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Abstract

In this dissertation, I develop a novel Two-Window heterodyne technique for mea-
suring the time-resolved Wigner function of light fields, which allows their complete
characterization. A Wigner function is a quasi-probability density that describes
the transverse position and transverse momentum of a light field and is Fourier-
transform related to its mutual coherence function. It obeys rigorous transport
equations and therefore provides an ideal way to characterize a light field and
its propagation through various media. I first present the experimental setup of
our Two-Window technique, which is based on a heterodyne scheme involving two
phase-coupled Local Oscillator beams we call the Dual-LLO. The Dual-LO consists
of a focused beam (’SLO’) which sets the spatial resolution, and a collimated beam
('BLO’) which sets the momental resolution. The resolution in transverse posi-
tion and transverse momentum can be adjusted individually by the size of the
SLO and BLO, which enables a measurement resolution surpassing the uncertainty
principle associated with Fourier-transform pairs which limits the resolution when
just a single LO is used. We first use our technique to determine the beam size,
transverse coherence length and radius of curvature of a Gaussian-Schell beam, as
well as its longitudinal characteristics, which are related to its optical spectrum.
We then examine Enhanced Backscattering at various path-lengths in the turbid
medium. For the first time ever, we demonstrate the phase-conjugating properties

of a turbid medium by observing the change in sign of the radius of curvature for a

v



non-collimated field incident on the medium. We also perform time-resolved mea-
surements in the transmission regime. In tenuous media we observe two peaks in
phase-space confined by a hyperbola which are due to low-order scattering. Their
distance depends on the chosen path-delay. Some coherence and even spatial prop-
erties of the incident field are preserved in those peaks as measurements with our
Two-Window technique show. Various other applications are presented in less de-
tail, such as the Wigner function of the field inside a speckle produced by a piece

of glass containing air bubbles.
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Chapter 1
Introduction

Over the past two decades, optical tomographic methods have become increasingly
important tools to investigate architectural and chemical features of small objects
in various fields. For example, optical wavelengths are small enough to allow the
distinction of a variety of features of interest in biological samples, also by exploiting
coherent properties of the field. Pulsed light or broadband light enable time-resolved
measurements, i.e., the exclusive detection of light that has travelled a given path
length in a medium under investigation, by superposing it with a reference beam
and measuring the interference (Optical Coherence Tomography, ’‘OCT’). For mea-
surements of reflection from layered structures, this allows the imaging of layers at
various depth, by varying the path delay of the reference beam. In the measure-
ment of transmitting light in strongly scattering media this method can be used
to enhance the image quality by suppressing scattered light which takes a longer
path in the medium than non-scattered (*ballistic’) light. OCT has especially been
of interest for medical applications, as for the investigation of outer skin layers or
the interior of the eye. With the advent of new low-cost broadband semiconductor
light sources of almost any spectral composition and coherence properties over the
past couple of years, time-resolved measurements do not rely on bulky pulsed lasers

any more. In our experiment we use a ’superluminescent diode ("SLD’), which has



a transverse coherence close to a laser diode but longitudinal coherence length of
just 25 microns. In Chapter 2 I will give an overview over the most common optical
tomographic methods.

In this dissertation I present a novel Two-Window Heterodyne method which
allows the direct measurement of the Wigner function of a light field [1]. Wigner
functions are a convenient way to fully characterize light fields up to their first-order-
coherence properties: A Wigner function simultaneously describes the transverse
position and momentum of a light field while preserving all phase and amplitude
information of the field. Wigner functions obey rigorous transport equations and
are a convenient way to describe the propagation of fields, through turbid, multiple
scattering media, for example.

Our Two-Window technique allows the phase-sensitive measurement of light
fields, unlike intensity measurements, as well as the immediate distinction between
coherent and incoherent contributions to the field, unlike the Single-Window tech-
nique employed previously [2-5].

We use the Two-Window technique to classify the beams generated by our SLD,
i.e., its transverse phase front as well as its first-order coherence properties both
transversely and longitudinally. The main part of this thesis deals with the mea-
surements of Wigner functions backscattered and transmitted through turbid me-
dia. Our method allows the immediate distinction between coherent and incoherent
light exiting the medium. It allows us to observe Enhanced Backscattering ("EBS”),
which causes the intensity of backscattered light to be twice as big opposite of the
direction of incidence than in other directions, thanks to constructive interference
of pairs of wavelets oppositely travelling along the same sequence of scatterers. For

the first time we are able to observe the change of sign of the radius of curvature for



a curved wavefront experiencing EBS: A divergent beam incident on the medium
generates a converging wavefront exiting the sample, and the other way around.
We also observe conservation of coherence for scattered light in transmission,
and look inside the speckle. The presented study will hopefully open new avenues
to examine and classify light fields in various fields, in particular in biomedical
imaging. In the following, I will briefly outline the inner workings of the Two-

Window technique.

1.1 Wigner functions and their measurement

Wigner functions describe the position and momentum distribution of a light field
in a plane perpendicular to its direction of propagation and contains all phase- and

amplitude information about it. It is Fourier-transform related to the correlation

function I'(z, 2") = (£*(x)E(x")) of the field:

€

W (. p) = / O expliep)(€*( + S — 9)) (1.1)

For Gaussian beams, the Wigner function bears many similarities to the geometrical
description of rays; for all other fields though it contains negative interference terms.
A detailed treatment of Wigner functions is given in Chapter 3.

In this thesis, we present a novel Two-Window heterodyne detection scheme
which allows the mapping of the true Wigner function in a given direction within
a transverse plane [1]. Figure 1.1 demonstrates how it works: A signal beam is
frequency shifted by means of an acousto-optical modulator by 110 MHz and inci-

dent on to a sample. The emerging field is superposed with a combination of two

local oscillator beams ('Dual-LO’), each LO shifted by 120 MHz and 120.003 MHz



Balanced / BLO
Detector / 120 MHz

A
SLO

<
120.003 MHz

A

Beam splitter Beam splitter

SLO-Lens

Signal
110 MHz

A

Sample cell

Figure 1.1: Basic scheme for Two-Window technique. The Signal field emerging
from the sample is superposed with a Dual-LO, which consists of a collimated L.O

(’big’ LO or 'BLO’) and a focused LO (’small’ LO or 'SLO’). The combined field is
detected by a balanced detector in a heterodyne scheme.



respectively. This Dual-LO consists of a focused beam (”SLO”) and collimated
("BLO”) beam; the SLO determining the spatial resolution, the BLO the angular
distribution. The two beat notes at 10 and 10.003 MHz are detected while moving
the Dual-LO relative to the Signal field in a grid-like fashion in position and mo-
mentum. The relative phase between the two beat notes is measured by a Lock-In
amplifier, whose quadrature signals then contain all the information necessary to
calculate the field’s Wigner function. Those quadrature signals are recorded during
the scanning process and the Wigner function is retrieved afterwards by performing
a simple transformation.

Like the One-Window technique, the Two-Window technique has a high dynamic
range of 130 dB [5], with the lowest detectable power level of about 1076 W (300
photons/s).

The resolution for position and momentum in this technique can be adjusted
individually, unlike in the Single-LO technique, where a single LO causes a trade-
off between position z- and momentum p-resolution, due to the inverse relationship
between spread of xz and p of the LO. Therefore, the Two-Window technique has
a much better phase-space resolution than the Single-LO technique; it allows the
measurement of {rue as opposed to smoothed Wigner functions. Figure 1.2 shows
the sizes of a single-LO (a) and a Dual-LO (b) in phase-space, which determine the
resolution in each method.

The high resolution and phase sensitivity allows new measurements of interesting
coherent phenomena in turbid media, like the Enhanced Backscattering effect. This
effect describes the enhancement of backscattering opposite to the direction of inci-
dence of a field, due to the coherent addition of time-reversed counter-propagating

wavelets scattered by the same sequence of scatterers in the turbid medium. Using



a) One-Window b) Two-Window
technique technique

Figure 1.2: An electric field in phase-space (grey shaded shape) is measured by a
heterodyne detection scheme. a) One-Window technique; the dashed circle shows
the phase-space distribution of the LO. b) Two-Window technique, the dashed lines
show the SLO and BLO which comprise the Dual-LO.
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Figure 1.3: Wigner functions of fields incident on (a) and Enhanced-backscattered
from (b) our turbid medium.



our two-window methods, we were for the first time able to show the reversal of
sign of the radius of curvature of an incident wavefront. Figure 1.3 a) shows the
Wigner function of a divergent field, incident on our turbid medium consisting of
polystyrene spheres suspended in a solution. The tilt to the right indicates that the
field is divergent, as will be explained in Chapter 3. In Figure 1.3 b), the Wigner
function of the backscattered field is shown: The phase-space ellipse now tilts to
the left, indicating a convergent field, confirming that the divergent incident field
has reflected upon itself. The background which is broad in momentum, is the inco-
herent background, referring to the incoherent sum of intensities scattered regularly.
This experiment is extremely challenging; various parts of the system have to be
adjusted rapidly on a micrometer scale against the relatively strong and fast drift of
our light source. It confirms for the first time ever the phase-conjugating properties
of a turbid medium with respect to a curved wavefront. The phase-sensitivity of
our Two-Window technique displayed in this experiment can refine optical tomo-
graphic measurements of scattering media in general. Enhanced Backscattering will
be discussed further in Chapter 11 and Chapter 12.

Another interesting demonstration for the high resolution and phase sensitivity
of our system is a small phase-space region in a single speckle field generated by
a piece of glass containing air bubbles. Figure 1.4 shows the in-phase- and out-
of-phase quadrature signals of the complex beat signal we measure, scanned over
a phase-space region of just +0.25 mm and 40.625 mrad. The quadrature signals
measured with our Two-Window technique are shown in a) and b); the resulting
Wigner function is pictured in ¢). As a comparison, the bottom row shows the same
phase-space region scanned by just the collimated LO (d) and the focused LO (e)

by means of the One-Window technique. The latter detect two different stronger
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technique (bottom). a) In- and b) out-of-Phase quadrature signals, ¢) resulting

Wigner function. Single-LO scan over the same part of phase-space with SLO only
(d), and BLO only (e).



speckles outside the scanned region (as larger scans reveal) and yield insufficient
information about the field inside the scanned region. The Two-Window technique,
on the other hand, provides immediate phase-information of the field in the region
and allows the retrieval of the true Wigner function, as seen in (c).

The low coherence length of 24.9 pum of our light source enables the selection
of light having travelled a given path length. This is done by exploiting the fact
that two fields from the same light source only interfere when the path travelled is
equal within the longitudinal resolution Alg =21 um. For scattering experiments
in transmission, this allows the suppression of the ballistic (i.e., non-scattered)
component through selection of a non-zero path-delay, which for dilute media is
much stronger than the scattered components. Light backscattered and transmitted
at various path delays also provide information about the properties of scatterers
and medium. For example, in Enhanced Backscattering, the narrowing of the EBS
cone with increasing path delay determines the scattering parameters such as the
mean free path [ and the transport mean free path [*. Additional features, such
as the momentum side-peaks of the EBS cone we observe, potentially hint towards
aberrations from the diffusion regime. In transmission, time-resolution helps resolve
the question about the contribution of various orders of scattering to the scattered
field (see Chapter 13).

In summary, our Two-Window technique presents a new way to fully characterize
a light field by measuring its Wigner function. A Wigner function contains all
phase- and amplitude information contained in the field and obeys strict propagation
laws. Our technique allows for the immediate distinction between coherent and
incoherent parts of a light field, unlike the previously employed Single-Window

technique. We apply the Two-Window technique to the determination of beam



parameters such as beam-size, curvature, and transverse and longitudinal coherence;
the characterization of speckle, and to the study of propagation of light fields in

turbid media.

1.2 Thesis organization

In Chapter 2 I will give an overview over the most important optical tomography
methods. The two methods for path-resolved tomography, in the time- and in the
frequency domain, are presented first. Thereafter, resolution enhancing techniques
and those gaining information on chemical composition are briefly described. The
chapter concludes with a section on Optical Coherence Tomography (OCT) and
-Microscopy (OCM), which are related to our experiment.

In Chapter 3 we introduce the Wigner function. It basic properties, including
both coherent and incoherent light, are presented, and its behavior during propaga-
tion through linear optical systems, in particular free space and lenses, are discussed.

The One-Window technique, which is the basis for the Two-Window technique,
will be presented in Chapter 4. In addition to the experimental setup and its
components we will discuss the measured mean square beat signal and its relation
to the Wigner function as well as its shortcomings that triggered the development of
the Two-Window technique. In Chapter 5 we present the Two-Window technique.
Again, the experimental setup is described , the complex beat signal measured for
ideal and non-ideal LLOs and the retrieval of the true Wigner function are discussed.
This chapter concludes with a description of essential parts of the Two-Window
technique like the phase-locked loop and an overview of the complete system.

Chapter 6 presents the optical properties superluminescent diode (SLD) and

its control gadgets used in our experiment: its power-supply and temperature-
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stabilization. The generation of a collimated Gaussian beam from the SLD output
field is described, as well as countermeasures against drift and beam instabilities.

Chapter 7 and Chapter 8 present the theoretical footing and the experimen-
tal results of the characterization of the transverse beam profile of the SLD using
our Two-Window technique. Chapter 9 presents the corresponding results for the
longitudinal beam characteristics of the SLD.

The second part of this thesis deals with scattering in turbid media. Chapter 10
describes the basics of scattering theory. The most important single-scattering
models are discussed, which describe the amplitude of an electromagnetic wave
scattering from a single particle for a range of special cases. In the second part of
this chapter the most important models for the propagation of light in turbid media
of various concentrations are presented.

In Chapter 11 and Chapter 12, theory and experimental results for our exper-
iment on Enhanced Backscattering are presented. Chapter 11 discusses the basic
principles of EBS to the complex beat signal measured for low-coherence light.
Chapter 12 shows our experimental results for flat and curved incident beams.

Finally, Chapter 13 examines scattering in dilute media. The contributions of
various orders of scattering as well as the preservation of coherence in scattered light
are investigated. Chapter 14 concludes this thesis with a summary and discusses

future directions.
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Chapter 2

Optical Tomography Methods

2.1 Introduction

With the advent of technologies enabling the engineering of semiconductor light
sources covering a spectrum from the far infrared to the far ultraviolet and almost
arbitrary coherence properties and beam profiles, optical tomography of biological
and non-biological materials has experienced a dramatic boost. This is especially
true for time-resolved measurements which formerly depended on large and ex-
pensive femto-second lasers but can now be performed by small and inexpensive
broadband superluminescent diodes (SLDs).

A field especially interesting for optical tomography is the medical field, where
light backscattered from or generated in a sample provides insight about structural
and chemical composition of biological tissue. A general feature of these samples
is that the light experiences scattering and absorption between the surface and the
tissue layer or object of interest. While some techniques contain ways to elimi-
nate scattered or out-of-focus light, others collect that light for additional gain of
information.

For example, a relatively common procedure these days is the examination of

light backscattered from skin tissue to detect architectural abnormalities which can
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be an indicator for cancer, in particular melanoma [6,7]. Various methods which
measure the way light diffuses through breast tissue enable the detection of tumors
of less than 1 cm diameter before metastasis occurs and treatment becomes more
difficult [8,9].

Optical methods also provide a safe way to image cerebral oxygenation, blood
volume by exploiting the characteristic absorption by hemoglobin, which acts as
a natural contrast agent. But also artificial contrast agents like indocyanine have
been administered for example to monitor blood flow optically [8].

Most optical techniques which examine the chemical composition of a sample
make use of light generated in the sample by fluorescence, two- or multiple-photon
processes or Raman scattering. The intensity, frequency composition or temporal
profile of the response can be an indicator for the type and concentration of a
chemical in question.

There are many approaches to push the spatial resolution for an optical method
beyond the limit dictated by the wavelength of the used light. Two of the most
important techniques are Near-field scanning optical microscopy (NSOM) and de-
convolution which are presented in Section 2.5.1 and Section 2.5.2.

In the following sections I will give a brief overview over the most prominent

optical tomography methods which are being developed today.

2.2 Time domain methods

Time domain methods use ultrashort light pulses or broadband light with a sim-
ilar coherence time to obtain time-resolution, which in turn provides path-length
resolution in the medium once the local speed of light is known. In the simplest

case, femtosecond pulses of laser light are incident on a sample and the intensity of
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the emerging light is measured by a streak camera [10-12]. ! Ultra-fast Kerr gates
provide another way of time-gating [14, 15]. Time-gating using broadband sources
exploits the fact that two beams generated by the same light source only interfere
if the difference in the paths they have travelled is within the coherence length of
the light. By shining one beam onto the sample and superposing the emerging light
with a second beam, only the parts of the field which match the path delay of the
second beam contribute to interference, all other parts average out due to the ran-
dom phase of broad band light. The interference signal can be measured by homo-
or heterodyne detection. We postpone a more detailed explanation to Section 2.8,
where we introduce Optical Coherence Tomography (OCT) which is a precursor to
our experiment.

By varying the time delay of the trigger for the streak camera in case of the
femtosecond laser setup or the path delay in case of a broadband source, light that
has travelled a given additional path in the medium can be exclusively detected [10,
11]. In transmission, ballistic, i.e. non-scattered light can be selected, which arrives
first at the opposite surface of the sample (path delay equals zero) [12]. This way
scattered light can be suppressed, which enhances the visibility of objects hidden in
the sample. The intensity of the ballistic light decreases exponentially with distance;
the exponent is proportional to the sum of the absorption and scattering coefficients.
For near-infrared light incident on most skin tissue, the ballistic component drops
below the detection level after a few millimeters.

A deeper penetration into turbid media is possible by analyzing the scattered
light component. In the transmission case, this component reaches the sample

surface after the ballistic component, since it travels a longer path. Time gating

LA streak camera measures ultrafast light phenomena (resolution about 0.2 ps or 60 um light
advancement) and delivers intensity vs. time vs. position (or wavelength) information [13].

14



allows the selection of scattered light of a given path delay here as well; its amplitude
or intensity as a function of path delay contain information about the concentration
and properties of the scatterers in the sample. A more detailed treatment of light
transmitted through turbid media is given in Chapter 13.

These time domain methods can also be used for fluorescence imaging methods

[16], as described in Section 2.4.

2.3 Frequency domain methods

Frequency domain methods examine how light modulated at radio frequency prop-
agates in a medium by measuring phase changes of the sideband frequencies with
respect to the carrier frequency. A way to study how light diffuses in highly scat-
tering media is to amplitude modulate the incident light and measure the resulting
photon density waves in the medium [17]. These density waves have been shown to
display refraction at boundaries [18], scattering and wavelength transduction [19]
(look up transduction) as well as interference patterns [20]. This method has been
used to locate breast tumors smaller than the critical size of 1 cm [21-23].

The aforementioned measurement of density waves is part of the wider field
of modulation spectroscopy, which employs an amplitude- or frequency-modulated
incident light field or combination thereof. For example, when a purely amplitude-
modulated light field is passed through a medium that displays sufficiently strong
frequency dependent propagation characteristics, the emerging field can be partially
frequency-modulated [24]. This happens if the sidebands which are in phase for
the incident light travel a different (optical) distance, leading to phase difference
between them for the emerging field. From the degree of frequency modulation,

information on narrow atomic states in the sample can be gained (i.e., trapping
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defects in semiconductors or absorption states in gas).

2.4 Optical techniques using fluorescence

2.4.1 Multiphoton Fluorescence Microscopy

In Multiphoton Spectroscopy, femtosecond lasers serve as a light source for multi-
photon excitation of organic fluorophores ? [25] embedded in samples. Fluorophores
can be designed so they are selectively absorbed in the specific area of a tissue under
investigation [26]. The incident long-wavelength light (e.g., infrared) is projected
onto the sample by a microscope objective. At high photon densities as in the focal
spot, two or more photons can be simultaneously absorbed by mediation of a virtual
state. The energies of those photons add up, leaving the fluorophore in an excited
state. From this state, the fluorophore drops back into its original state by emit-
ting a photon of higher energy than the exciting photons, generally in the visible
spectrum. The resulting intensity of the fluorescence is measured as a function of
the location of the focal spot.

As mentioned before, the required high photon density is only given in the fo-
cal point of the microscope objective (a micron thick at high numerical aperture),
thereby diminishing background fluorescence and out-of-focus flare that typically
limits the sensitivity in confocal microscopy. For the same reason, photodamage
is minimized which is an important limiting factor in imaging living cells, thereby
enabling the examination of thick living tissue specimen. By translating the fo-
cal point in all three dimensions and recording the intensity of the fluorescence,

three-dimensional images with micron-resolution can be captured [25]. Two-photon

2an excited fluorescent molecule releases (part of) its energy by emitting a photon.
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microscopy has developed into a standard technique of biomedical imaging.

2.4.2 Fluorescence Lifetime Imaging (FLIM)

In Fluorescence Lifetime Imaging Microscopy (FLIM), the temporal profile of the
fluorescence is measured rather than the absolute intensity [16,27]. This is especially
useful for greater depth, where the quantitative measurement of fluorescent intensity
becomes increasingly difficult due to absorption and scattering in the tissue [26].
The fluorescence lifetime is a function of the fluorophore environment because the
non-radiative decay rate depends on the interaction with the surrounding molecules.
The fluorescence lifetimes can be measured by time-domain- and frequency-domain-
methods. In time-domain methods, pulsed laser-light in combination with photon
counting or other techniques described in Section 2.2 are used. In frequency-domain
methods and and for decays on the order of nano-seconds, a light field modulated
at a given radio-frequency experiences a characteristic phase-shift and attenuation
caused by a specific life-time.

FLIM is already being used for the dynamic measurement of Ca*" and oxygen
concentrations as well as pH values with single-cell-resolution, for the characteriza-

tion of impurities in metal samples and in combustion related studies [26,27].

2.5 Resolution-enhancing techniques

2.5.1 Near-field Scanning Optical Microscopy (NSOM)

In almost all optical spectroscopy methods, the spatial resolution is limited by the
wavelength of the light used. In Near-field Scanning Optical Microscopy (NSOM)

a tapered single-mode optical fiber probe with an aperture of less than an optical
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wavelength is placed within a fraction of wavelength of the surface which is to be
examined [28]. The spatial resolution in this case is approximately the size of the
tip diameter; resolutions of up to 20 times better than the best conventional mi-
croscope have been obtained. By collecting the light emitted in the near-field or
by measuring the current induced by photo-excitation using a source with tunable
wavelength, the composition and electronic structure of semiconductors or bioma-
terials can be examined. Also, evanescent phenomena in waveguides and couplers

as well as temperature profiles of active devices can be studied.

2.5.2 Deconvolution Microscopy

The image observed at the focal plane of a microscope also contains out-of-focus
contributions from sample regions above and below the focal plane. This flare is
reversed by numerical deconvolution using the pointspread function (PSF) of the
imaging system [29]. The measured image is the convolution of the PSF with the

true image:

Image™ "™ = PSF % Image™™, (2.1)

where * represents the convolution operation. From the inverse PSF of the system,

the true image can be calculated:

Image™ = Image™ 4 = PSF, 2.2
g )

where *~! denotes the deconvolution operation. Deconvolution can be performed
by taking advantage of the fact that a convolution in position space corresponds

to a product in momentum space: For two well-behaved functions f(Z) and ¢(%)
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which might represent the intensity distribution of the image and the PSF of the

imaging system,

FI(@) * 9(@)] = [(D)3 (D), (2.3)

where F denotes the Fourier transformation with respect to . f(p) and §(p) as

a function of momentum p’ are the Fourier transforms of f(Z) and g(Z). f(Z) can

then be solved for by inverse Fourier transformation:

@) = Fliw)y =7 {_f (f *9)(@) } (2.4)

9(p)

The numerator in the braces is the narrower in momentum, the broader the con-
volution in of f and g in space is. For a broad ¢(Z), i.e. a PSF that does not
discriminate well between two close points in space, the numerator becomes very
small and therefore prone to noise for high spatial frequencies. The deconvolution,
which manifests itself in the division by ¢(p) in momentum space, then results in a
f (p) which is noisy for high spatial frequencies as well. The inverse Fourier trans-
formation which yields f(Z) then contains this noise as well. These high-frequency

contributions can be suppressed by adding a small constant in the denominator [5]:

L[ FIS ) @)
f@) = F { 2o } 25)

which has the disadvantage though that it smoothes the resulting distribution for
f(@).
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2.6 Optical spectroscopy for chemical analysis

2.6.1 Infrared Spectroscopy

Infrared Spectroscopy measures the absorption spectrum of infrared light of various
frequencies incident on a sample [30]. The absorption features, which are charac-
teristic for a chemical, are the results of excitations of vibrational, rotational and
bending modes of a molecule. The image contrast is solely dependent on the chem-
ical nature of the sample. A requirement for excitation by infrared radiation is
molecular asymmetry. Excitation of symmetric molecules is only possible if asym-
metric stretching or bending transitions are possible. The wavelengths in Infrared
Spectroscopy are usually in the near to mid-infrared; the wavelengths best suited

for organic compounds are in the range from 2.5 to 16 pm [31].

2.6.2 Raman spectroscopy

Raman Spectroscopy is considered a complementary technique for Infrared Spec-
troscopy. It provides information about molecular vibrations that can be used for
identification and quantification of a chemical contained in a sample. [32-34] A
rather monochromatic laser beam is directed onto the sample and the scattered
light detected by a spectrometer. While most of the scattered light will have the
same frequency as the incident light, less than 10% is frequency shifted due to energy
transfers between the incident field and vibrational energy levels of the molecules in
the sample. The various frequency lines measured around the center frequency cor-
respond to different functional group vibrations and are characteristic for a certain
chemical. The lines with a frequency below the incident field frequency are called

Stokes lines, the ones above anti-Stokes lines.
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2.7 Confocal Microscopy

Confocal Microscopy is a technique for improving the contrast of microscope images,
particularly in thick samples. By restricting the observed volume, the technique
keeps scatterers close to the focal plane from contributing to the detected signal.
The trade-off for this is that only one point at a time can be observed [35].

In this technique, a sample is scanned by a tightly focused laser beam while the
reflected or fluoresced light is being collected by a high numerical aperture (~ 1.4)
objective lens [36]. The high-NA objective as well as a pinhole which is introduced
into the path of light suppress out-of-focus glare which leads to improved contrast
and sharpness. The intensity of the collected light is measured by a photomultiplier
or a photo-diode. By moving the laser beam in a regular two-dimensional raster
and repeating this procedure for various depths, a three-dimensional image of the
sample can be created. The vertical resolution is on the order of 0.5 ym and the
horizontal resolution on the order of 0.2 pum [37]. Confocal Microscopy provides a
good technique for non-invasive, optical sectioning of thick living specimen.

There exist many more optical tomography methods, such as differential interfer-
ence contrast (DIC) microscopy, Optical Staining microscopy, Hoffman Modulation
Contrast Microscopy, Polarized Light Microscopy and Phase Contrast Microscopy,
which will not be discussed in this thesis. Instead, we will conclude this chapter with
the presentation of Optical Coherence Tomography, whose principle is the basis of

our experiment.
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Figure 2.1: Setup for Optical Coherence Tomography (OCT).
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2.8 Optical Coherence Tomography (OCT)

Optical Coherence Tomography (OCT) uses a combination of the principles of low-
coherence tomography and confocal microscopy [38]. Figure 2.1 shows set setup:
two beams are generated from a broadband (or pulsed laser) source (SLD); we
will refer to them as Signal- and Local Oscillator- beam. The Signal beam is in-
cident on the sample; the transmitted or scattered light is then superposed with
the Local Oscillator beam. Due to the broad spectrum of the light, its longitudi-
nal coherence length is small; typically on the order of tens of micrometers. The
light coming from the sample and the Local Oscillator beam only interfere if their
path-length is matched within the coherence length of the light. By changing the
relative path-delay between the beams with the reference mirror (Mg) and detect-
ing the interference signal of the beams at the same time, signal contributions from
different regions in the sample can be selected. In the shown setup, a map of tissue
reflectivity versus depth can be obtained (zscan). By moving the laser beam in a
two-dimensional raster and taking z-scans for each point, similar to the procedure
described for Confocal Microscopy in Section 2.7, a three-dimensional image can be
obtained.

The interference between the Signal- and Local Oscillator beam is usually mea-
sured by means of heterodyne detection. In the most straightforward way, the
Doppler-shift introduced by the moving reference mirror Mg during a depth-scan
is exploited: The interference signal will be centered at the Doppler frequency and
can easily be extracted by a lock-in amplifier, while the parts of the signal that do

not contribute to interference average out.
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Figure 2.2: Optical Coherence Tomography (OCT, left) compared to Optical Co-
herence Microscopy (OCM, right).

2.8.1 Optical Coherence Microscopy (OCM)

Optical Coherence Tomography (OCM) directly combines OCT and Confocal Mi-
croscopy [38]. While its principle is the same as that of OCT, it adds a high NA
objective in order to increase lateral and axial resolution due to the smaller focal
spot size and Rayleigh length.® In addition the high NA objective provides en-
hanced rejection of out-of-focus or multiply scattered light. OCM can be used in
case where there are no physical constraints with respect to the distance between

the sample and the objective. Figure 2.2 demonstrates the differences between OCT

3The Rayleigh length is the distance after which a beam passing through its beamwaist grows
to twice its area. It is inversely proportional to the area of the beamwaist.
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and OCM. In the figure shown, the OCM objective is immersed in water where the
wavelength is smaller, thereby enhancing the resolution.

Since the small Rayleigh length and the strong rejection of out-of-focus light
in OCM determine the axial location of the examined plane, a longitudinal z-scan
can not be performed as easily as for OCT, using the Doppler-shift introduced by
the reference mirror, unless the focal plane of the objective is changed at the same
rate. This problem also arises when the reference mirror is moved stepwise and
the heterodyne signal is generated by the beat frequency of the Signal- and Local
Oscillator beams frequency-shifted by means of acousto-optic modulators.

Compared to Confocal Microscopy alone, the short coherence of the broadband
light in OCM helps rejecting light coming from above and beneath the objective

focal plane, where its point-spread function is broad.

2.8.2 Color Doppler Optical Coherence Tomography
(CDOCT)

Color Doppler Optical Coherence Tomography measures the flow of objects in a
sample by taking advantage of the additional Doppler-shift they introduce. This
way, reflections from objects moving away and towards the incident Signal beam
cause frequency components in the heterodyne signal below and above the Doppler-
frequency generated by the reference mirror. Several groups have used this tech-
niques for quantitative measurements of blood flow in tissue with micron-scale res-
olution [39,40]. The spatial resolution in [39] is better than 45 pm in depth and

10 pm laterally, the velocity resolution on the order of 0.5 mm/s, the latter being

4This is non-trivial since the depth-dependent refractive index in the sample influences the
depth of the focal plane which has to be taken into account when adjusting the relative path delay
between the Signal- and Local Oscillator beam.

25



easily adjustable by varying the speed of the reference mirror.

26



Chapter 3

Wigner Functions

3.1 Introduction

A central feature of this thesis is the measurement of Wigner functions to charac-
terize light fields. Wigner functions provide a convenient way to describe a light
field is by means of the Wigner function [2,3]. Wigner functions characterize the
spatial and angular distribution of a field at the same time as well as its coherence
properties. They obey simple transport equations in first-order systems such as thin
lenses, magnifiers and free space [41] which are analogous to those in ray-optics.

A Wigner function is a real function which simultaneously describes a distribu-
tion in two conjugate variables, like time and frequency or space and momentum.
In the first case it can be compared to a musical score, which tells a musician the
frequencies of a song as a function of time. In the second case it can be considered
the local spatial frequency spectrum of a signal. The Wigner function for a Gaus-
sian beam closely resembles its ray-optical equivalent in geometrical optics [41]. For
all other types of fields Wigner functions exhibit interference terms and negative
features. Wigner functions belong to the group of so-called quasi-propabilities.

The Wigner function for a light field £(x) is
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where z is the transverse position and p the transverse momentum of the light field.
The transverse momentum p is the wave-vector k times the angle of direction 6 of
a light field: p = 6k. The angled brackets signifies temporal averaging for partially
coherent light fields.

For a given transverse position x, W (x, p) is the Fourier transform integral of the
mutual coherence functions I'(x + £, — §) = (£*(z + 5)E(x — §)) centered around
x. Similarly, for a given transverse momentum p, W (z, p) is the Fourier transform
integral of the angular cross-spectral densities I'(p+2,p— 1) = (E*(p+ $)E(p— 1))
centered around p. The cross-spectral density becomes separable for coherent light,
where the averaging becomes unnecessary.

Wigner functions contain phase information about a light field (as opposed to
intensity measurements), which can easily be seen from its relationship to the mu-
tual coherence function. Therefore, they offer an attractive framework in which
to study the propagation of optical coherence through random media [42]. Previ-
ously, we have measured smoothed Wigner functions using a single beam heterodyne
method [1-4]. In that technique, the position and momentum resolution were de-
termined by the LO’s size and angular spread, which are inversely proportional to
each other and which mathematically manifests itself in an uncertainty product

associated with Fourier transform pairs.

The novel two-window technique [1] presented in this thesis allows independent
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control over the position and momentum resolution by using a phase-coupled set of
LOs, thereby surpassing this uncertainty limit and permitting measurement of true

(vs. smoothed) Wigner functions.

3.2 Basic properties of Wigner functions

In the following, some basic properties of Wigner functions will be discussed, which
will be beneficial in understanding more complex experimental and theoretical re-

sults later on.

3.3 Wigner functions of spatially incoherent light

Spatially incoherent light, such as the broad background contribution of light experi-
encing large angle scattering in random media, can be described by the cross-spectral
density T'(z+ 1e,x — 1¢) = c(2)d(e) with ¢(z) being a non-negative function [41]. A
Fourier-transformation with respect to e yields the corresponding Wigner function
W (z,p) = ¢(x) which is independent of p. This is in agreement with the property

of light to develop transverse coherence while travelling in a preferred direction: in

order to be incoherent, the field has to be direction-independent.
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3.4 Wigner functions of a (partially) coherent
beam

Partially coherent Gaussian beams belong to the family of Gaussian Schell model

light sources and can be described by the cross-spectral density [43]

Py, 29) = (E(21)E(22))

x3 + 23 T — T9)? ik
= exp {— L . 2] exp [—%] exp [ﬁ(a@f - x%)] . (3.2)
g

The corresponding Wigner function is the Fourier transformation with respect to
the difference between z; and x5 (see Eq. (3.1)). Inserting Eq. (3.2) into Eq. (3.1)

yields:

Wpart.coh z, — ex .
() a P 202 da

s [_ x? (’% + p)2 (3'3)

with o = é + % The momentum spread of a light field in phase-space becomes
larger with decreasing transverse coherence length o, which is consistent with the
quintessence of Section 3.3. For finite radii of curvature, the spatial size of the field
displays a similar o,-dependence, converging towards the size we would have for a
flat wavefront. The momentum peaks at p = —%’3.

Most laser beams can be viewed as transverse coherent, which implies o, > 0.
In that case the exponential term in the middle of Eq. (3.2) is approximately unity.
The resulting Wigner function reduces to:

b 1 z? o [ kx 2
We(z,p) = S OXD | ~o 5 207 (E —i—p)
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Figure 3.1: Ray-diagrams and their corresponding Wigner function for a Gaussian
beam waist, and a divergent and convergent Gaussian beam.
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Figure 3.1 shows ray-diagrams for a beam waist (a), divergent (b) and convergent
(c) beams together with their correspondent Wigner functions.

For the beam waist (R = 00), 05 is both in the denominator of the z-prefactor
and the numerator of the p-pre-factor, which confirms the inverse relationship be-
tween the size of the beam and its angular spread.

For R # o0, i.e. a convergent or divergent beam, there exists a correlation be-
tween momentum and position: For a divergent beam (R positive), the momentum
distribution is centered around positive values for positive z and around negative
values for negative x. This is consistent with the physical picture of off-axis parts of
a divergent beam moving away from the center. An opposite relationship between
x and p exists for a convergent beam, seen on the right, as can easily be verified.

A Gaussian beam is the only field for which the Wigner distribution is positive
throughout phase-space. Even the combination of two Gaussian beams separated
by a distance displays negative features as part of an additional oscillating term in

momentum [5].

3.5 Integrals of Wigner functions

The integrals

I(x) = /dp W(z,p) (3.5)

and

1) = [ do Wiap) (3.6)
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are the positional and the directional intensity of the light field, whereas

P = /dp dx W(x,p) (3.7)

is its total power.

3.6 Propagation through linear optical systems

A linear system in optics such as a thin lens or free space can be described by two
equations which connect the position and momentum of an incident field with those

of the emerging field. For the position distribution of both fields the relationship

&) = [ i has( )€ () (3.8)

exists, where h,,(z1,z¢) is the so-called point-spread function and & and &; are
the coherent incident and emerging field [41]. h,, is the response of the system in
the space domain when the input signal is a point source. Partially coherent light,
which can be described by the cross-spectral density function, displays a similar

relationship between emerging and incident field:

Lo(z0,2)) = //d:vdx’ hoo(To, 2)0i(x, 2 )RE, (2, ). (3.9)

The Wigner function, which is Fourier-transform related to the mutual coherence
function, can be directly calculated by inserting Eq. (3.9) into Eq. (3.1), which

results in

Wo(maypo) ://dxzdsz(xmpoaxz’pl)V[/Z(xzapz) (310)
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K is called the ray-spread function of the system since it is the response to the
hypothetical case of a single ray with the (impossible) Wigner function W;(x,p) =
d(z — x;)0(p — p;) entering the system. K can be expressed as a function of the

point-spread function h,:

1 1 1
o po- ) / / Ao A2 has (o + H gt (o = 50, 2i = 51)
x exp|—i(pot, — piy)]. (3.11)

This relation allows us to directly calculate the propagation of a Wigner function
through linear media. For a thin lens in the paraxial approximation the point

spread function takes the form

ik

hyx (21, 20) = €xp (—ﬁx%> d(z1 — o) (3.12)

which results in the transport equation for the Wigner function

kx
Wl(l’,p) = WO($7P+ ra

) (3.13)

A section of free space in the Fresnel approximation has the point spread

function

k 1k 9
= — (1 — ) 14
Pz (21, 20) 515 OXP |:22(ZE1 xo) } (3.14)
The corresponding Wigner function becomes:
<p
Wi(z,p) :Wo(l’—?,p)- (3.15)

34



Both Equations (3.13) and (3.15) are equivalent to the geometrical description of a
ray propagating through a lens or a section of free space, respectively. It should be
kept in mind though, that a Wigner function contains the full phase information of
a field.

Another interesting property of the propagation of a Wigner function in free
space is that the total time-derivative is zero, which has been verified for coherent
electromagnetic fields [5]:

dw (z,p;t)  OW (&, pit

) = e
= . N = U. 1
i 5 +7-W(z,pit) =0 (3.16)

This expression is equivalent to the Liouville’s theorem of classical mechanics, which
tells us that the density of a volume element we follow along a flow-line in phase-
space is conserved [44]. This can easily be seen by looking at Eq. (3.15): For a
given momentum p at a given distance z, the position-distribution z(p) shifts by an
offset 22, without otherwise changing its properties. A volume element containing
an arbitrary part of the Wigner function remains constant in size, because in free
space the field does not lose energy. Therefore, the Wigner function, which is the
power density in phase-space, has to be constant as well, which proves Liouville’s
theorem in this particular case. By inspection of the corresponding expression for
propagation through a lens (Eq. (3.13)), it is clear that Liouville’s theorem should

apply for that case, too.

3.6.1 General Luneburg’s first order systems

Luneburg’s first order systems [45] display a propagation behavior of

Wo(2o, po) = Wi(Az; + Bp;, Cx; + Dp;) (3.17)
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where the transformation parameters must obey the symplecticity condition on the

determinant

A B
~1. (3.18)
C D

We have three free parameters here; the fourth one is determined by condition
(3.18).
As we just have seen, Liouville’s theorem holds for the first-order systems lens

and free space. It is clear that it still holds for the similar, but more general cases

where we replace the factors —Z and ? in Equations (3.15) and (3.13) with the

arbitrary parameters B and C' from Eq. (3.17). The ABCD matrices for both

cases are then

A B 1 0
- (3.19)
C D k/f 1
lens
A B 1 —z/k
- . (3.20)
C D 0 1
free space
(3.21)

B can even be negative, but in this case it does not represent the travel through
free space anymore. Let us consider an arrangement of the generalized expressions
for lens, a section of free space and another lens. It can then easily be verified

that the resulting total ABC D-transformation matrix is symplectic and represents
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a first-order Luneburg system itself:
We consider a Wigner function Wi(z,p) incident on a lens. Right after lens
Ly, the Wigner function is Wy (z,p) = Wi(x,p + Cx). After travelling through the

generalized space, W5(2/,p') = Wy(2' + B'p',p’) or

— WAl(l+ BC)a+ B'p,Cx+ )

= Wy(A"x+ B"p,C"x + D"p). (3.22)

It can easily be verified that A” D" — B"C" = 1 which confirms that the combination
of a lens and the distance of generalized space still represents a first-order system.

After passing lens Lo, the Wigner function becomes

W4(x",p”) _ Wg(l’”,p” + C(S)Zu)
_ W2[$, + B'p/,p/ + 0(3)(1,/ + B/p/)]
= Wi{z(1+ B'C)+ B'p,[C + C¥(1+ B'O))x + (1 + ¥ B')p}

= Wi(AWx + BWp, cWy + DWp). (3.23)

A* B*, C* and D* are fully determined by C',B’ and C® and fulfill the symplecticity
condition (3.18) for every choice of them.

The relationship of A%, B* C* D* and C, B',C® expressed in Eq. (3.23)
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AW = 14+ BC
BYW = p
cW = Cc+Cc®1+ B0)

DW = 14+0¥p

can be solved for C,B’ and C'®:

AW 1
-~ T B®
B/ — B(4)
4
o _ PY-1
B

(3.24)
(3.25)
(3.26)

(3.27)

(3.28)
(3.29)

(3.30)

where B’ and C'® can be uniquely derived from Equations (3.25) and (3.27); C

results from Eq. (3.24) and either Eq. (3.25) or Eq.

symplecticity requirement Eq. (3.18).

(3.26) together with the

Since the Liouville expression holds for each one of the three-component system

just described, it will also hold for their combination. Furthermore, Eq. (3.28)

shows that an arbitrary Luneburg first-order system can be expressed as such a

three-component system. Therefore we can draw the conclusion that the Liouville

expression holds for all Luneburg first-order systems.
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Chapter 4

The Single-Window technique

4.1 Introduction

In this section I will explain the experimental setup for the Single-Window technique
that we have been using in the past to measure smoothed Wigner functions [46].
Its basic concept is the heterodyne measurement of a signal field by means of a
single Local Oscillator (LO) beam. The Signal- and LO fields are frequency-shifted
by different amounts and superposed on a detector. The detector measures a beat
note which corresponds to the difference in frequencies of Signal- and LO fields.
Its amplitude is proportional to the overlap integral of both fields at the area of
coincidence. By stepwise changing the relative transverse position x and transverse
momentum p of the LO with respect to the Signal field and recording the beat signal,
the phase-space distribution of the Signal field can be determined. For maximum
resolution, the LO itself must be as small as possible in phase-space, that means
its diameter and angular spread must be minimal. The trade-off between small size
and angular spread can best be met by using a Gaussian beam. A Gaussian beam
of 'diameter’ a has an angular spread of about % Therefore, the smallest features
in the Signal field that can be measured are on the order of a in size and é in

transverse momentum. The finite 2- and p resolution leads to a smoothing effect of

39



the measured signal. Therefore, we refer to the Single-LO technique as a technique
for measuring 'smoothed’” Wigner functions which will be explained in the following
section Section 4.2.

In all of our experiments, we use a Superluminescent diode (SLD) as a light
source. It has a longitudinal coherence of just 24.9 pm which enables time-resolved
measurement of the signal field, as will be explained later. This short coherence
length requires additional elements in the experimental setup. A detailed treatment
will be given in Section 4.6.

The Single-LO technique used for the measurement of smoothed Wigner func-
tions serves as a basis for the Two-Window technique, which enables the mea-
surements of the true, i.e. non-smoothed Wigner function. This technique is the
centerpiece of this thesis and will be described in Chapter 5.

In the following section, I start by explaining the experimental setup for the
stationary measurement of smoothed Wigner functions, followed by a discussion of
the balanced detection system (Section 4.3), the real-time noise suppression scheme
(Section 4.4) and the automated data acquisition setup we use (Section 4.5). In Sec-
tion 4.6 the modifications for time-resolved measurements using broadband light are
discussed. The chapter is concluded in Section 4.7 with a description of the actual
measurement of time-resolved Signal fields and the retrieval of Wigner functions for

transversely coherent Signal fields.

4.2 Experimental setup with laser light source

Figure 4.1 shows the basic setup for the measurement of stationary smooth Wigner
functions. For demonstrative purposes, the setup for transmission measurements is

shown. Omitted for clarity are a 4 f-system used in the signal arm as well as several
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Figure 4.1: Experimental setup for measuring stationary smoothed Wigner func-
tions using a HeNe as a light source

other optical elements which are not essential for understanding the functionality
of the setup.

The HeNe beam is split at beam splitter BS; in a signal arm S and a local
oscillator arm LO. Each beam is sent through an acousto-optic modulator crystal
(AO); the Signal beam is shifted by 110 MHz and the Local Oscillator beam by
120 MHz. This results in a frequency difference of 10 MHz which will enable the
detection of a beat signal. The Signal beam then passes through a chopper and
through the cell containing the sample and reaches the input plane at the location
of lens Ls. The LO passes a translating mirror Ms and reaches the second input
plane at lens L;. The input planes are defined as the reference planes at which the
incident Signal field and the Local Oscillator beam are compared to each other and
where the Wigner function is measured. After passing the input planes, the Signal

and the Local Oscillator fields are superposed in beam splitter BS5 and the 10 MHz
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beat signal is detected by a balanced detector, the workings of which are described
in Section 4.3. L; and Ly are at a distance of their focal length f = 6 cm from
the detector for three reasons: Firstly, the incident fields are usually rather more
collimated than focused; by passing them through a lens and placing the detector in
the focal plane, all light can be collected into the detector. Secondly, the translation
of one of the lenses, in our case Ly, can be used to change the relative angle between
the Signal- and the LO field, which will be explained below. Finally, when mirror
M, is translated, the position of the focus of the LO in the detector plane does not
change.

The light of the superposed Signal and Local Oscillator field generate - among
other terms - a 10 MHz beat note current in the photodiodes, which is proportional
to the spatial overlap of their electric field amplitudes in the detector planes. The
total photodiode current is transformed into a voltage and fed into a spectrum
analyzer where the beat note is detected. The output voltage of the spectrum
analyzer is then squared using a low noise multiplier and fed into a Lock-in amplifier,
which detects the squared beat signal using the chopper frequency as a reference.
The squaring of the beat signal allows measurement of the Wigner function and
real time noise suppression, which will be explained in Section 4.4.

In order to generate smoothed Wigner function plots of the Signal field, we
scan the LO relative to it in position and momentum and simultaneously record
the mean square beat signal. The relative position of the LO to the Signal field
S can be changed by an amount d, via translation of mirror M. The relative
angle between S and LO is modified via translation of lens Ly by an amount d,,.
These translations are performed by linear actuators holding My and Ly on their

moving table, respectively. These actuators are controlled by a LabView program
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Figure 4.2: Selection of transverse momenta of Signal field being detected. The
LO (not shown) is focused onto the detector, fixing the Signal field sampling the
region in the detector plane. a) lens is centered with respect to detector; field
contributions with p = 0 are detected at the focus. b) lens is off-center by d,,; field

contributions with p = —kd?” are detected at the focus.

on a PC and are described in more detail in Section 4.5. The scanning process is
performed line by line in phase-space; for each momentum, the signal is measured
for a recurring set of positions.

It is apparent that a translation of M, by d, corresponds to a translation of
the LO with respect to the Signal beam by the same amount. The translation of
lens L, by an amount d, on the other hand changes the angle of the transmitting
field in its focal plane by 6, = dT” as depicted in Figure 4.2. This corresponds to
a change in transverse momentum of k6,, where k is the wavenumber of the field.
A detailed treatment as well as the measurement of smoothed Wigner functions
using the experimental setup just described will be the subject of Section 4.7. That
section also describes the more general case of broadband light measurements. In the

following I will explain the features of some of the systems we use in the experiment.
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Figure 4.3: £ and £ are incident on a 50:50 beamsplitter and add with different
signs due to a 180 degree phase-shift for the LO at the reflecting surface.

4.3 Balanced detection scheme

A balanced detector allows the detection of a signal field down to the shot-noise
level by subtracting classical noise that is present in both beams and which does
not contribute to the beat signal. Figure 4.3 shows how the scheme works. A
Signal and a Local Oscillator field are superposed by a 50 : 50 beam splitter. The
reflected fraction of one of the beams experiences a 180 degree phase-shift, while
the corresponding fraction of the other beam and both transmitted components do
not. This phase shift is due to the reflection off a medium with higher index of
refraction. Assuming for the moment perfect matching of S and LO transversely
and longitudinally, the resulting intensities Iy and I at the outputs of the beam

splitter are:
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_Es\a Loy
II—(ﬂ) +(\/§) + Es€ro (4.1)
I, = (é)2 + (&—0)2 — &0 (4.2)

V2 V2

where the suffices S and LO denote the respective beams.

The photodiodes in the balanced detector are connected in series with same
polarity with the output current being measured at the connecting point. This way
the currents generated in each diode are subtracted from each other. Therefore,
the intensities of each beam cancel, while the intensity contribution generated by
the interference of S and BLO add, due to their opposite sign. The resulting total

photo current is therefore

JB XX gSSLO = \/ PSPLO (43)

where P denotes the power of the respective beams.

Hence, this method suppresses the classical noise, which contains not only inten-
sity fluctuations but also the modulation frequency components of all AOs, while
the beat note is measured. For an ideal balanced detection system, the signal to

noise ratio up to the detection by the photodiodes is limited by shot-noise.

4.4 Real time noise suppression

While the balanced detection scheme enables the suppression of optical noise, the
following scheme allows the subtraction of noise entering the system after the detec-

tion by the photodiodes, i.e., electronic noise. The output voltage of the spectrum
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analyzer is proportional to the RMS voltage at the selected spectrum analyzer fre-

quency. Including the remaining noise, this voltage is

VRMS = \/‘/s%gnal + Vn20ise (44)

where V,,pise = \/ V2.1 + V2. .o+ ... contains all noise sources. The squared terms
add since they are statistically independent. By squaring Vzass from the spectrum
analyzer using an analog multiplier one receives a sum of quadratic terms. The
squared signal voltage due to the optical beat signal, which is modulated by the
chopping frequency, can now be extracted by a Lock-in amplifier using that chopping

frequency as a reference. The noise terms on the other hand simply subtract; hence

the lock-in output is proportional to V3 ;-

4.5 Automated data acquisition

In the experiment, the translation of mirror M, and lens Ly and the simultaneous
data acquisition is controlled by a LabView program on a PC (Figure 4.4). The
PC controls linear actuators (443 Series by Newport) for the translation of M, and
Ly by means of an external controller (MM 2000 by Newport). This controller
allows the simultaneous control of up to 4 actuators or similar devices. Linear
actuators are step-motor-controlled sliding benches. They allow the positioning
along a given direction in 50 nanometer increments. The reproducibility for our
actuators is approximately 1 micron. During the scanning process, the beat signal
coming from the Lock-In amplifier is recorded by an A/D-converter (BNC-2090 by
National Instruments). The A/D-converter output is fed back into the PC and

written into a file, together with the actuator positions.
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Figure 4.4: Block diagram for the automated data acquisition

In the following chapter I will describe necessary modifications to the experiment

when using broad-band light instead of coherent light.

4.6 Experimental setup with SLD light source

The usage of broadband light in our experiment enables the time-resolved mea-
surement of Wigner functions. This is because in order for S and LO to interfere,
their path lengths must match within a coherence length [. of the light used. This
path difference requirement translates into a time-difference requirement, when we
consider the coherence time t, = % instead of the coherence length itself, where ¢
is the speed of light in the sample. In our experiments, we are mainly interested in
the selection of path-lengths, in particular in the experiments involving a random
medium. Broadband light requires a number of modifications to the experimental

setup for coherent light.
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Figure 4.5: Experimental setup for measuring time-resolved smoothed Wigner
functions using an SLD as a light source

The light source used in all our experiments is a superluminescent diode (SLD),
which provides broadband light with a center wavelength of 678.3 nm and a lon-
gitudinal coherence length of 24.9 pum. Its properties are described in detail in
Chapter 6. The light emerging from the SLD has a wide angular spread and an
intensity profile the shape of a sickle. By means of a high-numerical-aperture col-
limation lens and a telescope, the light field is transformed into a collimated beam
with a diameter of about 2 mm. The intricacies of this procedure are discussed
in Section 6.3. The short longitudinal coherence length of the SLD requires the
addition of a retro-reflector into the Signal arm to equalize the path lengths of S
and LO during the adjustment process (see Figure 4.5). It also enables the selection
of a path delay offset Al in experiments involving turbid media, and it counterbal-
ances changes in the relative path-delay between S and LO due to the movement

of My and Ly during the scanning process. For given displacements d, and d,, the
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correction will be given by the last three terms of Eq. (4.5):

& dd
Al=2d,+d, + -2 — 22 4.
+ +2f of (4.5)

f is the focal length of the detector input lenses L; and Ly. The derivation of this

correction factor is outlined in the following section Section 4.7.

4.7 Measurement of smoothed Wigner functions

In this section I will describe how smoothed Wigner functions can be measured
using the experimental setup outlined in the previous section. The calculations will
be done for the more general case of partially coherent light of a broadband source,
since this light is used in all our experiments. The expressions for coherent light can
usually be directly deduced from those for partially coherent light. In most cases
they simplify considerably. In other parts of the calculation, I use transformations
for partially coherent light usually reserved for coherent light, but only when the
frequency dependency of the elements involved is negligible (lenses, short distances
of free space). The calculation of the squared beat signal and its connection to the
Wigner function of the Signal field will be the center part of this section. During
the calculation, the path-delay compensation necessary for broadband light and to
be performed by the retro-reflector will become evident.

For the following calculations, Figure 4.6 shows the notation regarding the dif-
ferent planes under consideration. The subscript 0 denotes the field right before the
input lens in the input plane, the prime ' the field right behind it. The subscript D
denotes the field at the location of the detector.

In the derivation of the voltage output of the balanced detection scheme in
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Figure 4.6: Notation of the cross-spectral density I' in different planes

Section 4.3 we assumed coherent light and a perfect match of S and LO on the
detection surface. The general amplitude of the beat signal for partially coherent
light is proportional to the integrated spectral density of the superposed field of S
and LO, I'p(z,z) = (£fo(x)Es(x)) in the detector plane (see Figure 4.6), where

(...) denotes the average over the source:

Vg /dxFD(x,x). (4.6)

The spectral density is just the cross-spectral density for the special case when
its spatial coordinates coincide. The y-component remains constant during the
scanning process and only adds an overall pre-factor; therefore it is suppressed in the
integration. It is also assumed that £,o and £g are phase-matched longitudinally,

when d, and d, = 0. For a given set of translations d,, d, of mirror M, and lens Lo
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the input fields Eg, £ right behind the input lenses are!

(@) = Egolz — dy) exp (—Qﬁ) (47)
EL(z) = E() exp {—i%(w - dp)ﬂ . (4.8)

The first term in Eq. (4.7) is due to the translation of M, which shifts the LO
relative to S by a distance d,. The following position dependent phase factor is the
paraxial approximation for the wavefront passed through input lens L;. A similar
transformation occurs in Eq. (4.8): S itself does not translate, but its input lens
Ly does by a factor d,, thereby introducing a position dependent quadratic phase
factor, shifted by d,. Even though £g and €10 superpose only in the beam splitter
and not yet in the input planes, we treat the problem as such in the following,
because we consider the input planes of the detection system as our reference. This
is perfectly valid, since both £ and £ undergo the same linear transformations
after the input planes and before they superpose at the detectors.

The cross-spectral density of the superposed field behind the input lens is then:

[(@,2") = (Elo(x)Es(2")) (4.9)
= Tg(x —d,, ') exp {Z%[.TQ — (' — dp)Q]} : (4.10)

where T'og(z — dy, 2") = (€ o(x — d)Es(2’)) is the cross-spectral density before the

Since the SLD light is partially coherent, the cross-spectral density I'(x1,x2) should actually
be used instead of £(x). But, as pointed out at the beginning of this section, in cases where the
coherence properties have a negligible effect, I treat the field as if it were coherent since it simplifies
the calculations.
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lens. From there, both fields travel a distance f to the photodiodes, where f is
the focal length of the input lenses. The cross-spectral density at that location
can be calculated by propagating the cross-spectral density of £ and £, with the

point-spread function for travel through free space (see Equations (3.9), (3.14)):

p(x1, ) //d:cda: hoo(x1, 2) T (2, 2") BE (2], 7)) (4.11)

where, according to Eq. (3.14),

k
2miz

1k
exp | 5

hxa:<m1a IL'[)) =

(21 — a:o)?] : (4.12)

By inserting Equations (4.9) and (4.12) into Eq. (4.11), the cross-spectral density

at the detector results:

Tp(z, 7)) — ie p[;];(:c _ o d?)]
X //dndn Lo(n —dzyn')
X exp{f[n - —x(n - n)+77’d]} (4.13)

Inserting Eq. (4.13) into Eq. (4.6), the complex beat voltage for partially coherent
light results:

k
Vg o exp(— z—d2) /dn Lo(n —dy,m) exp(i—nd,). (4.14)

2f P f
The phase factors are due to path contributions when d, is off-center. They indicate

an additional path delay of
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d; dpn
—ﬁ + 5 (4.15)

I =
during the integration which introduces an attenuation factor of exp(—%) due to
the short coherence length [, of the light source. By compensating those path delays
by means of the retro-reflector, the attenuating term vanishes. The second term in
Eq. (4.15) can not be compensated directly since it changes with integration over
the detector plane, but it can be minimized for certain types of fields. For signal
fields which are broad in position, as is the case for fields emerging from a turbid
medium, ['(n — d,,n) is centered around d,. The phase factor inside the integral

in Eq. (4.14) can then be approximated by replacing n with d,, which results in a

correction factor

s
2f

Another path delay that needs to be taken into consideration is introduced by the

(4.16)

translation of Ms by d,. Together with Eq. (4.16) the total correction term amounts

to

2 d,d
2d, =d, — L + 2=, 4.17

The factor 2 in front of d,. accounts for the fact that for a translation d. of the retro-
reflector the path length changes by 2d.., as can easily be seen. The attenuation due
to the varying path difference is now reduced to almost zero and the mean square

voltage is

2

[ Vilds. ) Pox | [ dToftn = o) expli ) (415)
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4.7.1 Mean square beat signal for transversely coherent light

For longitudinally coherent light, S and LO will interfere regardless of relative path
length difference. No correction by the retro-reflector is necessary. For transversely
coherent light, I'y separates into a product of £, and g due to the infinite trans-

verse coherence length (see Eq. (3.2)):

L5 (1, 29) = Efo(21)E5(w2) (4.19)

without the requirement to average over fluctuations inherent only to partially co-

herent light, so that Eq. (4.18) can be written as

2

* K
Vi asdy) P x| [ dn€ioa(n = dEsaln) exol-i5 )
« k
= / dn &0 — do)Es0(n) eXp(—l}ndp)
k
<[ @ Eronl’ = A€ (N (il ). (420)
In the following we replace n and 7’ by the relative coordinates = = %(n +7') and

2’ =n—1n'. The Jacobian in this case is unity, so dndn’ = dx dx’. The substitution

yields:

/ iL’I
| V" (d,, dy) /dx/dx Eroola —d.))Eroo(z — 7~ dy)

X SSO(:U + )Sgo(

A product of fields £*(z 4 §)E(z — §) can be expressed in terms of their Wigner
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function by inverse Fourier-transformation of expression Eq. (3.1):

€

E(x + %)E(x — 5) = /dp exp(—iep) Wz, p). (4.22)

Replacing &5 o(r + L)Eso(r — %) in Eq. (4.21) yields

/ /
Ve (dyd) P o / da / A’ oo + 5 — de)Eroole — 5 — d.)
k
X /dp exp(iz'p) Ws(x, p) exp(—i?dpx’) (4.23)

where Wg(z, p) is the Wigner function of the Signal field.
Using Eq. (3.1) again, we can express the remaining terms in Eq. (4.23) together

with the integral over dz’ as a Wigner function:

k dx’ . k
WL()(Z'O — dx,p + ?dp) = / % eXp[ZﬁL'/(p + ?dp)]

/ /

x x
X 520,0@ + 5 dy)Eroo(x — 5~ d.). (4.24)

Replacing this expression in Eq. (4.23) we get as a final expression for the mean

square beat signal for coherent light:

| V]E’Oh(dam dp) |2O< /de dp WLO(:E - dxap + pz) WS(m7p) (425)

with p, = gdp.
This is a convolution of the Wigner functions of the Signal- and the Local Oscilla-

tor field which shows that the measured distribution is indeed a smoothed Wigner
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function. For identical Signal- and Local Oscillator beams, such a convolution
broadens the phase-space profile by a factor v/2, as can easily be verified (also see
Section 5.4.4). For a finite transverse coherence length I'y does not separate into £1.0
and Eg; in that case | Vp(d,,d,) |* can not be expressed in terms of the individual

Wigner functions as in Eq. (4.25).

4.7.2 Averaging over fields

There are several types of averaging of interest in our experiments. First, there is
the averaging process in the Lock-In amplifier which extracts a weak signal from a
noisy background. Secondly, for experiments involving turbid media, the signal field
displays speckle, which are due to the interference of parts of the field taking different
paths in the medium. This effect is noticeable stronger for coherent light than for
partially coherent light. Speckle is considered noise in the type of experiments
we do and can shield weaker features of the field we are interested in. In our
experiment, we use polystyrene spheres floating in a water-glycerol mixture as a
turbid medium (see Section 12.1.1). These spheres are subject to Brownian motion;
therefore the speckle pattern changes with time. By ensemble averaging over the
sample, i.e. either spatial or temporal averaging over the signal field emerging
from the sample, speckle average out. Ensemble averaging in turbid media is also
necessary to make sure all possible arrangements of scatterers contribute to the
measured signal. The different techniques we apply for spatial averaging will be the
subject of Section 12.1.1. Temporal averaging is performed by the Lock-In amplifier
in our experiment. Ensemble averaging over a turbid medium is necessary for both
coherent and incoherent light probing the sample. For coherent light, it is often

more convenient to calculate the Wigner function of the ensemble averaged Signal
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field and the LO field separately and use Eq. (4.25) to calculate the mean square
beat signal.

For partially coherent light on the other hand, a third type of averaging makes it
necessary to perform the averaging at the plane where S and LO interfere: Partially
coherent light of frequency w, which has a bandwidth of Aw, fluctuates temporally
at a rate of about Aw. In our experiment we measure the average of the fluctuating
product of S and LO which is not equal to the product of the averaged S and LO

itself, at least for partially coherent light:

(€ro€s) # (E10)(Es) (4.26)

4.7.3 Resolution of the Single-Window technique

The resolution of the measured signal field is determined by the size of the LO in
phase-space, namely its spatial width and its angular spread. For a Gaussian beam

L so that

with a diameter of 20, the angular spread is about %, ie. Ak = o

AxAk = 1.

There is obviously a trade-off between good position- and momentum resolution:
A small diameter o, of the LO provides good position resolution, but its resulting
high momentum spread decreases the momentum resolution. The opposite relation-
ship holds for a wide collimated beam. This uncertainty relation associated with
Fourier transform pairs can be surpassed by using a combination of two LOs with

small and big diameter, as will be described in the next chapter.
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Chapter 5

The Two-Window technique

5.1 Introduction

The last chapter which treated the experimental setup for the Single-Window tech-
nique showed that there is a trade-off between position and momentum resolution if
a single LO is used. Therefore, the measured signal is a smoothed Wigner function
rather then the true Wigner function. In the following, we present a Two-Window
technique which employs a combination of two phase-coupled LOs, which enables
the measurement of un-smoothed Wigner functions. The set of phase-coupled LOs
consists of an LO which is narrowly focused to allow high spatial resolution (small
LO or SLO), and a second LO which is highly collimated which provides high angu-
lar resolution (big LO or BLO). Both LOs are frequency-shifted by 120 and 120.003
MHz, respectively; their frequency-difference of 3 kHz is locked to an external oscil-
lator by means of a phase-locked loop. The signal field S, which is frequency-shifted
by 110 MHz as in the Single-Window experimental setup, is superposed with the
dual-LO in the detector plane. This time, the beat note contains two frequency
components, one from the superposition of S and BLO at 10 MHz, the other from
S and SLO at 10.003 MHz.

The beat-signals are detected by a spectrum analyzer and squared as in the
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Single-Window case. The signal exiting the squarer oscillates at the frequency
difference of SLO and BLO of 3 kHz and is detected in the Lock-In amplifier which
uses the 3 kHz external oscillator as a reference. The quadrature outputs of the
Lock-In amplifier contain all the information about the true Wigner function, as we
will see below.

In the following section, the experimental setup for the Two-Window technique
will be described. In Section 5.3 and Section 5.3.1 we will derive the mathematical
expression for the signal we measure and show how to retrieve the true Wigner
function of the field from it. Also, a derivation of the direct relation between mean
square beat signal and the distribution of the Signal field in position and momentum
will be presented. In Section 5.4 we discuss the physical meaning of the measured
complex beat-signal for an ideal and non-ideal dual-LO.

I will conclude the chapter by short descriptions of the Acousto-optic modulators
(Section 5.5), the phase-locked loop I developed for this experiment (Section 5.6),

the 4 f-system (Section 5.7), and an overview over the complete system (Section 5.8).

5.2 Experimental Setup

As already mentioned in the Introduction, the Two-Window technique employs a
pair of phase-coupled LO’s instead of a single LO as in the Single-Window case.
This pair consists of a large collimated beam (’Big LO’ or BLO) providing high
momentum resolution and a small focused beam (’Small LO’ or SLO) providing
high spatial resolution. Figure 5.1 shows the experimental setup. Again, a 4f-
system as well as other optical components which are not crucial for grasping the
concept of this technique were omitted in the figure. Electronic connections are

displayed as dashed lines, optical pathways as solid lines. While the Signal arm has
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Figure 5.1: Two-Window technique experimental setup for measuring true Wigner
functions

lost the chopper, the LO arm is split up by beam splitter BS3. The SLO beam is
shifted by 120.003 MHz and reaches the lens SLO — L (f=25 c¢m), which focuses the
beam onto the LO-input plane. The BLO is shifted by 120 MHz and superposed
with the SLO at beamsplitter B.S,. In order to match the path length of BLO and
SLO, a second retro-reflector is introduced in BLO. The 3 kHz frequency difference
between SLO and BLO is kept constant by means of a phase-locked loop (PLL)
and detector D3: The PLL compares a 3 kHz reference signal with the beat signal
of SLO and BLO at detector Ds. It multiplies both signals and adjusts the voltage
controlled SLO-AQO by an error voltage in order to keep the averaged product zero,
which is only the case when reference- and beat-frequency are equal and out of
phase by 90 degrees. The PLL is discussed in greater detail in in Section 5.6. The
phase-coupled LO-pair is, as in the Single-LLO setup, mixed with the Signal field
and detected by a balanced detector. The beat notes of 10 and 10.003 MHz are

detected by a spectrum analyzer, squared, and fed into a Lock-in amplifier which
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uses the 3 kHz reference signal as a reference as opposed to the chopper used in
the Single-Window setup. The Lock-in amplifier produces two quadrature voltages:
an In-phase signal which is proportional to the signal component which is in phase
with respect to the reference signal, and an out-of-phase signal which is proportional
to the component which is 90 degrees shifted to it. In combination they contain
the complete amplitude- and phase information of the detected signal. In the next
section I show how the true Wigner function of a signal field can be measured using

this setup.

5.3 Measurement of true Wigner functions

For sufficiently high global coherence, the Wigner function of a Signal field can be
directly measured. In our experiment, this condition is met to a very good degree
with a global coherence of more than 7 (see Section 8.1). In the following we show

how the true Wigner function is measured and retrieved.
The LO in the dual-LO scheme is a phase-coupled pair of a small LO (SLO) and

a big LO (BLO), as already mentioned. Its electric field can be written as: !

2 .TQ

xr .
Ero(r) = Eroy eXP(—Q—ag) + et eXP(—ﬁ) :

(5.1)
where ¢! denotes the relative phase of the BLO with respect to the SLO determined
by the phase-locking at w = 27 x 3 kHz and [ its relative amplitude. a and A are the
beam intensity e~? radii for the SLO and BLO, respectively. The Wigner function

for this LO is then:

'In the following calculation, a and A denote characteristic widths of SLO and BLO. In all
other calculations in this thesis a and A are dimensionless scaling factors. We only choose to stray
from this habit here to enhance the readability of the formulae.
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d
Wiolwp) = [ 3™ Eiola+ esols )

_ 5%00/ { {_ (5527;25)2} + Be " exp {— (x;;é)QH

X { { % }%—ﬁemexp[—(w;—fé)?]}. (5.2)

Since the Lock-in amplifier locks on to the reference frequency used to phase-lock
the LO’s, only the cross terms o exp(+iwt) in Eq. (5.2) are detected; the other

terms cancel. The cross terms are

Woa(z,p) = ﬁEg —7reip6 {ei“texp {—( —

iwt (.CC + %)2 (Q? - %)2
toe e [_ 242 2a2
o e—zwt[ + eiwt[* (5 3)
where
de (z+5) (x—5)*] .
I = 5 &XP [— 52 o4z | © P, (5.4)

I can be transformed the following way:
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where
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Replacing o and 3 according to Eq. (5.6), one gets

which reduces to

&

«

(o)

|
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I o exp (—Q—xQ — 2a°%p* — Qixp) (5.9)

A2
for A > a. This is always the case in our experiment, where we choose the BLO to
have a much larger diameter than the focused SLO. When we choose the diameters
of BLO and SLO so that A is much bigger than the position x range of the Signal
field and % much bigger than the momentum p range of the Signal field we measure,

the exponential terms in Eq. (5.9) reduce to unity and we get:

I o< exp(—2izp). (5.10)

With Equations (5.9) or (5.10) we can calculate the Wigner function of the LO in
Eq. (5.3):

Waa(z,p) o e ™ +e'I*

2 2
= exp (—% — 2a2p2) lexp(iwt — 2ixp) + exp(—iwt + 2ixp)]
21 9 o
= 2exp — 2a°p* | cos(2xp — wt) (5.11)
~ 2cos(2xp — wt). (5.12)

Now that we have the Wigner function for our dual-LO beam, we can calculate the

in-phase signal we measure, using Eq. (4.25)

S (a,p) = / dx' dp Wio (&' — .3/ — p) We(a'sp)

x /d:v’ dp’ cos[2(x’ — x)(p' — p)]| Ws(2', D). (5.13)
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The second quadrature of the Lock-In amplifier, which is referred to as out-of-
phase signal, measures the signal field component that is 90 degrees out of phase
with respect to the reference signal and can be found by subtracting a phase of 90

degrees from wt in Eq. (5.13). This manipulation just changes cosine into sine:

S9P(z,p) o /da:’ dp’ sin[2(z' — x)(p' — p)| Ws(2', D). (5.14)

The combined in-phase and out-of-phase signals can be written more elegantly using

complex notation:

Sp(w,p) = SF(x,p)+iS9"(x,p) (5.15)
= %/dm’ dp’ eXp[Qi(;p’ —2)(p — p)] We(a',p'). (5.16)

S(z,p) is a Margenau-Hill transformation of the true Wigner function Wg(z,p) of

the field. We will refer to Sg(z,p) as the complex beat signal.

5.3.1 Extraction of the true Wigner function from Spz(x,p)

In order to retrieve the Wigner function Wg(2', p’) of the signal field, the expression

in Eq. (5.16) must be inverted. A reasonable guess would be that

Ws(x,p) = %/dm’ dp’ exp[—2i(z — ) (p — p')] S, p'). (5.17)

That this is indeed the case can be shown very straightforwardly by integrating Eq.
(5.16) from both sides according to the right side of Eq. (5.17):
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1/dxdpSB(x p) exp[—2i(z" — z)(p" — p)]

— ////dxdpdx dp' exp[—2i(z" — z)(p" — p) + 2i(2x' — 2)(p' — p)]

< W', p)
— / / / / dz dp dz’ dp' exp[2i(z'p — 2"p" + z(p" — p') + p(a” — 2')]
< W', p)
- 3 / / exp[2i(a’p — a"p")] Ws(a', o)
« / dz dp expl2i(z(p — ) + p(a’’ — ). (5.18)

The last integral on the left reduces to a product of delta functions:

/dx dp exp[2i(z(p” — p') + p(z" — z)] = 726(p" — p)o(a" — ) (5.19)

so that Eq. (5.18) becomes:

T %//exp[%(:p’ 2 //)] WS( )5(]?” —p,)(s(l‘” . x/)
= Ws(z",p"). (5.20)

Summarizing Equations (5.18)-(5.20), it was shown that Wg(z,p) can indeed be
retrieved from the complex beat signal Sg(x,p) by means of the inverse Margenau-

Hill transformation
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Wa(o.p) =+ [ do'df expl-2i(e — o~ )] Sae'sp). (521)

Eq. (5.21) shows that the Two-Window technique enables the retrieval of the true
Wigner fu