO field (Eq. 7.3) is used to include the additional phases acquired
by the LO field due to propagation through the imaging system. The mean square

heterodyne beat signal is then given by (Eq. 7.2)

Sp(dy, dy, ) — / 27 d%, (7.20)

k
<W£O(fJ- o dz :%7 L + AllvﬁJ_ — f_dp QA?,t) WI(:EJ_7 LvﬁJ_vt)> )

where W], is the Wigner distribution of the effective LO field. The path length
difference between the LO and signal fields is included as Al” as defined in Eq. 7.1.
The Wigner distributions in Eq. 7.20 are transverse Wigner distribution thus to use

the distribution in Eq. 7.19, it must be integrated over p,

W'(F, po,t) = / dp,W'(Z, 1) . (7.21)
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Inserting the distribution for the first order scattered field (Eq. 7.19) into Eq. 7.20,

the expression for the heterodyne beat signal can be written as

dz'

|0, |

Sp(dy, dy, Al') = / d*7, d*p / dp, K (p, k2) (7.22)

k
<W1I;o(31 —d, T, L+ Al',p1 — po )

/d%TVVO(fl Py - B Z')> .
P- Uy

This expression gives the heterodyne beat in terms of the Wigner distribution for
the effective LO field, W}, and that of the input signal field, W°. However, as
discussed in section 4.1.2, in order to rigorously calculate heterodyne beat signals for
low coherence light, the beat signal given in terms of fields is needed. Conversion
of Eq.7.22 into an expression involving the overlaps of fields can be simplified by
realizing that integrating the Wigner distribution over all momenta yields the position
distribution:

[EmweE ) =B f (7.23)
as discussed in Chapter 3.

Using the definition of the Wigner distribution Eq. 3.1 and Eq. 7.23, Eq. 7.22

can be written as the overlap of the signal field and effective LO field

/ 2 —
Sp(dy, dp, Al') = / P27, BFK (G ES) / dz [ d &L
lv2| J (2m)

(BT + /2, L+ A1)

exp (i€, - p1)

X Epo(fy —€1/2, L+ Al t)

* [ = ﬁJ_ !/ L_ZI
EL(Z — =(L—2),t—
x By(EL (L))
x  Ee(f, — Z(L-2),t— Z)>. (7.24)
Dz (%

In this expression, the effective LO field is defined as
E(ZFL, L+ Al t) = / dwplyt (F1 — dode, Al dy)erte bl (7.25)

158



where 5,;;0 is the slowly varying complex amplitude of the frequency component,

wg = ckro, of the effective LO field, as defined in Eq. 7.3:

Er (B —do2, Al dy) = & (F1 — dydt, z = 0)e nAl/e (7.26)
2 .
dpz
- k D k P = .
X exp(—i 2fo) exp(i T )

Similarly, the signal field can also be decomposed into its Fourier components:
Eg(71,L,t) = / dnky (71,2 = O)cisteintle, (7.27)

The bracketed term in Eq. 7.24 can be simplified by realizing that the LO and
signal fields must be correlated not with themselves but with each other in order to

produce the heterodyne beat signal. Thus the bracketed term can be rewritten as

’ D L — /
<<EL*O(£J_ +€/2, L+ Al t) Es(7y — ZA(L —2),t — : )> (7.28)

Dz Uz

%/ — ﬁj_ ’ L—ZI ! - - ,
X { Bg(¥, —=—(L—2'),t— ” VELo(ZL —€L/2, L+ Al't) ) ).

z 4

The derivation is made easier by examining one pair of correlated fields at a time.
By expanding each of the fields in terms of their Fourier components as in Eq. 7.25

and 7.27, the first bracketed term in Eq. 7.28 can be rewritten as

Y2 Uz

, 5 L—2
Va(2, &) = <EL’§)(fL+€L/2,L+Al’,t) Bs(7, — 20— )t — =—Z )>

— /dwk <5,’;LO(£¢ +E1/2 —dy,z = 0)Eky (T — Z%(L— 2,z = 0>
2

d dp
_. p . ‘D . — —
x exp( szfo)eXp {zk T (%, + eL/2)}

L—7 L—z’)]

x exp(—ikAl) exp [iwk( — (7.29)

Uz

by using Eq. 7.26 and exploiting the fact that ko will be equal to kg. As discussed

in section 4.1.2 it is assumed that the &’s are delta-correlated such that (£:&€,/) is
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only nonzero for wy = wy. The specific form for the bracketed term in Eq. 7.29,

(EFEk) , can be simply written as

. (2 » ) (k — ko)* 71
(& (FL,2=0)E (T, 2=10)) = |&| exp <—A—k2> exp <—@> . (7.30)
This expression is a simplified form of the Gaussian Schell model given in Eq. 5.2.
It has been simplified by setting Z’ to zero by assuming that the large diameter
input beam provides approximate translational invariance for the signal beam. The

bandwidth and center wavevector of the source are given by Ak and k,, respectively.

Using Eq. 7.30, the expression for Vg(2',€1) (Eq. 7.29) can be rewritten as

T € /2 — d @ 2 1
Ve(Z,€) = |50|Qexp (— (@ +e/ 7) ) (7.31)

2a? Aky/T

(k — ko) R A
x/dkexp (_TkQ exp |ik ;o (ZL+€L/2 —d.2)

x exp(—ikAl') exp [—ik(L . 1)] :

Uy

where all terms involving the frequency w have been converted to terms involving
the wavevector k and Al’ has been substituted by employing Eq. 7.1. A similar

expression can be derived for the second bracketed term in Eq. 7.28:

e [ E—E2—d)?\ 1
V(2 €1) = [E[ exp ( 5E NG (7.32)
k= ko)* Cdpd .
X /dkexp (—%) exp l—zk })O (T —€./2 —duT)
x exp(—tkAl) exp {zk(L — z')(vi — 1)} .

The derivation can be simplified further by introducing the variable Akg = k—k,
in the expressions for Vg(2/,€,) and Vj(2/,€.). In addition, simply translating &
to ¥ + d,Z removes all d, dependence, as expected for the case of a translationally

invariant signal (Eq. 7.30). Inserting Eq.’s 7.31 and 7.32 into Eq. 7.24 yields:
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d2ﬂ_ 1
Sp(dy, Al') = /deLd?’pK P, k2) /|Uz|/ 2exp i€ - pL) &) N

A Aks)®
X ‘/dAksexp(i%dpi-fl) exp <( ks) )

2

X exp {mks(m' (L— (= - 1)} (7.33)

In this expression, the exp (j:z Sd,T - € L) term under each Akg integral has been
dropped. This is important because it allows the two integrals over Akg to be written
as the magnitude squared of one integral. It is a reasonable approximation to make
as €, will remain small due to the narrow size of the LO beam. The €, integral in

Eq. 7.33 can now be performed directly to yield

o [ dY .
Su(dy, Al) = |&]* AkQ / G [ | / &7, (7.34)

74
X exp (—?) exp( %(p L+f0d T) )
Aks . (Aks)?
X /dAkS exp(—szpr : xJ_) eXp <_ Ak2

2

X exp {iAkS(AZ’ (L )= 1)}

Uy

For a small enough LLO beam, it is also a reasonable approximation to assume that

the integral over Z, will force 7, ~ 0 such that

, e dz I
Saldp A1) = 161" gz [ 7K [ o (—a+ Sedg?) (139

‘/dAks exp (— (AAI;;)2> exp {iAkS(Al' — (L — z’)(£ — 1)}

2

Vz

In addition, because the LO beam is narrower in momentum than the kernel, K,

the integral over transverse momenta, p, will force p, ~ f »T. The integral over p,
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can also be done approximately using the energy conserving delta function in the
scattering kernel which demands that the length of the momentum vector remains
constant. The kernel can then be replaced by the elastic scattering differential cross
section as a function of the scattering angle in the medium ;. Thus Eq. 7.35 can be

rewritten as

Su(dy, A} o j—g(el) / iz (7.36)
X /dAkg exp (— (AAk];i) > exp {z’AkS(Al' — (L — z’)(v£ - 1)}

This expression can be simplified further by converting the scattering angle in the
medium, ¢;, to the detected angle in air, § = 'Ji—zdp = thn,, where n, = 1.36 is the
index of refraction of the background medium. The ratio ¢/v, can be related to this
angle as v, = ccos (f;). The expression in the exponential under the integral can

then be replaced using

c 1 162
— — 1)~ = 2 = —— .
(=585 (737)
to give
ko do
= 2d,, Al') x —(0/n, ' :
Sp(6 fodp, ') dQ(G/n )/dz (7.38)
(Aks)? 02 i
. ! /
x| /dAkg exp (— INE ) exp [zAkS (Al "o (L—z )>}
The integral over Akg in Eq. 7.38 can easily be performed to yield
ko , do ,
SB(Q = Edp, Al) X a0 (9/no)/dz (739)

o

2 2 2
X exp [—ATk <Al' — 29712 (L — z’)> ] :

This expression can be put in a more useful form by making some substitutions.

Using Eq. 5.15, the spread of wavevectors Ak can be replaced by the 1/e width of
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the heterodyne signal Alg
Ak = —. (7.40)

Here Alp is defined as (Eq. 5.17)

V2Inz N2
Al = —te V22 A (7.41)

v21In?2 B T ANrwnaM

where [, is the coherence length of the source as given by Eq. 5.14. The center
wavelength of the source A, and full width at half maximum of the source bandwidth,
AMNpw i, for the Anritsu SLD are listed in Table 5.2. Finally, the integral over 2’
in Eq. 7.39 is limited to positions within the medium so it runs from 0 to n,L. It is
convenient to change this expression so that it contains an integral over the unitless

variable u = n%, (1 — 2'/L). The resulting expression is then given as

(Al — %@2)

do !
SO =d,/f,Al') x d—Q(Q/no)/O du exp ( A (7.42)

This expression is integrated numerically to obtain the theoretical model shown in

Figure 7.4.

7.4 Discussion

The data shown in sections 7.2.1 and 7.2.3 are classified by the relative density of
scatterers in the sample. The transmitted optical phase space distributions show
different characteristics for each scattering regime. This section discusses the results
obtained for transmission through weakly and strongly scattering samples and relates

them to current biomedical optical imaging techniques.

7.4.1 Weak Scattering of a Low Coherence Source

For low concentrations of scatterers, the optical phase space distributions are domi-
nated by ballistic light. However, the ability of the heterodyne method to selectively
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detect light with specific phase space parameters enables scattered light to be dis-
cerned from the ballistic. The scattered light is seen to form a two peak structure in
momentum for the large diameter input beam and a two peak structure in position
for the small diameter beam.

In the case of a large diameter input beam, the two peak structure in momentum
(Fig. 7.4) is easily shown to arise from single scattering. When the LO path length
is increased by Al’, only light scattered in the medium through a nonzero angle 6,

traverses an optical path with an increase equal to that of the LO:

no(L — 25) (

- 1) = Al (7.43)

cos 0,

Here, L is the location of the output plane of the medium, n, is the index of refraction
in the medium, and z, is one possible plane in which the scattering occurs. By
symmetry, positive or negative angles produce equal path lengths in the medium,
yielding a two peak structure. For the small diameter beam, a two peak structure is
also seen but in position instead of momentum. This two peak structure in position
is more difficult to explain as it appears at much longer path delays than the two
momentum peaks seen in the large diameter beam data. The longer path delay makes
it seem unlikely that the two peaks in position arise from single scattering. Hence
perturbation theory does not predict the structure seen in the data. At present, no
theory has yet been developed which includes scattering of low coherence light to all

orders.

7.4.2 Strong Scattering of a Low Coherence Source

At high concentrations of scatterers, the ballistic light is strongly attenuated so the
possibility of using it for biological imaging becomes impractical. However, low or-
dered scattered light still retains information about its history and as shown in Chap-
ter 6, light that has undergone multiple diffractive scatterings survives longer than
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ballistic light. By accepting photons that have a path length in the medium only
marginally longer than the ballistic light, narrow momentum distributions can be
recovered. The majority of these photons have undergone fewer scatterings than
the background diffuse intensity and still retain information about the scattering

medium.

7.4.3 Relation to Optical Coherence Tomography

The heterodyne method for measuring optical phase space distributions using low
coherence light is related to the medical imaging technique known as optical coherence
tomography (OCT) discussed in section 2.4.3. Both techniques rely on interferometry
using a low coherence source to probe multiple scattering samples. OCT is based
on a Michelson interferometer with a sample placed in one arm and a moveable
mirror placed in the other. An interference signal is produced when the paths of
the two arms are matched to within the coherence length of the source. Thus OCT
achieves a similar timing resolution to the heterodyne method by exploiting the
low coherence length of the source. However, the heterodyne method is capable of
measuring both the position and momentum distribution of a light field whereas
OCT only measures the position dependent intensity. Thus, measurement of optical
phase space distributions recovers more information about the sample than OCT.
Obtaining the additional information comes at a price. While OCT can measure
a sample quickly enough for clinical applications, the heterodyne technique takes a
much longer time to measure the full phase space distribution. Thus the method
of heterodyne detection to measure optical phase space distributions will not replace
OCT as a clinical method but instead can be used to understand and perhaps expand
the limitations of OCT. In this way, measurement of optical phase space distributions

can be used to enhance the images obtained with OCT.
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Certain applied problems which have been observed in OCT can be explained
using the results obtained using the heterodyne method. The coherent source trans-
mission experiments in Chapter 6 show that multiple diffractive scattering in the
forward direction can produce a narrow pedestal that decays more slowly than the
ballistically transmitted component. At high concentrations of scatterers, if the dif-
fractive pedestal is comparable to the ballistic component, it can modify the apparent
intensity of a probe beam compared to that expected for exponential attenuation of
ballistic light. This is consistent with the anomalous probe intensity observed by
Yadlowsky et al., in OCT [20]. As large structures tend to produce more forward
scattering than small ones, this effect serves to exaggerate finer structures over broad

ones in OCT images.

Another issue in OCT which has received attention is the role that speckle plays in
forming OCT images [21]. OCT imaging relies on the coherent addition of light which
has been scattered only once by the sample. The image is corrupted by light which
has undergone multiple scattering yet returns with the same path length as the singly
scattered light. Both types of scattering are simultaneously detected using OCT since
the received light is integrated over a broad range of angles using a lens with a large
numerical aperature. By selecting a narrow angle for the detected light, as in the
heterodyne method, the multiply scattered light can be selectively suppressed. In
addition, it is possible that by making several narrow angle measurements at once,
the speckle due to multiple scattering can be subtracted leaving only the desired
signal arising from single scattering. While optical phase space distributions have
shown the ability to isolate low order scattered light, further work is needed to relate
it to the applied problem of speckle present in OCT.

Finally, I note that the method for characterizing the coherence of a source pre-

sented in Chapter 5, can be applied to determine the usefulness of a source for OCT.
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For example, the Sarnoff SLD used in these experiments has an extremely low co-
herence length and high power yet lacks the spatial coherence need to form a tight
focus. OCT relies on a tightly focused beam using a large numerical aperature lens to
achieve high spatial resolution. Thus the advantage gained by an increase in power
using this source may be offset by a loss of spatial resolution due to its decreased

spatial coherence.
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Chapter 8

Time-resolved optical phase space
distributions for enhanced backscattering

This chapter presents a study of optical phase space distributions for light that has
been backscattered by a turbid sample. The low coherence length Anritsu SLD is
employed to measure backscattered light for various photon path lengths within the
turbid media. Solutions of 0.5 pm diameter polystyrene spheres in a glycerol/water
mixture are used as scattering samples because of their broad angular scattering
distributions. Their nearly isotropic scattering and a high concentration permit many
possible time reversed paths. As described in section 2.3.1, time reversed paths give
rise to an increased intensity in the direction antiparallel to the incident light. This
effect is known as enhanced backscattering.

The chapter begins by presenting the heterodyne system configured to measure
light backscattered by a turbid sample. The first section also describes the specific
turbid medium used in the backscattering experiments. The next section presents
measured optical phase space distributions of backscattered light for various pho-
ton path lengths within the medium and compares them to theoretical distributions.
Trends in the width and height of the enhanced backscattering peak are identified
and compared to predicted values. The theoretical model used to obtain the pre-
dicted values is presented in the following section. The model is derived using the
propagation of fields but is cast in the form of a Wigner distribution for comparison
to the data. Finally, the last section discusses the results in terms of the propagation

of coherence within the turbid medium.
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Figure 8.1: Experimental scheme configured for backscattering experiments using
a low coherence source.

8.1 Experimental Setup

8.1.1 Heterodyne detection scheme configured for backscat-
tering experiments

Figure 8.1 shows the heterodyne detection scheme as configured to measure low
coherence length light that has been backscattered by a turbid medium. In this
arrangement, the low coherence length signal beam at center frequency w is directed
to the turbid sample by beamsplitter BS3. The light scattered by the sample in the
reverse direction passes through BS3 to lens L2 through the imaging lens system
described below. The light from the signal beam is mixed at beamsplitter BS2 with
the strong local oscillator at frequency w + 10 MHz. A heterodyne beat signal is
produced for LLO and signal paths which are matched to within the coherence length
of the source. The path length of the LO can be varied by moving retroreflector C

by a distance d.. In addition, by varying the position of mirror M1 and lens 1.2,
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the effective center position and momentum of the [LO are scanned. This allows the
optical phase space distribution of the light backscattered from the sample to be

mapped out in position and momentum for various path lengths within the medium.

As discussed in section 7.1.1, scanning mirror M1 and lens L2 also introduces
changes in the optical path lengths. These changes must be compensated in order
to keep the relative path difference between the LLO and signal paths constant. The

path difference between the two paths is given by Eq. 4.28 as

a2 d.d
Al =Nl - L2 4 22
2fs ' fa

where Al = 2d. and f, is the focal length of the imaging lenses .1 and L2. The

(8.1)

mathematical derivation and physical origin of these two correction terms is given in
section 4.1.2.

The expression for the mean square heterodyne beat signal, as derived in section

4.1.2 is given by Eq. 4.27 as

|V (da, dp, AL)|? ‘/df" /dwksk()(w +dy,z = 0)e g (2!, 2 = 0)
2 d 2
X exp exp(ik—21x")| . 8.2
(<ik5 ) exp(ih Pa) 52

It is useful to define an effective LO field; its amplitude is given in Eq. 4.30 as

Er (7 +dy, Aldy) = & (2 +dy, 2 = 0)erAle (8.3)
2
dp
x exp(—ik=—2)exp(ik—-Lx
( 5 fo) ( 3 ).

This allows the mean square heterodyne beat signal to be written in terms of the

overlap of the Wigner distribution of the signal field and that of the effective LO field

\Vi(dy, dp, Al') /dwk/d:c/deq T, 2oy W) (8.4)

XWio(x +dy, zo + Al'sp+ kf_ , W)
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In this expression, Wg(z, 2,,w) is the Wigner distribution for the frequency compo-
nent wy of the signal field specified in the input plane, i.e. in the principal plane of
lens L2 as discussed in section 4.1.3. The Wigner distribution for the effective LO
field is also specified in the input plane (principal plane of lens L1) but includes the
shifts d, dp, and Al’ which allow the center position, momentum and path delay of
the LO beam to be varied.

One particular problem with the configuration shown in Figure 8.1 is that the field
emerging from the sample must propagate a considerable distance before reaching the
input plane of the imaging system (principal plane of lens 1.2). As discussed in section
3.1.1, free space propagation alters the Wigner distribution of the field. Thus the
detected signal does not map out the Wigner distribution emerging from the sample
but rather measures a distribution which has had its position distribution altered

according to Eq. 3.16 as

, d
w (xdapda = d) = W(xd - Ep(bpd: z = 0) = W('roapmz = 0)’ (85)

In this expression the propagation is through a distance d. In order to reproduce the
Wigner distribution of the light emerging from the sample in the plane of lens L2,
an imaging system consisting of two lenses is inserted between beamsplitter BS3 and
lens L2 as shown in Figure 8.2.  As discussed in section 4.1.4, a two lens system
is needed because one lens will not correctly reproduce the Wigner distribution on
its own. The lenses used in the imaging system are equal focal length achromats
separated by a distance of twice their focal lengths. Section 4.1.4 describes in detail

how this two lens system reproduces a Wigner distribution while a single lens cannot.

8.1.2 Turbid Medium

Small spheres were specifically selected for the backscattering experiments to generate
nearly isotropic scattering. For these experiments, latex microspheres (n = 1.59)
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Figure 8.2: Two lens system for imaging Wigner distributions as installed in the
backscattering configuration of the heterodyne scheme (Fig. 8.1). Note: distances
are not to scale.

with a diameter of 0.5 pym are used. They are suspended in a mixture of 25%
glycerol and 75% water which provides neutral buoyancy. As discussed in section
6.1.2, the mixture was found to have an index of (n = 1.36). Thus the index of
the spheres relative to the background medium is given by n = 1.17. The source
used in the backscattering experiments is the Anritsu SLD (Mg = 852 nm), its
properties are presented in Table 5.2. The scattering properties of the small spheres
were found to only vary slightly over the bandwidth of this source so it is sufficient
to calculate the theoretical scattering distribution at one wavelength. Using the
Mie solution, the scattering cross section was found to be og = 0.063 um?, which
is 0.32 times the geometrical cross section. The theoretical angular distribution is
shown in Fig. 8.3. The angles in the plot again have been multiplied by 1.36 to
account for the propagation of light from the background medium to air where it
is detected. The distribution appears gaussian; however, as the particles here are
smaller than a wavelength, the scattering distribution is now quite broad compared

to the distribution of the larger spheres used in the transmission experiments. The
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Figure 8.3: Mie differential cross section for scattering from 0.5 pum diameter
polystyrene spheres with parameters n, = 1.17, n, = 1.36, and Az, = 852 nm.

half width at 1/e is 1.14 radians which corresponds to a width in air of 0.84 radians.
The average of the cosine of the scattering angle for these spheres is (cosf) = 0.74,
again indicating that the small spheres tend to scatter light over broader angles than

the larger spheres.

8.2 Experimental Data

This section presents measured optical phase space contours for light backscattered
from an extremely thick sample of 0.5 micron spheres. The broadband Anritsu SLD
is used as the light source. As described in section 8.1.1, the low coherence length of
this source (I, = 31.1.um from Table 5.2) can be exploited in a heterodyne scheme
to selectively detect specific photon paths within the scattering medium. This en-
ables the enhanced backscattering effect to be examined for various the photon path
lengths. The data shows that with increasing photon path length, the enhanced

backscattering peak narrows and becomes less prominent. These data are compared
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Figure 8.4: Measured optical phase space contours for backscattered light. Al’ = 0.2
mm, p = 1.1 x 10'?/ecm? (Linear scale).

to theoretical predictions using a model presented in section 8.3.

8.2.1 Optical phase space distributions for enhanced backscat-
tering

Figure 8.4 shows typical measured optical phase space contours for light backscattered
from a turbid sample. The concentration of spheres here is p = 1.1 x 10'?/cm?.
This concentration would correspond to a ballistic attenuation of exp(—724) in a
transmission experiment. The scattering mean free path for this concentration is
[ = 13.8 pum while the transport mean free path is found to be

* ! _ m
I = o0 53.1um. (8.6)

To obtain the data in this plot, the L.LO path was delayed by 0.2 mm compared to light
directly reflected from the input face of the sample, i.e. the detected light had a path
length of 0.2 mm/n, = 0.2 mm/1.36 ~ 0.15 mm within the medium. Two distinct
features are observed here. The bright spot localized at zero transverse momentum
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Figure 8.5: Theoretical optical phase space contours for backscattered light.
Al' =0.2 mm, p = 1.1 x 102 /em? (Linear scale).

and zero position represents the enhanced backscattering peak while the gray bands
extending in momentum correspond to the diffuse background. This distribution
qualitatively agrees with a theoretical treatment used to model enhanced backscatter.
Figure 8.5 shows the theoretical optical phase space contours (Eq. 8.38) obtained for
the same parameters as those used to collect the data shown in Fig. 8.4. The
differences between the theoretical model and the experimental data become evident
by examining the momentum distributions at zero position (Figure 8.6). In this plot
the theoretical prediction (solid line) has a more prominent enhanced backscattering
peak than the data (points). The theory and data agree more closely when the
position integrated angular distributions are examined.

Enhanced backscattering is an effect observed in the momentum distribution of
the backscattered light. For this reason, typical enhanced backscattering experiments
employ position integrated momentum distributions to study the effect. Figure 8.7
presents the angular distribution obtained by integrating the optical phase space
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Figure 8.6: Measured optical phase space distribution for backscattered light at
r =0 with A’ =0.2 mm and p = 1.1 x 10'*/cm?. Solid line - theory; data - points.
distribution presented in Fig. 8.4 over position. This figure shows the measured
angular distribution of light backscattered from a turbid sample of concentration
p = 1.1 x 102/cm® with an LO path delay, A’ = 0.2 mm as compared to the
theoretical prediction for the same parameters (solid line) as given in Eq. 8.39. This
plot shows that here the theoretical model agrees more closely to the data than for
the unintegrated case. The enhanced backscattering peak has a magnitude 1.6 times
that of the background distribution. The peak is 3.9 mrad wide as it is measured in
air. This corresponds to a width of 2.9 mrad within the medium (n, = 1.36).

The treatment used to obtain the theoretical predictions for the enhanced backscat-
tering is presented in detail in section 8.3. The theory makes use of the Gaussian-
Schell model to describe the incident beam derived from the Anritsu SLD. The pa-
rameters of this model were found by replacing the scattering cell with a mirror and

then applying the coherence characterization method described in Chapter 5. The
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Figure 8.7: Measured angular distribution (position integrated) for backscattered
light. Al'’ =0.2 mm, p=1.1 x 10'?/cm?.

Beam width, 2a: | 0.9 mm
Transverse coherence length, o: | 0.62 mm
Radius of wavefront curvature, R: | 480 mm

Table 8.1: Summary of input beam coherence characteristics for backscattering
experiments.

coherence properties of the beam are listed in Table 8.1. These properties differ from
those listed for the Anritsu SLD in Table 5.2 as those measurements were made using
the system configured for transmission measurements. In this experiment the system
was configured to measure backscattering and thus the beam was not only shaped
differently but passed through different optical elements than in the transmission
configuration. Section 4.1.4 describes the differences between the transmission and

backscattering measurement schemes in detail.

As a second example of enhanced backscattering, Figure 8.8 shows measured opti-

cal phase space contours for a LO path delay Al’ = 0.6 mm at the same concentration
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Figure 8.8: Measured optical phase space contours for backscattered light. Al’ = 0.6
mm, p = 1.1 x 10 /cm?® (Linear scale).

(p=1.1x10"%/cm?®). The enhanced backscattering peak is shown in this figure as
the bright spot at zero transverse momentum and zero position. It is less prominent
compared with the peak seen at shorter LO path delay (Fig. 8.4). The gray bands
again correspond to the diffuse background light. This data is also in agreement with
the theoretical model.  For comparison, Figure 8.9 shows the theoretical distrib-
ution (Eq. 8.38) obtained using the same parameters as those for the distribution
in Figure 8.8. While the theory also qualitatively agrees with the data at this path
delay, examination of the angular distribution for zero position reveals the differences
between the two. Figure 8.10 shows that the theory predicts a narrower more promi-
nent peak than seen in the data. However, the position integrated measured angular
distribution is seen to agree much more closely to the theory. Figure 8.11 presents
the position integrated angular distribution for the optical phase space distribution
presented in Figure 8.8. The solid line again represents the theoretical prediction as

given by Eq. 8.39. In this plot, the enhanced backscattering peak is 1.34 times the
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Figure 8.9: Theoretical optical phase space contours for backscattered light.
Al' = 0.6 mm, p = 1.1 x 10*? /em? (Linear scale).
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Figure 8.10: Measured optical phase space distribution for backscattered light at
r =0 with A’ = 0.6 mm and p = 1.1 x 10'2/cm®. Solid line - theory; data - points.
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Figure 8.11: Measured angular distribution (position integrated) for backscattered
light. Al'’ =0.6 mm, p=1.1 x 10'?/cm?.
magnitude of the background light. The width of the peak is measured in air to be

3.1 mrad which corresponds to a width of 2.3 mrad within the medium.

8.2.2 Trends of the enhanced backscattering peak

Optical phase space distributions were measured for various LO path delays, ranging
from 0 to 1 mm, for the turbid sample (p = 1.1x 10'2/cm?). The fitted angular width
and magnitude of the enhancement peak from the position integrated data yield good
agreement to the theoretical model. Figure 8.12 shows the fitted momentum width
as a function of photon path length within the medium (Table A.11). The widths
are scaled to represent the angular width within the medium for comparison to the
theoretical model (solid line). The theoretical curve shown here as given in Eq. 8.40
correctly models the trend in angular widths although predicts slightly broader peaks
than those seen in the data. However the theoretical prediction shown is presented

with no free parameters. If the value of a beam parameter, such as the radius of
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Figure 8.12: Fitted angular width of enhanced backscattering peak at various LO
path delays, p = 1.1 x 10'?/cm?®. Solid line- theory, points - data (n, = 1.36).
curvature for the LO, is increased by 10% in the theory, the prediction and data are
seen to agree even more closely. The data point at zero path delay does not agree
with this model in either case. It is not expected to be correctly predicted because
the theoretical model is based on a diffusion approximation which is invalid for short
photon path length in the medium.

Further agreement between the data and the theoretical model is seen in a com-
parison of the predicted and measured peak heights. Figure 8.13 shows the magnitude
of the enhanced backscattering peak as a function of photon path length within the
medium (Table A.12). The magnitude has been normalized by the average magni-
tude of the diffuse background. The solid line represents the theoretical prediction as
given by Eq. 8.41, again with no free parameters. It agrees well with the measured
peak magnitudes with the exception of the data point at zero path delay. As noted

previously, the theory is invalid for very short LLO path delays.
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Figure 8.13: Fitted magnitude of enhanced backscattering peak at various LO path
delays, p = 1.1 x 10*?/cm3. Solid line- theory, points - data (n, = 1.36).

8.3 Theory

In this section a theory is developed to explain the data shown in section 8.2. The
theory is based on a treatment by Okamoto and Asakura [37] which examines the
effects of partial spatial coherence on enhanced backscattering. The model developed
here builds upon their work by adding time dependence so that the effects of temporal
coherence are also included. The treatment begins by considering the field backscat-
tered from a turbid medium. While Okamoto and Asakura give their result in terms
of an intensity, this treatment casts the result in the form of a Wigner distribution

so that the model can be compared with the experimental results.

8.3.1 Backscattering geometry

Figure 8.14 shows the geometry for the enhanced backscattering problem. In this

geometry, a photon at frequency v propagating with momentum p, enters the scat-
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Figure 8.14: Geometry of the backscattering problem. r; (r;) is the location of the
first (last) scattering, p; (p;) is the momentum of the photon as it enters (exits) the
medium and « denotes the path a photon travels between the first and last scattering.
tering sample close to the point r; where it first scatters. The photon travels along
the path o until it exits the medium travelling in the direction py near the point
of its final scattering r;. Summing such photons over all possible scattering paths
within the medium results in a complex amplitude for the scattered field [37]

E(Por Py, V) = Y alPor,v) pij(e,v) exp i (po - 1s — Pyr - 15)], (8.7)

where a(p,1, V) is the angular spectrum of the incident field, and p; ;(c, v) is a com-
plex probability amplitude which includes an implied phase shift for the path «a. Its
square modulus |p; j(a,y)|2, is the probability density of a photon of frequency v

following the path a from r; to r;.

To calculate the total field emerging with final momentum py, all possible combi-
nations of initial and final scattering positions as well as all incident directions, p,, ,

must be summed over. The amplitude of the field is thus given by

E(pyv) = /d2pol > &ij(Por s V), (8.8)

i,J
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where &;; is given in Eq. 8.7. The total field with final momentum py is given by the

summation of all frequency components
E(py) = /dl/ E(ps,v)e ™. (8.9)

8.3.2 Diffusive Propagation

For a sufficiently dense random medium, the probability of following a given path a,
can be found by using the diffusion approximation to model the propagation. In this

approximation, the photon density p(r,t) obeys the diffusion equation [38§]

Ip(r,t)
ot

— *DV%O(I‘, t), (810)

where D is the diffusion constant. The diffusion constant is given by

1
D=2l (8.11)

where ¢ = ¢/n, is the speed in the medium and [* is the transport mean free path.

The transport mean free path is related to the scattering mean free path [ by

" =

= (8.12)

where g is the mean cosine of the scattering angle. The value of [* for the backscat-
tering experiments is given in Eq. 8.6 as [* = 53.1 ym.

For the problem at hand, Equation 8.10 is subject to the boundary condition
that the medium occupies the half space z > 0. This boundary condition does not
demand that the density vanishes at z = 0, but rather at some position beyond the
edge of the medium z = —z,. The value of z,, which represents the point outside of
the medium at which the photon density vanishes is a matter of some debate. It is
given by Akkermans [38] as

Zo = 0.7104...1, (8.13)
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where [ is the scattering mean free path.

Using this boundary condition, the solution to Eq. 8.10 will be of the form
o0 e’ikJ_'rJ_ 2
o(r, 1) / k. / Pk Ak k) 2 i (2 + 2)] e, (8.14)
0 )

The parameter I' can be found by inserting Eq. 8.14 into the diffusion equation (Eq.
8.10 ) and is given as

I' = Dk?. (8.15)

The amplitude A(k,,k,) can be found by inverse transforming Eq. 8.14 with ¢ = 0.

This yields the following expression:

Ak, k) = / dz’ /d2er 1, 0) sin(k, (2 + 2,))e *+TL. (8.16)

Reinserting this expression back into Eq. 8.14 yields

1 (r—1')?
2
/ dz' /d v’ p(r DI )3/2 exp <_W (8.17)
y (=27 (22 +22)°
P\ Tape ) P 4Dt ‘
Thus the probability for propagation from r to r’ in a time t is given by

, B 1 ox 7(1’—1")2
P(r,v',t) = —(47rDt)3/2 p( ADi ) (8.18)

N ]

8.3.3 Wigner distribution for enhanced backscattering

It is convenient to work with the Wigner distribution in terms of momentum space

fields such as the one given in Eq. 8.9. It is given by [11]

Wxp) =52 [ dacs (B + HEm- ). (.19)
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Expanding the field into its frequency components using Eq. 8.9, the Wigner distri-

bution for backscattered light is given by

Whack(X,Pf) /d3 /dye’qx<€(pf—|—— V)g*(pf—% y)> (8.20)

where the two integrals over frequencies have been reduced to a single integral by
assuming that the &’s are delta correlated in frequency. Using Eq. 8.8, the bracketed

term in Eq. 8.20 is written as

q * ~a _
d*po. g Eii(p pf—l—g v) [ d*p! En(Ph,PF— a V) ).
o. — (%] 09 27 ol — [oX} 2

This can be rewritten as

<5(pf + %’ v)E(ps — %, 1/)> = (8.22)

/d2poL/d2po¢ a(Por,v) a*(Pyy,v)) X Z<Z|pu a,v) >

x [exp (ir; - (po — P,)) exp (— 'Lq'rj)

. q . q
+ exp (zri - (Po+Pf — 5)) exp <*er “(Po+pr+ 5))} ,

by using Eq. 8.7 and making one key assumption. It is assumed that there is no
correlation between scattering paths in the medium such that interference between
photons travelling different paths cancel after averaging. This assumption is referred
to as the weak disorder limit [37]. In this limit the only terms which contribute arise
from self-interfering photons and time-reversed pairs. The self-interfering photons
occur for ¢ =1, j = m, and o = , while the time-reversed pairs occur for i = m,
j =1, and a = —a’. This condition allows the sums over 4, j and [, m and the implied
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sums over o and o in Eq. 8.21 to be collapsed into a single sum over starting and

ending points (7, j), and a single sum over paths ().

For a completely uncorrelated medium, the probability of following a path from
r; to r; depends only on the distance between the two points. In this situation, the

term in Eq. 8.22 which governs the probability of scattering paths can be written as

Z <Z |pij(oz,1/)|2> = /eri d*r; P(|r'| 1), (8.23)

2,J a
where r' = r; — r; and d°r; d’r; P(|r'] ,t) is the probability of a photon entering the
medium r; and exiting at r; as given by Eq. 8.18. Inserting this expression and Eq.

8.22 in Eq. 8.20 and carrying out some straightforward integrals yields
1
Whack(x1,2 = 0,pyg) = 5~ / dv / d*por d’py1 (a(Por,v) a*(py1,v))
X /eri d*r; P(|r'| ,t) x [6(XL—er)e"”'(p"’pg)

46 (XL_W%> eiri'(po+Pf)e_iri'(Po‘pr) ) (8.24)

This equation can be more elegantly written by changing variables:

! / !
r_ri_rj P = Po— P,
ritr; __ PotpP,
= T2

8.25

The delta functions now permit easy integration, which yields
1
Wiaa(xi2 = 0pg) = o= [ dv [ @pod, alps + 9, /2.0) 0’ (b1 — B /2.0)

X /er'P(|r/| ,t) [eixrp’ + X LP PPy | (8.26)

The angular correlation function (a(py + p’, /2,v) a*(pL — P/, /2,V)), is the Fourier

transform of the cross-spectral density
{a(p. + P /2,v)a*(pL — P /2,v)) = /dQXL x|, W(x,,x',v) (8.27)

xexp[ixy - (pL+p'/2) — x| - (pL —pL/2)]
187



with W(x_,x/,,v) given in Eq. 5.2 as

, x? +x/? x; —x))? ik ,
W(x,, x| ,V) x exp [—%} exp [—%] exp [QR( xf)} . (8.28)

In defining the cross-spectral density, the spatial intensity width, 2a, the transverse
coherence length, ¢ and the beam curvature, R, are introduced. These parameters
are specified for the Anritsu SLD in Table 8.1.

Using Eq. 8.28 and Eq. 8.28, the Wigner distribution of the backscattered light

can be written, after some straightforward integration, as

1 x2 PL— 5x1)’
Wback(XJ_:Z — (]’pf) — g/dyexp (2—;‘2> /d2pJ_ exp <( (l _:zlL))
2a?

o2

« / PP 1) [1 + e e (8.29)
For all points r;, r; lying at the surface z = 0, the probability density of photon paths
(Eq. 8.18) is given by

P(r| ) — m exp < 41”;> {1 exp <%)} L (8.30)

where D is the diffusion constant as given in Eq. 8.11 and the parameter z, is given

in Eq. 8.13. Inserting Eq. 8.30 into the r’ integral in Eq. 8.29 yields

/ P 0) [+ e O e (4w;t)3/2 [1 p( (Z;i )} (831

X /er' exp( > 1 4+ (P Pf)}
After integration, this term becomes

/d2r'P(|1”’| ,t) [1 + eir"(p’pf)} = (47116)1/2 {1 — exp <— (Z;f)}
x [1+exp(=Dt(p—py)?)]- (8.32)

Thus, the form of the Wigner distribution is given as

X3 (PL - EXJ_)Q
Whaet(x1,2 = 0, xexp | ——= /d2 exp | ———L&— 8.33
back (XL py) p( 2a2> pL p( Ey (8.33)

X(zlelt)l/Z [1 e (_%)] 1+ exp (—Dt(p — py)?)]

188



After integration over p, the distribution becomes

1 x2 (22,)?
f— ——eee —_—— 1 —_ —
back (X1, 2 = 0,Pr1) o (4rDt) 2T ( 2a2> { exp ( 1Dt

575 (pr_ - %XJ_)2
I+ ——F——Fep| — , 8.34
" A ( (B2 + 2w+ 7 )>] o

1 2 A4 1, 2
Dt + 2a2 o2 Dt + 2a2 + o2

which gives the form of the Wigner distribution emerging from the turbid medium.

8.3.4 Heterodyne beat signal

In order to compare the theoretical model to the experimental data, the Wigner
distribution of the backscattered field (Eq. 8.34) must be convoluted with that of the
LO. For computational simplicity, it is assumed that the LO has a sufficiently small
coherence length to directly select the photon path length in the medium. Thus the

Dt term in the distribution of backscattered light will be replaced by

1 1. Al
Dt = =dlI"t = =I*
3 3 ne

: (8.35)

where Al’ is the path length difference between the LO and signal beams as given by
Eq. 8.1 and dt = Al'/n, is the corresponding path length within the medium. The

phase space distribution of the L.O is given by

A koo (xy — da2)?
Wio | X1 — d @, pr1 — f—dpx X exp STy (8.36)

( (prL — kdpx — dy1)? )
X exp i) ,

(2(112 + o2

where the LO center momentum is varied by 7 d and 2a, R, and o are the beam

parameters for the Anritsu SLD as given in Table 8.1.
The convolution of the Wigner distributions for the LO and signal fields gives the

heterodyne beat signal (Eq. 8.4):

SB (dz,e == fﬁdp, All) == / pr/d X (837)

. E .
WLO (XJ_ - dz-T,pr_ - 7 p~r> Wback(XJ_apr_7 Al/)
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Substituting Eq.’s 8.34, 8.35 and 8.36 into this equation and carrying out the ps,

and x integrals results in a mean square beat signal of magnitude

k 2 d2
SB <d$70f_dp7Al/> X %exp (4—E2> X (838)
LGt 25 1 (- kd)?
* ! X .
T+ (& +2) Ca P\ T L 2 )

This theoretical model is seen to give good qualitative agreement with the data

presented in section 8.2.

In backscattering experiments, it is useful to examine the angular distribution
emerging from the medium. The angular distribution is found by integrating Eq.
8.38 over all LLO center positions d,. This yields a distribution of the form

d 1+ (5 + %) 54
Sk (9 = f’: Al’) T (4a2(,§ Y +) "‘) AT (8.39)

Mo

X ex (ke)
N EE R )

This model takes the form of a broad diffuse background (represented by the ‘1’) and

an enhanced backscattering peak which arises from coherent addition of time reversed
photon paths. This distribution was used to plot the theoretical optical phase space
distributions shown in Figures 8.5 and 8.9. The width of the backscattering peak
scales with path delay Al’ (Fig. 8.12) as

1 4a?k? 1 2 3n
Orje = T S+ =+, 8.40
Y k\/( R? +a2+02+l*Al’> (8.40)

while the magnitude of the peak compared to the diffuse background (Fig. 8.13)

scales as

1+ (2a2 +F) %%_o (8 41>
1+ (22 + L 4 Z) LAl '

Mo

The trends in peak width and mangitude are in agreement with those seen in the
experimental data shown in section 8.2.2.
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8.4 Discussion

The Wigner distribution for light backscattered from a turbid medium is given by

Equation 8.34 as

1 x2 (220)°
Wac 9 - 07 __l 1 N B ;
back(X 1, 2 PrL) X (4xDt)? exp( 2a2> ( exp( 4Dt >>

x |1+ % exp ( ((pﬁ ~ mxu) )] . (8.42)

14 2 1 .1 4 2
Dt + 2a?2 o2 Dt + 2a2 + 02)

This distribution consists of two parts: a diffuse background and an enhanced backscat-
tering peak. The diffuse background is represented by the first term (the ’1’) within
the square brackets in Eq. 8.42. It has no momentum dependence, as expected for
isotropic diffuse light. Its position dependence is due to the size of the input beam
(given by the intensity width 2a). The enhanced backscattering peak is represented
by the second term within the brackets in Eq. 8.42. It arises from the coherent ad-
dition of time reversed photon paths within the medium. Examining the peak width
and magnitude as a function of the photon path length can give physical insights into
the propagation of optical coherence in a multiple scattering medium.

The shape of the enhanced backscattering peak is given in the Wigner distribution

2 ko \2

x7 (PrL — HX1)
exp| — |exp | — . 8.43
p< 2a2) p( (D1t+26112+022)> (843

For an input beam with no curvature (R — o0), the Wigner distribution factor-

(Eq. 8.42) as

izes into a gaussian position distribution and a gaussian momentum distribution.
The position distribution reflects the size of the incident beam while the transverse

momentum width is given by

1 1 2
Priliye = \/E + 502 + poy (8.44)

where D is the diffusion constant, 2a is the 1/e intensity width of the input beam and

o is its transverse coherence width. Using Eq. 8.10, the product Dt can be rewritten
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as
1 1Al
Dt = —(I*t = —[*
3¢ 3"

, (8.45)

where ¢ = ¢/n, is the speed of light in the medium, [* is the transport mean free
path (as given in Eq. 8.6) and ¢'t = Al’/n, is the photon path length in the medium.

Using this expression, the transverse momentum width can be written as

3n, 1 2
Prilyye = \/—Z*M togt (8.46)

o

In this form, the momentum width is seen to depend on the coherent area of the input
beam and the area of the diffusing light transverse to its direction of propagation, as

discussed below.

The coherent area of the input beam is determined by the smaller of 2a and o, i.e.
if the beam is fully coherent (o > 2a), the coherent area is limited by the beam size;
but, for a partially coherent beam (o < 2a), the transverse coherence width limits the
coherent area. The spatial coherence manifests itself in the angular spectrum of the
incident light. The angular divergence of a beam is inversely related to its transverse
coherence length such that a beam with a high angular divergence will have low
transverse spatial coherence. In the enhanced backscattering problem, a pair of
photons sharing time reversed paths will only constructively interfere provided the
starting points of both paths lie within the same coherence area. Thus, the coherence
area influences the angular width of the backscattering peak through its relation to

the angular spectrum of the incident light.

Once in the medium, the light undergoes diffusion due to multiple scattering. Its
area transverse to the incident direction is given by Eq. 8.18 as ~ Dt o< [*Al’, which
grows with increasing photon path length, Al’. As its area expands, the possible
time reversed paths must correspondingly narrow in transverse momentum. Hence,
the diffusive growth of the distribution also influences the width of the enhanced
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backscattering peak. However, as Eq. 8.46 shows, it is the smaller area which sets
the width of the peak. For diffusive areas which are smaller than the coherence area
of the incident beam, the angular width of the peak is seen to narrow as the reciprocal
of the square root of the photon path length. However for very short photon path
lengths, on the order of the mean free path [*, the diffusion approximation is not valid
and as expected, Eq. 8.46 does not accurately predict the width of the enhanced
backscattering peak. Once the diffusive area grows larger than the coherence area of
the incident beam, the beam characteristics become dominant and set a lower bound
on the angular width of the enhanced backscattering peak.

The magnitude of the enhanced backscattering peak also offers insight on the
propagation of coherence in a multiple scattering medium. According to Eq. 8.42, the
enhanced backscattering peak at zero transverse momentum will have a magnitude

above the diffuse background given by

1 1
height = —L—— = DL (8.47)
Ditate IPril.

It can be related to the width of the enhanced backscattering peak using Eq. 8.44.
The product Dt is again interpreted as the area of the diffusive distribution transverse
to the incident direction for a given photon path length. Its reciprocal is related to
the square of the corresponding angular width of the angular distribution. Thus the
peak height can be seen as the ratio of the square of the angular width of the total
diffusive distribution divided by the square of the angular width of the enhanced
backscattering peak. This ratio decreases for increasing photon path lengths because
the angular width of the diffusive distribution decreases more rapidly than the angular
width of the enhanced backscattering peak which has a lower limit governed by the

coherence properties of the input beam.

Including the beam radius of curvature, R in Eq. 8.42, in the Wigner distribution
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does little to the trends in the peak height and width discussed above. However, for
a input beam with a small radius of curvature, corresponding to a strongly diverging
beam for example, the Wigner distribution will have a strong correlation between
position and momentum. This correlation becomes significant when one considers
the means by which the backscattering is detected.

In our experiments, the backscattered distribution is measured via heterodyne
detection which means the detected signal is the convolution of the backscattered
and LO Wigner distributions (Eq. 8.4). For the backscattered light given by Eq.
8.42, the detected signal as a function of LO center position, momentum and path

delay is given by Eq. 8.38 as

2 2
Sp(dz,0 = %,Al’) o 7r?exp (%) X (8.48)
1

1, 2)\IrA gt (L L2 4 3ng
1+(a2+02)3n0 a (a2+0'2+*Al’

1 . %KA_V _ kg2
[1+ +(2a +0’)3TL0 exp( 1 (ke Rd) ))]

In this expression the width of the enhanced backscattering peak is now given as

3n 1 1 2
/
‘pfl‘l/e—\/l*Al'+2_CL2+2_a2+§. (8.49)

The additional factor of ﬁ in this expression, compared to the 1/e momentum width
of the Wigner distribution (Eq. 8.46), arises from convolution with the LO beam.
The convolution of two gaussian distributions yields a broadened gaussian with a
width given by the square root of the sum of the squares of the original distributions.
Convolution with the LO also changes the height of the enhanced backscattering peak

relative to the diffuse background:

3n 1 2 2

heioht — TAD toz o |pr—|1/e
g =" 12 '

*Al a? o2

(8.50)

=—73

‘pfl‘l/e
Instead of reflecting the ratio of the angular widths of the backscattering peak to
the diffuse distribution within the medium, the peak height of the detected signal
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can be interpreted as relating the true angular width of the enhanced backscattering
peak to the angular width of the peak when convoluted with the L.LO. The numerator
in Eq. 8.50 gives the square of the width of the enhanced backscattering peak (Eq.
8.49) while the denominator gives the width of the convoluted distribution. This
can be seen as the finite angular width of the LO detecting a portion of the diffuse
background as well as the backscattering peak for the angle selected for detection.
Thus the relative contrast of the peak is decreased . If the angular width of the LO is
decreased (the = factor due to the LO is made small) then the peak height will be
given as one. Thus, for the detected distribution, the characteristics of the backscat-
tering peak with increasing photon path length reflect the measurement method in
addition to the effects of coherence.

Most enhanced backscattering measurements examine the momentum distribution
of the backscattered light by collecting light over a wide range of positions. In the
heterodyne scheme, this can be duplicated by integrating the detected distribution

over all possible LLO positions. The resulting signal is given in Eq. 8.39 as

i L (g ) 54
Sp0 =—,Al')ocl + Wkga RN (8.51)
fo T+ (8 + 5+ %) 55
Y oxp ( (ke)
X 4(12k2 3n, .
( = + >+ l*Al’)
Here the width of the backscattering peak is given by
— 3n 4a’k? 1 2
Prilye = Kbije = \/Z*Al, t (8.52)
while its height relative to the diffuse background is given by
_3n_ 1 2 2
* A ]/ + + -2 p 1 e
height = — LA __2d sl (8.53)

3n 4(121c2 - >
FAT T + + Prilise

where |py.|, Je is the angular width of the true backscattering distribution (Eq. 8.44).
In both of these expressions, the wavefront curvature is seen to affect the measured
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characteristics of the backscattering peak. Upon integrating the detected signal over

position, an additional factor of 4’}?2’“2 + 2}7 arises in the measured angular width
of the backscattering peak. This is partly a consequence of the correlation between
position and momentum due to the curvature of the incident beam. Once the position
dependence has been integrated out, the incident angular spectrum now depends on
the entire extent of the wavefront rather than only the portion at a given position.
In addition the angular spectrum of the LLO is also broadened due to the integration.

Convolution of the two broadened angular distributions results in the angular width
given by Eq. 8.52.

The peak height (Eq. 8.53) is also affected by the wavefront curvature when the
signal is integrated over position. In this case the peak height can be written as
the ratio of the square of the angular width of the unintegrated backscattering peak
distribution to the angular width of the position integrated distribution. Again, the
LO momentum width measures a portion of the diffuse background in addition to
the enhanced backscattering peak for the selected angle of detection. Hence, the
maximum peak height is decreased relative to the diffuse background.

Finally, it is important to point out that this theory is based on diffusive propa-
gation in the medium. While the nearly isotropic scattering and thick concentration
serve to rapidly randomize the momentum distribution of the light in the medium, for
short photon path lengths, this theory is not valid. The transition from ballistic light
to diffusive propagation is an extremely interesting problem which warrants further

study.
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Chapter 9
Conclusions

This thesis has developed a heterodyne method for directly measuring optical phase
space distributions, i.e. the joint position and momentum distribution of a light field.
The utility of this method is demonstrated in studies of the propagation of light in
multiply scattering media. These fundamental light scattering studies will aid in the
development of novel biomedical optical imaging techniques, since many biological

tissues predominantly scatter light rather than absorbing it.

The optical phase space distributions are measured using a novel heterodyne
imaging scheme, implemented using either coherent or low coherence length light.
By measuring the mean square heterodyne beat, the detected signal is given by the
convolution of the Wigner distributions of the signal field and a reference field. Thus,
optical phase space distributions are a form of smoothed Wigner distributions with
the position and momentum resolution given by the diameter and diffraction angle of
the reference field. The relationship between Wigner distributions and optical phase
space distributions is important as it allows studies based on the measurement of
optical phase space distributions to be interpreted in the language of Wigner distrib-
utions. As discussed in Chapter 3, the language of Wigner distributions is well suited
for rigorous description of the heterodyne measurement methods employed in the
light scattering experiments. Wigner functions correctly incorporate coherent and
incoherent contributions to the beat power spectrum, including both ballistic and
scattered light. Wigner distributions are shown to obey rigorous transport equations
which are derived from the underlying wave equations. Thus, measurement methods

based on Wigner distributions can be placed on a firm theoretical footing. In addi-
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tion, the Wigner distribution is Fourier transform related to the two point coherence
function of the light field and is therefore sensitive to its coherence properties. This
sensitivity can be exploited to characterize light sources, as shown in Chapter 5.

The heterodyne imaging scheme developed to measure optical phase space distri-
butions is presented in detail in Chapter 4. As with all heterodyne methods, the light
field of interest is mixed with a strong reference field which is offset in frequency. Us-
ing Fourier optics, it is shown that by translating optical elements, namely a mirror
and a lens, the center position and momentum of the reference field is varied, allowing
the optical phase space distribution of the signal field to be mapped out in real time.
The system is readily adapted for low coherence light by including a means of varying
the path length of the reference field. A heterodyne beat is only produced when the
signal and reference optical paths are matched to within the coherence length of the
source. By scanning the path length of the reference field, the longitudinal coherence
properties of the signal field are also probed. Finally, the detection apparatus, which
converts the optical heterodyne beat signal to a voltage, permits measurements at
the sub-femtowatt level. 10716 watt signals are measured using input powers at the
milliwatt level. This corresponds to a very high dynamic range of 130 dB.

The capabilities of the heterodyne imaging scheme are demonstrated in the vari-
ety of scattering studies presented in this thesis. Both coherent and low coherence
sources are employed to study both transmission and backscattering from multiple
scattering media. The transmission studies using the coherent helium neon laser pre-
sented in Chapter 6 show that multiple diffractive scattering in the forward direction
can produce a narrow pedestal in the momentum distribution of the transmitted
light which decays more slowly than the ballistic component. The data are well fit
by a theoretical model that assumes the Wigner phase space distributions obey an

approximate transport equation that is identical in structure to the usual transport
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equation for the specific intensity. By incorporating transverse momentum changes
arising from multiple diffractive scattering and treating large angle classical scattering
as a loss, the model shows very good agreement with the data. For thick biological
samples, the diffractive pedestal becomes comparable in magnitude to the ballistic
component. Thus, it can affect the apparent intensity of a probe beam compared
to that expected for only exponential attenuation of ballistic light. This is consis-
tent with an anomalous probe intensity observed in optical coherence tomography by

Yadlowsky, et al. [20].

Low coherence length superluminescent diodes were used to conduct the trans-
mission studies in Chapter 7. Employing a low coherence source permits selection of
the photon path length within the medium, as a heterodyne beat is only produced
when the signal and reference beams have equal path lengths. This effectively gives
timing resolution inversely related to the bandwidth of the source. For the extended
bandwidth superluminescent diode from Sarnoff labs used in some of the studies pre-
sented here, the timing resolution is as low as 25 femto-seconds.. This is comparable
to the timing resolution of ultrafast pulsed lasers. The experimental data from the
transmission experiments show it is possible to measure phase space distributions
which are still narrow in momentum by detecting photons with a path length only
slightly longer than that of the ballistic light. These narrow distributions represent
low order scattering. Since these narrow distributions are transmitted through sam-
ples too dense for ballistic light to survive, they may be exploited to allow optical
imaging through thick biological tissues. The studies with low coherence sources may
have the greatest impact on the existing technology of optical coherence technology
(OCT). Since OCT only uses spatial intensity measurement, additional information
found in the momentum distribution and spatially varying phase of the light is ne-

glected. While recovering all the position and momentum information present in
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the light field takes too long to be a viable medical diagnostic technique, employ-
ing optical phase space distributions can help in understanding light propagation in

biological media and may lead to improvements in OCT imaging.

A low coherence light source was also used to conduct the backscattering study
presented in Chapter 8. This study examined the coherent addition of backscattered
light known as the enhanced backscattering effect. This phenomenon produces a
narrow peak in the retroreflected direction of twice the magnitude of the broad dif-
fuse background. By employing a low coherence length source, the backscattering
peak can be dissected according to the length of the photon path within the medium.
The data show that the backscattering peak narrows in momentum and decreases
in magnitude with increasing photon path length. These trends can be explained
using a theoretical treatment which treats the photon paths using a diffusion approx-
imation, i.e. the photon transport is governed by the diffusion equation. Although
the theory is based on the propagation of fields, the result is cast in the form of a
Wigner distribution for comparison to the data. The treatment yields good agree-
ment with the data only for non-zero photon path lengths. This is expected as the
diffusion approximation does not correctly treat low order scattering. The trends in
the characteristics of the backscattering peak were discussed with an emphasis on

the relevant coherence areas contributing to the enhanced backscattering effect.

The studies presented in this thesis are preliminary investigations into the useful-
ness of the heterodyne imaging scheme for biomedical optical imaging. The hetero-
dyne scheme offers several practical advantages such as a high dynamic range, and
the ability to measure momentum distributions with high angular resolution. The
method is particularly useful for examining the coherence properties of a light source
as shown in Chapter 5. Detailed studies of light propagation in multiple scattering

media are possible as the maximum amount of information present in a light field
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can be recovered using this method. These studies further the understanding of light
transport in biological tissues by offering an ideal system which can be compared to

theoretical treatments.

Future work using this system will focus on examining the light transmitted
through different types of biological cells to determine if the phase space distrib-
utions can distinguish scattering media. Using a low coherence length source to
measure phase space distribution adds timing resolution, which can be exploited to

further contrast different types of cells by their optical scattering properties.

The relationship between optical phase space distributions and Wigner distribu-
tions presents a potential means of improving theoretical models of light transport
in scattering media. Since the analysis based on the approximate transport for the
Wigner distribution presented in Chapter 6 is equivalent to that based on the radia-
tive transport equation for the specific intensity, it is similar to analyses presented in
previous studies of small angle scattering [92]. However, when the Wigner distribu-
tion in the medium varies substantially over optical wavelength scales, the appropri-
ate transport equation may be nonlocal, and the simple approximations used in the
treatment presented here may break down [13]. Further inquiry into the failings of
the approximate transport equation may also improve the resolution of biomedical
optical imaging techniques.

Finally, additional inquiries are underway to examine the prospect of using mul-
tiple local oscillators to improve the resolution of the heterodyne imaging scheme.
Currently, the position and momentum resolution form a minimum uncertainty prod-
uct such that improvements in the position resolution come at the cost of decreased
momentum resolution and vice versa. By using two local oscillators, one squeezed in
position and one squeezed in momentum, it is believed that the signal beam can be

recovered with a resolution beyond the limit imposed by the uncertainty product.
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Appendix A

Tabular data

A.1 Intralipid transmission

Concentration (% of 10% solution) | Transmission
0 1.0

0.5 0.35

1.0 9.0x10~*
1.5 2.3x107°
2.0 8.5x10~7
2.5 2.0x1078
3.0 5.7x10°10
3.25 1.8x10710
3.5 7.8x10~ 1
3.75 5.5x10~ 1
4.0 4.9x10~ 1
4.5 3.7x10~ 11
5.0 3.1x10711
5.5 3.1x10711
6.0 2.5x10~ 1
6.5 2.3x10~H
7.0 1.9x10~ 1!
8.0 1.5x10 1
10.0 1.1x10 1
12.0 7.8x10 12
15.0 4.1x10712
20.0 2.1x10712
25.0 1.4x10712
30.0 9.0x10~13
40.0 6.9x10713
50.0 2.5%x10°13

Table A.1: Data for Fig. 1.1 - Transmission through 1.3 cm of Intralipid solution
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A.2 Coherent Source Transmission

Concentration (10°/cm?) | Pedestal Magnitude
0.202 4.8x107°
0.404 6.8x107°
0.521 3.5x107°
0.811 6.2x10 °
2.03 1.6x107°
2.56 4.7x107°
3.08 1.8x107°

3.6 1.22x107°
4.0 0.95x107°
4.53 3.8x10°"
5.13 1.26x10°"
6.01 0.65x10°7

Table A.2: Data for Fig. 6.8 - Amplitude of diffractive pedestal vs concentration

A.3 Broadband Source Transmission

Path delay, Al (mm) | Momentum Width (k)
0 0.065
0.1 0.107
0.2 0.143
0.3 0.168
0.4 0.208
0.5 0.231
0.6 0.270
0.7 0.288
0.8 0.300

Table A.3: Data for Fig. 7.8 - Linear Momentum Growth
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Path delay, Al’ (mm) | Position distribution width (mm)
0 0.55
0.02 0.72
0.1 1.20
0.2 1.50
0.3 1.79
0.5 2.40

Table A.4: Data for Fig. 7.17 - Position Width Growth for p = 1.2 x 107 /cm?

Path delay, Al’ (mm) | Position distribution width (mm)
0 0.57
0.1 0.95
0.2 1.28
0.3 1.54
0.5 1.93

Table A.5: Data for Fig. 7.22 - Position Width Growth for p = 1.5 x 107 /cm?

Path delay, Al (mm) | Momentum distribution width (107 k)
0.05 48.4
0.1 76.7
0.2 84.5
0.3 124
0.4 158
0.5 153

Table A.6: Data for Fig. 7.28 - Transverse Momentum Width Growth for
p=18x10"/cm?
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Path delay, Al’ (mm) | Position distribution width (mm)
0.05 0.65
0.1 0.96
0.2 1.16
0.3 1.57
0.4 1.74
0.5 2.0

Table A.7: Data for Fig. 7.29 - Position Width Growth for p = 1.8 x 107 /cm?

p(10"/em?) | “A” parameter (mm)
1.2 0.57
L.5 0.55
1.6 0.62
1.8 0.70
2.0 0.80

Table A.8: Data for Fig. 7.30 - Position Width Growth Model “A” parameter

p(107/cm?) | “B” parameter (um ')
1.2 0.034
1.5 0.022
1.6 0.018
1.8 0.015
2.0 0.013

Table A.9: Data for Fig 7.31 - Position Width Growth Model “B” parameter
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p(107/cm?) | “C” parameter (um)
1.2 0
1.5 8
1.6 43
1.8 58
2.0 190

Table A.10: Data for Fig. 7.32 - Position Width Growth Model “C” parameter

A.4 Broadband Source Backscatter

Photon path length, Al’ /n, (mm) | Momentum Width (107 k)
0 5.96
0.15 2.88
0.29 2.26
0.44 2.26
0.59 1.88
0.74 1.99

Table A.11: Data for Fig. 8.12 - Momentum Width for Enhanced Backscattering
Peak

Photon path length, Al’ /n, (mm) | Enhanced Peak Magnitude
0 1.63
0.15 1.60
0.29 1.42
0.44 1.34
0.59 1.32
0.74 1.27

Table A.12: Data for Fig. 8.13 - Peak Magnitude for Enhanced Backscattering
Peak
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