
ABSTRACT

KANGARA MUDIYANSELAGE, JAYAMPATHI CHAMILA BANDARA. Atom Pairing in
Optical Superlattices. (Under the direction of John Thomas).

This dissertation provides a complete study of two-atom pairing in a 1D optical superlattice
potential. First, I describe the detailed derivation of a multi-band model to evaluate two-atom
pairing energies and states in a 1D optical superlattice potential with �nite radial con�nement.
Next, I provided the quantitative measurements of radio-frequency spectra of atom pair states
in a 1D bichromatic optical superlattice that creates a series of double-well potentials, revealing
the co-existance of two types of pairing states with di�erent symmetries. I �nd the described
multi-band model to be in excellent agreement with our observed spectral structure for di�erent
symmeteries of the double-well potential providing the �rst understanding of how elementary
two-body pairng works in 1D optical superlattices.
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Chapter 1

Introduction

In this dissertation I present the complete theory and experimental observations of pairing of
interacting Fermions in a tunable 1D bichromatic optical superlattice potential with nonzero
harmonic radial con�nement. The bichromatic superlattice potential creates an array of periodic
double well potentials, Fig. 1.1, and is created by combining on a beam splitter two optical �elds
of wavelengths �1 = 1064 nm and �2 = 532 nm, with the second �eld obtained by frequency
doubling of the �rst. The combined beams are split into two beam pairs, which intersect at
an angle � = 91:0o to create a fundamental lattice, denoted \red," with a period d = 0:75�m

Figure 1.1: A 1D optical superlattice, formed by crossed 1064/532 nm laser beams, traps atoms
along z-axis, while a 10.6 �m CO2 laser provides radial con�nement. Here d the period and �
the relative phase set by a Soleil-Babinet compensator (SB), which determines the separation
2 b and a tilt 2� between the double-well minima. In the double-well potentials, atoms form
two types of pairs with similar total energies, which can be thermally populated and probed by
radio-frequency spectroscopy.

1



and a secondary lattice, denoted \green," with period d=2. The relative phase � between the
standing waves is manually tunable using a calibrated Soleil-Babinet compensator placed in the
path of the second beam pair, to control the symmetry of the periodic double-well potential.
An ultracold gas of fermionic atoms with tunable interations is loaded in to this superlattice
potential con�ning the atoms in a series of bi-layered pancake like structure. A 50-50 mixture
of the two lowest hyper�ne states (denoted j1i, j2i) of fermionic 6Li atoms is loaded in to the
lattice. The trapped cloud is then magentically tuned near the broad collisional (Feshbach)
resonance at 832.2 G [Bartenstein et al., 2005,Z�urn et al., 2013] to control the s-wave scattering
length a12. Measured radio frequency spectra which probes the binding energy of atom pair
states, exhibit a rich, relative-phase dependent structure. As the primary work of this thesis,
observation of the co-existence of two types of atom pair states in a bichromatic superlattice
potential is quantitatively explained using a multiband model, implemented by extending the
rigorous Green’s function method of Orso et al., [Orso et al., 2005] to a 1D superlattice with
non-zero harmonic radial con�nement.

1.1 Ultracold Atoms in Optical Superlattices.

Over many years ultracold quantum gases trapped in optical lattice potentials have become a
perfect candidate to investigate and study the fundamental questions asked in many �elds such
as modern solid state physics, atomic and molecular and even in quantum information. Created
by interfering two or more laser �elds forming a periodically varying intensity pattern traps
neutral atoms by means of optical dipole forces. These arti�cial crystals of light, used to mimic
even most complicated crystal structures in condense matter physics, provide a wide control of
internal parameters of the system which cannot be realized in a real solid state system. Optical
superlattices, comprising two or more standing waves of light, provide an additional degree of
freedom allowing one to control the dispersion of the trapped atoms.

Ground breaking experiments with bosonic atoms in superlattices have simulated Dirac
dynamics, such as Klein tunneling [Salger et al., 2011, Witthaut et al., 2011], by producing
linear dispersion. A relative phase near zero creates periodic, double-well potentials with con-
trollable asymmetry. Single atoms in the right or left states of tilted double-well potentials have
been employed to study non-equilibrium dynamics [Pertot et al., 2014] to provide an e�ective
spin-orbit interaction with negligible optical scattering [Li et al., 2016]. This has enabled the
observation of antiferromagnetic spin textures [Li et al., 2016]. Cyclic variation of the phase and
corresponding double-well symmetry has been used to observe topological (Thouless) pumping
for weakly interacting bosons [Lohse et al., 2016] and fermions [Nakajima et al., 2016].
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1.2 Layered Systems

Among many possible optical lattice structures, one dimensional optical lattices have been of a
particular interest among researchers in realizing low-dimensional quantum systems. Multicom-
ponent atomic gases in two dimensional and quasi-two dimensional layered structures , have
enabled the ability to create cold atomic analogs of several interaction driven condensed matter
states such as excitonic Bose condensate [Butov et al., 2002, Seamons et al., 2009] observed in
bilayer systems and zero-�eld magnetic phases [Weitz et al., 2010,Velasco et al., 2012,Mayorov
et al., 2011] observed in bilayer graphene.

Fermi gas with magnetically tunable two-body interactions [O’Hara, 2002] loaded in to an
one dimensional bichromatic lattice potential, Fig. 1.1, creates such multilayer atomic system,
providing broad platform to study not only these exotic new states of matter, but also to study
interesting many-body physics such as entanglement and nonequilibrium dynamics. However,
to realize these rich variety of states and the physics behind them, it is important to understand
and control the two-body interactions of the con�ned species in tunable lattice potentials. It has
been predicted theoretically [Orso et al., 2005] and observed in experimentally [Sommer et al.,
2012] that anharmonicity in optical lattice potentials generally entangles the center of mass
and relative coordinates of con�nement-induced atom pairs, modifying the pair binding energy.
Also, geometric control of pairing interactions between species in separated layers, produced by
a harmonic con�nement with an applied spin-dependent force, has been observed recently in a
bilayer system [Kan�asz-Nagy et al., 2015].

However, until now there has been no quantitative experimental study of the elementary
atom pairing in optical superlattice structures. In this dissertation I provide a complete theo-
retical model and experimental observations, representing two-body pairing in such structures,
created using a bichromatic optical lattice potential. I employ a spectroscopic techniques to
experimentally study the two-body pairing states under di�erent symmetry con�gurations of
the superlattice potential and �nd that the measurements are in excellent agreement with the
theoretical model, derived in this thesis.

1.3 Thesis Overview

In Chapter 2, I provide background information behind optical lattice and superlattice poten-
tials. A brief overview of band theory is provided describing the band structures and how bands
are tuned in optical superlattice potentials. An introduction to magnetically induced Feshbach
resonance is also described as a way of controlling interactions between multi-component fermi
gases con�ned in lattice potentials. Chapter 3 describes the theory behind two-atom pairing in
a one dimensional optical superlattice potential, exploring the eigenvalues and eigenvectors of
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these pair states. In Chapter 4, I discuss the methods, including the techniques used to cali-
brate the lattice parameters and also to probe the binding energies of atom pair states. A brief
introduction to radio frequency spectroscopy is also provided in order for the reader to under-
stand the experimental results described in the next chapter. In Chapter 5, a detailed discussion
comparing experimental measurements with the theoretical model is provided, summarizing the
dissertation.
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Chapter 2

Background

In this chapter, I wish to give the reader an introduction on some of the basic theoretical
concepts that will be useful for understanding the full theory discussed in Chapter 3. In the
experiment, cold atoms are con�ned by means of optical dipole traps. So I will start by doing
a brief introduction to optical dipole traps and move on to optical lattice potentials. Then I
will do a brief overview of band theory, which describes the energy eigenstates for a single atom
in a periodic optical dipole potential (i.e. optical lattice). Finally, the focus will be to tell the
reader how interactions between atoms are controlled using a magnetically induced Feshbach
resonance.

2.1 Optical Dipole Traps

When a neutral atom is placed in an electric �eld E, the interaction creates an induced dipole
moment d = �E in the atom, where � is the polarizability. Then the potential of the induced
dipole moment is given by

Vdip = �
1
2

d � E: (2.1)

A semiclassical expression for the polarizability can easily be obtained by taking the atom as a
two level system interacting with the classical electric �eld via a dipole interaction. Using time
dependent perturbation theory, we �nd that,

� = �s
�

1
1� !2=!2

0

�
(2.2)

where !0 is the resonance frequency of two level atom and ! is the frequency of the driving
�eld. Here �s = 2�2

eg=�h!0 is the static polarizability of the two level atom with �eg the dipole
matrix element.

As the atoms cannot respond at the optical frequencies, eq. 2.1 can be time averaged, and
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written in terms of the intensity of a focused gaussian beam,

Vdip = �
2��I
c

(2.3)

where the intensity I is given by,

I =
I0

1 + (z=z0)2 e
�2r2=w2

(2.4)

for a beam travelling in z direction. Here I0 is the peak intensity, w is the 1=e2 intensity radius
and z0 = �w2=� is the Rayleigh length of the focused beam with a wavelength �. Note that
experimentally I0 = 2P=�w2 with P being the measured power of the gaussian beam. For an
atom placed in a focused laser �eld, the dipole force resulting from the interaction potential
is Fdip = �rVdip. The sign of the force is then determined by the sign of the polarizability in
eq. 2.2. For red detuned �elds (! >> !0) dipole force is inward and atom is attracted towards
the regions with maximum intensity; For blue detuned �elds, the force is outward, repelling the
atom the from high intensity region. Figure 2.1 shows the potential felt by an atom in a red
detuned focused laser beam trap.
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Figure 2.1: Potential created by a focused laser beam propagating in z direction. Here V0 =
2��I0=c.
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2.2 Optical Lattices

Optical lattices are made of combining two counter propagating laser beams with linearly
polarized electric �elds creating a standing wave. The potential felt by an atom placed in a
standing wave laser �eld created by two counter propagating beams of wavelength � in the z
direction is given by

V (z) = V0 cos2(kz) (2.5)

where V0 = 16�P=cw2 with P , the measured power for the beam and k = �=d, where d = �=2
is the lattice spacing. Here � is given by eq. 2.2. Note that this gives rise to a periodically
varying potential. For red detuned beams, the atoms are trapped in the maximum intensity
regions and for blue detuned beams, in the minima. Figure 2.2 shows the potential creadted by
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Figure 2.2: Potential created by two counter propagating focused laser beams moving in z
direction.

two counter propagatin gaussian laser beams focused at z = 0, where the relevent potential is
given by the following expression,

V (r?; z) = �
V0

1 + (z=z0)2 cos
2(kz) e�2r2

?=w
2

(2.6)

At the limit where z << z0 we can neglect the slowly varying z dependence. This is true for
our experiments since ultracold gases with a temperature, T << V0=kB, are con�ned to a small
region near the focus of the gaussian beams. By applying the same argument, the exponential
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variation can also be expanded for r?=w << 1. The resulting potential is then approximately
harmonic in r? and periodically varying in z,

V (r?; z) ’
1
2
m!2
?r

2
? + V0 cos2(kz) (2.7)

where !? =
p

4V0=mw2 is the atom harmonic oscillation frequency in the radial direction with
m, the mass of the trapped atom.

By increasing the number of beam pairs interfered in space one can also realize higher
dimensional optical lattice potentials. For the purpose of discussion throughout this thesis,
let me rewrite the periodic part of the potential in eq. 2.7 as V (z) = sER cos2(kz) with s
describing the intensity of the laser beams and here ER = �hk2

2m is the recoil energy. This can be
then expressed as

V (z) = sER=2[1 + cos(2kz)]: (2.8)

By eliminating the constant term �nally the potential is,

V (z) =
sER

2
cos(2kz): (2.9)

From now on, this will always be the form used to represent a periodic lattice potenial.

2.3 Review of Band Theory

Next, I will do a brief review of single particle band theory. The goal here is to introduce the
energy eigenvalues and eigenvectors for a single particle placed in a periodic potential. Let us
now assume a 1D periodic potential given by eq. 2.9. The Shr�odinger equation for this problem
can be written as,

�
�

�h2

2m
@2

@z2 + V (z)
�
 �q (z) = E�(q) �q (z); (2.10)

where � is the band index and q denotes the quasi-momentum for the �rst Brillouin zone,
��=d � q � �=d. Note that the potential V (z) = sERcos2(kz) here is given by 2.7 without the
term that depends on r?. The eigenstates are given by

 �q (z) =
X

G

C�G(q)
ei(q+G)z
p
Nd

; (2.11)

where G = (0;�1;�2; :::)G0 with G0 = �=d being the fundamental reciprocal lattice vector
and N is the number of lattice sites taken into account. Note the states are complete on the
lattice interval 0 � z � Nd,
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X

�;q
 �q (z) ��q (z0) = �(z � z0): (2.12)

Eq. 2.10 can be solved numerically to get the energy eigen values E�(q) and coe�cents
C�G(q). A full treatment for this problem is given in ref. [Cheng, 2016]. As a reminder, let me
show the reduced zone energy band diagram for three di�erent lattice depths. Here the total
energy is given as a function of the quasi-momentum of the particle. When lattice depth is
relatively small energy distribution resembles the energies of a free particle. For a �nite lattice
depth the energies exhibit gaps between di�erent the energy bands. As the depth increases
further the energy bands become more at, like the energy level diagram one would expect for
a simple harmonic oscillator, where the particle is trapped in a deep potential well.
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Figure 2.3: Energies of three lowest energy bands for di�erent lattice depths. From left to right
the depth varies as, s = 2; 4; 8. Note that all the energies are expressed in terms of the recoil
energy, ER = �h2k2

2m of the lattice beams with k = �
d . Lattice spacing is given by d.
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2.4 Optical Superlattice Potential

Optical superlattice potentials are created by combining two or more optical standing waves. For
our experiment, I consider the simplest form of superlattice potential, which is called a bichro-
matic superlattice. As the name implies, a bichromatic superlattice is created by combing two
optical �elds with a primary attractive lattice, denoted \red" and a secondary repulsive lattice,
denoted \green". Taking the red lattice to be the fundamental and Vred(z) = �s1ER cos2(kz)
with k = �=d, where d = �=2 is the lattice spacing, the bichromatic potential can be written
as,

V (z) = �
s1ER

2
cos(2kz) +

s2ER
2

cos2(4kz + �): (2.13)
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Figure 2.4: Variation of the bichromatic lattice potential (solid black) with z for � = 0 (top
�gure) and for � = � (bottom �gure). s1 = 8 (solid red) and s2 = 8 (solid green). Note a
double-well is created at z = 0 for � = 0 (top), and a single-well at z = 0 for � = � (bottom).

In �g. 2.4, bichromatic potential (solid black line) for s1 = 8 and s2 = 8 is shown for two
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di�erent phases. When � = 0, the net potential is a series of double wells while a series of single
wells are generated for � = �.

Energy eigenvalues and eigenvectors for an atom in this potential can also be calculated
using eq. 2.10. To give the reader an idea about how the energy band diagram changes with the
addition of a secondary potential, here I plot the energy eigenvalues of the �rst three energy
bands for a few di�erent combinations of lattice depths and phases. By looking at the �gure, the
reader can see that optical superlattice potential provides a wide control of the band structure
of a trapped atom.
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Figure 2.5: Variation of energies of the three lowest energy bands of the bichromatic potential.
(a) s1 = 7, s2 = 0, � = 0. (b) s1 = 7, s2 = 3:5, � = �. (a) s1 = 7, s2 = 16:5, � = 0.
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2.5 Tunable Interactions

Here in this dissertation, the interest is to see how the above mentioned energy level diagrams
are modi�ed by interactions between atoms. If two atoms are considered the interaction between
them can be characterized by their s-wave scattering length, a. By controlling a, we can control
the strength of interactions between the two atoms. Experimentally this is achieved by making
use of a magnetically induced collisional Feshbach resonance, which occurs for two atoms in a
bias magnetic �eld.
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Figure 2.6: Tuning of energy of the lowest six hyper�ne states with an externally applied
magnetic �eld. a0 is the Bohr radius.

In our experiment, we trap and cool a gas of 6Li fermions to quantum degeneracy. This
particular isotope of Li consists of 3 neutrons, 3 protons and 3 electrons, with a valence electron
in the 2S orbit. The angular momentum quantum number, L for this electron is zero with a
spin of S = 1=2. 6Li has a nuclear spin I = 1. Hence, the total angular momentum quantum
number F can be either 1=2 or 3=2, making the ground state to be six-fold degenerate. The
interaction between the electron and the nuclear magnetic moments as well as an externally
applied magnetic �eld, breaks this degenracy and results in six distinct eigenstates for the
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ground electronic state of 6Li. The reader can refer to previous theses from our group to see
the full derivation of these lowest six eigenstates. These eigenstates are usually labled as j1i, j2i
and so on, starting from the lowest eigen state. Figure 2.6 shows how the energy of these six
lowest eigenstates tunes with an externally applied magnetic �eld. When two 6Li atoms collide
with each other their scattering length is determined by their molecular potentials. For s-wave
scattering, which is dominent at low temperatures the interaction is approximated by a contact
pseudopotential, takes the following format [Huang, 1987],

V (r)	(r) =
4��h2a
m

�(r)
@
@r

[r	(r)]: (2.14)

Here r = r1�r2 is the relative position between the two colliding atoms, and a is the scattering
length. Since Pauli exclusion principle prevents identical 6Li fermions from interacting with
each other, in the experiment, we trap a mixture of atoms in the two lowest hyper�ne states j1i
and j2i (see Fig 2.6).When two atoms collide, one from each of these states, they approach each
other the via either a triplet or a singlet molecular potential. For the triplet potential the valence
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Figure 2.7: Variation of the s-wave scattering length in Bohr units (a0 is the Bohr radius) of
states j1i and j2i as a function of applied magnetic �eld, B.
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electrons of the atoms combined to from a triplet spin state with total spin Stotal = S1 + S2 is
equal to one where as for the singlet potential the total spin becomes zero (Stotal = 0).

It can be shown that at a high enough magnetic �eld, the pair of atoms in the lowest two
states, j1i and j2i, is approximately in a triplet state with spins aligned parallel hence the energy
of the two atom state is tunable by an applied magnetic �eld. The spins of the singlet state
are anti-parallel and the tunability of the energy is negligible. Feshbach resonance occurs when
the energy of the two colliding atoms in the triplet state is to be degenerates with a bound
molecular state in the singlet molecular potential. The two dominant resonances between states
j1i and j2i occurs near 549 G (narrow) and 834 G (broad). For our experiment we exploit the
broad resonance to tune the interaction between the two colliding atoms. Scattering length a
near 834 G resonance is approximately,

a = abg
�

1�
�B

B �B0

�
(2.15)

where abg = �1405 a0, B0 = 834:149G and �B = 300G. Figure 2.7 shows how scattering
length, a changes near the resonance.
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Chapter 3

Multi-Band Model

In Chapter 2, I calculated the energies of a single atom placed in a one dimensional lattice
potential. In this chapter, I focus on the case of two interacting atoms in one dimensional
optical lattice and superlattice potentials. Our model is based on the Green’s function method
described in [Orso et al., 2005], which treated the 1D lattice with no radial con�nement. In this
model we include a �nite radial con�nement arising from the focused lattice beams and solve
the two particle Shrodinger equation to obtain the energy eigenvalues and their corresponding
eignevectors.

3.1 Two Interacting Atoms in a 1D Optical Lattice

To determine the eigenstates and binding energies for two atoms in a 1D bichromatic optical
lattice with nonzero radial con�nement, the required dimer wavefunctions are the bound state
solutions of the two-atom Schr�odinger equation

H	(R; r) = E tot	(R; r); (3.1)

where R = (r1 + r2)=2 is the position of the center of mass (CM), r = r1 � r2 is the relative
coordinate and E tot is the total CM and binding energy of the dimer.

The Hamiltonian is given by

H(R; r) = H0(R; r) + g �(r)
@
@r

[r:::]; (3.2)

where H0 is the Hamiltonian for two noninteracting atoms in the optical potential and g �
4��h2a=m determines the strength of the s-wave pseudo-potential [Huang, 1987], with m the
atom mass and a the zero-energy scattering length. Here we have assumed that the e�ective
range is negligible, as is the case for 6Li near the broad Feshbach resonances.
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For a single atom, the trapping potential energy is taken to be

V (x1; y1; z1) = V?(x1; y1) + V (z1): (3.3)

We assume that the radial con�ning potential energy is harmonic and cylindrically symmetric,
V?(x1; y1) = 1

2m!
2
?(x2

1 + y2
1).

The axial potential energy V (z1) in the bichromatic lattice arises from two optical standing
waves, a primary attractive lattice denoted \red" and a secondary repulsive lattice, denoted
\green," as described in sec. 2.4 in Chap. 2. For the red standing wave, the periodic potential
is Vred(z1) = �s1ER cos2(kz1), where ER = �h2k2=(2m) is the recoil energy, with k = 2�=�
the optical wavevector. Here, � = �red= sin(�=2) is the e�ective wavelength for two beams that
intersect at an angle �. Taking the red lattice as the fundamental, k = �=d, where d = �=2 is
the lattice spacing. The green lattice beams copropagate with the red beams and are created by
frequency doubling of a portion of the red laser intensity. Hence, the e�ective wavelength for the
green standing wave is precisely �=2 and Vgreen(z1) = s2ER cos2(2kz1 +�=2). The bichromatic
lattice potential for one atom is then

V (z1) = �
s1ER

2
cos(G0z1) +

s2ER
2

cos(2G0z1 + �); (3.4)

where we have de�ned the fundamental reciprocal lattice vector G0 = 2k = 2�=d and eliminated
the spatially constant terms. In the experiments, the stable relative phase � between the green
and red standing wave intensities is adjusted using a Soleil-Babinet compensator for static
control, calibrated as described in Chapter 4.

As introduced back in Chapter 2 we de�ne the single particle Bloch states, which are de-
termined from the 1D Schr�odinger equation,

�
�

�h2

2m
@2

@z2
1

+ V (z1)
�
 �1
q1 (z1) = E�1(q1) �1

q1 (z1); (3.5)

where �1 denotes the band and q1 denotes the quasi-momentum, ��=d � q1 � �=d for the �rst
Brillouin zone. The eigenstates are given by

 �1
q1 (z1) =

X

G1

C�1
G1

(q1)
ei(q1+G1)z1

p
Nd

; (3.6)

where G1 = (0;�1;�2; :::)G0 is a reciprocal lattice vector and N is the number of lattice sites.
The states are complete on the lattice interval 0 � z1 � Nd,

X

�1;q1

 �1
q1 (z1) �1�

q1 (z01) = �(z1 � z01): (3.7)
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For two atoms, the total lattice potential is

U(z1; z2) = V (z1) + V (z2) = V (Z + z=2) + V (Z � z=2) � U(Z; z): (3.8)

As noted in ref. [Orso et al., 2005], we see that the CM Z and relative z coordinates are generally
entangled by the lattice potential.

With a harmonic radial potential, for two atoms of equal mass, the CM X;Y and relative
x; y motions are separable, i.e., with M = 2m the dimer total mass and � = m=2 the reduced
mass,

U?(�1; �2)! U?(R?; r?) =
M!2

?
2

(X2 + Y 2) +
�!2
?

2
(x2 + y2); (3.9)

Hence, we can take
	(R; r) = �CM (X;Y ) 	(r; Z); (3.10)

where �CM (X;Y ) is just the harmonic oscillator state of the CM in the X-Y plane,

�
�

�h2

2M

�
@2

@X2 +
@2

@Y 2

�
+
M!2

?
2

(X2 + Y 2)
�

�CM (X;Y ) = E?CM�CM (X;Y ): (3.11)

As the orthornormal CM states �CM (X;Y ) factor out, are not coupled by the interaction, and
do not change in radio frequency transitions, we will not consider them further.

The nontrivial part of the wavefunction entangles r and Z, and satis�es

�
H0(r; Z)� E

�
	(r; Z) = �g �(r)

@
@r

[r	(r; Z)] ; (3.12)

where we have de�ned the total energy in eq. 3.1 to be E tot = E?CM + E and

H0(r; Z) = �
�h2

2�
r2
r?

+
1
2
�!2
?r

2
? �

�h2

2�
@2

@z2 �
�h2

2M
@2

@Z2 + U(Z; z); (3.13)

with r2
? = x2 + y2.

3.1.1 Green’s Function Solution

Following ref. [Orso et al., 2005], we solve eq. 3.12 using a Green’s function method, with

�
H0(r; Z)� E

�
GE(r; Z; r0; Z 0) = ��(r� r0)�(Z � Z 0): (3.14)

The formal solution to eq. 3.12 for a state of energy E is then

	E(r; Z) =  0
E(r; Z) + g

Z
dZ 0

Z
d3r0GE(r; Z; r0; Z 0) �(r0)

@
@r0

�
r0	E(r0; Z 0)

�
; (3.15)
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where the homogeneous solution obeys
�
H0(r; Z)� E

�
 0
E(r; Z) = 0.

The Green’s function is given in terms of a complete set of homogenous solutions satisfying
H0(r; Z) �(r; Z) = E�  �(r; Z),

X

�
 �(r; Z) ��(r0; Z 0) = �(r� r0)�(Z � Z 0): (3.16)

Then,

GE(r; Z; r0; Z 0) =
X

�

 �(r; Z) ��(r0; Z 0)
E � E� + i0+ (3.17)

satis�es eq. 3.14.
We are interested in the bound state solutions of eq. 3.12. In this case, the homogeneous

solution in eq. 3.15 is not needed and

	E(r; Z) = g
Z
dZ 0GE(r; Z; 0; Z 0)

@
@r0

�
r0	E(r0; Z 0)

�
r0!0 : (3.18)

To solve eq. 3.18, we de�ne

fE(Z) =
@
@r

[r	E(r; Z)]r!0 : (3.19)

Applying g�1@r[r:::]r!0 to the left hand side of eq. 3.18 and using eq. 3.19, we obtain an integral
eigenvalue equation as in ref. [Orso et al., 2005],

1
g
fE(Z) =

Z
dZ 0KE(Z;Z 0) fE(Z 0): (3.20)

Here, the kernel is given by

KE(Z;Z 0) =
@
@r
�
r GE(r; Z; 0; Z 0)

�
r!0 : (3.21)

As the lattice potential energy U(Z; z) is periodic in Z, the normalized eigenstates, eq. 3.19,
can be assumed to take the Bloch form,

f QE (Z) =
X

G0

BE
G0(Q)

ei(G0+Q)Z
p
Nd

; (3.22)

where G0 is a reciprocal lattice vector and Q is the total (CM) quasi-momentum, which is
conserved.

Projecting eq. 3.20 with g = 4��h2a=m onto the the orthonormal basis, ei(G+Q)Z=
p
Nd, and
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using eq. 3.22, we obtain the matrix eigenvalue equation

d
a
BE
G(Q) =

X

G0

MGG0(E;Q)BE
G0(Q); (3.23)

which is diagonal in Q. Here,

MGG0(E;Q) =
4��h2

mN

Z
dZ
Z
dZ 0 e�i(G+Q)Z+i(G0+Q)Z0

KE(Z;Z 0): (3.24)

3.1.2 Evaluating the Kernel KE(Z; Z 0)

To proceed further, we need to evaluate the kernel KE(Z;Z 0) in eq. 3.21. As pointed out in
ref. [Orso et al., 2005], this is not trivial, since the Green’s function diverges as 1=r at short
distance, due to the contact form of the two-body interaction. Following ref. [Orso et al., 2005],
to evaluate the kernel, we exploit the fact that the operator @r[r:::] projects out the regular part
of GE at r ! 0, since @r[r=r] = 0, so that the kernel is �nite.

Consider �rst the kernel for an energy E and a �nite depth bichromatic lattice. We denote
the lattice parameters by s � fs1; s2; �g, and write

Ks
E(Z;Z 0) =

@
@r
�
r GsE(r; Z; 0; Z 0)

�
r!0 : (3.25)

Subtracting the kernel for any other set of parameters s0 and energy E0 yields

Ks
E(Z;Z 0)�Ks0

E0
(Z;Z 0) =

@
@r

n
r
h
GsE(r; Z; 0; Z 0)�Gs0

E0
(r; Z; 0; Z 0)

io

r!0
: (3.26)

As both Green’s functions diverge as 1=r as r ! 0, the di�erence of the two Green’s functions
is regular as r ! 0. Hence, @rfr[GsE �G

s0
E0

]g = r@r(GsE �G
s0
E0

) + @r[r] (GsE �G
s0
E0

)! GsE �G
s0
E0

as r ! 0. Then, we can write formally

Ks
E(Z;Z 0) = GsE(0; Z; 0; Z 0)�Gs0

E0
(0; Z; 0; Z 0) +Ks0

E0
(Z;Z 0); (3.27)

where Ks0
E0

corresponds to Gs0
E0

. As shown below, the evaluation is carried out so that di�erence
of the Green’s functions is manifestly �nite as r; r0 ! 0.

An important feature of eq. 3.27 is that the kernel Ks
E(Z;Z 0) is independent of the choice of

the lattice parameters s0 and the energy E0. The evaluation is simpli�ed by following ref. [Orso
et al., 2005], and choosing s0 to correspond to a zero depth lattice, where both the Green’s func-
tion Gs0=0

E0
(0; Z; 0; Z 0) and the kernel Ks0=0

E0
(Z;Z 0) are easily determined, as discussed further

below.
We evaluate eq. 3.17 for GE , using the complete set of separable eigenstates of the Hamil-
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tonian of eq. 3.13,
 �(r; Z) = �(r?) (z; Z): (3.28)

The radial state satis�es
�
�

�h2

2�
r2
r?

+
1
2
�!2
?r

2
?

�
�(r?) = E? �(r?); (3.29)

with the general orthonormal solutions

�ln?
(r?; �) = eil�

s
n?!

(n? + jlj)!
e
�
r2

?
4l2?

q
2�l2?

�
r?
l?
p

2

�jlj
Ljljn?

�
r2
?

2 l2?

�
; (3.30)

where Ljljn?(�) is an associated Laguerre polynomial, l? =
p

�h=(m!?) is the harmonic oscillator
length for one atom, and

Eln?
= (2n? + jlj+ 1)�h!?: (3.31)

As r?; r0? ! 0 in determining the kernels, only the l = 0 states contribute. De�ning n? = mr

as the radial quantum number, we take

�(r?)! �mr(r?) =
e
�
r2

?
4l2?

q
2�l2?

L0
mr

�
r2
?

2 l2?

�
; (3.32)

with E0
mr = (2mr + 1)�h!?. Here, the Laguerre polynomial is

L0
mr(�) =

mrX

k=0

(��)kmr!
(k!)2(mr � k)!

(3.33)

so that L0
mr(0) = 1 is independent of mr. These l = 0 solutions are normalized so that

Z 1

0
2� r?dr? ��m0

r
(r?)�mr(r?) = �m0

r;mr : (3.34)

For the axial part of the solution  (z; Z), we recall that

�
�h2

2�
@2

@z2 �
�h2

2M
@2

@Z2 + U(Z; z) = �
�h2

2m
@2

@z2
1

+ V (z1)�
�h2

2m
@2

@z2
2

+ V (z2);

where z1 = Z + z=2, z2 = Z� z=2. Then, with � � f�1; q1; �2; q2;mrg, we take the required set
of l = 0 solutions to be

 �(r; Z) � �mr(r?) �1
q1 (z1) �2

q2 (z2): (3.35)
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The Green’s function for l = 0 is then given by eq. 3.17 as

GE(r?; r0?; z1; z01; z2; z02) =
X

mr;�1;q1;�2;q2

�mr(r?)��mr(r
0
?) �1

q1 (z1) �1�
q1 (z01) �2

q2 (z2) �2�
q2 (z02)

E � �h!?(2mr + 1)� E�1(q1)� E�2(q2) + i0+

(3.36)
To obtain the kernel, eq. 3.27, we note that only the di�erence of two Green’s functions

appears, evaluated at r?; r0? ! 0. Taking the limit z; z0 ! 0 later, we can write

GsE(z; Z; z0; Z 0)�Gs=0
E0 (z; Z; z0; Z 0) =

�
m

4��h2

X

�1;q1;�2;q2

 �1
q1 (z1) �1�

q1 (z01) �2
q2 (z2) �2�

q2 (z02)
X

mr

1

mr + E�1 (q1)+E�2 (q2)+�h!?�E
2�h!?

�same (s = 0; E = E0): (3.37)

Here, the states  �1
q1 (z1) and energies E�1(q1) in the �rst term are evaluated for the nonzero

lattice parameters s and we have used eq. 3.32 to obtain �mr(0)��mr(0)=(2�h!?) = m=(4��h2).
We see that for each term in 3.37 the sum over mr is divergent. However, the overall

sum is convergent since the denominators in the s and s = 0 terms become identical in the
limit mr ! 1 and the remaining sums over the band states are complete (eq. 3.7) and give
�(z1 � z01)�(z2 � z02) for any lattice depth. The sum over mr then can be evaluated using

1X

mr=0

�
1

mr + b
�

1
mr + c

�
=  (0)(c)�  (0)(b); (3.38)

where  (n)(x) � (d=dx)n+1ln[ �(x)], i.e., polygamma[n; x]. The polygamma function is de�ned
for all x, and diverges when x is zero or a negative integer. Note that integral values of x
correspond to energies E that are resonant with a noninteracting two-atom states in eq. 3.37.
For �nite scattering length, bound states always correspond to non-integer x. We can choose
the constant c to be the same for both sums in eq. 3.37, as the corresponding constant  (0)(c)
will cancel. Taking b = [E�1(q1) +E�2(q2) + �h!?�E]=(2�h!?) in the �rst term, we can replace
the sum over mr by � (0)(b). Taking z = z0 = 0, we have

GsE(0; Z; 0; Z 0)�Gs=0
E0 (0; Z; 0; Z 0) =

m
4��h2

X

�1;q1;�2;q2

 (0)

"
��1(q1) + ��2(q2) + � � ~E

2�

#

 �1
q1 (Z) �1�

q1 (Z 0) �2
q2 (Z) �2�

q2 (Z 0)

�same (s = 0; E = E0): (3.39)

Here, I have written all energies in recoil energy units, i.e., E�1(q1) = ��1(q1)ER, �h!? = � ER
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and E = ~E ER. Then the relevant Kernel, Ks
E(Z;Z 0) in 3.27 takes the following form,

Ks
E(Z;Z 0) =

m
4��h2

X

�1;q1;�2;q2

 (0)

"
��1(q1) + ��2(q2) + � � ~E

2�

#

 �1
q1 (Z) �1�

q1 (Z 0) �2
q2 (Z) �2�

q2 (Z 0)

�same (s = 0; E = E0) +Ks=0
E0 (Z;Z 0): (3.40)

3.1.3 Evaluating MGG0(E; Q)

To solve the eigenvalue problem, eq. 3.23, numerically, I need to �nd a simpli�ed expression for
MGG0(E;Q) in eq. 3.24. By substituting eq. 3.40 in eq. 3.24 we de�ne,

MGG0(E;Q) = M s
G;G0(E;Q)�M (0)

G;G0(E0; Q) +M0
G;G0(E0; Q); (3.41)

where

MGG0(E;Q) =
4��h2

mN

Z
dZ
Z
dZ 0 e�i(G+Q)Z+i(G0+Q)Z0

m
4��h2

X

�1;q1;�2;q2

 (0)

"
��1(q1) + ��2(q2) + � � ~E

2�

#

 �1
q1 (Z) �1�

q1 (Z 0) �2
q2 (Z) �2�

q2 (Z 0) (3.42)

and M (0)
G;G0(E0; Q) is of the same form, evaluated for s! 0 and E ! E0. Note that the di�erence

of the �rst two terms in eq. 3.41 is convergent, i.e., for high band number �, the Bloch states at
�nite lattice depth approach free particle states and the total energy becomes large compared
to E and E0. From eq. 3.27, the last term, M0

GG0(E0), is the matrix element of the zero lattice
depth kernel Ks=0

E0
(Z;Z 0), which I will evaluate a little further below. Eq. 3.42 can be evaluated

in Z, Z 0 coordinates separately by de�ning,

I1 =
Z Nd

0
dZ e�i(G+Q)Z �1

q1 (Z) �2
q2 (Z)

=
X

G1;G2

C�1
G1

(q1)C�2
G2

(q2)
Z Nd

0

dZ
Nd

ei(q1+G1+q2+G2�G�Q)Z ; (3.43)

and similarly for the Z 0 integral. Taking advantage of the periodicity, exp[i(G1+G2�G)nd] = 1,
we let ~Z = Z � nd and write

Z Nd

0

dZ
Nd

ei(q1+G1+q2+G2�G�Q)Z =
N�1X

n=0

Z d+nd

nd

dZ
Nd

ei(q1+G1+q2+G2�G�Q)Z

=
1
N

N�1X

n=0

ei(q1+q2�Q)dn
Z d

0

d ~Z
d
ei(q1+G1+q2+G2�G�Q) ~Z : (3.44)
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The �rst factor is a geometric series, which is unity for q1 + q2 = Q+ integer�G0 and vanishes
otherwise, since q1; q2, and Q are all integer multiples of 2�=(Nd). Taking q1 + q2 = Q, the
remaining integral is just �G;G1+G2 . The Z-integral is then

I1 =
X

G1;G2

C�1
G1

(q1)C�2
G2

(q2) �Q;q1+q2 �G;G1+G2 : (3.45)

The corresponding Z 0 integral is given by the complex conjugate of eq. 3.45, with G;G1; G2 !
G0; G01; G02. Hence we deduce,

M s
G;G0(E;Q) =

1
N

X

q1;�1;�2

 (0)

"
��1(q1) + ��2(Q� q1) + � � ~E

2�

#

X

G1

C�1
G1

(q1)C�2
G�G1(Q� q1)

X

G0
1

C�1�
G0

1
(q1)C�2�

G0�G0
1
(Q� q1) (3.46)

We can simplify the evaluation of the s = 0 term, M (0)
G;G0(E0; Q), which contains free particle

kinetic energies in the z-direction. Formally, for s = 0, the coe�cients C�1
G1

(q1) for each q1 are
nonzero only for one value of G1, i.e., for the �rst three bands, C1

G1
(q1) = �G1;0, C2

G1
(q1) =

�G1;�G0�[q1] + �G1;G0�[�q1], C3
G1

(q1) = �G1;G0�[q1] + �G1;�G0�[�q1]. This requires G01 = G1 and
G0 = G for the sums over reciprocal lattice vectors. De�ning G = ~Gk, Q = ~Qk, etc., and noting
that the dimensionless kinetic energy for atom 1 is �h2(G1 + q1)2=(2mER) = ( ~G1 + ~q1)2, and
similarly for atom 2, the sum over all bands and all G1 then gives the simple result,

M (0)
G;G0( ~E0; ~Q) = �G;G0

1
N

X

q1;G1

 (0)

"
( ~G1 + ~q1)2 + ( ~G+ ~Q� ~G1 � ~q1)2 + � � ~E0

2�

#

: (3.47)

3.1.4 Evaluating the Kernel Ks=0
E0

(Z; Z 0) and matrix element M0
GG0(E0; Q)

To complete the evaluation of eq. 3.41, we require the matrix elements M0
GG0(E0; Q) of the

zero lattice depth kernel Ks=0
E0

(Z;Z 0), which are easily determined. We begin by noting that for
E = E0 and s = 0, the �rst two terms of eq. 3.41 cancel. As the momentum is conserved for
zero lattice depth, eq. 3.23 is diagonal in G,

d
a
BE0
G (Q) = M0

GG(E0)BE0
G (Q): (3.48)

For zero lattice depth, the value of d=a is determined by the dimer binding energy and is
independent of the CM energy. Hence, we can exploit the exibility in the choice of E0 in
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eq. 3.41 (and eq. 3.27) to de�ne a �xed reference d=a,

M0
GG0(E0) = (d=a)ref �G;G0 ; (3.49)

by choosing E0 = E0(G;Q) in the last two terms of eq. 3.41 to be the total energy for a �xed
binding energy �refb (see eq. 3.52). The value of (d=a)ref is then related to �refb (reference binding
energy in units of ER) by �

d
a

�

ref
= �

r
�
2
Idimer(�

ref
b =�); (3.50)

where the scattering length and dimer binding energy are related by [Zhang et al., 2012,Bloch
et al., 2008],

l?
a

= Idimer(�) �
Z 1

0

dv
p

4�v3

�
1�

2v
1� e�2v e

��v
�
: (3.51)

Here, � = Eb=�h!? is the binding energy in units of �h!? = � ER. In eq. 3.50, we have used

d=l? = �
q

�
2 .

For eq. 3.49 and eq. 3.47 to be consistent, we use in eq. 3.47 the energy,

~E0(G;Q; �refb ) =
( ~G+ ~Q)2

2
+ � � �refb ; (3.52)

where the �rst term is the free particle CM energy of the dimer along the z-axis and � is
the radial ground state energy, both in units of ER. From eq. 3.52, we see that the total
energy argument in eq. 3.47 can be written as 2~x2 + ( ~G+ ~Q)2=2 + � � ~E0 = 2~x2 + �refb , where
~x = ~G1 + ~q1 � ( ~G+ ~Q)=2. In the continuum limit, with

P
G1;q1

! (N=2)
R1
�1 d~x, one can show

that M (0)
G;G( ~E01; ~Q) �M (0)

G;G( ~E02; ~Q) = d=a1 � d=a2, with d=a1 and d=a2 given by eq. 3.50 and
~E01 and ~E02 given by eq. 3.52 for binding energies �refb1 and �refb2 respectively. With eq. 3.49,
this result assures that the total matrix MGG0(E;Q) of eq. 3.41 is independent of the choice
of reference binding energy. For numerical evaluation with a �nite number of bands, we choose
�refb to be small compared to the maximum energy of the highest band.

Finally we can write down the matrix which is needed to be diagonalize as follows,

MGG0(E;Q) =

1
N

X

q1;�1;�2

 (0)

"
��1(q1) + ��2(q2) + � � ~E

2�

#
X

G1;G0
1

C�1
G1

(q1)C�2
G�G1(q2)C�1�

G0
1

(q1)C�2�
G0�G0

1
(q2)

��G;G0
1
N

X

q1;G1

 (0)

"
( ~G1 + ~q1)2 + ( ~G+ ~Q� ~G1 � ~q1)2 � ( ~G+ ~Q)2=2 + �refb

2�

#

+(d=a)ref �G;G0 (3.53)
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3.2 Numerical Implementation

Using eq. 3.53 in eq. 3.23, we �nd the eigenstates f QE (Z) (see eq. 3.22), and eigenvalues d=a for
a �xed Q and selected total energy E. In units of ER, we take the total energy in eq. 3.46 to be

~E = 2 �1(Q=2) + � � �b: (3.54)

Here, we follow ref. [Orso et al., 2005] and de�ne the binding energy �b relative to the energy
of two noninteracting atoms in ground band, each with quasi-momentum Q=2. For the lowest
band, with �b > 0, this procedure assures that the total bound state energy lies below the
continuum. Negative values of �b then correspond to higher lying bound states.

-3 -2 -1 0 1 2 3
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Figure 3.1: Binding energy versus d=a for zero lattice depth. Curves for � = �h!?=ER =
0:5(upper) and � = 0:01(lower) . Black dots/diamonds: Full diagonalization of eq. 3.23 for
s = 0 (see text). Solid curves: Exact integral, eq. 3.50.

Eq. 3.23 is solved numerically using MATLAB. Note that the G1; G2 sums needed to be
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done so that G = G1 + G2. Similarly for G01; G02 for each G0. To assures the convergence
of the di�erence of the sums of �rst two terms of eq. 3.41 we �rst verify numerically that
M s!0
G;G0(E ! E0; Q) = M (0)

G;G0( ~E0; ~Q). For nonzero dimer quasi-momentum Q, it is convenient,
but not necessary, to symmetrize the sums over q1 in eq. 3.46 and eq. 3.47, by taking ~q1 = ~Q=2+~q
and performing the sum over ~q = 2m1=N for �N=2 � m1 � N=2� 1.

To check the consistency of the numerical implementation using a �xed (d=a)ref , we consider
�rst the zero lattice depth case, Fig. 3.1, for two di�erent radial con�nements, �h!? = 0:5ER,
i.e., � = 0:5, and �h!? = 0:01ER, which approaches the free-space limit. We initially employ
a 9 band model with 20 sites and take the reference binding energy to be �refb = 1:1 in ER
units, giving (d=a)ref = 1:75 for � = 0:5 and 2:31 for � = 0:01. For s = 0 and � = 0:5, we �rst

Figure 3.2: Total energy, E of two interacting atoms relative to the energy of two noninteracting
atoms in ground band for dir�erent interaction strengths quanti�ed by d=a where d is the lattice
spacing and a is the s-wave scattering length. The lowest two d=a solutions (Green dots: 1st sol.
& blue dots: 2nd sol.) are shown here. Dashed black lines represent the energy asymptots (see
text). Red dots represent the third d=a solution.
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diagonalize eq. 3.23 with MG;G0(E;Q) determined by eq. 3.41 and E by eq. 3.54. This yields 9
di�erent d=a solutions for each input binding energy �b = Eb=ER. The lowest energy solution is
displayed as the black dots on the upper left curve of the �gure. The solid red curve on the left
shows the exact integral, eq. 3.50, which determines d=a versus �b. Shown on the lower right are
the corresponding results for � = 0:01 (full diagonalization: black diamonds) and exact integral
(blue solid curve), which approach the free-space dimer binding energy (black-dashed curve),
where Eb = �h2=(ma2) for a > 0, i.e., Eb=ER = 2=�2(d=a)2. As can be seen, both methods (i.e.
eq. 3.50 and the full diagonalization of eq. 3.50) yeild identical results, as they should be for a
zero lattice depth.

A typical energy diagram for a single color lattice (s1 = 8; s2 = 0) is shown in Fig. 3.2 with
a �nite radial con�nement (� = �h!?=ER = 0:2). Fig. 3.2 shows the two lowest d=a solutions
for a variety of energies E, as green and blue dots. Note that for E > 0 the change in color

Figure 3.3: Binding energy versus d=a for di�erent lattice depths: from top to bottom, s1 =
0; 5; 10; 20 (s2 = 0).
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from left to right is a result of our d=a labeling: For the same E, the smallest (left most) d=a
solutions are green, the next larger d=a solutions are blue. The lowest d=a solution (colored in
green for E < 0 in Fig. 3.2) asymptotes to the lowest energy of two unbound atoms in the �rst
band, 2E1

q1=0 � 0, shown as the lower black horizontal dashed line. The second d=a solution
(continuous blue curve in Fig. 3.2) asymptotes to the lowest energy for two unbound atoms, one
in each of the �rst and second bands, E2

�1 + E1
�1 � 2E1

0 , shown as the upper black horizontal
dashed line.

For a single color lattice, and small � = 0:01, we reproduce the results given for the ground
band of ref. [Orso et al., 2005], for binding energies �b > 0 in E of eq. 3.54. Note that here also,
I only show you the lowest d=a solution. As expected when lattice depth is zero a bound state
only exists for d=a > 0 (lowest curve on Fig. 3.3) where as for s1 > 0, con�nement supports a
bound state even for d=a < 0.

3.2.1 Positive Energy States

In addition to the real bound states (i.e. �b < 0), for �b > 0, we obtain positive energy states,
which lie above the ground state. The structure of these states as can be seen in �g. 3.2 is
somewhat complicated, due to the discreteness of the radial and axial energies. In �g. 3.2, for
E > 0 the coarse structure arises due to dicrete radial states while the �ne structure arises
from �nite number of lattice sites, used in solving the eigenvalue problem. The �nite number
of lattice sites gives rise to discreste energies for the quasi-momentum states.

To examine the coarse structure closely, in �g. 3.4, I have shown the two particle energies
obtained for a fairly deep lattice s1 = 40 with � = 0:2. Green dots represent the energy
eigenvalues obtained by diagonalizing eq. 3.23. Dashed black lines represent the energy states
for two non interacting atoms in their lowest energy band and di�erent radial states. These
states are similar to those obtained for harmonic con�nement in three dimensions [Idziaszek and
Calarco, 2006]. As can be seen when d=a approaches negative in�nity (i.e. when the interactions
are weak) the total energy of the interacting system approaches the two free particle radial
harmonic oscillator energy level structure. The �rst dashed line (at E = 0) represents the energy
of two free particles in their ground bands with the lowest energy (i.e. energy corresponds to
quasi-momentum, q = 0) and in their groud radial states (with energy equals to �h!? for each
atom). The next dashed line represents the total energy of two particles in their �rst excited
radial states (with energy equal to 2�h!?). Note that here, the �ne structure is almost invisible
since the single particle energy bands are at (due to the high lattice depth chosen) and resemble
the levels of a simple harmoinc oscillator.

Next, to take a close a look at the �ne structure of �g. 3.2, I zoom in on the region where
the total energy of the two particle system E, is in the range �0:05 < E < 0:25. Fig. 3.5 shows
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Figure 3.4: Green dots: Energy versus d=a for s1 = 40 with � = �h!?=ER = 0:2. Dashed lines:
energy of two free particles in di�erent radial states (equally spaced by 2�h!? in ER units).Note
here E = 0 is taken as the total energy of two free particles in their ground bands with q = 0
and their ground radial harmonic oscillator states.

the behaviour of these positive solutions as they reach the noninteracting regime (i.e. d=a
approaches negative in�nity). Here in this �gure, the horizontal black dashed lines reperesent
the total energy of two free particles sitting on di�erent quasi momentum states (i.e. di�erent
values of q) of the �rst energy band. As it can be seen from the �gure the number of solutions
are exactly eqauls to the number of discrete quasimomentum states we dicided to keep when
solving the problem. For an in�nitley long lattice this �ne structure will turn in to a continuum.
One more thing to note here is that the resolution of these energy diagrams stricly depends on
the chosen resolution of the input energy, E when solving the eigen value problem. Typically
the energies are input in equally spaced intervals, �E = 2:5� 10�6ER. Smaller step sizes make
the d=a solutions look more continuous.

29



Figure 3.5: Expanded energy E versus d=a view of �g. 3.2 for �0:05 < E < 0:25. Horizontal
black dashed lines are the energy asymptotes of two free particles in di�erent q states in their
ground band and ground radial harmonic oscillator states. Note that here

3.3 Two-Particle Wavefunction

The atom pair wavefunctions for total energy E are determined from eq. 3.18, using eq. 3.19,

	E(r; Z) /
Z
dZ 0GE(r; Z; 0; Z 0) f QE (Z 0); (3.55)

where f QE (Z) is given by eq. 3.22. GE(r; Z; 0; Z 0) is given by eq. 3.36, with the relative coordi-
nates, r0? = 0 and z0 = 0,

GE(r; Z; 0; Z 0) =
X

mr;�1;q1;�2;q2

�mr(r?)��mr(0) �1
q1 (Z + z=2) �2

q2 (Z � z=2) �1�
q1 (Z 0) �2�

q2 (Z 0)
E � �h!?(2mr + 1)� E�1(q1)� E�2(q2)

:

(3.56)
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The Z 0 integral in eq. 3.55 is evaluated in the same way as eq. 3.44,

C�1;�2
q1;q2 (E;Q) =

Z Nd

0
dZ 0  �1�

q1 (Z 0) �2�
q2 (Z 0) fQE (Z 0)

= �Q;q1+q2

X

G0;G0
1

BE
G0(Q)C�1�

G0
1

(q1)C�2�
G0�G0

1
(q2)

� �Q;q1+q2
~C�1;�2
q (E;Q); (3.57)

where we take q1 = Q+ q=2 and q2 = Q� q=2 to de�ne a symmetrized coe�cient,

~C�1;�2
q (E;Q) �

X

G0;G0
1

BE
G0(Q)C�1�

G0
1

(Q=2 + q)C�2�
G0�G0

1
(Q=2� q); (3.58)

which is determined by the eigenstate amplitudes BE
G0(Q).

With these de�nitions, we take the normalized wavefunctions to be

	E(r; Z) =
A
p
N

X

q

X

�1;�2

~C�1;�2
q (E;Q) �1

Q=2+q(Z + z=2) �2
Q=2�q(Z � z=2)

�
X

mr

�mr(r?)

mr + ��1 (Q=2+q)+��2 (Q=2�q)+�� ~E
2�

; (3.59)

where all energies are in units of ER as above, and A is a normalization constant. Although the
wavefunction is formally divergent for r? = 0, it is normalizable, and can be used to compute
the transition strengths discussed below in Sec. 3.4.

We determine A by requiring hEjEi = 1 =
R
d3r dZ j	E(r; Z)j2. The radial integration

is trivial, since the radial states are orthornormal. For the axial states, dzdZ = dz1dz2 and
 �1
Q=2+q(Z + z=2) �2

Q=2�q(Z � z=2) =  �1
q1 (z1) �2

q2 (z2), which are also orthonormal. Then, for a
dimer state of total energy E1, we have

hE1jE1i = 1 = jA1j2
1
N

X

q

X

�1;�2

j ~C�1;�2
q (E1; Q)j2 (1)

"
��1(Q=2 + q) + ��2(Q=2� q) + � � ~E1

2�

#

;

(3.60)
where  (1)(x) =

P
mr(mr + x)�2 is polygamma[1; x].
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3.3.1 Axial Probabilty Distribution

We can calculate the axial probability distribution, PQE (Z; z) for any given energy, E and pair
quasi momentum Q,

PQE (Z; z) =
Z 1

0
2�r? dr? j	E(r; Z)j2

Z
dXdY j�CM (X;Y )j2: (3.61)

Using eq. 3.59 and realizing
R1

0 2� r?dr? ��m0
r
(r?)�mr(r?) = �m0

r;mr and
R
dXdY j�CM (X;Y )j2 =

1 we get,

PQE (Z; z) =
jAj2

N

X

mr

�����
X

�1;�2

~C�1;�2
q (E;Q) �1

Q=2+q(Z + z=2) �2
Q=2�q(Z � z=2)

mr + ��1 (Q=2+q)+��2 (Q=2�q)+�� ~E
2�

�����

2

: (3.62)

Note that here
P

mr formally includes an infnite number of terms. Hence when the problem is
solved numerically, we include only a �nite number of mr terms. To see validity of including a

Figure 3.6: Value of jApartialj2 for di�erent values of mmax
r . Calculation is done for a pair state

with a total energy of E = �2:37ER. Note that � = 0:0166, s1 = 8, s2 = 16.
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�nite number of terms �rst we calculate the partial norm, jApartialj2 by replacing the polygamma
function in eq. 3.60 with an mr sum,

P
mr and truncating the series to a maximum value of

mmax
r .

1 = jApartialj2
1
N

X

q

X

�1;�2

j ~C�1;�2
q (E1; Q)j2 (1)

mmaxrX

mr=0

1
�
mr + ��1 (Q=2+q)+��2 (Q=2�q)+�� ~E

2�

�2

(3.63)
Fig. 3.6 shows how jApartialj2 approaches full norm as the number of mr terms increases in
eq. 3.63. The axial probability density PQE (Z; z) helps us to understand how the atom pair is

Figure 3.7: CM probability density (solid line) in the axial direction of a pair with total energy,
E = �1:8. Dashed line shows the lattice potential for a lattice of s1 = 8 and � = 0:0166.

spread along the lattice direction, based on its total energy. First let’s look at PQE (Z; z) when
relative distance between the atoms z equals to zero. This tells us how the CM of the pair is
spread along the lattice direction. In �g. 3.7 solid line shows the probability density, PQE (Z; 0)
for a single color lattice potential of s1 = 7 with a total energy E = �1:8ER. The dashed line
shows the lattice potential in Z. As it is expected the pair CM wavefunction peaks up at each
lattice site showing how the pair is localized at each lattice site.

Next, to explore further we can also look at the CM axial probability distribution of an
atom pair in a bichromatic potential. Fig. 3.8 shows the energy diagram for two particles in a
bichromatic potential as a function of the scattering length. Note that here only the two lowest
d=a solutions are shown for E < 0. Here, A and B are the pairing states with d=a = 1:28,
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Figure 3.8: Total energy, E of two particles for a lattice of double-well potentials (s1 = 8,
s2 = 16 and � = 0) versus d=a. A and B show the pairing states with d=a = 1:28. Note again
that E = 0 reperent the energy of two free atoms in their graound band (at q = 0) and ground
radial harmonic oscillator states.

veritcal dashed line in Fig. 3.8 [Note: As it was discussed in Chapter 2, experimentally the
scattering length between two atoms, each in a di�erent hyper�ne states, can be magnetically
tuned via Feshbach resonance. This means, if the atoms of a certain hyper�ne mixture (ex: j1i -
j2i mixture) is loaded in to the bichromatic lattice potential, Feshbach resonanse between those
two states allows us to explore any point along the x�axis of Fig. 3.8. So, for the purpose of our
discussion here, I have chosen to look at the axial probability distributions of atom pair states
at d=a = 1:28]. CM axial probability distribution for paring states A and B with d=a = 1:28
are plotted in �g. 3.9.

As expected, again we can see that the CM of the pair is delocalized around the double-well
center at Z=d = 0 and is found in either right or left well of the potential for the case where
� = 0. In other words, as for state A (or B), there is an equal probability of �nding it in either
right or left well.

For the two states A or B, we can also look at the relative probabilty distribution PQE (z) for
chosen value of Z. For a example, if we look at the distribution PQE (Z = 0:22; z) for solution A,
it tells us how the atom pair is distributed along the lattice direction if the CM of the pair is
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Figure 3.9: CM probability density in the axial direction of atom pair state A (Top/Green)
and B (Bottom/Blue). Dashed line shows the lattice potential for a lattice of s1 = 8, s2 = 16,
� = 0 and � = 0:0166.

Figure 3.10: Relative probability density in the axial direction of atom pair state A (Top/-
Green) and B (Bottom/Blue) of Fig. 3.8. Note the CM co-ordinate, Z = 0:22 for both states
(see text)
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assumed to be in one of the wells of the double-well potential (according to Fig. 3.9, Z = 0:22
assumes the CM of the pair is in the right-well). In �g. 3.10, I plot the probabilty of �niding
one particle with respect to the other (i.e. PQE (z)) as a function of their relative corordinate z
in units of the lattice spacing d. Fig. 3.10 shows that for pairing states both A and B, the size
of the pair is mostly con�ned to the potential well that they sit in.

It is also interesting to see what happens to these probabilities when you change phase
between the two lattices so that the double well potential get slightly tilted. Fig. 3.11 shows the
CM probability density for the tilted double well potential. Here the phase, � = �=8. We can
see that now the right well, with respect to the double-well center has become slightly deeper
than the left well hence localizing the highier energy solution (Green solid line) A within itself.
Lower energy solution is now localized in the left well of the double-well potential.

Corresponding relative probability densities are shown in Fig. 3.12. Note that here, for state
A, CM co-ordinate Z is chosen to be equal to 0.2, since the atom pair is localized in right well
of the double-well potential (see Fig. 3.11) while for state B, Z = �0:25 as it is localized in the
right well.

Figure 3.11: CM probability density in the axial direction of atom pair state A (Top/Green)
and B (Bottom/Blue). Dashed line shows the lattice potential for a lattice of s1 = 8, s2 = 16,
� = �=8 and � = 0:0166.
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Figure 3.12: Relative probability density in the axial direction of atom pair state A (Top/-
Green) and B (Bottom/Blue). For state A the CM coordinate, Z = 0:2 and for state B,
Z = �0:25 (see text)

3.4 Transition Strengths

In the experiments, we employ a mixture of the two lowest hyper�ne states of 6Li, denoted j1i, j2i
and use a radio-frequency pulse to induce transitions from state j2i to an initially unpopulated
state j3i. For a given bias magnetic �eld, the s-wave scattering length for a j1; 2i atom pair is
generally di�erent from that of the �nal j1; 3i pair. To determine the Franck-Condon factors, we
therefore need to compute the overlap integral between atom pair wavefunctions with di�erent
energies and di�erent d=a values. The overlap integrals for two dimer states of total energies
E1 and E2,

hE2jE1i =
Z
d3r dZ 	�E2(r; Z)	E1(r; Z)
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are similarly determined,

hE2jE1i = A�2A1
1
N

X

q

X

�1;�2

~C�1;�2�
q (E2; Q) ~C�1;�2

q (E1; Q)

2�
~E2 � ~E1

(

 (0)

"
��1(Q=2 + q) + ��2(Q=2� q) + � � ~E1

2�

#

� (0)

"
��1(Q=2 + q) + ��2(Q=2� q) + � � ~E2

2�

#)

: (3.64)

Here, we have used
P

mr(mr + b)�1(mr + c)�1 = [ (0)(c) �  (0)(b)]=(b � c). In the limit,
j ~E2i ! j ~E1i, it is easy to show that eq. 3.64 is equivalent to eq. 3.60.

Overlap integrals also can be computed from eq. 3.23, using the fact that MGG0(E;Q) of
eq. 3.41 is hermitian,
�
d
a1
�

d
a2

�X

G

BE2�
G (Q)BE1

G (Q) =
X

G;G0

BE2�
G (Q)[MGG0(E1; Q)�MGG0(E2; Q)]BE1

G0 (Q)

=
X

G;G0

BE2�
G (Q)[M s

GG0(E1; Q)�M s
GG0(E2; Q)]BE1

G0 (Q); (3.65)

where the s = 0 terms in eq. 3.41 are independent of E and cancel. Then, using eq. 3.65, with
eqs. 3.46, 3.58, and 3.64, it is straightforward to obtain

hE2jE1i = A�2A1
2�

~E2 � ~E1

�
d
a1
�

d
a2

�X

G

BE2�
G (Q)BE1

G (Q): (3.66)

Normalization, eq. 3.60, determines the amplitudes A1 and A2. Numerical evaluation con�rms
that eq. 3.66 and eq. 3.64 yield precisely the same results as they should. Eq. 3.66 shows that
hE2jE1i = 0 for d=a1 = d=a2 and E2 �E1 6= 0, i.e., dimer eigenstates of the same Hamiltonian
with di�erent total energies are orthogonal, as they should be. More importantly, Eq. 3.66 shows
that hE2jE1i = 0 for orthogonal eigenvectors BE

G(Q) of eq. 3.23, i.e., for orthogonal eigenstates
f QE2

(Z) and f QE1
(Z) of eq. 3.22, which provides substantial insight, as the functions f QE (Z) are

easily plotted.
Fig. 3.13 shows the normalized CM probabilty distribution of atom pair state A (solid line)

jf QEA(Z)j2 (Magenta circles), suggesting the close resemblance between the two-atom probability
density j	E(r; Z)j2, integrated along the r? direction with z = 0, and the f QEA(Z) functions.
Figure 3.14 shows the CM probability density and the f QEA(Z) of state A for � = �=8 case.
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Figure 3.13: Solid Line: CM probability density in the axial direction of atom pair state A
(Green) for z = 0 in Fig. 3.8 with � = 0. Magenta circles represents jf QEA(Z)j2.

Figure 3.14: Solid Line: CM probability density in the axial direction of atom pair state A
(Green) for z = 0 in Fig. 3.8 with � = �=8. Magenta circles represent jf QEA(Z)j2.
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Chapter 4

Experimental Methods

In this chapter, my main goal is to present the details of the experiment. First I will briey
explain the standard atom cooling and trapping procedure used for preparation of our sample.
Then I will be discussing the techniques used to calibrate the lattice depths and the relative
phase between the green and infrared beams. Finally, I provide a brief explanation on radio
frequency spectroscopy, which is used to probe the biding energy of the atom pairs, as discussed
in Chapter 3.

4.1 Preparation of the atomic sample

Sample preparation involves realizing a two component Fermi gas of 6Li atoms (comprising
atoms in the two lowest hyper�ne states); using standard cooling and trapping techniques.
Here, I wish to discuss this procedure in brief, but the reader is encouraged to refer to previous
theses from our group members, if a thorough description is needed.

We start by evaporating solid 6Li stored in an oven and directing the atomic beam in to a
vacuum chamber where a magnito-optical trap (MOT) and a CO2 laser optical dipole trap are
used to cool and trap the atoms. In the process, solid 6Li is heated up to about ’ 400�C and
vaporized through a long beam collimating wick nozzle such a way that the temperature from
about 400�C at the oven to 250�C at the end of the nozzle. This temperature gradient assures
that any condensed 6Li is recycled back to the oven, greatly extending the lifetime of the oven.

As the thermal velocity of the atoms exiting the oven region is too high for them to be
captured by a magneto-optical trap, a Zeeman slower with a counter propagating laser beam is
used to slow the speed of the atoms to about 30 m/s. A standard MOT consists of pair of anti-
Helmholtz coils with three orthogonal and retro-reected red detuned (from the D2 transition
of 6Li) laser beams inside a vacuum chamber. A Coherent 899-21 dye laser pumped by a Verdi
V-10 solid state laser along with standard frequency stabilization techniques, generates laser
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beam with a wavelength near the 6Li D2 resonance near 671 nm, with a linewidth ’1 MHz to
be used as the trapping beams for the MOT. At the end of the MOT cooling stage temperature
is reduced to doppler limit of 140 �K, with an average velocity of about 60 cm/s. Atoms
are then transfered to a far o�-resonance optical dipole trap (FORT) before extinguishing the
magnetic �eld and the trapping beams for the MOT. The MOT beams are extinguished and a
bias magnetic �eld of �8 G is applied to break the degeneracy of 2S1=2 ground state where the
atoms are trapped. Then a frequncy modulated radio frequency pulse with a central frequency
correspond to the energy splitting between the lowest two hyper�ne states (states j1i and j2i)
is applied to obtained a balanced mixture of the lowest hyper�ne states j1i and j2i.

The optical trap beam with a wavelength of 10.6 �m is generated by a 140 W CO2 laser.
This beam is focused to a size of 50 �m 1=e2 radius, creating a peak trap depth of about 70�K
. The bias magnetic �eld is then increased to 834 G where the Fechbach resoance occurs for a
j1i � j2i mixture, to enhance the collision rate between the atoms. At this stage, the atoms are
evaporatively cooled by binary elastic collisions, where highier energy atoms escape the trap
while reducing the temperature of the atoms that are left behind. At the end of this cooling
stage we are left with about 500 thousand atoms per hyper�ne state at a temperature of about
50 �K.

The atoms are then further cooled down using force evaporative cooling. Here the CO2

potential is gradually lowered over afew seconds to continue the evaporation process, �nally
cooling the atoms between 10 and 100 nK.

4.2 Bichromatic Optical Lattice

The bichromatic superlattice potential is created by combining on a beam splitter two optical
�elds of wavelengths �1 = 1064 nm (which will be referred as \red") and �2 = 532 nm (which
will be referred as \green"), with the second �eld obtained by frequency doubling of the �rst.
Figure 4.1 shows a reasonably complete diagram of the lattice beam setup (note that the it
does not include optical elements used for shaping the beams such as telescope setups, etc.).
The �1 = 1064 nm beam is generated by a single frequency (linewidth < 50 kHz), linearly
polarized, CW ytterbium �ber laser (IPG Photonics: YLR-30-1064-LP-SF), which can generate
up to 30W of usable power. We use a frequency doubling unit (Toptica Photonics: SHG Pro)
with a conversion e�ciency of about 40% to generate about 2W of the �2 = 532 nm light.
Both of these beams are then passed through two acousto-optic modulators (AOM) (Gooch
& Housego: R23080-1.06-LTD, MFS160-1C2B8-5), which control the intensity of the beams.
The two AOMs are phase-locked using a RF drive/controller (Gooch & Housego: 64020-200-
2ADSDFS-A-2CX) in order to preserve the two to one ratio of the input frequencies. The
two beams are then coupled into two high power, single mode, polarization maintaining �bers
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Figure 4.1: Bichromatic optical lattice beam grnerator. ’5 W of power from 1064 nm beam
(generated by a �ber laser) is frequency doubled using a second harmonic generator (SHG) to
generate the 532 nm beam. The beams then go through phase-locked acousto optic modulators
(AOM) and are coupled in to two high power �bers. At the output side close to the vacuum
chamber, two beams are then combined on a dichroic combiner to co-propagate. After exiting
the chamber, two beams are propagated through a Soleil-Babinet compensator, which controls
the relative phase between the lattices.

(OZ Optics: PMJ-A3HPC,A3HPC-1064-6/125 and QPMJ-A3HPC,A3HPC-488-3.5/125) with
a � 60% transmission e�ciency.

Close to the vacuum chamber, output beams from the �bers are passed through two focusing
lenses and combined on a dichroic beam combiner. The lenses assure that the two beams are
focused in the same plane inside the vacuum chamber where the atom cloud is. Red beam is
focused to a spot size(1=e �eld radius) of 80�m while the green beam is focused to 100�m.
The two beams then co-propagate after they are being combined at the dichoric combiner and
pass through the atom cloud once before exiting the chamber. The angle at which the beams
propagate with respect to the CO2 laser trap beam are carefully calculated using absorption
images of the cloud [Cheng, 2016]. After exiting the chamber, the beams are then re-collimated

42



and propagated through a Soleil-Babinet compensator (Karl Lambert Corp: K1149), which
controls the phase between the two �elds manually. This permits control of the relative phase
of the red and green standing wave optical potentials. Calibration of the Babinet compensator
is discussed in Sec. 4.6. Finally, the two beams are then refocused and redirected in to the
chamber to create the bichromatic optical lattice potential.

Figure 4.2: Bichromatic optical lattice beam arrangement. Note that all three beams (CO2,
1st and 2nd lattice beams) lie on the same plane. � and � are carefully measured exper-
imentally [Cheng, 2016]. The angle between the two beams that make up the lattice is
� = � � (�� �) = 91�, which determines the lattice periods.

4.3 Lattice Loading

At the end of the forced evaporation process described in Sec. 4.1 the atoms are ready to
be loaded in to the bichromatic potenial. Figure 4.3 shows the experimental sequence for the
experiments that are described in this thesis. After FREE evaporation process, the CO2 laser
FORT potential (denoted as the solid blue curve in Fig. 4.3) is lowered to about 0.2% from
its peak value during the force evaporation. At the end of this process the FORT potential is
kept at it’s lowest value and the atoms are then adiabatically loaded into the red lattice by
increasing the intensity of the red lattice beams over a 250 ms time period (denoted as the solid
red curve in Fig. 4.3).

After raising the red lattice to the desired depth, the CO2 laser trap is increased to provide
additional radial con�nement as the repulsive green lattice potential (denoted as the solid
green curve in Fig. 4.3) is ramped up over 250 ms. While the atoms are being loaded into the
superlattice, the bias magnetic �eld is tuned to set the desired scattering length. The intensity
of each of the lattice beams are stabilized using a servo-locking system in order to minimze

43



Figure 4.3: A typiclal timing sequence for the experiment. Solid purple, red and green curves
shows the variation of the potential depth of the CO2 laser beam trap, red lattice (denoted as
1064 nm) and the green lattice (denoted as 532 nm) consecutively. The bias magnetic �eld is
also tuned from 834 G to a �nal �eld of interest (here to 800 G) to set the desired scattering
lenght a. 20 ms radio frequency (RF) pulse is applied to probe tha binding energy of the atom
pairs, prior to taking an absorbtion image using a 5 �s resonance optical pulse to measure the
atom number in a chosen hyper�en state.

the uctuations in the lattice potential that can lead to both parametric heating of the atomic
sample and also to inaccurate spectral measurements described in Sec. 4.7. A portion of the each
lattice beam at the output of their �bers, is directed to a photo diode (see Fig. 4.1) to monitor
their power. Each of these outputs is then fed in to a servo-controllers where this photodiode
signal is then servo-locked to a user-de�nedd value generated by a computer controlled arbitrary
waveform generator.

4.4 Lattice Beam Alignment

Lattice beam alignment is critical and is done in two steps. First the red beam and the green
beam are aligned with each other before and after the vacuum chamber to ensure their co-
propagation. This is done using two CMOS cameras (ThorLabs: DCC1545M-GL) placed before
and after the vacuum chamber (see Fig. 4.4). After red and green beams are combined at the
dichroic combiner, a ipper mirror (FL1) is used to reect the beams towards �rst camera
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Figure 4.4: Lattice beam setup close to the vacuum chamber. RL1 and GL1 are the lenses that
facus red and green beams into the vacuum chamber. Cam1 and Cam2 are used to align the
red and green beams with each other. FL1 and FL2 denote ipper mirrors that can be ipped
in and out of the beam path.

(Cam1), which is placed exactly a focal length away from focusing lenses for the two beams
(GL1 and RL1). Then, the beam directing mirror M1 is adjusted both vertically and horizontally
to overlap the red beam with the green beam on Cam1, making sure that the two beams co-
propagate when they pass through the atom cloud on their way in to the vacuum chamber. A
second camera, Cam2 is placed at the focal point of lens L2, which refocuses the beams back
onto the atom cloud. Mirror M2 is then adjusted to align the Red beam on the Green beam on
Cam2. Few iterations of this procedure assures that the two beams co-propagate along the 1st

and the 2nd beam paths (see Fig. 4.2).
The second part of the alignment procedure is to make sure that the 1st and the 2nd beam

paths (as labeled in Fig. 4.2) are overlapped with the atom cloud. A full description of this
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alignment procedure is given in Ref [Cheng, 2016]. For the purpose of completness, I will also
give a brief description of the method. As explained in Sec. 4.1 the atom cloud is imaged
using an absorption image taken by a cameras placed in the plane of the lattice beams and
perpendicular to the direction of propagation of the CO2 laser beam (see Fig. 4.5) where the
atoms are trapped before the lattice beams are applied. The position of the cloud is recorded
on both the vertical and horizontal cameras in Fig. 4.5. Then the �rst lattice beam is shined on
to the atoms and the atoms are trapped in it. Note that this step of the alignment procedure is
done using only the red lattice beam, since the green beam exerts a repulsive force on the atoms
making them leave the trap. Then the beam directing mirror M3 (see Fig. 4.4) is adjusted to
match the position of the trapped cloud with the previously recorded position of the cloud when
it was inside the CO2 laser trap. The procedure is done on both the horizonatal and veritcal
cameras in order to make sure the red beam is aligned in all x, y and z directions. Finally the
second beam is shined on to the atoms and an absorption image is taken after extinguishing
the CO2 laser trap for � 0:15ms. The idea is to let the atom cloud trapped inside the cross
beam optical lattice and record it’s position. Now the beam directing mirror M7 is adjusted in
order to match this position again with the previously recorded position of the CO2 trap.

Figure 4.5: Lattice beams and CMOS camera arrangement. The two CMOS cameras are used
to take absorption image of the atom cloud in two orthogonal directions. The red arrow repre-
sents the 1st lattice beam (refer back to Fig. 4.2). The blue arrow represents the propagation
direction of the CO2 laser beam.
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4.5 Lattice Depth Calibration

We calibrate the depth s1 of the red lattice potential at 90% of maximum power by modulation
of the lattice amplitude to induce interband transitions in a single-component gas [Cheng, 2016].
This yields s1 = 15 in recoil energy (ER = �h2k2=(2m)) units. The results are consistent with
Kapitza-Dirac scattering measurements [Cheng, 2016] to within 5%, where the lattice potential
is pulsed, imprinting a phase variation across a trapped atomic sample. Releasing atoms leads
to a multi-order interference pattern, with relative contrast of the orders determined by the
lattice depth. We verify that the measured value of s1 is consistent with the calculated depth
using the measured beam powers and radii. In the RF spectroscopy experiments (described in
Chp. 5), we reduce the laser power to scale the trap depth to the chosen value of s1 = 7:0.

Calibrating the green lattice using the same techniques is more di�cult, because the recoil
energy is 4 times larger than that of the red. In this case, the maximum available green lattice
depth is too low for a reliable Kapitza-Dirac scattering calibration due to fast dephasing. Using
lattice modulation spectroscopy at 90% of maximum green power, we �nd s2 = 16 in red
recoil energy units to better than 10% accuracy, by employing a model �t to the measured
modulation spectrum. The resolution is limited by the curvature of the second and the third
bands. To �t the measured radio-frequency spectra (which will be presentend in Chapter. 5)
using the theoretical model described in Chapter 3, �rst we �x the red lattice depth s1 and the
phase � to the calibrated values (as described in Sec. 4.6), then we adjust s2. Compared to the
value of s2 = 16 measured by modulation spectroscopy for the green lattice depth, we �nd that
s2 = 16:5 gives better �ts to all of the spectra, which are obtained for several di�erent phases
and scattering lengths. Adjustment of s2 by 0:5ER produces only a small change in the peak
positions of the spectra. For example, near s2 = 16:5, the lower energy peak of the spectrum in
Figs. 5.6 varies linearly with s2 with a slope of 2.3 kHz/ER.

4.6 Relative Phase Calibration

As mentioned in Section 4.2, the relative phase between the red and the green beam standing
waves are controlled by a Babinet compensator. This consists of two birefringent wedges and
a slab (see Fig. 4.6). Optical axes of the two wedges are oriented perpendicular to the axis of
the slab. The refractive indices along the two perpendicular axes are labeled as no and ne in
Fig. 4.6. To understand how the Babinet compensator works, consider two laser �elds, E1 and
E2 (of two wavelengths with �1 = 2�2 = �), which are cross polarized and progress through
the device. Each �eld picks up a phase as it passes the wedges and the slab. According to
the diagram, the phase change of �eld E1 is, �1 = 2�

�1
[(no)1d + (ne)1D] and for �eld E � 2 is

�2 = 2�
�2

[(ne)2d+ (no)2D). The phase di�erence between the two �elds as they exit the babinet
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is then,

� = �1 � �2 =
2�
�

[(no)1 � 2(ne)2]d+
2�
�

[(ne)1 � 2(no)2]D: (4.1)

Note that, when the two beams (i.e. red and green beams) enter the vacuum chamber for the
�rst time the electric �elds of both beams are linearly polarized in the same direction. So after
exiting the vacuum chamber, the polarization direction of the green beam is selectively rotated
by 90� using a half-wave plate such that the two beams are cross polarized as they enter the
Babinet. In the real Babinet compensator, the top wedge (see Fig. 4.6) is adjustable perpendic-
ular to the propagation direction of the beams by a micrometer. This allows the thickness d to
be continuously varied, hence changing the relative pahse di�ernce, � bnetween the two �elds.
First, we calibrate the tuning rate of the phase as a function of the micrometer reading. This

Figure 4.6: Construction of the Babinet compensator. E1 and E2 are two cross polarized opti-
cal �elds. no and ne are the refractive indices along the ordinary and extra-ordinary axes of the
wedges and of the slab. Note that the top wedge can be translated perpendicular to the prop-
agation direction of the optical �elds (solid red line) to vary d using an attached micrometer
actuator. d is the total thickness of the two wedges.

is accomplished by combining the red and green beams on a beam splitter and then interfering
the beams with a small intersection angle. This creates simultaneous red and green intensity
standing wave patterns on a large scale, which is imaged on a CCD array to precisely measure
the change �� in the relative phase shift, for a given change in the micrometer reading. A full
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description of this procedure is given in Ref [Cheng, 2016]. Next we determine the � = 0 point,
which is done independently of the red and green lattice depths. First, we conduct a Kapitza-
Dirac scattering experiment for a single component gas in the superlattice potential for various
phases. The populations of negative and positive higher momentum components are unequal
and interchange roles as the phase crosses either zero or � [Jo et al., 2012]. Distinguishing the
two, and determining the zero phase position accurately is a somewhat complicated process.
This will be discussed in more detail in Chapter 5. However, this procedure is not practical for
use on a daily basis, since it takes a long time to implement.

Instead we �nd that the faster procedure of measuring the number of atoms loaded into
the superlattice also determines the phase. For a weak CO2 laser trap, the number of atoms
loaded is sensitive to the radial con�nement provided by the superlattice potential, since the
radial con�nement arising from the red and green components of the superlattice nearly cancels
close to zero phase. Shifting the phase away from zero in either direction increases loading
and allows determination of the zero-phase point to better than �=70. This precision is better
than needed for the spectroscopic experiments, since two radio-frequency spectra (discussed in
Sec. 4.7) taken � = �=70 apart are nearly indistinguishable. Note that the phase sensitivity of
the spectra depends on the red and green lattice depths: for shallower lattices the peak positions
and relative populations of bands tune more slowly with the phase. We verify the location of
the zero phase point both before and after taking each data set. The phase � determined by
these calibration procedures is used as an input to the theoretical model described in Chap. 3,
without further adjustment.

4.7 Radio Frequency Spectroscopy

We probe the binding energy of the atom pairs created in our bichromatic optical lattice poten-
tial using a radio frequency (RF) spectroscopy technique. As described in Sec. 4.1 we start by
cooling and trapping a 50/50 mixture of atoms in the lowest two hyper�ne states j1i and j2i,
Fig. 4.7. Once the atoms are loaded into the bichromatic potential, they can form j12i atom
pair states. Then a radio frequency pulse is applied to transfer atoms from hyper�ne state j2i
to an initially empty hyper�ne state j3i. To understand the concept behind this technique, �rst
consider a single component atomic gas in hyper�ne state j2i. Figure 4.7 show an energy dia-
gram of the lowest three hyper�ne states of 6Li atoms at a speci�c magnetic �eld (see Fig. 2.6).
To get the corresponding spectra experimentally, we scan the RF frequency and record the
number of atoms left in state j2i. This is achieved by selectively taking an absorption image
of atoms in state j2i immediately after applying the RF pulse. Near 800 G, the typycal bare
atomic resonance frequency, �0

32 is ’81 Mhz where a peak can be observed corresponding to a
maximum atom loss from state j2i.
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Figure 4.7: Left: RF transition between energy levels of a single component system. Right:
Corrensponding spectra of state j2i atom loss as a function of the input RF frequency. �0

32 is
the resonance frequency.

In this thseis we are mostly interested to see how the spectrum changes when there is
binding between the atoms present in the system. To understant the spectrum, consider an
interacting mixture of j1i and j2i atoms. Figure 4.8 shows how the energy level diagram and
the spectrum changes for the interacting mixture when two atoms pair. E1 + E2 is the total
energy of the initial system if the two atoms are non-interacting. When the atoms are allowed

Figure 4.8: Left: RF transition between energy levels of an interacting system of j1i and j2i.
E12b and E13b are the binding energies of j12i and j13i atom pairs. Right: Corrensponding RF
spectra with a shifted pairing peak at �0

bb = E12
b � E

13
b .

to pair, the total energy of the two-atom system is now shifted down by the binding energy,
E12
b of the pair. Now, if a RF pulse is applied to convert state j2i in to j3i, this transforms the
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j12i pairing state to a j13i pairing state. For the purpose of this discussion, we assume that
probabilty of converting a j12i pair in to a j13i pair is unity (i.e. no bound to free transitions).
Experimentally, if the Rf frequency is swept and the atom number on state j2i is monitored, a
shifted pairing peak can be observed corresponding to a maximum atom loss. The peak position
is now given by the resonance frequency �bb = (E12

b � E
13
b ). And the corresponding spectrum

is,

S(�) =
1
�


[��RF � �bb]2 + 2 ; (4.2)

where ��RF = �RF � �0
32, is the RF frequency relative to the resonance frequency of the bare

atom j2i ! j3i transition.  denotes the spectral linewidth (HWHM) ’ 1:8 kHz, which is small
compared to (E12

b �E
13
b )=h and comparable to that of our previous measurements [Cheng et al.,

2016].
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Chapter 5

Experimental Results and
Comparison with Theory

In this chapter, I will discuss two primary radio frequency (RF) spectra measured for two
di�erent phase con�gurations of the bichromatic lattice potential. I will compare these spectra
against the theoretical model described in Chapter 3. However, before presenting the measured
RF spectra, as promised in Sec. 4.6 in Chapter 4, the �rst section of this chapter describes how
to �nd the zero phase (i.e. � = 0) accurately for the bichromatic potential, using the measured
RF spectra. Then we will study the measured RF spectra near 800 G for � = 0 and � = �=35
cases in detail, and compare to predictions for total quasi-momentum of the atom pairs Q = 0.
Finally, I will discuss how the measured spectra compare with the theory when Q 6= 0.

5.1 Finding Zero Phase

In Sec. 4.6, I discussed how the micrometer reading of the Babinet compensator is calibrated
using the interference pattern created by combining the Red and Green lattice beams. This
procedure is accomplished by setting up an interferometer on a test bench, which does not
provide any information about how to �nd the zero phase between the two lattices when they
are combined inside the vacuum chamber. Interfernce patterns only tell us how the phase change
correspond to a given change in the micrometer reading. Kapitza-Dirac scattering helps us to
distinguish 0 and � phases from other values, yet cannot tell the two apart.

To distinguish the two, we measure the radio frequency spectra of atom pairs for several
phase choices: � phase corresponds to a nominally single well potential with a higher depth and
higher binding energy, than that of the 0-phase double-well. To determine the zero phase more
accurately, we take spectra close to zero phase in steps of �=35 and deduce the zero point from
the symmetry argument that the spectra should be identical under the change of the sign of
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Figure 5.1: Radio-frequency j12i ! j13i dimer transition spectra (black dots) versus predic-
tions (red curves) for B = 834:6 G. Spectrum for (from left to right) � = �2�=35; � = 0;
� = + 2�=35. Error bars denote the standard deviation of the mean of 5 runs.

the phase. This is illustrated in Fig. 5.1 for � = �2�=35 and � = 2�=35, which are symmetric
about � = 0. However as mentioned in Sec. 4.6, this is a rather tedious process to carry out
on a daily basis, as it very time consuming. Instead we rely on phase dependent lattice loading
measurements (described in Sec. 4.6)to �nd the zero phase.

5.2 Measured RF Spectra for a Symmetric
Double Well Potential

We �rst consider the case of a series of symmetric double well potentials created by the bichro-
matic lattice for � = 0 and measure the RF spectra for j12i atom pair states. Figure. 5.2 shows
the measured spectrum at 800.6 G. Here the lattice depths are chosen such that s1 = 7:0 and
s2 = 16:5 with phase � = 0. After the j1i�j2i atom pair mixture is loaded into the bichromatic
potential, a 20 ms RF pulse is applied to transfer atoms from initially occupied state j2i to un-
occupied state j3i. Then the remaining atom number in state j2i is recorded using an absorption
image. On the y�axis we record the fractional atom loss from state j2i, for each input frequecny
of the RF pulse (measured realtive to the bare atomic frequency, �0

32). Figure 5.2 shows peaks
corresponding to two resonance frequencies, suggesting the posibility of having two di�erent
bound atom pair states j12i. This turned out to be an intersting result. To understand where
these two peaks are coming from, we go back to our theoretical model, which we discussed in
Chapter. 3, and see how we can evaluate the spectrum starting from the energy diagram shown
in Fig. 5.3.
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Figure 5.2: Radio-frequency j12i ! j13i dimer transition spectra (blue dots). Here s1 = 7,
s2 = 16:5 and � = 0. ��RF = �RF ��0

32 is the input radio frequency relative to the bare atomic
frequency �0

32. Error bars denote the standard deviation of the mean of 5 runs.

5.2.1 Evaluation of Spectra

Figure. 5.3 shows the two lowest d=a solutions for � = 0 for a variety of energies E, as green
and blue dots at low resolution, and as continuous curves at high resolution (insets). Note
that the change in color from left to right is a result of our d=a labeling: For the same E,
the smallest (left most) d=a solutions are green, the next larger d=a solutions are blue. For
simplicity, we show predictions for Q = 0, as the Q-dependence for our lattice parameters is
relatively small (Q dependance of the spectra is discussed in Sec. 5.4.1). States A and B are
the two bound states of lowest total energy at B = 800:6 G with d=a12 = 1:28, denoted by the
vertical solid black line. For symmetric double well potentials with � = 0 and Q = 0, dimer
states A and B are delocalized between the right and left wells respectively, as depicted in
cartoon on Fig. 5.4(a) and are symmetric or antisymmetric in the CM Z-coordinate relative
to the double-well center, as shown by the eigenstates f QE (Z) in Fig. 5.4(b). It is important to
notice that the f QE (Z) is not the CM state, as 	E(r; Z) generally does not factor, entangling the
atom pair relative coordinate r and the CM Z-coordinate. However, as explained in the next
paragraph, the Franck-Condon factors for the RF transitions are proportional to the square
of the overlap integrals of the f QE (Z) functions for the initial and �nal states, which provides
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Figure 5.3: Dimer energies E for a lattice of double-well potentials versus d=a for � = 0 . For
each E, green and blue denote the two smallest d=a values. A and B show the initially populated
j12i dimer states with d=a12 = 1:28. Crossings with the dashed black line at d=a13 = �3:78
determine �nal j13i dimer states. The energy asymptotes, shown as red horizontal lines, denote
the lowest energy for two noninteracting atoms in the �rst band (lower red line) and for one
in each of the �rst two bands (upper red line). Insets show typical structure for states above
E = 0.

substantial insight. Note that the blue curve starting at B in Fig. 5.3, which arises from odd
symmetry dimer states, crosses several nominally horizontal green and blue curves, which arise
from even symmetry states.

Experimentally, the applied RF pulse convert a j12i atom pair state in to a j13i atom pair
states with d=a13 = �3:78 (vertical dashed line). Using Fig. 5.3, we identify the set of possible
�nal state energies from the crossings between the energy versus d=a curves (shown in detail
in the insets) and the vertical dashed line corresponding to the chosen �nal d=a13 value. As
described in Sec. 3.4, the overlap integral of the initial and �nal states,

hE2jE1i = A�2A1
2�

~E2 � ~E1

�
d
a1
�

d
a2

�X

G

BE2�
G (Q)BE1

G (Q): (5.1)
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is proportional to the overlap integral of the eigenfunctions f QE (Z) =
P

G0 BE
G0(Q) e

i(G0+Q)Z
p
Nd

; and

the normalization constants of the initial and �nal states. Hence, the symmetry of the f QE (Z)
eigenstates and the localization of the wavefunctions determine the strength of the overlap
integrals, and which identi�ed �nal states can be excited. In this case, a transition from the

Figure 5.4: (b) Eigenstates fE(Z) (see eq. 3.55) versus CM coordinate Z are A symmetric or
B antisymmetric with respect to the site center. (a) Cartoons depict delocalized symmetric (A)
orantisymmetric (B) dimer CM states.

antisymmetric state B to the lowest �nal state at E < 0 and d=a13 = �3:78 is not allowed, as
the two states have opposite symmetry in Z.

Using eq. 5.1, we compute the squared magnitude of the overlap integrals (Franck-Condon
factors) for transitions originating from an initial j12i state with a given d=a12 value to all �nal
j13i states with a �xed d=a13 value. We �nd that Franck-Condon factors decrease with increasing
�nal state energy and that the sum over �nal states for each initial state converges to a value
near unity. Fig. 5.5(b)(c) shows the �nal state energy distributions of the Franck-Condon factors
for a symmetric lattice with phi = 0. For these plots, the vertical position of each horizontal
bar corresponds to the energy of a �nal state. The bar lengths represent the probabilities on
a log scale, where only transitions stronger than 10�3 are shown. The green bars in panel (b)
correspond to transitions from state A of Fig. 5.3, while blue bars in panel (c) correspond to
transitions from state B. For � = 0, transitions from the tightly bound lowest-lying symmetric
state A, comprise a moderately strong excitation to the weakly bound, lowest-lying, symmetric
�nal state with E < 0 and to a quasi-continuum of symmetric excited bound states with E > 0
as shown in Fig. 5.3 (b). The latter corresponds to a threshold spectrum for � ! 0 [Cheng
et al., 2016]. Transitions from the tightly bound antisymmetric state B are dominated by a
strong transition to another tightly bound antisymmetric state as shown in Fig. 5.3 (c). The
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Figure 5.5: (a) Energies of j13i �nal states for � = 0 are determined from the crossings of the
energy versus d=a curves with the d=a13 = �3:78 vertical dashed black line. Panels (b) and
(c) show the �nal state energies and corresponding Franck-Condon factors for transitions from
the initial states A (green bars) and B (blue bars). Only the �nal states with Franck-Condon
factors larger than 10�3 are shown.

binding energy and corresponding localization of the �nal state for B is larger than that for A,
increasing the transition strength. Note that the binding energies are determined with respect
to the energy asymptotes, shown as horizontal red lines in Fig. 5.3 and Fig. 5.5(a). Transitions
from state B to the quasi-continuum of higher lying excited bound states, above the upper
energy asymptote, are weak and negligible for the measured spectrum, as the strong transition
comprises most of the transition strength.

We �nd that the sum of the Franck-Condon factors for transitions from a single initial
bound state to all possible �nal bound states is always close to unity, even for shallow lattices
s1 = 2:5 or tight radial con�nement, � = 2:0. We surmise that with �nite radial con�nement
and periodic boundary conditions for a lattice of �nite length along z, the bound states are the
only relevant solutions, i.e., formally the scattering states consist only of noninteracting states,
which are orthogonal to the bound states. Similar behavior arises for simple periodic boundary
conditions in a box of length L in one dimension. With an interaction of the form � �(z � z0)
and � 6= 0, the formal bound state solutions obtained by the Green’s function method are even
in z� z0 and span the space of interacting states, i.e., the solutions obtained for � = �1 can be
expanded in terms of the solutions obtained for � = �2. In contrast, solutions which are odd in
z� z0 are noninteracting and irrelevant for computing Franck-Condon factors originating from
an interacting state.
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Figure 5.6: (a) Calculated Franck-Condon factors (log scale) for symmetric double-well po-
tentials, � = 0 as a function of transition frequency. (b) Radio-frequency j12i ! j13i dimer
transition spectra (black dots) versus predictions (red curves). Green and blue denote contri-
butions from states A and B of Fig. 5.3. Error bars denote the standard deviation of the mean
of 5 runs.

To predict the measured spectra, we add the contributions from all of the transitions,
assuming Lorentzian lineshapes with the same width, weighted by the calculated Frank-Condon
factors and centered on the resonance frequencies corresponding to the energy di�erences. For
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transitions originating in dimer state i = A or B, we compute the normalized spectrum,

Si(�) =
1
�

X

f

 jhf jiij2

[� � (Ef � Ei)=h]2 + 2 ; (5.2)

where � is the radio frequency relative to the resonance frequency of the bare atom 2 ! 3
transition. As mentioned in Sec. 4.7,  denotes the spectral linewidth (HWHM) ’ 1:8 kHz,
which is small compared to (Ef�Ei)=h. For our spectral resolution, with a Lorentzian halfwidth
of 1.8 kHz, we �nd that increasing the number of bands from 9 to 17 and the number of sites
from 20 to 40 makes a negligible change in the predicted spectra.

Figure. 5.6(a) shows the Franck-Condon factors jhf jiij2 versus transition frequency, for tran-
sitions from the initial bound states i = A,B of Fig. 5.3 to �nal bound states f with a �xed
value of d=a13 = �3:78. As can be seen in Fig. 5.3(a), for � = 0 transitions from the tightly
bound symmetric state A (green), comprise a dominant excitation to the lowest-lying, most
tightly bound, symmetric state (left peak) and to a weaker quasi-continuum of excited bound
states. The transitions from the tightly bound antisymmetric state B are dominated by a single
excitation to the lowest-lying, most tightly bound, antisymmetric state (blue peak).

As we expect the initial states to be thermally populated for the conditions of our ex-
periment, we take the total spectrum to be proportional to S(�) / exp[�EA=kBT ]SA(�) +
exp[�EB=kBT ]SB(�). Here SA(�) and SB(�) are the individual spectra originating from tran-
sitions from intial state A and B (denoted in green and blue dashed lines in Fig. 5.6(b)). The
red curves show the �ts with kBT = 0:35ER. From the very good agreement between our model
and the data, we conclude that for � = 0, the spectra arise from two initially populated dimer
states (for each Q), denoted i =A, B in Figs. 5.3.

5.3 Measured RF Spectra for an Asymmetric
Double Well Potential

It is interesting to see how the spectrum changes as the relative phase between the lattices
is varied slightly, tilting the double well potential. Experimentally, we notices that even a
slight change in relative phase � introduces a drastic di�erence in the measured RF spectrum
compared to � = 0 case. So as the next step of the experiment, we change the phase � from
� = 0 to � = �=35, keeping the lattice depths to be the same, s1 = 7 and s2 = 16:5. We notice
that any change in the phase which is less than � = �=35 makes no measurable di�erence in
the observed spectrum.

Before we see the e�ect on the measured spectrum, I’d like focus the reader’s attention on
the calculated dimer energy diagram given in Fig. 5.7 for the � = �=35 case. Notice now the
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Figure 5.7: Dimer energies E for a lattice of tilted double-well potentials versus d=a for � =
�=35 . For each E, green and blue denote the two smallest d=a values. A and B show the
initially populated j12i dimer states with d=a12 = 1:28. Crossings with the dashed black line
at d=a13 = �3:78 determine �nal j13i dimer states. The energy asymptotes, shown as red
horizontal lines, denote the lowest energy for two noninteracting atoms in the �rst band (lower
red line) and for one in each of the �rst two bands (upper red line). Insets show typical structure
for states above E = 0.

second d=a solution (denoted in blue) has become fuzzy in the region of E > 0 as opposed to
the � = 0 case. A closer (see inset) tells us what appeared to be a crossing of the second d=a
solution through horizontal lines of the �rst d=a solution for E > 0, now appears as an avoided
crossing as it passes through this region (see inset of Fig. 5.7).

To understand the meaning of this behavior, let us turn our attention towards the f QE (Z)
functions. Figure. 5.8(b) shows the eigenstates f QE (Z) for dimer state A and B in Fig. 5.7.
For tilted double well potentials with � = �=35, we see that the states A and B are localized
in the right or left well, breaking initial symmetry that was present for � = 0 in Fig. 5.4(b)
and strongly mixing the two lowest lattice states, which have opposite symmetry. For E > 0,
this mixing changes the crossings of the blue curve in Fig. 5.3(inset) to avoided crossings in
Fig. 5.7(inset), blurring the energy diagram. The tilt in the double well potential also increases
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Figure 5.8: (a) Cartoons depict localized right (A) or left (B) dimer states. (b) Eigenstates
fE(Z) (see eq. 3.55) versus CM coordinate Z are A symmetric or B antisymmetric with respect
to the site center. .

the A-B energy separation compared to Fig. 5.3. When we evaluate the spectra using this energy
diagram as we did before for the � = 0 case, we notice that this mixing of left- and right-well
localized states increases the number of possible �nal states for transitions from state B. For
example, the lowest �nal state at E < 0 acquires a non-zero overlap with the initial state B,
as well as with state A, as shown in Fig. 5.9 (b) and (c). Similarly, as seen in Fig. 5.9(c), more

Figure 5.9: (a) Energies of j13i �nal states for � = 0 are determined from the crossings of the
energy versus d=a curves with the d=a13 = �3:78 vertical dashed black line. Panels (b) and
(c) show the �nal state energies and corresponding Franck-Condon factors for transitions from
the initial states A (green bars) and B (blue bars). Only the �nal states with Franck-Condon
factors larger than 10�3 are shown.
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�nal states contribute around the fuzzy border line between green and blue domains of Fig. 5.9
(a), in contrast to the � = 0 case, Fig. 5.5(c) where all �nal states except one are orthogonal
to the initial state B. For transitions from the right-well state A, Fig. 5.9(b), the strengths
decrease quickly with increasing energy as the border line is crossed toward the blue domain,

Figure 5.10: Bottom: Radio-frequency j12i ! j13i dimer transition spectra (black dots) versus
predictions (red curves). Green and blue denote contributions from states A and B of Fig. 5.7.
Top: Calculated Franck-Condon factors (log scale) for symmetric double-well potentials, � = 0
as a function of transition frequency. Error bars denote the standard deviation of the mean of
5 runs.
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because the �nal states become more left-well localized at higher energy. For transitions from
the left-well state B, Fig. 5.9 (c), the strengths increase in the vicinity of the border line as the
�nal states become more left-well localized and decrease further into the blue domain due to
radial delocalization of the �nal states.

Observed RF spectrum is shown in Fig. 5.10(b) compaired to the theory (red curve). Note
that the red curve shows the �ts with kBT = 0:43ER, as opposed to 0:35ER which was used
for � = 0 case. However, an extended calculation given in Sec. 5.4.1, using a Boltzmann factor
weighted sum over all Q, yields equally good �ts, but with the same temperature, kBT =
0:48ER ’ kB � 0:34�K, for both � = 0 and � = �=35. As pointed out above, the mixing of
left- and right-well localized states increases the number of transitions from state B, blurring
the spectrum near 40 kHz. Further, the lowest �nal state at E < 0 acquires a non-zero overlap
with the initial state B, as shown by the blue peak at 30 kHz in Fig. 5.10(a). For transitions
from the right-well state A, the strengths decrease quickly above 52 kHz, as the corresponding
�nal states become more left-well localized with increasing energy above the fuzzy green-blue
curve in Fig. 5.7.

5.4 Tuning from a Double Well to a Single Well Potential

Fig. 5.11 compares the spectra measured at B = 800:6 G to the theoretical model for lattice
depths s1 = 7:0 and s2 = 16:5 for three di�erent phase. As one would expect, the continuous

Figure 5.11: Radio-frequency j12i ! j13i dimer transition spectra (black dots) versus predic-
tions (red curves) for B = 800:6 G, s1 = 7, s2 = 16:5. Calculated Franck-Condon factors (log
scale) versus transition frequency and spectrum for (a) � = 0; (b) � = �=35; (c) � = 2�=35.
Error bars denote the standard deviation of the mean of 5 runs.
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change in phase eventually turns the double well potential in to a single potential well, ultimately
supporting only one populated bound state. Notice that the height of the peak correspond to the
transition originating from the upper atom pair state B in Fig. 5.3, gradually decreases in height
with the increasing phase. As the potential wells are tilted more and more in Fig. 5.8(a), it is
clear that the energy gap between dimer state A and B increases resulting a reduce population
of atom pairs in state B (compare the energy gap between state A and B in Figures 5.3 and 5.7).
As can be seen in Fig. 5.11(c) the strength of Franck-Condon factors is reduced only slightly
compared to � = 0 case. However, the increasing gap between the initial atom pair state A and
B results in a decreased population in atom pairs in state B, making its contribution less and
less in the spectrum of Fig. 5.11(c) (see blue dashed line).

5.4.1 Q-dependence of the Spectra

As discussed in Chap. 3, the total quasi-momentum of an atom pair Q = q1 + q2. So far, I’ve
only considered the spectra evaluated for Q = 0 case. For completeness, here we consider the
contribution of di�erent Q-components to the overall spectrum. First, for each of 20 Q-values
equally spaced in steps of 0.2 from -2.0 to +1.8 (one full period of the total quasi-momentum),
we compute a corresponding spectrum in the same way as described above for the Q = 0
case. Then, we weight each spectrum using a Boltzmann factor with the total energy of the

Figure 5.12: Spectra for B = 800:6 G calculated for Q = 0 only (blue) versus spectra for
Boltzmann-factor-weighted sum over Q (red) compared to data (gray dots). (a) � = 0; (b)
� = �=35.
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corresponding Q-component given by eq. 3.54 and referenced to the lowest total energy, i.e.,
that of two atoms in the ground band with Q = 0, de�ned as E = 0 above. Finally, we sum
all of the spectral components and �t the result to the data using two parameters, the overall
amplitude and a Boltzmann temperature kBT . Fig. 5.12 compares the �ts to the data for
s1 = 7:0 and s2 = 16:5 using only the Q = 0 component (blue) with the �t including all of the
Q components (red). With all of the Q components included, we �nd that a single temperature
kBT = 0:48ER = kB�0:34�K �ts both the � = 0 and � = �=35 data, in contrast to the Q = 0
�ts, where two di�erent temperatures are required.
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Chapter 6

Conclusion

6.1 Summary of the Dissertation

This dissertation primarily contains of two pieces of work. First, I described the detailed deriva-
tion of a multi-band model to evaluate two-atom pairing energies and states in a 1D optical
superlattice potential with �nite radial con�nement. The theoretical model is implemented by
extending the rigorous Green’s function method of Orso et al., [Orso et al., 2005] for a 1D
bichromatic lattice with non-zero radial con�nement. Next, I provided the quantitative mea-
surements of radio-frequency spectra of atom pair states in a 1D bichromatic optical superlattice
that creates a series of double-well potentials, revealing the co-existance of two types of pairing
states with di�erent symmetries. I �nd that the described multi-band model is in excellent
agreement with our observed spectral structure for di�erent symmeteries of the double-well
potential providing the �rst understanding of how elementary two-body pairng works in 1D
optical superlattices. We believe that this model can be used to test the validity of analytic
approximations and to characterize the states and populations of atom pairs in general optical
lattices, providing a foundation for new experiments with strongly interacting fermions.

6.2 Outook

As mentioned in Chapter. 1, with magnetically tunable two-body interactions and wide con-
trol of the dispersion relation, we believe that ultracold atomic gases in superlattices provides
a broad platform for studies of many-body physics, including entanglement, nonequilibrium
dynamics, and exotic new states of matter. This includes studies of new superuids and new
models of quantum magnetism with interactions, where the left-right atom pair states of the
asymmetric double-well potential serve as a two state e�ective spin half system as described in
ref [Li et al., 2016]. Also, cyclic variation of the phase and corresponding double-well symmetry
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has been used to observe topological (Thouless) pumping for weakly interacting systems [Lohse
et al., 2016,Nakajima et al., 2016], where as our system enables exploring these dynamic in the
strongly interacting regime. However, it is important for us to be able to dynamically vary the
relative phase between the two lattices.

So as the next step of our experiment, an electro optic modulator will be added to the
Babinet path in Fig. 4.1 enabling the dynamic control of the phase. Note that by shifting the

Figure 6.1: Added Electro-optic modulator(EOM) allows the dynamical variation of the re-
laitve phase �. Phase can be changed from symmetric dpuble-well to an asymmetric double-well
potential by changing the voltage applied to the EOM.

relative energy of the left or right states or by shifting the wells from symmetric to left-right
symmetry one can rapidly change the types of atom pairs that can exist, allowing the studies
of non-equilibrium dynamics of the system. Also, combined control of lattice intesity and phase
enables the real-time control of the dispersion of atoms and may lead to dynamical control of
Dirac points of the system.
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Appendix A

Matlab Program for Evaluating
the Eigenstates and Energies in a
Bichromatic Superlattice.

A.1 Evaluating Single Particle Band Energies

Following MATLAB code is used to evaluate the energy eigenvalues and eigenvectors of a single
atom in a bichromatic lattice potential. Function Inputs are:

{ M = number of bands used for the calculation (ex: for 9 band model, N=9)

{ N = number of lattice sites used for the calculation (ex: to use 20 sites, M=20)

{ Q = total quasi-momentum of the atom pair (Q = q1 + q2)

{ phi = relative phase between the two lattices given in radians

{ s1 = red lattice depth in units of ER

{ s2 = greened lattice depth in units of ER

The function Outputs a structure containing the energy eigenvalues for atom1 and atom2 saved
with �eld names as E1 and E2. Eigenvectors are saved under the �eld names Evect1 and Evect2.

1 f unc t i on MB=LatticeBandsWithQ SymV ( s1 , s2 , phi ,M,N,Q)
2 v1=�s1 /4 ;
3 v2=s2 /4 ;
4

5 q=(�N/ 2 : 1 :N/2) *2/N;% in un i t s o f k
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6

7 q1=Q/2+q ;
8 q2=Q/2�q ;
9

10 G1=�(M�1) : 2 : (M�1) ; % in un i t s o f k
11

12 H=ze ro s (M) ;
13 MB. q1=q1 ;
14 MB. q2=q2 ;
15 MB. q=q ;
16 MB.Q=Q;
17 MB. s i t e s=N;
18 MB. s1=s1 ;
19 MB. s2=s2 ;
20 MB. phi=phi ;
21 MB. bands=M;
22

23 f o r q 1 j =1:numel ( q1 )
24 H( 1 :M+1:end )= ( q1 ( q 1 j ) + G1 ) . ^ 2 ;
25 H( 2 :M+1:(M�1)*(M+1)+1)= v1 ;
26 H( 3 :M+1:(M�2)*(M+1)+2)= v2*exp (1 i *phi ) ;
27 H(M+1:M+1:( end�1) )= v1 ;
28 H(2*M+1:M+1:( end�2) )= v2*exp(�1 i *phi ) ;
29

30 MB. Hamil1f q 1 jg=H;
31 %[MB. Evect1f q 1 j g , Eval ]= e i g (H) ;
32 [ Coeff , Value ]= e i g (H) ;
33 [ sorted Value , I ]= s o r t ( r e a l ( d iag ( Value ) ) ) ;
34 MB. E1( q1 j , : )=sor ted Va lue ;
35 MB. Evect1f q 1 jg=Coef f ( : , I ) ;
36

37 end
38

39 f o r q 2 j =1:numel ( q2 )
40 H( 1 :M+1:end )= ( q2 ( q 2 j ) + G1 ) . ^ 2 ;
41 H( 2 :M+1:(M�1)*(M+1)+1)= v1 ;
42 H( 3 :M+1:(M�2)*(M+1)+2)= v2*exp (1 i *phi ) ;
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43 H(M+1:M+1:( end�1) )= v1 ;
44 H(2*M+1:M+1:( end�2) )= v2*exp(�1 i *phi ) ;
45

46 MB. Hamil2f q 2 jg=H;
47 [ Coeff , Value ]= e i g (H) ;
48 [ sorted Value , I ]= s o r t ( r e a l ( d iag ( Value ) ) ) ;
49 MB. E2( q2 j , : )=sor ted Va lue ;
50 MB. Evect2f q 2 jg=Coef f ( : , I ) ;
51 end
52

53

54 % f i g u r e ; p l o t (MB. q1 ,MB. E1 , ’ o ’ ) ;
55 % f i g u r e ; p l o t (MB. q1 ,MB.E( : , 1 ) ,MB. q1 ,MB.E( : , 2 ) ) ;
56 % ylim ( [ 0 2 ] ) ;
57

58 end

A.2 Evaluating Two Particle Energies

Follwing MATLAB code is used to diagonalize MGG0(E;Q) (seeEq. 3.53). Note for each value of
input energy Eb, N number of d=a eigenvalue solutions are evaluted by the function. Function
Inputs are:

{ MB = structure containing single particle eigenvalues and eigenvectors for atom1 and
atom2 (Output given by the Code. A.1)

{ bta = � in units of ER

{ d over a ref =
�d
a
�

ref (see Code.??)

{ Eb ref = �refb

{ Eb = Energy of the atom pair state in units of ER

The function Output is a MATLAB strucure containing the energy eigenvalues and eigenvectors
of matrix MGG0(E;Q).

1 f unc t i on y=LatticeBindingV24 SymV (MB, bta , Eb ref , d o v e r a r e f , Eb)
2 % matrix ver s ion , q1 i s not symmetrized in t h i s v e r s i o n but q2 i s

introduced ,
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3 % q1 sum i s done on the range N/2<q<N/2�1
4 N=MB. s i t e s ;
5 q1=MB. q1 ;% in un i t s o f k
6 q2=MB. q2 ;% in un i t s o f k
7 q=MB. q ;
8 M=MB. bands ;
9 Q=MB.Q;

10

11 G1=�(M�1) : 2 : (M�1) ; % in un i t s o f k
12 G1p=�(M�1) : 2 : (M�1) ; % in un i t s o f k
13

14 G=�(M�1) : 2 : (M�1) ; % in un i t s o f k
15 Gp=�(M�1) : 2 : (M�1) ; % in un i t s o f k
16

17 M1 GGp=ze ro s (M) ;
18 M0 GGp=ze ro s (M) ;
19 M00 GGp=ze ro s (M) ;
20

21 Etot=MB. E1( q1==Q/2 ,1)+MB. E2( q2==Q/2 ,1)�Eb ;
22

23 Eigen . Eb=Eb ;
24 Eigen .Q=Q;
25 Eigen . bta=bta ;
26 Eigen . Ebref=d o v e r a r e f ;
27 Eigen . d o v e r a r e f=Eb re f ;
28

29

30 f o r G i =1:1 :M
31 G1 i=r e s t r i c t G (G1,G( G i ) ) ;
32

33 f o r Gp i=G i : 1 :M
34 G1p i=r e s t r i c t G (G1p ,Gp( Gp i ) ) ;
35 G1G1p alpha2 alpha1 sum=ze ro s ( 1 , ( numel ( q )�1)/2+1) ;
36

37 f o r q j =1:( numel ( q )�1)/2+1
38

39 Cq1=MB. Evect1 f1 , q j g ;
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40 Cq2=MB. Evect2 f1 , q j g ;
41

42 Cq1 new=Cq1( G1 i , : ) ;
43 Cq2 new=Cq2( G1 i , : ) ;
44 Cq2 new=f l i p l r ( Cq2 new . ’ ) . ’ ;
45 G1 sum=Cq1 new . ’ *Cq2 new ;
46

47 Cq1 new=Cq1( G1p i , : ) ;
48 Cq2 new=Cq2( G1p i , : ) ;
49 Cq2 new=f l i p l r ( Cq2 new . ’ ) . ’ ;
50 G1p sum=conj ( Cq1 new . ’ ) * conj ( Cq2 new ) ;
51

52 G1G1p sum=G1 sum .*G1p sum ;
53

54 po ly a rg =(MB. E1( q j , : ) . ’ + MB. E2( q j , : ) � Etot ) /2/ bta ;
55 sz=s i z e ( po ly a rg ) ;
56 po ly a rg po s=poly arg >0;
57 po ly a rg neg=poly arg <0;
58 p o l y a r g z e r o=po ly a rg ==0;
59 p o l y z e r o=ze ro s ( sz (1 ) ) ;
60

61 polygamma pos=p s i ( po ly a rg .* po ly a rg po s ) ;
62 polygamma pos ( polygamma pos==�I n f ) =0;
63

64 polygamma neg=p s i (1�po ly a rg .* po ly a rg neg )�pi * cot ( p i *
po ly a rg .* po ly a rg neg ) ;

65 polygamma neg ( polygamma neg==�I n f ) =0;
66

67 p o l y z e r o ( p o l y a r g z e r o==1)=�I n f ;
68

69 polygamma=polygamma pos+polygamma neg+p o l y z e r o ;
70

71 G1G1p alpha2 alpha1 sum ( q j )=sum(sum(G1G1p sum .*
polygamma ) ) ;

72 end
73 M1 GGp( G i , Gp i ) =(1/(N) ) *(2*sum( G1G1p alpha2 alpha1 sum ( 2 :

end�1) ) + G1G1p alpha2 alpha1 sum ( end ) +
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G1G1p alpha2 alpha1 sum (1) ) ;
74 M1 GGp( Gp i , G i )=conj (M1 GGp( G i , Gp i ) ) ;
75

76 end
77 E0=((G( G i )+Q) ^2) /2 � Eb re f ;
78 % E0=�Eb;%to check f o r zero l a t t i c e M1 GGp = M0 GGp
79 M0 GGp( G i , G i ) =(1/(N) ) *sum( sum( p s i ( ( (Q/2 + q ( 1 : end�1)+G1(

G1 i ) . ’ ) . ^2 + (Q/2�q ( 1 : end�1)�G1( G1 i ) . ’+G( G i ) ) . ^2 � E0 ) /2/
bta ) ) ) ;

80

81 end
82

83 M00 GGp( 1 :M+1:end )=d o v e r a r e f ;
84

85 M GGp=M1 GGp�M0 GGp+M00 GGp;
86

87 [ Coeff , Value ]= e i g (M GGp) ;
88 [ sorted Value , I ]= s o r t ( r e a l ( d iag ( Value ) ) ) ;
89 Eigen . Value=sor ted Va lue ;
90 Eigen . Coe f f=Coef f ( : , I ) ;
91

92 y=Eigen ;
93

94

95 f unc t i on y1=r e s t r i c t G (G1, Gith )
96 G2=Gith�G1;
97 G1 notal lowed= G2>max(G1) ;
98 G1 res t r=G1 ;
99 G1 res t r ( G1 notal lowed ) = [ ] ;

100 G1 notal lowed= G2<min (G1) ;
101 G1 res t r ( G1 notal lowed ) = [ ] ;
102

103 b1=f i n d (G1==min ( G1 res t r ) ) ;
104 e1=f i n d (G1==max( G1 res t r ) ) ;
105

106 G1 i=b1 : 1 : e1 ;
107

77



108 y1=G1 i ;

A.3 Evaluating
�d
a

�
ref

The function evaluates
�d
a
�

ref according to Eq.3.50 for any input energy Eb given in units of
ER

1 f unc t i on d over a=c a l c u l a t e d o v e r a (Eb)
2 fun=@(v ,C) (1�(2*v ) .* exp(�C*v ) ./(1� exp(�2*v ) ) ) . / s q r t (4* pi *v . ^ 3 ) ;
3 % vp =0 :0 . 1 : 1 e4 ;
4 % fun (1 e�7 ,2)
5 % f i g u r e ; p l o t (vp , fun (vp , 1 ) ) ;
6 % d over a=i n t e g r a l (@( v ) fun (v , Eb) ,1 e�7,1 e4 ) ;
7 d over a=i n t e g r a l (@( v ) fun (v , Eb) ,1 e�7,1 e4 ) ;
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