
ABSTRACT

ROYSE, CAMEN ANDREW. Fermi Suppression of Optically Induced Inelastic Scattering:
Toward Optical Control of a Weakly Interacting Fermi Gas. (Under the direction of John
Thomas).

For small s -wave scattering lengths as where energy-changing collisions are negligible,

a single, trapped cloud of ultracold fermionic atoms behaves as a lattice in energy space. A

radio-frequency pulse coherently prepares a pseudo-spin at each energy site. The site-to-

site couplings between spins in the lattice are effectively long-range and proportional to as .

Optical control of as enables tailoring of the site-to-site couplings, opening the door for

the simulation of exotic Hamiltonians. This method of control is, however, accompanied

by optically induced inelastic scattering, which causes atoms to be lost from the trap and

affects the many-body evolution. This loss had not been understood theoretically prior to

this work. In this thesis, we develop a model for the loss that accounts for the many-body

spin dynamics, and incorporate it into the energy-space spin-lattice model of the weakly

interacting Fermi gas. We further report our measurements of the optically induced loss

rates to test this model. We find that the loss is strongly suppressed as as is increased.

The loss suppression occurs as the lattice transitions into a magnetized state, where the

fermionic nature of the atoms inhibits interactions. In this way, the loss serves as a probe

of the magnetization of the gas. Our observations agree with the model, although the loss

constant used in the model is unexpectedly half that measured in an incoherent mixture.

The success of our loss model enables the application of optical control to this system.
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CHAPTER 1

INTRODUCTION

The thermal isolation of trapped, ultracold gases allows the free evolution of a quantum

many-body dynamical system to be studied in a laboratory setting. A neutral gas is dilute

enough that two-body interactions dominate, and can be cold enough (with atomic speeds

on the order of centimeters per second) that only the spherically-symmetric scattered

(s -)wave need be considered during an interaction. For ultracold fermionic atoms, the

consequence of this spatial symmetry is that the two-atom spin state plays a determining

role in the interactions.

Such systems may be manipulated with electromagnetic fields, allowing for the control

of the trapping forces, single-atom internal states, and the interactions between pairs

of atoms. This toolbox enables some freedom to engineer the Hamiltonian describing

the system, and can allow picturesque models of many-body quantum phenomena to

be physically realized [Georgescu et al. (2014); Hazzard and Gadway (2023)]. One such

tool is the control of the s -wave scattering length as using lasers. This enables as to vary

inside the gas with high spatial resolution, as well as the ability to change as in time with

high temporal resolution. The drawback is, however, that optical methods induce inelastic

scattering, causing atoms to be lost from the trap. Recently, our group has demonstrated

a way to significantly reduce this loss and therefore greatly improve the timescales over

which experiments can be run with optical control [Jagannathan et al. (2016a); Arunkumar

(2018); Jagannathan (2016)]. While the new methods optimize the tradeoff between optically

induced loss and tunability of as , loss cannot be completely mitigated.

A weakly interacting gas of ultracold fermionic atoms, with spin states coherently pre-
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pared orthogonal to an applied magnetic field, exhibits a many body evolution which can

be modeled as that of a spin-lattice (i.e., the Ising model) [Du et al. (2008); Pegahan et al.

(2019)]. Here, groups of atoms can behave collectively, allowing a gas of ≈ 105 atoms to be

conceptualized as ≈ 102 coupled, collective spin vectors. The application of optical control

to this system allows the tailoring of the couplings between the spin vectors, whereas non-

optical methods only allow the couplings to be scaled globally. Furthermore, the optical

control in this system can be used to calibrate as as a function of the frequencies and

intensities used. The accompanying loss has not been understood in this system, where the

atoms are in evolving spin superposition states which scatter in a state-dependent manner.

Motivated by the optical control of the many-body evolution of the weakly interacting

Fermi gas, in this thesis, we present a study of the optically induced loss in this system. The

effect of loss is incorporated into the spin-lattice model of the weakly interacting Fermi gas,

which is shown to be in quantitative agreement with observations. We find that the loss is

suppressed by as much as ≈ 45% as as is increased due to the the fermionic nature of the

atoms.

1.1 Optical Control of Two-Body Interactions in Ultracold

Gases

In ultracold atoms that exhibit a magnetic Feshbach resonance, the s -wave scattering

length as can be continuously tuned from−∞ to+∞ by varying an applied magnetic field.

The field strength must be on the order of hundreds of Gauss for alkali atoms. The magnetic

field tunes the energy ET of an incoming pair of atoms for which the valence electrons are

in the symmetric spin state |S = 1 MS =−1〉. While interacting, the two-electron spin state

couples to the anti-symmetric spin state |S = 0 MS = 0〉, which is a closed channel (i.e., the

amplitude that the atoms are in the state |S = 0 MS = 0〉 is zero as r →∞) and is associated

with a different interaction potential Vs (r). The magnetic Feshbach resonance occurs when

the ET is magnetically tuned to be equal to the energy Eg of a bound state |g 〉 in Vs (r). The

atoms exit in the state |S = 1 MS =−1〉, with a scattering amplitude which is set by ET −Eg .

There are other methods of manipulating as via applied electromagnetic fields [Bauer

et al. (2009); Fedichev et al. (1996); Marinescu and You (1998); Moerdijk et al. (1996)].

While the magnetic field method allows for continuous tuning, it is limited in its spatial

and temporal resolution. High spatio-temporal resolution may be obtained using lasers.

Lasers can be used to control as by either directly coupling an incoming pair of atoms to a
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(quasi-)bound state in a closed channel, a so-called “optical Feshbach resonance,” or by

manipulating the states in the magnetic Feshbach resonance. In either case, the undesirable

effects that accompany of optical control of as are loss due to spontaneous emission and

extraneous trapping forces.

In the optical Feshbach resonance, “a pair of atoms absorbs a photon and undergoes

a virtual transition to an electronically excited quasimolecular state. Then it reemits the

photon and returns to the initial electronic state at the same kinetic energy” [Fedichev et al.

(1996)]. The scattering length is a function of the frequency and intensity. This elastic process

is accompanied by inelastic processes, though. Single-atom absorption and emission and

decay from a photo-associated state leads to the loss of atoms from the trap.

As an alternative to the optical Feshbach resonance, one may use the magnetic Feshbach

resonance in conjunction with optical effects [Bauer et al. (2009)]. As mentioned above, the

amplitude of the scattered wave from the magnetic Feshbach resonance is determined by

the difference between the incoming energy and the energy of the bound state, ET −Eg . To

control as , a magnetic field tunes ET relative to Eg . By using an optical field (i.e., a laser) to

couple |g 〉 to an electronically-excited molecular state |e 〉, Eg may be tuned by a light shift.

The degree of this shift can be controlled by changing the frequency of the beam (avoiding

changes in the intensity avoids changes in the trapping potential). This method comes

with less loss than the optical Feshbach resonance. However, loss remains, as energy is

deposited into the pair of atoms upon spontaneous emission from |e 〉. This method does

not give the infinite tunability that the magnetic field control allows, so the magnetic field

can be used to bring as close to the desired value, and the optical control beam may be

used to vary as about this point. In Ref. Clark et al. (2015), this method was used to achieve

high tunability by working exclusively near a very narrow Feshbach resonance, where only

small shifts in the bound state result in large changes to the scattering length. By working

at a “magic wavelength” far off the optical resonance, the states could be shifted without a

resulting trapping force (as the states shift the same way for the “magic wavelength”). This

allowed the intensity to be used to control the interactions, which made it easy to spatially

modulate the scattering length.

Our lab has developed a way to suppress the loss that accompanies the light shift

of Eg via Electromagnetically-Induced Transparancy (EIT) [Wu and Thomas (2012b,a);

Jagannathan et al. (2016a); Arunkumar (2018); Arunkumar et al. (2018)]. As will be discussed

in § 2, the introduction of a second beam allows for control over the amplitude to be in

the excited state. The result is that the tradeoff between tunability and loss changes— in

the single beam method, maximum tunability of as occurs in the same frequency range

3



Figure 1.1: Modeling of the tradeoff between tunability of as and loss for the single-beam
(blue) and two-beam (red) methods of optical control. Here,∆e is the detuning of the beam
coupling the |g 〉 to |e 〉, as/|ab g | is the scattering length in units of the background scattering
length (from the triplet channel), and K2 is the two-body loss constant. The blue boxes
emphasize the region of ∆e for which loss is minimized in the single beam case, which
coincides with the points of minimal tunability of as/|ab g |. In the two-beam case, the red
boxes emphasize the point of minimum loss is now at∆e = 0, which corresponds to a region
of high tunability in as/|ab g |. This figure was taken from [Jagannathan (2016)].

as the maximum loss point. To reduce loss, one may detune far from resonance, but both

the magnitude and the tunability of as are very small. With the two-beam method, the

frequency range of maximum tunability is the same range as the minimum loss point. This

is displayed in Fig. 1.1.

1.2 The Energy-Space Spin-Lattice Model of the Weakly In-

teracting Fermi Gas

The magnetic Feshbach resonance can be used to reduce as so that the rate of energy-

changing collisions is negligible on the timescales of the experiment. The motional energies

of individual atoms are, then, conserved. Interactions still occur in the form of forward

s -wave scattering, affecting the spin state of the two interacting atoms. This system has

been described as a spin-lattice in energy space, where it is assumed that there is no energy-

space coherence (i.e., the atoms are not in superpositions of different motional energy

states). Similar to the Ising model of magnetism in a crystal, spins are fixed at energy “sites”

and couple to one another. Every spin is coupled to every other spin. This is depicted in

Fig 1.2.
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Figure 1.2: A depiction of the energy-space spin-lattice for one energy dimension. Atoms
are fixed at energy “sites” labeled by En . Each site is associated with a spin vector, and all
sites are able to rotate the spin vectors of all other sites. We use a classical implementation
of the model, for which the spin vectors have well-defined spatial components in three
dimensions.

The spins evolve by a rotation, and thereforehe magnitude of the spin vector at each

energy site E , S(E ), is conserved. As we will see in Chapter 3, the evolution equation is

Ṡ(E ) =ΩB (E )×S(E ) +
∑

E ′

g (E , E ′)S(E ′)×S(E ) (1.1)

where ΩB (E ) is the energy-dependent precession rate in the magnetic field and the site-to-

site couplings

g (E , E ′)∝
∫

d x |φE (x )|2|φE ′(x )|2 as (1.2)

whereφE (x ) is the eigenstate of the trap with energy eigenvalue E . The energy-dependent

precession rate is essential: the collective spin vectors are coherently prepared orthogonal

to an applied magnetic field, and will not interact unless the vectors separate (due to

the fermionic nature of the atoms and the spatial symmetry of s -wave scattering). The

energy-dependent precession rate enables this, allowing the S(E ′)×S(E ) term to contribute.

The framework for this model was not developed specifically for this system. It originated

with the aim of boosting the signal-to-noise ratio in an atomic clock by increasing the density

of atoms. In the clock, atoms are illuminated with a beam which cycles the atoms between

a ground |g 〉 and an excited |e 〉 state at a (Rabi) frequency Ωg e . The interactions between

atoms cause a shift the resonant frequency between |g 〉 and |e 〉. To mitigate this, fermionic

atoms, cold enough that only s -wave interactions occur, were prepared in an identical
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state and used in the atomic clock. All interactions should, then, be suppressed. However,

density-dependent shifts were still observed, indicating that the interaction-dependent

effect was not suppressed [Campbell et al. (2009)]. The accepted explanation was that

inhomogeneities in the illuminating beam caused a differing values of Ωg e for different

atoms, which resulted in dephasing, breaking the symmetry and enabling interactions

[Gibble (2009)]. These interactions were considered weak enough that the motional energies

of the atoms were fixed [Gibble (2009); Rey et al. (2009); Yu and Pethick (2010)], so that

only the internal state of the atoms were affected. Here, the two-state atoms constituted

“psuedo-spins,” but the logic is identical to that of two spin states as described above, with

the varying Ωg e playing the role of the ΩB (E ) in Eq 1.1.

This formalism was applied to the weakly interacting Fermi gas [Koller et al. (2016)] in

order to understand the anomalous spin segregation first observed in Ref. Du et al. (2008).

Absorption images of a Fermi gas before and after spin segregation are shown in Fig. 1.3. The

atoms begin in an identical internal state; a 50-50 superposition of hyperfine states |1〉 and

|2〉. The presence of interactions, is, however, made apparent as the system evolves towards

a state in which one spin state is correlated with atoms in the center of the trap, and the

other spin state is correlated with atoms at the edge of the trap. Throughout the evolution,

the sum of the two profiles remains fixed. Spin segregation had first been observed in an

ultracold bose gas, where it was shown that it could not be a direct consequence of the

spin-dependence of the trapping forces, and was instead due to the many-body evolution of

the system [Lewandowski et al. (2002); Oktel and Levitov (2002)]. However, the theory used

to understand these results did not agree with the results in the Fermi gas [Du et al. (2008)].

The energy-space spin-lattice model, however, was able to reach quantitative agreement

with the observed spatial profiles (though, for the higher scattering lengths used, the model

disagreed with the measurements for long evolution times) [Pegahan et al. (2019)] .

When the energy-dependent Zeeman precession ΩB (E ) dominates, the vectors fan out.

But when the values of the lattice couplings g (E , E ′) are increased, this system undergoes a

phase transition into a magnetized state. This transition between dynamical phases was

observed in Refs. [Smale et al. (2019a), Huang and Thomas (2024)].

1.3 Optical Control in the Lattice

As seen in Eq. 1.2, the lattice couplings g (E , E ′) can be tuned by changing as via the magnetic

Feshbach resonance, so long as the rate of energy-changing collisions remains negligible.
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Figure 1.3: Spin segregation in a trapped Fermi gas, with atoms in a superposition of the
two lowest hyperfine states |1〉 and |2〉. The color scale encodes the density of atoms, with
red being the most dense and blue being the least dense. The top row shows the imaged
densities n1 and n2 of the two spin states before the system evolves, and the bottom row
shows the densities after 800 ms of evolution. For the as = 5.2a0, the spin state |1〉 has
become correlated with atoms at the center of the trap, and the spin state |2〉 has become
correlated with atoms on the edge of the trap. The sum of these two profiles n1+n2 is seen
to be constant. The dimensions of the images are 50×950µm. This figure was taken from
Ref. [Pegahan et al. (2019)].

The couplings are then globally scaled. With the high-resolution spatial control enabled by

optical control methods, we can realize as → as (x ) in Eq. 1.2. The spatial variation causes

the couplings between each pair of energies g (E , E ′) to change in a unique way. As a simple

example, if optical control beams illuminate only the edges of the trap, then only the high-

energy sites in the lattice would be coupled to one another. Further, focusing the beam

on the center of the trap would result in interactions between atoms with even quantum

numbers to dominate.

To demonstrate that optical control of as is possible in this system, the ultracold gas

can be made to be completely non-interactiong (as = 0) with the applied magnetic field,

and then be uniformly illuminated with the optical control beam. If the beam shifts the

scattering length, then it will induce spin segregation. We have performed this experiment

with our two-beam method, using the detuning of the second beam ∆2 to tune as . The

(axial, 1-D) spin densities before and after the evolution are shown in Fig. 1.4. When both

beams are on resonance, the amplitude to be in the excited state is zero, and there is no

change in the scattering length. We see that, for ∆1 = ∆2 = 0, the spin density profiles

are static. This case is identical to that case that no optical control beams are introduced.

Tuning∆2 to 13.75 MHz, spin segregation is observed, indicating that the scattering length

has been shifted by the optical beams. Tuning∆2 to −13.75 MHz, spin segregation is again

observed with the two spin states exchanged, indicating that the scattering length has again
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been shifted by the beams, this time with as →−as from the ∆2 = 13.75 MHz case. This

confirms that the optical control methods may be used to control the evolution of the

weakly interacting Fermi gas.

Figure 1.4: Inducing spin segregation by optical control after 300 ms of evolution. The mag-
netic field is tuned such that as = 0 and the two optical control beams uniformly illuminate
the sample. With both beams tuned to resonance, there is no shift in the scattering length
and the axial profile

∫

d y n (x , y ) (i.e., obtained summing the 2-D densities over the vertical
direction y in Fig. 1.3) is essentially static. as is controlled by varying the detuning of the
second beam. For positive detuning, the same segregation pattern observed in Fig. 1.3 is
reproduced. For negative detuning, the roles of the spin states are exchanged. This occurs
in the magnetic tuning case as well when as →−as [Pegahan et al. (2019)].

1.4 Optically Induced Loss in the Lattice

Note that in the Fig. 1.4, the density has decreased after segregation. This is due to the

loss that accompanies optical control and affects the many-body evolution of the energy-

space spin-lattice. Prior to this work, loss had not been studied in this system— unlike the

lossless case, these profiles were unable to be reproduced theoretically. This loss must be

8



understood in order to apply optical control to this system.

Two-body loss is understood for pairs of atoms in well-defined, distinct spin states

undergoing inelastic scattering. In this system, however, the spin states of the atoms are

determined by a many-body evolution which arises from the spin-dependent forward

scattering. This spin-state dependence of the scattering cross-section is a consequence

of the Pauli principle: for fermionic atoms to interact via s -wave scattering, their internal

states must differ.

This becomes especially relevant when the spin-lattice evolves into a magnetized state,

which occurs at a sufficiently large scattering length [Smale et al. (2019b); Huang and

Thomas (2023)]. In this phase, the spin states of all of the atoms are nearly identical, and

we would predict that the optically-induced loss would be significantly suppressed. Fermi

gases have recently provided new demonstrations of the Pauli principle in degenerate

samples, including the suppression of light scattering [Margalit et al. (2021); Sanner et al.

(2021); Deb and Kjærgaard (2021)] and the suppression of stimulated emission [Jannin

et al. (2022)], which arise from Pauli blocking, where optical momentum transfer to single

atoms is inhibited by occupied final momentum states. In contrast, the suppression of light

scattering in this system would be both dynamical and collective, emerging from effective

long range spin-spin interactions.

1.5 Outline of this Thesis

In this thesis, we generalize the two-body loss model for atoms in an incoherent mixture

to account for loss when the atoms are in groups of evolving superposition states. The

loss model, which accounts for Fermi suppression, is integrated into the energy-space

spin-lattice model of the weakly interacting Fermi gas. Measurements of time evolution of

the loss are obtained for different scattering lengths. We obtain measurements which agree

with the model prediction, exhibiting a phase transition (Fig. 1.5). The loss is seen to be

strongly suppressed —from losing ≈ 60% of atoms to only losing ≈ 15% of the atoms— as

as is increased from 0 to 24 a0.

In Chapter 2, we discuss the theory relevant to understand the two-body interactions

in an ultracold gas for this work. The phenomenological definition of the scattering cross

section is given and related to the quantum scattering picture, and the two-body loss equa-

tion for an incoherent mixture of (spin) states is obtained. With the necessary theoretical

background, the magnetic Feshbach resonance is discussed, followed by a description of
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Figure 1.5: Measurements of the atom fraction N (τ)/N (0) remaining after τ=370 ms of
illumination (with a beam tuned to the |g 〉 → |e 〉 resonance) as the scattering length is
increased (blue points), compared to the prediction of the loss model developed in this
thesis (red curve). As the scattering length is increased, the loss is dramatically suppressed,
which we interpret to be the result of a phase transition to a magnetized state. The data are
also plotted with the interaction strength ζ, which parameterizes the phase transition and
will be introduced in § 3. This figure is also displayed in § 5, where it is discussed in detail.

the two-field method of optical control.

In Chapter 3, the energy-space spin-lattice model is derived and an intuitive picture of

the spin dynamics is given. The loss model for this system is then derived and integrated

into the spin-lattice model, providing all of the tools necessary to simulate the evolution of

the system with loss. We finally describe how to measure the the relevant two-body loss

constant, which we denote by K a
2 , using light-induced loss in an incoherent mixture.

In Chapter 4, we describe the methods used to physically realize an ultracold gas, starting

from a thermal beam of atoms, using optical forces. We also show how the 2-D density

of the ultracold gas may be observed. We then provide an overview of the system used

to realize two-field optical control, which amounts to the frequency-stabilization of the

absolute frequency of each beam as well as the difference in frequency between the beams.

While the beam causing EIT is not used in our experiments, the entire locking scheme must

be understood in order to generate the loss-inducing beam used in the experiment.

In Chapter 5, we describe how the system is prepared in the weakly interacting regime
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after ultracold temperatures are reached, both for the coherently-prepared sample used to

create the spin-lattice, and for the incoherent 50-50 mixture used to measure K a
2 . The details

of how the sample is illuminated with the loss-inducing beam are given. We then report

the measurements of K a
2 and of the loss in the coherently-prepared sample. Suppression of

the loss is observed as the scattering length is increased. We find agreement between the

theory and the measurements, but only if the value of K a
2 is half of what we extract from

the measurements in the mixture.

In Chapter 6, we discuss this issue of the factor of two in the measurements of K a
2 . We

also introduce ideas of how the spin-lattice can be manipulated, with and without optical

control. We end on a discussion on possible reasons why the (lossless) model fails for longer

evolution times.
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CHAPTER 2

TWO-BODY INTERACTIONS IN

ULTRACOLD GASES

As mentioned at the beginning of § 1, ultracold gases are dilute enough that two-body

interactions dominate. This is why the sample does not naturally condense into a solid

or liquid state at the ultracold temperatures— for atoms to bind during a collision, en-

ergy must be removed (say, via a third colliding atom). Though the sample is dilute, the

ultracold atomic wavepacket is huge, with de Broglie wavelengths that are on the order

of the interatomic spacing (≈ 1 µm). Since the wavefunctions overlap, quantum statistics

is necessary to describe the two-body collisions. The quantum-mechanical nature of the

interactions also manifests in energy-dependent scattering resonances. “Controlling the

interactions” is equivalent to tuning the difference between the energy of the colliding pair

and the resonance energy.

As we will see, two potentials are needed to describe two-body s -wave scattering. This

is necessary for the existence of a Feshbach resonance, which allows for control of the

interactions. By light-shifting the quantum states involved in the Feshbach resonance, the

interactions can be controlled optically.

In this chapter, we introduce the phenomenological scattering cross section and relate

it to quantities that can be calculated with a quantum mechanical picture of the two-body

interaction. We discuss the concepts necessary to understand the magnetic Feshbach

resonance, and show how it can be used to tune the s -wave scattering length. Finally, we

discuss how the magnetic Feshbach resonance can be optically controlled, and how the
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associated loss may be suppressed via our two-field method.

2.1 Basic Scattering Theory

Atomic- or subatomic-scale properties of an unknown “target” substance can be probed

via scattering experiments. In these experiments, a fluxFP of “probe” particles P (from

molecules, to atoms, to subatomic particles, to photons) bombards a target T . Particles

which come out of the target are then observed. The problem is then to infer the properties

of the target based on the distribution of the scattering angle and energy of the redirected

probe particles (or other types of particles which come out of the target). In a target with

structure, the scattering experiments reveal more than information about the interactions

between the probe particles and the particles comprising the target— they can provide

information about how the particles are arranged in the target as well. For instance, Ruther-

ford scattering allowed the spatial structure of the atom to be inferred, and Bragg scattering

allowed the structure of a crystal to be determined down to the exact spacing between

planes.

To extract a quantity that describes the nature of the interaction between the probe

and target particles, we think of the target particles as appearing to the probe particles as,

say, hard spheres uniformly distributed over the cross-section of the target, with a cross-

sectional areaσ. Assuming that the area per particle∆A in the incoming beam of probe

particles is much larger thanσ, the probability that a probe particle hits a target particle is

then (∆NT σ)/∆A, where∆NT is the number of target particles in∆A. The fraction of the

probe particles incident on this window that are scattered is then equal to this ratio. To get

the total number of scattered probe particles, we sum over all possible cross-sectional areas

in three dimensions. Taking∆A to be fixed, the total number of scattered probe particles

N s c
P =NTσ/∆A. We multiply each side of this equation by the rate at which probe particles

arrive and obtain the number of probe particles scattered per unit time Ṅ s c
P

Ṅ s c
P =σFP NT . (2.1)

This provides our definition of the σ, for a uniform fluxFP over the target. Note that in

practice,σ depends on the relative velocity of the probe and target particles as well. More
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generally, we may consider a spatially-varyingFP and obtain

Ṅ s c
P =σ

∫

d 3rFP (r)nT (r) (2.2)

where nT (r) is the three-dimensional density of target particles at location r. Note that we

can define a differential cross section by measuring the angular distribution of the scattered

particles (assuming that the scattered particles are measured far enough away from the

target that the position at which the scattering occurred in the target does not matter). In

this thesis, we are not concerned with the differential cross section, and will only consider

the total cross section. In this definition ofσ, we obtain a phenomenological quantity that

is specific to the nature of the interactions between probe and target particles (for a given

relative velocity).

The theory used to understand the scattering of a probe beam off of a target can, of

course, be used to understand the scattering of one atom off of another in our ultracold gas.

The same quantities used to obtainσ can be used to understand the interaction-dependent

behavior of the gas as a whole. Furthermore, our method of observation, absorption imaging

(see § 4.1.5), can be thought as a kind of scattering experiment as described above.

In the following, we relate σ to the quantum picture of scattering and explore the

phenomena which arise in this picture.

2.1.1 Quantum Picture of Scattering

In the quantum picture of scattering, the atoms are waves, and the potential acts as an

effective refractive index. When a wave encounters a change in the potential energy and

the total energy is higher than the new potential, it partially reflects and partially refracts,

while the total energy is conserved. If the energy is less than the potential, the wave ceases

to oscillate in space, but continues to oscillate in time at the same frequency. We frame the

quantum picture of the scattering problem as the following: in the frame of one particle, an

incident wave approaches the range of the interaction potential from∞. Some fraction is

transmitted through, and some fraction is scattered. We will relate the amplitude of the

scattered wave as r →∞ to the cross section. We assume that the incident wave is a plane

wave, and that the wavefront is much larger than the range of the interaction potential.

To gain some intuition, let us consider a 1-D case with a “box” potential. Working in

the frame of one of the particles, V (x = 0)→∞, V (x < a ) =−V0, and V (x ≥ a ) = 0. This is

depicted in Fig. 2.1. The other particle approaches from x →+∞, with a wavevector −k,
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defined in the relative frame. When it hits x = a , most of the wave is transmitted, and some

is reflected. The transmitted wave completely reflects off of the infinite repulsion at x = 0,

and again approaches x = a . Here it partially transmits ans partially reflects. The cycle

repeats, ad infinitum. For this 1D case, the set of waves transmitted in the +x direction

out of the region 0 < x < a constitute the scattered wave. It is equivalent in wavelength

and frequency to the incoming wave, and only differs in the direction it is traveling, its

amplitude, and its phase. The last two are intertwined, as we will see in § 2.1.2.

Figure 2.1: Depiction of 1D scattering for a “box” potential V (x ). A wave approaches
from x →∞ towards the particle it will scatter off of. When it hits x = L , it encounters
a non-zero potential V = −V0, causing it to partially reflect and partially transmit. The
wavelength of the transmitted wave changes. When the transmitted wave hits x = 0, it
is completely reflected. Upon hitting x = L , the wave partially transmits and partially
reflects, and the cycle repeats. The combination of all waves transmitted out of the region
0< x < L constitute the “scattered” wave. Note that the vertical position of the arrows is
not representative of the energy.

In three dimensions, the incoming plane wave is scattered in all directions. Working far

away from the interaction potential and in the frame of the scattering particle, we write the
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total wavefunction after scattering as

ψ= A(e i k z +ψs c ) (2.3)

whereψs c is the scattered wavefunction. Since we are considering the region far away from

the interaction potential,ψs c is also a free-particle solution to the Schroedinger equation.

A-la Huygen’s principle, we write theψs c in spherical coordinates (taking only the solution

which travels radially outwards)

ψs c =
fk (φ,θ )

r
e i k r (2.4)

where fk (φ,θ ) is the scattering amplitude (note from the above equation that it is the

fraction of the amplitude of the transmitted wave), which can be written as the sum of

spherical harmonics Y m
ℓ (φ,θ )with coefficients Bℓ

fk (φ,θ ) =
1

k

∑

ℓ

∑

m

(−i )ℓB m
ℓ Y m

ℓ (φ,θ ) (2.5)

Now, we aim to relate this expression for the wavefunction after scattering to the phe-

nomenological quantityσ. We do this by first writing the probability flux associated with

the wavefunctions. Since “probability is conserved” we can express

∂

∂ t
|ψ(r)|2 =−∇ · j (r). (2.6)

Indeed, this is consistent with the Schroedinger equation, where, in the relative frame,

j (r) =
ħh
iµ

Imag
�

ψ∗(r)∇ψ(r)
�

. (2.7)

For the incoming plane wave,

j k = |A|
2ħhk

µ
(2.8)

for the scattered wave,

j s c (r ) = |A|
2 | fk (φ,θ )|2

r 2

ħhk

µ
r̂ (2.9)

In Eq. 2.1, we motivated the cross section by thinking in terms of hitting a target. In this

picture, where the wavefront is much larger than the range of the potential, the cross section

is not dependent on whether or not the target is hit, but rather what fraction of the wave
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is scattered. To relate this picture to Eq. 2.1, we can consider only a single pair of atoms,

setting NT = 1,FP → jk and let Ṅs c →
∮

d A · j s c (where the integral is over the surface of a

sphere encapsulating the scatterer). With d A= r 2dΩ r̂, we have

σ=

∫

dΩ | fk (φ,θ )|2. (2.10)

This is our connection between the phenomenological and the theoretical. Note that, for

indistinguishable particles, the scattered wavefunction must either a symmetric or an

antisymmetric. This results in a scattering cross section for indistinguishable particlesσi nd

σi nd =
1

2

∫

dΩ | fk (φ,θ )± fk (π−φ,π−θ )|2. (2.11)

For a symmetric spatial state, the cross section will double.

To calculate scattering predictions of a known potential V (r), the problem is to find f

for V (r) and k . This is not trivial. Using a Green’s function approach, a recursive relationship

for the scattered wavefunction (the Born series) may be set up. This approach may be used

to find perturbative solutions. Limiting ourselves to the first term, we have the “first Born

approximation” for the scattering amplitude

f (1)k (φ,θ ) =−
µ

2πħh 2

∫

d 3r V (r)e i k r . (2.12)

Of course, this expression becomes less and less appropriate as the scattered wave ampli-

tude becomes comparable to the incident wave amplitude.

2.1.2 Partial Wave Expansion

We noted in the 1D case that the scattered wave differed only in direction, phase, and

amplitude from the incident plane wave (when far away from the range of the potential).

While in that case the incident wave and the scattered wave propagated on the same axis, in

the 3D case the incident wave and spherically-scattered waves cannot be directly compared.

Here we deconstruct the incident plane wave into radial waves, allowing us to use the phase

shifts of these radial waves to quantify the scattering. We will show how the amplitude and

phase shift for each radial, or “partial” wave, are intertwined.

Expanding the plane wave in the spherical harmonic basis, we can write the incident

wave in spherical coordinates. In this basis, the wave is quantized, even though its a free.
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This is because a given eigenstate of the wave must constructively interfere with itself as it

rotates about a given axis. While this is a seemingly obtuse way to express a plane wave, it

will allow us to directly compare the incident wave with the scattered wave. Here we limit

ourselves (for simplicity) to the cases in which the scattering amplitude is symmetric for

rotations about the direction of the incident wave, fk (φ,θ )→ fk (θ ). This means that we

only consider central potentials, V (r)→V (r ). For r →∞, the incident plane wave may be

written as

e i k z =
1

2i k r

∑

ℓ

Cℓ(θ )
�

e i k r − e −i (k r−ℓπ)� (2.13)

where Cℓ(θ ) = Pℓ(cosθ )(2ℓ+ 1) and the angle θ is defined relative to the direction of the

plane wave ẑ . Now, the total wavefunction Eq. 2.3 for r →∞ is also a free-particle solution,

and, conserving probability, can only differ by a phase shift. So, the total wavefunction after

scattering is simply

ψ=
A

2i k r

∑

ℓ

Cℓ(θ )e
iδℓ(k )
�

e i k r − e −i (k r−ℓπ)� (2.14)

but this means that, from Eqs. 2.3, 2.4, and 2.5, the scattering amplitude is

fk (θ ) =
∑

ℓ

Cℓ(θ )χℓ(k ) (2.15)

where

χℓ(k ) =
e 2iδℓ(k )−1

2i k
(2.16)

In the partial wave expansion, χℓ is the amplitude of partial wave ℓ. We see that χℓ and the

phase shift are not independent. The scattering amplitude may then be found by solving

the Schroedinger equation with V (r ) for the radial wave function and taking the asymptote

r →∞ to compute the phase shift for each partial wave. Keeping δℓ(k ) bounded between

π/2 and −π/2, attractive interactions correspond to δℓ(k )< 0 and repulsive interactions

correspond to δℓ(k )> 0. That is, the wave fronts are either pulled towards or away from the

other particle.

Since the amplitude of each scattered wave can be written in terms of a phase shift and

the Pℓ(cosθ ) are orthogonal, we can associate a different cross section to each partial wave

ℓ

σ=
∑

ℓ

σℓ (2.17)

then

σℓ =
4π

k 2
(2ℓ+1)sin2δℓ(k ). (2.18)
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We can, then, imagine the scattering of each partial wave as an independent event.

Each partial wave ℓ is associated with a different rotational “kinetic energy,” which is

equivalent to an effective potential

Vℓ(r ) =
ℓ(ℓ+1)ħh 2

2µr 2
. (2.19)

Thus, the higher ℓ is, the higher the energy of the incident wave needed to “excite” the

partial wave ℓ. For low energy collisions, k → 0, and we expect only the partial waves with

low values of ℓ to contribute. In this low-energy limit, we expect δℓ(k )→ 0. Then,

lim
k→0
χℓ(k ) = lim

k→0

δℓ(k )
k

. (2.20)

We define the “scattering length” for a given partial wave aℓ as

aℓ =− lim
k→0
χℓ(k ). (2.21)

Now, for the ultracold temperatures used in our experiments, the ℓ= 0 wave, or, “s -wave,”

dominates over the other partial waves (note that Vℓ=0 = 0). Since P0(θ ) = 1, this wave is

spherically-symmetric— it has no angular momentum. It can be shown that the phase shift

of the s -wave from a hard sphere of radius R is −k R . Then, the s -wave scattering length

as (equivalent to aℓ=0) corresponds to the radius of the hard sphere which reproduces the

same phase shift as the real interaction potential.

The hard sphere of radius as is not the only potential that can be used in place of the

real interaction potential to reproduce the same scattering amplitude. If we limit ourselves

to the case that the scattered wave is small compared to the transmitted wave, then the

first Born approximation Eq. 2.12 becomes an appropriate way to calculate the scattering

amplitude from the interaction potential. Now, if we simply want to make the interaction

potential result in an s -wave scattering length as , we can set

V (r) =
2πħh 2as

µ
δ(r) (2.22)

we then get back fk (θ ) =−as . Note that as > 0 corresponds to an attractive interaction, and

as < 0 corresponds to a repulsive interaction. For indistinguishable particles with spatial

19



symmetry, we must set as → 2as to obtain

Vi nd (r) =
4πħh 2as

µ
δ(r). (2.23)

We refer to potentials that reproduce the desired scattering quantities, without the details

of the real interaction potential, as “psuedo-potentials.” They prove especially useful when

modeling the two-body interactions in an ultracold gas.

2.1.3 Resonances

When conducting scattering experiments, it is found that, as the energy of the incoming

particles change, the cross section can increase sharply and peak about a “resonance”

energy. This phenomenon is expected from the quantum picture of scattering, and can be

understood in terms of simple constructive interference. To see this explicitly for a simple

case, recall the 1-D box potential in Fig. 2.1. The amplitude of the wave inside of the range

of the potential (0< x < a ) will reach its maximum value when all of the waves bouncing

back in forth are in-phase (2k ′a = 2πn , where k ′ =
p

2µ(E +V0)/ħh and n is an integer).

The amplitude of the reflected wave, playing the role of the scattered wave, will also be

maximized when all of the waves leaving the range of the potential are in phase, which

occurs under the same condition. That is, as the wave “builds up” around the scatterer, it is

able to scatter more and more, “leaking” out of the edge of the range of the potential.

In general, if the potential can sustain a wave of frequencyω (that is, if the Hamiltonian

has an eigenvalue ħhω) then an incoming wave with frequencyω can “couple” to this state,

building up the probability amplitude to be in this state by oscillating in-phase with it.

The amplitude to be in a given eigenstate will be a function of the difference between

the incoming wave energy and the energy of that state. To see this, let the Hamiltonian

describing the scattering potential —kinetic and potential— be Hs c . We introduce a “driver”

Hamiltonian HD = Ek |ψk 〉 〈ψk |, which only operates on the incoming plane wave |ψk 〉=
A |k〉, where 〈r|k〉= e i k·r = e i k z , to continuously propagate it through the scattering potential.

We express Hs c in terms of the eigenstates

Hs c =
∑

E

E |E 〉 〈E | (2.24)

We write the total wavefunction as |ψ〉 = |ψk 〉+ |ψs c 〉. The scattered wave function |ψs c 〉
comes from the coupling of the incoming wave to the eigenstates of Hs c , so we can express
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it in the |E 〉 basis

|ψs c 〉=
∑

E

cE |E 〉 . (2.25)

With the driver Hamiltonian acting only on the propagating wave, we search for equilibrium

solutions at a sustained vibration given by the incoming energy

HD |ψk 〉+Hs c |ψ〉= Ek |ψ〉 (2.26)

Since the time-dependence of the plane wave comes entirely from the driver,

Hs c |ψ〉= Ek |ψs c 〉 (2.27)

this results in

〈E |k〉E A+E cE = Ek cE . (2.28)

|ψs c 〉 is then

|ψs c 〉= A
∑

E

E 〈E |k〉
Ek −E

|E 〉 (2.29)

If Ek = E , the ratio of the amplitude to be in the state |E 〉 to the amplitude of the outgoing

plane wave approaches∞. That is, all of the incoming wave is scattered, and the cross

section hits its maximum value. This is a resonance— when the energy of the incoming wave

is equal to the energy of an eigenstate |E 〉 of the scattering potential, so long as 〈E |k〉 ̸= 0.

The equal energies correspond to equal oscillation frequencies, allowing |ψk 〉 and |E 〉 to

oscillate in-phase so that |ψk 〉 “pumps” directly into the state |E 〉.
Since the energy of the incoming, free particle must be equal to the energy of an eigen-

state in order to achieve resonance, it appears impossible to resonate with a bound state.

Indeed, the concept doesn’t even appear to make sense, as a the wavefunction of a bound

state decays to zero for r → 0, by definition. It is possible for the incoming particle to come

in with a negative energy by introducing an offset energy −U0 over all space (by, say, an

interaction of the internal state with a uniform external field). However, this shifts the

energy of the eigenstates as well, so that Ek → Ek −U0 and E → E −U0, resulting in no

change to Ek − E . As will be discussed in § 2.2, however, it is possible to resonate with a

bound state when multiple scattering “channels” are present.
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2.1.4 Multiple Channels and Inelastic Scattering

In the quantum picture of scattering discussed so far, we’ve limited ourselves to elastic

scattering— the internal state and total energy of the outgoing particles is identical to

those of the incoming particles. It is possible that, during a scattering experiment, the

probe particles emerge from the target in a different internal state and with a different

energy than the incident beam. Or, some fraction of the probe particles do not emerge

at all. Or, fundamentally different particles emerge. We refer to scattering of this sort as

inelastic scattering. The different possible states that the pair of particles can be in during

the scattering event are referred to as “channels.” The quantum picture of scattering now

goes beyond mere wave mechanics: all possible channels are simultaneously taken during

the collision.

For two channels |α〉 and |β 〉, the scattering Hamiltonian now takes the form

Hs c =Hα |α〉 〈α|+Hβ |β 〉 〈β |+C |β 〉 〈α|+C ∗ |α〉 〈β | (2.30)

where Hα and Hβ are the kinetic energy and interaction potential operators for a a pair of

particles in the two-particle states |α〉 and |β 〉, andC describes the coupling between the

two states. It is possible that the potentials (external and interaction) can be different in

the two states, so that the total potential in the interaction is

V (r) =Vα(r) |α〉 〈α|+Vβ (r) |β 〉 〈β | . (2.31)

This opens up the possibility that the incoming pair of free particles couple to a channel

with a potential from which they cannot escape. Such a channel, which is taken during

the interaction but cannot be occupied by the scattered particle, is referred to as a “closed

channel.” Note that the particles return to the free state, since the coupling allows the

particles to exit in “open” channel. Since the input channel must be open, there is always

at least one open channel. It is then possible for elastic scattering to occur with multiple

channels, if all channels are closed other than the input channel.

Separate cross sections can be defined for elastic events and and for inelastic events.

The elastic cross sectionσe l we define according to Eqs. 2.17 and 2.18, where δℓ(k ) is the

phase shift associated with the incoming state (i.e., the input channel). We note that the

scattering amplitude associated with the other channels cannot be expressed as a phase

shift, as they cannot be combined with the incoming wave. Since some of the wave is lost

to other channels, the elastic cross section should be smaller than in the case that there
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is no inelastic scattering. We can account for this by allowing for complex phase shifts

δℓ(k ) = δℓ(k )′ + iδℓ(k )′′ (where δℓ(k )′ and δℓ(k )′′ are real), with δℓ(k )′′ > 0 (note that this

results in a complex scattering length). Computingσℓ from Eq. 2.16, we see that δℓ(k )′′ > 0

will reduce this value, as desired. Now, the total cross-sectionσt o t , which accounts for all

scattering events can, remarkably, be expressed in terms of the elastic scattering amplitude

in the direction of the incident beam fk (θ = 0)

σt o t =
4π

k
imag
�

fk (θ = 0)
�

(2.32)

(see the Optical Theorem). Then, the inelastic cross section σi ne l can be isolated and

expressed in terms of the (complex) phase shift of the elastically-scattered wave

σi ne l =σt o t −σe l =
π

k 2

∑

ℓ

(2ℓ+1)(1− |e 2iδℓ(k )|2). (2.33)

The form of the inelastic cross section is then to something we’d expect— if δℓ(k )′′ = 0 ,

there is no inelastic scattering.

In this thesis, we will be concerned with inelastic two-body scattering in a trapped

ultracold gas. In a gas, there are no “probe” and “target” particles; all interactions happen

internally. We may still make use of Eq. 2.2 by expressing the flux in terms of the density

F (r) = vr e l n (r) (2.34)

We will consider the case that the atoms interact only if one atom is in a state A and the

other is in a state B . From Eqs. 2.2 and 2.34, we can define a density of inelastic collisions

nI C (r) between atoms in each state with a relative speed vr e l

ṅI C (r) =σ
AB
i ne l vr e l nA(r)nB (r) (2.35)

where Ṅ s c
A = Ṅ s c

B =
∫

d 3r ṅI C (r), nA(r) is the density of atoms in state A, nB (r) is the density

of atoms in state B , andσAB
i ne l is the inelastic cross section between atoms in states A and

B . Note that nA(r) = n (r)ρAA and nB (r) = n (r)ρB B (where ρ is the density matrix and n (r)

is the total gas density) are well-defined only when the gas is in an incoherent mixture

of the states states A and B (that is, ρAB = ρB A = 0). If an inelastic collision jettisons the

interacting atoms out of the trap, then ṅA(r) = ṅB (r) =−ṅI C (r), and we have

ṅA(r) = ṅB (r) =−K AB
2 nA(r)nB (r) (2.36)
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where K AB
2 = 〈vr e lσ

AB
i ne l 〉 is averaged over all relative speeds.

2.2 The Feshbach Resonance

As we saw in § 2.1.3, a resonance occurs when the energy of the incoming particle ap-

proaches the energy of an eigenstate of the system. We noted that, since the incoming

energy could not be made equal to the energy of a bound state, resonance can only occur

with unbound eigenstates. While the energy of the incoming state can be made negative,

the energy of the bound state would be equally shifted. Furthermore, resonance with a

bound state appeared paradoxical, since the wavefunction approaches zero as r →∞.

This analysis, however, was limited to a single-channel collision. Here we will show that a

different type of resonance, a “Feshbach” resonance, is possible when multiple scattering

channels are present.

Consider two channels, with a scattering Hamiltonian Hs c of the form given in Eq. 2.30.

Let the atoms approach each other in the two-atom (internal) state |α〉. The interaction

between atoms when they are in this state is described by the potential Vα(r). We introduce

a negative energy offset −Uα, constant over all space, for atoms in the state |α〉 (which can

be realized by introducing a uniform external field which interacts with the internal state

of the atom). Without any coupling to other scattering channels during the interaction,

the atoms scatter off of Vα(r), and resonate if the incoming energy is equal to the energy of

a free eigenstate. Let the eigenvalues be Eα when Uα = 0, and let the eigenstates with the

arbitrary Uα be |Eα〉. Then,

Hα =
∑

Eα

(Eα−Uα) |Eα〉 〈Eα| (2.37)

Note that the incoming energy has also been shifted, Ek → Ek −Uα.

Now, withC ≠ 0 in Eq 2.30, the atoms couple to another two-atom state |β 〉 during the

interaction. The interaction between atoms in this state is described by the potential Vβ .

The offset energy for atoms in this state is −Uβ , and we have

Hβ =
∑

Eβ

(Eβ −Uβ ) |Eβ 〉 〈Eβ | . (2.38)

If Uα >Uβ , the energy of the incoming state can be made equal to the energy of a bound state

in Vβ . The incoming wave may then “build up” around the atom in the |β 〉 channel, and

scatter away as it couples to the unbound states in the |α〉 channel.
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To see this, we may repeat the analysis from § 2.1.3 using Eqs. 2.30, 2.37, and 2.38. In

the steady state,

|ψs c 〉=
∑

Eα

cEα |Eα〉 |α〉+
∑

Eβ

cEβ |Eβ 〉 |β 〉 . (2.39)

As in Eq. 2.27, we have, since Ek → Ek −Uα,

Hs c |ψ〉= (Ek −Uα) |ψs c 〉 (2.40)

where Hs c is given by Eq. 2.30, the total wavefunction |ψ〉= |ψk 〉+ |ψs c 〉, and the incoming

wavefunction |ψk 〉= A |k〉 |α〉. This results in the coupled equations

(Eα−Uα)〈Eα|k〉+ (Eα−Uα)
cEα

A
+C ∗
∑

Eβ

cEβ

A
〈Eα|Eβ 〉=

cEα

A
(Ek −Uα) (2.41)

(Eβ −Uβ )
cEβ

A
+C 〈Eβ |k〉+C

∑

Eα

cEα

A
〈Eβ |Eα〉=

cEβ

A
(Ek −Uα) (2.42)

where all coefficients are initially zero. Note that if C = 0, we recover Eq. 2.28 for the |α〉
channel with the shifted energy. We consider a single (bound) eigenstate in the |β 〉 channel,

|Eβ 〉. Then,
cEβ

A
=
C
∆

�

〈Eβ |k〉+
∑

Eα

Eα−Uα
Ek −Eα

〈Eα|k〉〈Eα|Eβ 〉
�

(2.43)

cEα

A
=

Eα−Uα
Ek −Eα

〈Eα|k〉+
C ∗

Ek −Eα
〈Eα|Eβ 〉

cEβ

A
(2.44)

where

∆= Ek −Uα−Eβ +Uβ − |C |2
∑

Eα

|〈Eα|Eβ 〉|2

Ek −Eα
. (2.45)

We see that a single-channel resonance occurs for Ek → Eα, and another resonance occurs

for∆→ 0. If Uα−Uβ can be made positive enough, this can occur when |Eβ 〉 is a bound state

(Eβ < 0). While the bound state wavefunctions |Eβ 〉 go to zero for r → 0, the free-particle

solutions |Eα〉 “carry a piece” of the amplitude to be in this state, as seen in Eq. 2.44. Taking

(Ek −Uα)< (Eβ −Uβ ), the |β 〉 channel is closed, and the scattering is elastic (i.e., the atoms

exit in the collision in the same state in which they entered). We call this type of resonance

a “Feshbach Resonance.”

The significance of the Feshbach resonance for ultracold gases is that the amplitude

of the scattered wave can be tuned by changing ∆ in Eq. 2.45. Whereas, in a scattering
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experiment, Ek is usually varied; in a gas, the distribution of Ek is set by the temperature.

One can, however, reach ∆→ 0 by varying Uα −Uβ . This is typically done via magnetic

tuning.

2.2.1 Magnetic Tuning

Here we will show how a Feshbach resonance may be realized in a gas of (ultracold) alkali

atoms by applying a magnetic field B. The states |α〉 and |β 〉 used above will here refer to

singlet (antisymmetric) and triplet (symmetric) states of the two-electron spin state, formed

by the valence electron from each atom. The energy offsets −Uα and −Uβ are introduced by

the Zeeman tuning of these states in B, which differ due to the different magnetic moments

of each state. The symmetric and antisymmetric states are associated with different effective

interaction potentials. As we will see, the hyperfine interaction plays the role ofC .

Consider a single alkali atom j in a magnetic field B. To describe the spin interactions,

we consider only the nucleus, with a spin operator Î j (which may be bosonic or fermionic)

and the single valence electron, with an intrinsic spin operator Ŝ j . We include contributions

from the hyperfine interaction, the interaction of the intrinsic electron spin with the field,

and the interaction of the intrinsic nuclear spin with the field to obtain the Hamiltonian

Ĥ j
i n = AH F Î j · Ŝ j +Ce Ŝ j ·B−Cn Î j ·B. (2.46)

where Ce > 0 and Cn > 0. Note that we have neglected spin-orbit coupling, since, for the

alkali atoms, the valence electron has ℓ= 0. Due to the much larger mass of the nucleus

compared to the electron, Ce >> Cn , so the magnetic tuning is dominated by the two

electron spin state. Now consider a pair of interacting atoms 1 and 2. The total Hamiltonian

describing the dynamics of the internal spins is

Ĥ 1
i n + Ĥ 2

i n = AH F Î2 · Ŝ2+AH F Î1 · Ŝ1+Ce ŜT ·B−Cn ÎT ·B (2.47)

where ŜT = Ŝ1+ Ŝ2 and ÎT = Î1+ Î2. Note that the terms Î1 · Ŝ2 and Î2 · Ŝ1 do not appear,

which can be shown rigorously. Due to the hyperfine coupling this Hamiltonian, cannot be

expressed in terms of the total electron spin or nuclear spin. In other words, the single-atom

spin evolution results in a coupling of the two-atom spin state:

Î2 · Ŝ2+ Î1 · Ŝ1 =
∑

S ,Ms ,I ,MI

CS ,Ms ; I ,MI
|S Ms 〉 |I MI 〉 〈I MI | 〈S Ms | (2.48)
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where S is the total electronic spin quantum number and I is the total nuclear spin quantum

number of the two-atom system. During the interaction, then, a given input channel in the

|S Ms 〉 |I MI 〉 basis is coupled to the other two-electron spin and two-nuclear spin states.

Expressing the above coupling term with raising and lowering operators, it can be shown

that only states that share the same the total magnetic quantum number M =Ms +MI are

coupled.

The magnetic moment of |S Ms 〉 is proportional to Ms , and the magnetic moment of

the |I , MI 〉 is proportional to MI . Since Ce >>Cn in Eq. 2.47, the total Zeeman energy of the

two-atom spin state is approximately∝Ms B . This allows the energy difference between

channels with differing values of Ms to be tuned.

Now, the interaction between atoms in the symmetric two-electron spin states |S = 1 Ms 〉
is described by a different effective potential than the interaction between atoms in anti-

symmetric two-electron spin state |S = 0 Ms = 0〉. This is a consequence of the symmetry

requirements of the total state upon exchange of the electrons. In the Born-Oppenheimer

approximation, the total two-atom wavefunction |Ψ〉 for the spin state |S Ms 〉 |I MI 〉 in the

center-of-mass frame may be written as

|Ψ〉=ψ(re
1, re

2, R)χ(R) |S Ms 〉 |I MI 〉 (2.49)

where re
j is the position of electron j , R is the relative position between the two nuclei, and

ψ(re
1, re

2, R) is the molecular electronic state. The exchange of the electrons must result in

|Ψ〉→−|Ψ〉. The |S = 1 Ms 〉 state must then be associated with an antisymmetricψ(re
1, re

2, R),

and the |S = 0 Ms = 0〉 state must be associated with a symmetricψ(re
1, re

2, R) upon exchange

of re
1 and re

2. Since an antisymmetric spatial wavefunction vanishes as a pair of particles

approach one another, the effective potential associated with the symmetric spatial state

(the singlet spin state) Vs (r) will be much deeper than the effective potential associated

with the antisymmetric spatial state (the triplet state) VT (r). Note that we have neglected

the nuclei in this discussion, whose wavefunction does not affect the overall interaction

potential as much as the two-electron wavefunction. For bosonic (fermionic) nuclei, the

exchange of the nuclei must result in |Ψ〉 → (−) |Ψ〉. The exchange of the nuclei positions

results in R→−R. Ifψ(re
1, re

2, R) can be approximated by

ψ(re
1, re

2, R)∝φ(re
1−R/2)φ(re

2+R/2)±φ(re
1+R/2)φ(re

2−R/2) (2.50)

then the exchange of nuclei position gives the same result as the exchange of electron
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positions. Since χ(R) is symmetric for s -wave scattering, the spatial wavefunction of the

two-atom stateψ(re
1, re

2, R)χ(R) is always symmetric upon exchange of the two atoms (nuclei

and electrons). Bosonic (fermionic) atoms must then be symmetric (antisymmetric) in the

total spin |S Ms 〉 |I MI 〉.
If a bound state exists in Vs (r), we have the ingredients for a Feshbach resonance: the

energy of an incoming free atom state with |S = 1 Ms =−1〉may be tuned into resonance

with a bound state in the Vs (r) potential with |S = 0 Ms = 0〉 via an applied magnetic field.

The hyperfine coupling Eq. 2.48 allows the interacting atoms to couple to the bound state.

This is how the s -wave scattering length is controlled in ultracold alkali gases.

2.2.2 Application to Ultracold 6Li Atoms

Our experiments employ ultracold 6Li atoms. These atoms are fermionic, with a bosonic

nucleus of I1 = 1. The two-atom state |Ψ〉 is then symmetric upon exchange of the two

nuclei. Since |Ψ〉 is antisymmetric upon exchange of the two electrons, |Ψ〉 is antisymmetric

upon exchange of the two atoms (electrons and nuclei).

In 6Li, the triplet potential VT (r) has a near-zero-energy s -wave resonance, resulting in

a huge s -wave scattering length of as =−2160a0 ≈−0.1 µm when the atoms are ultracold

(i.e., near zero energy), the largest known for any atomic system [Abraham et al. (1997)]. The

singlet potential Vs (r) supports multiple bound states, much deeper than the zero-energy

resonance in VT (r). To reach these energies by tuning the |S = 1 Ms =−1〉 two-electron spin

state, magnetic fields on the orders of hundreds of Gauss are required.

A single 6Li atom has (2×1+1)×(2× 1
2+1) = 6 total spin states via Eq. 2.46, which are well-

separated in energy at these high magnetic fields (see Fig. 2.2 and § A). We label these states

|1〉− |6〉 in order of increasing energy. The energies of states |1〉− |3〉 become more negative

in an applied magnetic field, and the energies of states |4〉 − |6〉 become more positive

in an applied magnetic field. Due to their fermionic nature, atoms in identical internal

states cannot undergo s -wave scattering. Pairs of atoms in different states have different

scattering properties. This is partially due to the differing amplitudes of the two-atom

states associated with singlet and triplet configurations, and partially due to the coupling to

other channels (i.e., |5〉 and |4〉→ |3〉 and |2〉). Scattering channels are coupled together via

Eq. 2.48, and an incoming combinations of states can leave in a different combination of

lower-net-energy states. This releases energy, which can be large enough to jettison atoms

from the trap when then incomin states include states |4〉 − |6〉 and the outgoing states

include |1〉−|3〉. Limiting ourselves to states |1〉−|3〉, we close off the |4〉−|6〉 channels to the
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Figure 2.2: Magnetic field-dependence of the six eigenstates of 6Li, with the valence elec-
tron in the ground state. Explicit formulae for the energies are given in § A.

other states and avoid these sorts of inelastic collisions. To work with a completely stable

system (i.e., where the open input and output channels are the same for all collisions), we

work with a mixture of atoms in the |1〉 and |2〉 states. These states have a net magnetic

quantum number M =Ms +MI = 0, the hyperfine coupling Eq. 2.48 can only couple to

channels with total M = 0. Since the state which is tuned near the Feshbach resonance has

Ms =−1, the nuclear spin must have MI = 1. The bound state, with Ms = 0, must also have

MI = 0.

There are two possible MI = 0 states with the appropriate symmetry: |I = 0 MI = 0〉 and

|I = 2 MI = 0〉. Two orthonormal linear combinations of these states results in two Feshbach

resonances in the |1〉− |2〉mixture. The “broad” resonance is at B = 832.2 with a width of

300 G, and the “narrow” resonance is at B = 543 G with a width of 0.1 G. As can be inferred

from Eqs. 2.43 and 2.44, these widths are connected to the coupling constant. Indeed, the

hyperfine coupling for the bound responsible for the broad resonance is 131.6 MHz, and

the hyperfine coupling for the bound responsible for the narrow resonance is 5.9 MHz.

Near the narrow resonance, there is a non-neglibable probability of inelastic three-body

collisions. In this work, we avoid the narrow resonance.
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2.2.3 Formation of Feshbach Molecules

Tuning the magnetic field near the Feshbach resonance, the atoms are in a superposition

of the elastically-scattered states (in the triplet channel) and molecular states (in the singlet

channel). By sweeping the the magnetic field closer to zero (“downwards”), the energy

difference between the states changes in time, and it is possible to “dump” atoms into the

molecular state— that is, the probability can be made much higher for the atoms to be in

the bound state than in the free state.

This is a well-known phenomenon (the Landau-Zener effect; [Zener (1932)]) in coupled

two-level systems, which we will here use as a model for the Feshbach resonance. Consider

a coupled, two-level system

H = E1 |1〉 〈1|+E2 |2〉 〈2|+C |1〉 〈2|+C ∗ |2〉 〈1| . (2.51)

Now, let E2→ E2(t ). Writing the state as

|ψ〉= b1(t )e
−i E1t /ħh |1〉+ b2(t )e

−i E1t /ħh |2〉 , (2.52)

the Schroedinger equation gives

λb2(t ) = i ḃ1(t ) (2.53)

ω(t )b2(t ) +λ
∗b1(t ) = i ḃ2(t ) (2.54)

where λ≡C /ħh and

ω(t ) =
E2(t )−E1

ħh
. (2.55)

The equations can be decoupled to give

b̈1(t ) + iω(t )ḃ1(t ) + |λ|2b1(t ) = 0 (2.56)

b̈2(t ) + iω(t )ḃ2(t ) + |λ|2b2(t ) + i ω̇(t )b2(t ) = 0. (2.57)

With ω̇= 0, the system undergoes normal Rabi oscillations. Now, we turn on a linear sweep

ω(t ) =ω(0) +γt . What happens?

In the figure, we show a numerical simulation of the probabilities for the above equations.

Note that b1(t ) and b2(t ) have been renormalized at every time step, i.e., |b1(t )|2+ |b2(t )|2 = 1

is enforced at every time step. The timescale is chosen to be the initial Rabi period, TR0
=

2π/ΩR0
, where ΩR0

= 1
2

p

ω(0)2+4|λ|2. Initially, the probability to be each state oscillates

30



Figure 2.3: Probability of a two-level system to be found in each state, when the energy of
state 2 changes linearly in time. The time scale is chosen to be the initial Rabi period TR0

.
Before the sweep begins, (E2(0)− E1)/ħh =ω(0) = 2λ. The linear sweep begins at to n = TR0

and ends at to f f = 4TR0
. The final value of the energy difference is ω(To f f ) = −2λ. Here,

λ= 1 and the probability amplitudes are renormalized at every time step.

between 0 and 1, withω(0) = 2λ. At t = TR0
, the sweep begins, with γ=−4λ/(3TR0

). While

the ramp is on, it becomes more and more likely that the system is in state 2. At t = 4TR0
,

the sweep is terminated. The system is now most likely to be found in state 2 throughout

the evolution for t > 4 TR0
.

Sweeping the magnetic field across the Feshbach resonance has the same effect. Starting

above resonance in the open channel, sweep the magnetic field downward causes the

continuum states to turn into bound states adiabatically. We refer to these occupied states

as “Feshbach molecules.”

2.3 Optical Control of the Magnetic Feshbach Resonance

The scattering amplitude is a function of the differences between the incoming energy

and the energy of the eigenstates. In the magnetic Feshbach resonance, the energy of

the incoming state is tuned to the energy of a bound state |g 〉. The interactions may also
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be controlled by tuning the energy of the bound state. This can be done with a “light-

shift,” where a near-resonant laser changes the energy of the states it drives transitions

between [Townes (1955)]. In the rotating wave approximation, the effect of the laser can be

incorporated into the scattering Hamiltonian as

Hs c →Hs c +
1

2
Ω1e i∆1t |e 〉 |s 〉 〈s | 〈g |+h .c . (2.58)

where Ω1 is the Rabi frequency of the beam, |e 〉 is an electronically-excited molecular state,

∆1 is the detuning of the beam from the |g 〉→ |e 〉 resonance, |s 〉 denotes the anti-symmetric

(singlet) two-electron state, and h .c . denotes the Hermitian conjugate. The states |g 〉 and

|e 〉 are no longer eigenstates of the singlet-channel; the states are now “dressed” by the

field. The light shift is computed from the eigenstates of these “dressed states.” To second

order, the shift is approximately Ω2
1/(4∆1).

The scattering length may then be controlled by changing∆1 or Ω1. The introduction

of the optical field results in an extra trapping potential to the gas (see § 4.1.4). This is

undesirable if the only purpose of the laser is to change the scattering length, but it can be

made to be small compared to the trapping potential. To control the interactions without

having to be concerned with changing optical forces,∆1 can be tuned exclusively.

The drawback to this method is that spontaneous emission from |e 〉 deposits energy

into the interacting atoms, enough that they are jettisoned out of the trap. The rate of

spontaneous emission is approximately proportional to Ω2
1/∆

2
1. This limits the tunability of

the scattering length and the timescale over which experiments may be run. By working

far away from resonance, the loss rate can be lowered, but at the cost of a decrease in

the light shift. Furthermore, the region of maximum tunability in the scattering length

(∆1→ 0) overlaps with the region of maximum loss. The magnetic field may be used to

bring the scattering length close to the desired value, and the laser may be used to change

the scattering length around this value. In Ref. [Bauer et al. (2009)], this technique was used

to shift the magnetic field at which the Feshbach resonance occurs.

2.3.1 Two-Field Method

To what degree can the light shift be preserved while reducing the loss? The loss mechanism

is spontaneous emission from the excited state. However, we cannot arbitrarily reduce

the excited state population, since the effect of the laser on the interactions is a result of

the transitions it drives between |g 〉 and |e 〉. So we must ask: how can we drive electronic
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transitions in the molecular state, while reducing the probability to be in the |e 〉?
We do this by tuning a second laser to drive transitions between |e 〉 and a second

ground state |g2〉 in the potential Vs (r), as shown in Fig. 2.4. This is incorporated into the

total Hamiltonian Eq. 2.58 by adding on another coupling term

Hs c →Hs c +Ω2e i∆2t |e 〉 |s 〉 〈s | 〈g2|+h .c . (2.59)

where Ω2 is the Rabi frequency of the second beam and∆2 is the detuning of the second

beam from the |g2〉→ |e 〉 resonance. The amplitude transferred to |e 〉 from the first ground

state |g1〉 = |g 〉 can then be transferred to |g2〉. The two-beam configuration effectively

introduces two “paths” to |e 〉: one directly from the first ground state |g1〉→ |e 〉 from the

first laser, and another from |g1〉→ |e 〉→ |g2〉→ |e 〉 by both lasers combined. These paths

can interfere, affecting the amplitude to be in the excited state |e 〉. When the two beams are

equally detuned from their resonances (∆1 =∆2), the relative phase is π for the state |e 〉,
so that the probability to be in the excited state is zero. Without any scattering of the laser

from spontaneous emission, the atoms have become transparent to it. This phenomenon

is called “Electromagnetically-Induced Transparency" (EIT). At this zero-loss point, there is

no light shift and therefore no effect on the atomic interactions. Deviations in one of the

laser frequencies re-introduce electronic transitions in the molecule, which introduce both

loss and a change in the interactions. In contrast with the single-field method, however,

the zero-loss point sits in a region of maximum tunability (Fig. 1.1).

To control the interactions, then, the magnetic field can be tuned to bring the scattering

length close to the desired value, and then the beams may be introduced withδ=∆2−∆1 ̸= 0.

The scattering length is tuned with δ, which must be stabilized at a faster rate than the rate

of spontaneous emission from |e 〉. Using this technique, the shift in the magnetic field at

which the Feshbach resonance occurs has been demonstrated [Jagannathan et al. (2016b)],

as well as the spatial control of interactions [Arunkumar et al. (2019)].
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Figure 2.4: Depiction of two-field optical control of interactions in 6Li. A magnetic field
B tunes the s -wave scattering length as near a desired value via the magnetic Feshbach
resonance, where |g 〉 = |g1〉 = |v1 = 38〉 (the 38th vibrational state) is the bound state the
incoming free atoms in the state |k〉 are tuned into resonance with. A laser of frequency
ν1 drives transitions between |g1〉 an excited molecular state |e 〉= |ve = 68〉, light-shifting
the energy of the state |g1〉. This changes as , but introduces loss via spontaneous emission
from |e 〉. A second laser at frequency ν2 drives transitions between |e 〉 and a second ground
state |g2〉= |v2 = 37〉, reducing the probability to be in the state |e 〉, as well as the light shift.
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CHAPTER 3

INCORPORATING LOSS INTO THE

ENERGY-SPACE SPIN-LATTICE MODEL

As described in § 2.2, the magnetic Feshbach resonance allows the s -wave scattering length

to be continuously tuned from as →−∞ to as →+∞ by varying an applied magnetic field.

It is possible to tune as to be small enough that the rate of energy-changing collisions is

negligible during an experiment; a range of as which we refer to as the “weakly interacting

regime” (note that this range depends on the density of the gas). The energy of individual

atoms is, then, conserved in this regime. Forward s -wave scattering still occurs, which affects

the two-atom spin state. When fermionic atoms in the weakly interacting regime are (1)

trapped in a spin-dependent potential and (2) prepared in a coherent, 50-50 superposition

of two spin states, the evolution of the system may be described with a spin-lattice model,

with energy states replacing physical sites in a crystal.

The site-to-site couplings in the lattice may be tailored by exploiting the spatio-temporal

resolution of as enabled by the optical control method described in § 2.3. While the two-

beam method dramatically reduces the optically induced loss, finite loss remains, affecting

the evolution of the system. In order to apply optical control to this system, we must

understand this loss. While loss due to two body inelastic collisions was discussed in § 2.1.2,

it is not directly applicable to this system, as atoms are in a continuum of evolving spin

states and the cross section is dependent on the two-atom spin state.

This chapter is devoted to the theory of the energy-space spin-lattice, with and without

loss. We first discuss the nature of the interactions between two fermionic atoms in the
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weakly interacting regime with a spin-independent potential. Then we investigate the

effect of spin-dependent potentials on a single atom. These two phenomena allow us to

then obtain the evolution equations for the energy-space spin lattice. Next we describe

our model for optically-induced loss in this system. Finally, we show how to predict the

evolution of the spin-lattice when loss is present.

3.1 Two-Body Fermionic Interactions in the Weakly Inter-

acting Regime

Consider two trapped, non-interacting fermionic atoms. Let the Hamiltonian describing

the single-atom kinetic energy and interaction with the trap be H j
T for atom j . We introduce

a constant magnetic field B which distinguishes the spin states |↑〉 and |↓〉 and defines the

quantization axis ẑ. We write the Zeeman interaction as

H j
B =−ħhωH F ŝ jz

(3.1)

where ŝ jz
is the z -component of the dimensionless spin operator on particle j (i.e., with-

out the factor of ħh). The hyperfine transition frequency between states |↑〉 and |↓〉, ωH F ,

is magnetic-field dependent. The fractional change inωH F is negligible compared to the

fractional change in the scattering length as the magnetic field is tuned in the weakly inter-

acting regime, so we will neglect changes inωH F as as is varied. Since the total Hamiltonian

H j
T +H j

B is the sum of terms which operate separately on the total spin and energy states,

the total two-atom state |ψ1ψ2〉may be written as the product of a spin state |s1 s2〉 and a

motional state |φ1〉1 |φ2〉2
|ψ1ψ2〉= |φ1〉1 |φ2〉2 |s1 s2〉 (3.2)

where

H j
T |φ j 〉 j = iħh

∂

∂ t
|φ j 〉 j (3.3)

and we have allowed the spin states to be entangled, but assumed that the motional states

are factorizable. Each atom, then, precesses in the magnetic field as they occupy the steady-

state solutions to H j
T .

Now, let the two ferimions interact via s -wave scattering, approximated with the psue-
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dopotential Eq. 2.23, where the reduced mass µ=m/2

H 12
i n t =

8πasħh 2

m
δ(r2− r1)P̂

12
s . (3.4)

Here, r j is the spatial coordinate corresponding to atom j and P̂ 12
s projects the incoming

total two-atom spin state into the anti-symmetric, or “singlet,” state. This spin-dependence

of the interaction is due to fermionic nature of atoms— for s -wave scattering, the scattered

two-atom spatial state is by definition spatially symmetric and therefore also symmetric

upon exchange of the two atoms. This means that only the anti-symmetric projection of

the spin state will scatter, so that the total two-atom wavefuntion is anti-symmetric upon

particle exchange. The Hamiltonian for a pair of atoms now takes the form

H =H 1
T +H 2

T +H 1
B +H 2

B +H 12
i n t (3.5)

where H j
T is describes the interaction between atom j and the trap and H j

B describes the

interaction between the spin of atom j and the applied magnetic field. Treating H 12
i n t as a

perturbation, we can continue to work in the same basis |φ1〉1 |φ2〉2.

We consider as to be small enough that we are in the“weakly interacting regime,” for

which the rate of energy-changing collisions is negligible on the timescale of the experiment.

H 12
i n t , then, does not couple together different modes of the trap. It does, however, have an

effect on the spin state(s). As will be discussed in § 3.3, it is possible for the rate at which

the spins are affected to outweigh the collision rate: they differ, in part, due to the relative

velocity dependence in the collision rate. Since H 12
i n t has no effect on the time dependence

of |φ1〉1 |φ2〉2, with Eq. 3.3 we may write

(H 1
B +H 2

B +H 12
i n t ) |ψ1ψ2〉= |φ1〉1 |φ2〉2 iħh

∂

∂ t
|s1 s2〉 . (3.6)

This means that we may describe the system with a pure spin Hamiltonian Hs such that

Hs |s1 s2〉= i
∂

∂ t
|s1 s2〉 (3.7)

(note that Hs is expressed in units of ħh) where

Hs ≡ (1/ħh ) 〈φ2|2 〈φ1|1 (H
1

B +H 2
B +H 12

i n t ) |φ1〉1 |φ2〉2 . (3.8)
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The Zeeman terms act only on the spin state, so, with Eqs. 3.1 and 3.4, we have

Hs =−ωH F ŝ1z −ωH F ŝ2z +
8πasħh

m
P̂ 12

s 〈φ2|2 〈φ1|1δ(r2− r1) |φ1〉1 |φ2〉2 . (3.9)

Projecting the motional states |φ1〉1 and |φ2〉2 onto configuration space and writing out P̂ 12
s

in terms of the single-atom spin vector operators ŝ j

P̂ 12
s =

1

4
− ŝ1 · ŝ2 (3.10)

we obtain

Hs =−ωH F ŝ1z −ωH F ŝ2z + g
�

1

4
− ŝ1 · ŝ2

�

(3.11)

where we have defined g as

g ≡
8πasħh

m

∫

d 3r |φ1(r)|2|φ2(r)|2 (3.12)

whereφ j (r) = 〈r|φ j 〉.
Eq. 3.11 is the building block of the Ising Model, describing spins fixed at different

sites in a crystal lattice and mutually affect each other’s spin states. Here, instead of sites

in a crystal, the atoms are fixed in their states |φ1〉 and |φ2〉. Working in the |S Ms 〉 basis,

it is simple to show that [H , (ŝ1 + ŝ2)2] = 0, so the spin dynamics will conserve the total

spin quantum numbers s and ms (i.e., states |S Ms 〉 and |S ′Ms ′〉 are not coupled for S ̸= S ′,

Ms ̸=Ms ′).

To further understand the spin dynamics, we work in the Heisenberg picture and com-

pute the equations of motion for the spin operators

˙̂s j = i [Hs , ŝ j ] (3.13)

which results in
˙̂s1 =−ωH F ẑ× ŝ1+ g ŝ2× ŝ1. (3.14)

As expected, d
d t |(ŝ1+ ŝ2)|= 0 Defining the (dimensionless) classical vector S j ≡ 〈˙̂s j 〉, we find

that, if we neglect entangled states so that |s1s2〉= |s1〉 |s2〉,

Ṡ1 =−ωH F ẑ×S1+ g S2×S1 (3.15)

38



Figure 3.1: Depiction of the effect of s -wave interactions in the weakly interacting regime,
in the classical limit for which each atom is assigned a classical spin vector. The interaction
rotates each spin vector about the total spin vector. This figure was taken from [Du et al.
(2008)].

and similarly for Ṡ2. We see that, in this classical picture, two-body interactions simply

rotate each individual spin vector about the total spin vector, as is depicted in Fig. 3.1.

While we have predicted this spin rotation effect to exist, we have no way of observing

it in a gas of fermionic atoms when the spin state of the gas is incoherent. Nor would any

effects appear if all atoms were in either the |↑〉 state or the |↓〉 state. We would require

groups of atoms to have a similar spin states, with different groups at differing orientations.

If each group had a distinctive spatial state φ(r), the effect of the spin rotation would be

that the different spin states would be correlated with different spatial distributions. But

how could the spin states of such groups of atoms be coherently prepared?

3.2 Effect of Spin-Dependent Potentials

Taking a detour from the effect of interactions between atoms, we consider single-atom

motion in a trap which is spin-dependent. We again place the atoms in a magnetic field B

which distinguishes the states |↑〉 and |↓〉. With the Zeeman interaction Eq. 3.1, the potential

takes the form

V (r) =V↑(r) |↑〉 〈↑|+V↓(r) |↓〉 〈↓|+HB (3.16)
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we define V0(r) and∆V (r) so that

V (r) =V0(r) +
1

2
∆V (r) |↑〉 〈↑|−

1

2
∆V (r) |↓〉 〈↓|+HB . (3.17)

All of the spin dependence is then proportional to ŝz

V (r) =V0(r) +
�

∆V (r)−ħhωH F

�

ŝz . (3.18)

The term,∆H ≡∆V (r)ŝz , couples the motion to the spin. We can define an unperturbed

Hamiltonion H0 with an associated potential V0(r), which has solutions

H0 |E 〉= E |E 〉 . (3.19)

and is perturbed by∆H .

With the spin-motion coupling perturbation, spin and energy become correlated— we

cannot write single-atom state as |φ〉 |s 〉. The state instead takes the form

|ψ〉=
∑

E↑

c↑(E↑) |E↑〉 |↑〉+
∑

E↓

c↓(E↓) |E↓〉 |↓〉 . (3.20)

with the Hamiltonian

H =
∑

E↑

E↑ |E↑〉 |↑〉 〈↑| 〈E↑|+
∑

E↓

E↓ |E↓〉 |↓〉 〈↓| 〈E↓| (3.21)

Treating∆H as a perturbation, first order perturbation theory results in

E↑ = E −
1

2
ħhωH F +

1

2
ħhΩB (E ) (3.22)

E↓ = E +
1

2
ħhωH F −

1

2
ħhΩB (E ) (3.23)

where ΩB (E )≡ (2/ħh ) 〈↑| 〈E |∆H |E 〉 |↑〉. Eq. 3.21 becomes

H =
∑

E

E Î (E ) +ħh
�

ΩB (E )−ωH F

�

Ŝz (E ) (3.24)

where we have defined Ŝz (E )≡ 1
2 |E↑〉 |↑〉 〈↑| 〈E↑| −

1
2 |E↓〉 |↓〉 〈↓| 〈E↓| and I (E )≡ |E↑〉 |↑〉 〈↑| 〈E↑|+

|E↓〉 |↓〉 〈↓| 〈E↓|. The spin-dependent perturbed states |E↑〉 and |E↓〉may also be approximated

40



with first-order perturbation theory. If, however, we work in the approximation that |E↑〉 ≈
|E↓〉 ≈ |E 〉,

H =
∑

E

E |E 〉 〈E |+ħh
�

ΩB (E )−ωH F

�

ŝz (E ) (3.25)

where we have defined ŝz (E )≡ |E 〉 〈E | ŝz .

The dynamics described by Eq. 3.25 can be readily understood: the precession about

the magnetic field, which occurs at a rateωH F in a spin-independent trap, now occurs at

the energy-dependent rateΩB (E )−ωH F . This is seen in the Heisenberg equations of motion

Eq. 3.13 for ŝ(E ), which leads to

Ṡ(E ) =
�

ΩB (E )−ωH F ẑ
�

×S(E ) (3.26)

where we have defined the classical spin vector S(E ) = 〈ŝ(E )〉. Working in a frame rotating

about −ẑ (counter to about the dominant magnetic field direction) atωH F ,

Ṡ(E ) =ΩB (E )×S(E ) (3.27)

We note that working in this frame is equivalent to leaving out the HB term in the Hamilto-

nian.

Eq. 3.27 shows that, if vectors begin aligned together orthogonal to the magnetic field,

they will spread out in the transverse plane according to their energy. To realize this in an

ultracold gas, one may apply a so-called “π/2 pulse” to a gas of atoms polarized in either the

|↑〉 or |↓〉 state. The pulse consists of electromagnetic radiation at a frequencyωH F (typically

in the radio-frequency range of the spectrum) for a time such that the atoms are placed

in an equal superposition of |↑〉 and |↓〉 (which corresponds to a π/2 rotation on the Bloch

sphere). In the classical picture, this corresponds to a spin vector pointing in the plane

transverse to the magnetic field. As the S(E ) vectors spread out, we obtain groups of atoms

with different spin orientations, each with a distinctive spatial profile.

3.2.1 Application to a Harmonic Trap

We apply the above analysis to one dimension of a spin-dependent trapping potential with

a gas of many atoms in it. We work in the rotating frame which, as mentioned above, is

equivalent to leaving out the HB term. Then,
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V1D (x ) =
1

2
mω2

x↑x
2 |↑〉 〈↑|+

1

2
mω2

x↓x
2 |↓〉 〈↓| (3.28)

is the potential associated with motion in the x direction. Defining ω̄x ≡ 1
2 (ωx↑+ωx↓) and

δωx ≡ωx↑−ωx↓, we can re-write Eq. 3.28 as we did in Eq 3.17,

V1D (x ) =
1

2
mω̄2

x x 2+mω̄xδωx x 2 ŝz . (3.29)

We assume that ω̄x >> δωx and treat the second term like a perturbation ∆H =

mω̄xδωx x 2 ŝz , resulting in solutions |nx 〉 to the harmonic oscillator potential

(Tx +
1

2
mω̄2

x x 2) |nx 〉= Enx
|nx 〉 (3.30)

where Tx is the kinetic energy operator for motion in the x direction.

Now, working with a gas of many (104 −105) atoms at the ultracold temperatures de-

scribed in § 5.1, atoms will occupy the |nx 〉 states up to nx ≈ 650. Working in the large-nx

limit, the first-order perturbed states are

|nx ,↑〉 ≈ |nx 〉 |↑〉+ε(|nx +2〉− |nx −2〉) |↑〉 , (3.31)

|nx ,↓〉 ≈ |nx 〉 |↓〉−ε(|nx +2〉− |nx −2〉) |↓〉 . (3.32)

This means that 〈nx ,↑ |nx ,↑〉= 〈nx ,↓ |nx ,↓〉 ≈ 〈nx ,↓ |nx ,↑〉 ≈ 〈nx |nx 〉. As these are the values

that appear in the calculations, we are justified in working in the approximation that

|nx , s 〉 ≈ |nx 〉 |s (nx )〉 (3.33)

where s refers to the spin state. Note that spin and energy are still correlated.

From Eqs. 3.22 and 3.23, the perturbed energies are, to first order, are found with

ħh ΩB (E ) =
δωx

ω̄x
E (3.34)

since 〈nx | x 2 |nx 〉 = E /(mω̄2
x ) where E = Enx

= (nx +
1
2 )ħhω̄x . The precession rate is then

linear in the energy associated with motion in the x direction.
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3.3 The Weakly Interacting Gas as an Energy-Space Spin-

Lattice

We now investigate the dynamics of a gas of fermionic atoms in a spin-dependent trap

undergoing s -wave scattering in the weakly interacting regime. For our cigar-shaped optical

trap, the atoms are taken to be in a cylindrically symmetric 3-D harmonic trap, with a radial

trap frequencyωρ that is much larger than the axial trap frequency ω̄x . The trapping force

in the axial x -direction is spin-dependent. In our experiments, this is due to the curvature

of the applied bias magnetic field ∂ 2
x Bz and the difference in the magnetic moments for

the two hyperfine states, which produces an axial trapping force comparable to the optical

force in this direction. The dominant magnetic field direction ẑ defines the quantization

axis for the spins. Starting from a ẑ-polarized sample, the total spin state is coherently

prepared in the X Y plane by a π/2 pulse in the in order to separate the vectors with the

energy-dependent precession rate (Eq. 3.27). Working in the rotating frame, we neglect HB

and the single-particle potential is

Vs p (r) =
1

2
mω2

ρ y 2+
1

2
mω2

ρz 2+
1

2
mω2

x↑x
2 |↑〉 〈↑|+

1

2
mω2

x↓x
2 |↓〉 〈↓| . (3.35)

For N interacting fermions, the Hamiltonian H may then be written as

H =
N
∑

j=1

H j
s p +

1

2

N
∑

j=1

N
∑

k=1

H j k
i n t (3.36)

where H j k
i n t is defined as in Eq. 3.4 and the single-particle Hamiltonian H j

s p , containing the

kinetic energy and the trapping potential, may be written as

H j
s p =H j

y +H j
z +H j

x↑+H j
x↓. (3.37)

We write the many-body state as

|Ψ〉= |Ψy 〉 |Ψz 〉
N
∏

j=1

|ψx j
, s j 〉 j (3.38)
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where we have allowed the spins to be correlated with the motion in the x direction and

have factorized the atom states in y direction

|Ψy 〉 ≡
N
∏

j=1

|ψyj
〉

j
(3.39)

and likewise for |Ψz 〉.
As in § 3.1, we will assume that single-atom energies are conserved on the timescales of

the experiment. That is, the interaction term

H j k
i n t =

8πasħh 2

m
δ(rk − r j )P̂

j k
s (3.40)

has no effect on the time dependence of the trap modes. To justify this, recall from § 2.1.4,

the rate of collisions Ṅc may be written by performing a volume intergral over Eq. 2.36,

Ṅc = 4πa 2
s 〈vr e l 〉
∫

d 3r n (r)2 (3.41)

where we have taken the cross-section to be 4πa 2
s , assuming kr e l as = µvr e l as/ħh → 0,

which is appropriate for the temperatures and scattering lengths used in our experiments

(〈kr e l as 〉 ≈ 10−5, where the brackets denote the average over kr e l ). Taking n (r) to be constant,

the total number of collisions after a time T is Ṅc T . For the typical density used (see § 5), at

as = 5 a0 the fraction of atoms that have undergone collisions Ṅc T /N after our maximum

evolution time T = 400 ms is ≈ 0.004. For as = 24 a0, this fraction is ≈ 0.1.

Since H j k
i n t does not affect |ψyj

〉
j
, the time dependence of the modes are determined

only by the general solution to the harmonic oscillator Hamiltonian H j
y

H j
y |ψyj
〉= iħh

∂

∂ t
|ψyj
〉 (3.42)

and the same goes for |ψz j
〉. This means that we may write

H1D

N
∏

j=1

|ψx j
, s j 〉 j = iħh

∂

∂ t

N
∏

j=1

|ψx j
, s j 〉 j (3.43)

where

H1D =
N
∑

j=1

H j
s p ,1D +

1

2

N
∑

j=1

N
∑

k=1

H j k
i n t ,1D (3.44)
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with

H j k
i n t ,1D = 〈Ψy | 〈Ψz |H

j k
i n t |Ψy 〉 |Ψz 〉 (3.45)

and

H j
s p ,1D =H j

x↑+H j
x↓ (3.46)

Now, following § 3.2, we may write Eq. 3.46 as H j
s p ,1D =H j

0 +∆V (r)ŝ j
z and obtain, from Eq.

3.25,

H j
s p ,1D =
∑

E

�

E +ΩB (E )s
j

z

�

|φE 〉 j 〈φE | j . (3.47)

Here, |φE 〉 j ≡ e −i E t /ħh |E 〉 j , where H j
0 |E 〉 j = E |E 〉 j , and ΩB (E ) is the energy-dependent

precession rate from Eq. 3.34,ΩB (E ) =
δωx
ω̄x

E . Since δ(r j −rk ) =δ(x j −xk )δ(yj − yk )δ(z j −zk ),

H j k
i n t ,1D =

8πasħh 2

m
n̄ j k
⊥ δ(x j − xk )P

j k
s (3.48)

where

n̄ j k
⊥ ≡
∫

d y |ψyk
(y )|2|ψyj

(y )|2
∫

d z |ψzk
(z )|2|ψz j

(z )|2 (3.49)

is the averaged probability density in the Y Z plane (⊥ to x ).

We work in the approximation that each particle is in a single axial trap mode ,

|ψx j
, s j 〉 j = |φE j

〉
j
|s j 〉 j = e −i E j t /ħh |E j 〉 j |s j 〉 j , (3.50)

where E j is the axial energy of particle j . Groups of atoms can have identical axial energies,

since the state is also defined by |ψyj
〉 and |ψz j

〉. From our assumption of energy conserva-

tion, H j
0 |φE j

〉
j
= iħh ∂

∂ t |φE j
〉

j
, and we are able to write a pure spin Hamiltonian Hs which

acts on the total spin state, as we did in § 3.1. We have already assumed a product state, so

Hs

N
∏

j=1

|s j 〉 j = i
∂

∂ t

N
∏

j=1

|s j 〉 j (3.51)

(note that we have again expressed Hs in units of ħh) where

Hs ≡
1

ħh

� N
∏

j=1

〈φE j
|

j

�

H1D

� N
∏

j=1

|φE j
〉

j

�

. (3.52)
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This yields

Hs =
N
∑

j=1

ΩB (E )s jz
+

1

2

N
∑

j=1

N
∑

k=1

8πasħh
m

n̄ j k
⊥

∫

d x |φE j
(x )|2|φEk

(x )|2P j k
s . (3.53)

For each axial energy E , there are NE = N P (E ) atoms for which |ψx j
, s j 〉 j = |φE j

〉
j
|s j 〉 j ,

where P (E ) is found with either the Thomas-Fermi or Maxwell-Boltzmann distributions.

The sum over particles may be grouped by particles with the same axial energy:

N
∑

j=1

=
NE
∑

atoms µwith
axial energy E

+
NE ′
∑

atoms νwith
axial energy E’

... (3.54)

We work in the approximation that n̄ j k
⊥ ≈ 〈n̄

j k
⊥ 〉 j k = n̄⊥. It follows that the evolution of the

spins from Hs is only determined by its axial energy E . Since each initial spin state is taken

to be equal (reflecting the coherent preparation of the total spin state), it is appropriate to

define the collective spin vector operators

ŝ (E )≡
NE
∑

atoms µwith
axial energy E

ŝ µ (3.55)

which operate on the collective spin vector states

|s (E )〉 ≡
NE
∏

atoms µwith
axial energy E

|sµ〉µ . (3.56)

Since each atom that has an axial energy E evolves identically from the same initial state,

ŝz (E ) |s (E )〉=
NE

2
|s (E )〉 (3.57)

(recall from 3.1 that ŝµ is equal to the spin vector operator defined up to a factor of ħh). When

writing the double sum in Eq. 3.53 in terms of groups of atoms with the same energy, we

may neglect interactions between atoms j and k of the same energy, since P j k
s |s j 〉 j |sk 〉k = 0

(as |s j 〉 j = |sk 〉k ). We then have

Hs =
∑

E

ΩB (E )ŝz (E ) +
1

2

∑

E

∑

E ′

g (E , E ′)
�

1

4
NE NE ′ − ŝ(E ) · ŝ(E ′)

�

(3.58)
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where

g (E , E ′) =
8πasħh

m
n̄⊥

∫

d x |φE (x )|2|φE ′(x )|2. (3.59)

Eq. 3.58 is effectively equivalent to the Ising model describing a spin-lattice, with the axial

energy states of the trapping potential replacing the physical sites in a crystal. From Eqs.

3.59 and Eq. 3.41, we may calculate the ratio of the collision rate and the spin rotation rate

that was discussed in § 3.1. We see that

Ṅc /N

g (E , E ′)
∝〈vr e l as 〉/(ħh/µ) = 〈kr e l as 〉 (3.60)

(where the brackets represent the average over the relative velocities vr e l andµ is the average

mass), which is made small enough in the weakly interacting regime at low temperatures

that the interactions can affect the spins without resulting in energy-changing collisions.

As mentioned above, for the temperatures and scattering lengths used in our experiments,

〈kr e l as 〉 ≈ 10−5.

Eq. 3.59 gives the site-to-site couplings between atoms of energy E and atoms of energy

E ′. As written, it is fixed for a given potential. To tailor g (E , E ′) in a given trap, one could

make as spatially-dependent— then, it would appear in the argument of the integral,

and change the value in an (E , E ′)-dependent way. The optical control method allows

as = as (x ). If, for instance, interactions only occurred for atoms on the edge of the trap, only

the collective spin vectors with higher energy would couple to one another. Further, fast

temporal control of g (E , E ′) is made possible with optical control, as it allows as → as (t ).

Computing the Heisenberg equations of motion with Eq. 3.58 as was done in § 3.1 and

with the factorized collective spin states that we have assumed, we have

Ṡ(E ) =ΩB (E )×S(E ) +
∑

E

g (E , E ′)S(E ′)×S(E ) (3.61)

where S(E )≡ 〈ŝ(E )〉. In our experiments, g (E , E ′) and ΩB (E ) are on the order of 1 Hz. From

Eq. 3.57, we take

|S(E )|=NE /2. (3.62)

We recall that we are working the rotating frame. As the total spin state of the gas is prepared

orthogonal to the magnetic field,

Ŝ(E , t = 0) = x̂′ (3.63)

where x̂′ ⊥ ẑ is defined in the rotating frame.
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To connect the evolution in energy space Eq. 3.61 to the observations of the spatial

density, we recall our approximation that each particle is in a single axial trap mode (Eq. 3.50)

and write

Sz (x ) =
∑

E

|φE (x )|2Sz (E ) (3.64)

where Sz (x ) =
1
2 [n↑(x )−n↓(x )] (n↑,↓(x ) is the 1-D density associated with atoms in the spin

state ↑,↓). This allows the observations made in Ref. [Pegahan et al. (2019)] to be reproduced.

In order to implement Eq. 3.61, we group energies together, working with≈ 100 different

energies as opposed to ≈ 650 different axial trap modes that are occupied. The overlap

integral in Eq. 3.59 is evaluated using a WKB approximation. For a harmonic trap,

∫

d x |φE (x )|2|φE ′(x )|2 =
2

π2

√

√ mω̄2
x

2|E −E ′|
EllipticK
�

−
min(E , E ′)
|E −E ′|

�

. (3.65)

In our calculation, the assumption that n̄ j k
⊥ ≈ 〈n̄

j k
⊥ 〉 j k = n̄⊥means that we have assumed that

the single-particle probability density takes the formR(ρ) |φE (x )|2, where ρ is the trans-

verse radial coordinate,R(ρ) is the transverse probability density, and
∫

dρ 2πρR(ρ) = 1.

n̄⊥ is the average transverse probability density,

n̄⊥ ≡
∫

dρ 2πρR2(ρ). (3.66)

For lossless evolution,R(ρ) is time-independent. Assuming a zero-temperature Thomas-

Fermi distribution,

R(ρ) =
3

πσ2
ρ

�

1−
ρ2

σ2
ρ

�2

(3.67)

we obtain n̄⊥ = 9/(5πσ2
ρ). For the Maxwell-Boltzmann distribution,

R(ρ) =
1

πσ2
ρ

e −ρ
2/σ2

ρ , (3.68)

we find n̄⊥ = 1/(πσ2
ρ).

3.3.1 Understanding Spin-Lattice Dynamics

Eq 3.61 shows that each collective spin vector S(E , t ) rotates about an effective magnetic

field vector, comprising an applied magnetic field component along ẑ and a net mean field
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component arising from forward s -wave scattering interactions with all other S(E ′, t ). For

small as , where the energy-dependent precession rate about the magnetic field dominates,

the spin vectors fan out in the transverse plane, reducing the effect of the mean-field. This

is reflected in a low magnitude of the total spin vector S (t ) = |
∑

E S(E , t )|, as shown in Fig.

3.2. For sufficiently large as , the mean-field becomes significant, suppressing the energy-

dependent spreading of the collective spin vectors, which effectively orbit the mean-field.

However, the effect of the mean field degrades as the spin vectors align, as there is no

longer any rotation about the mean field axis. This again allows the spread in the Zeeman

precession rates to separate the spin vectors, which allows the rotation about the mean field

to dominate again, leading to an oscillation of the magnitude of the total spin vector, as

shown in Fig. 3.2. We see that for larger as , where the mean-field dominates and most spin

vectors align, the amplitude of the oscillation is smallest, corresponding to a transition to a

magnetized state [Smale et al. (2019b); Huang and Thomas (2023)]. This transition depends

not only on as , but also the density and the spread in the energy-dependent precession

ratesΩ′σE . The largerΩ′σE is, the stronger the couplings must be in order to transition into

the magnetized state. The transition is more generally parameterized by the “interaction

strength” ζ ≡ ḡ /(Ω′σE

p
2) (where ḡ is the averaged value of g (E , E ′)), which is ≈ 1 at the

transition point. Note that in our experiments, since a z -polarized sample is coherently

excited by a π/2 RF pulse resulting in Eq. 3.63, which means that Sz (t ) ≡
∑

E Sz (E , t ) = 0

and therefore S (t ) =
p

S⊥(t )2+Sz (t )2 = S⊥(t ).

While the model captures the data while the spin states initially segregate in space, it

does not agree with observations for longer times, as is observed in Ref. [Pegahan et al.

(2019)]. The continuous oscillation described above is not observed— the oscillation is

effectively damped. This will be discussed in § 6.3.

3.4 Modeling Two-Body Loss in the Lattice

Inelastic interactions are induced in the energy-space spin lattice by illuminating the

coherently prepared clouds with an optical field. In this section, we describe our model for

the loss in this system due to these interactions.

We begin by describing the interaction process (§ 2.2.1 and § 2.2.2) with the optical field:

For the magnetic fields of interest, a collision between a pair of 6Li atoms, one in each of

the two lowest hyperfine spin states |1〉 and |2〉, occurs nominally in the triplet electronic

potential (where “triplet” refers to the two-electron spin state). For s -wave scattering, where
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Figure 3.2: Predicted magnitude the total spin vector versus time for loss-free evolution
with different s -wave scattering lengths. N = 6.0× 104 atoms and the zero-temperature
Thomas-Fermi widths for the axial and radial directions are 330.0µm and 12.0µm, respec-
tively, resulting in ζ≈ 1 at as = 5 a0. Since Sz (t ) = 0 when the spins are prepared orthogonal
to the applied magnetic field, S (t ) = S⊥(t ), the length of the transverse (XY plane) projection
of the total spin vector.

the relative motion state is symmetric in the interchange of the two atoms, the two-atom

hyperfine state is the antisymmetric state,

|Ψa (1, 2)〉=
1
p

2

�

|↑z 〉1 |↓z 〉2− |↓z 〉1 |↑z 〉2
�

≃ |S = 1 mS = 1〉 |I = 1 mI =−1〉 . (3.69)

At high magnetic fields, as used in the experiments, |1,−1; 1, 1〉 is the dominant triplet state

in the interior basis, i.e., the total electronic spin state is |S = 1 MS =−1〉, the total nuclear

spin state is I = 1, MI = 1. This triplet state has a large hyperfine coupling to the dominant

singlet electronic state |S = 0 MS = 0〉 [Wu and Thomas (2012b)], denoted |g 〉, which is in the

38th vibrational state of the singlet ground molecular potential, producing a broad Feshbach

resonance at 832.2 G [Zürn et al. (2013)]. The difference between the magnetic moments of

the singlet and triplet states enables magnetic tuning of the s -wave scattering length near

the resonance. The applied optical field drives transitions from |g 〉 to the 64th electronically-

excited vibrational state in the electronic singlet molecular potential, denoted |e 〉 [Wu and
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Thomas (2012a); Jagannathan et al. (2016a)]. Spontaneous emission from |e 〉 causes the

interaction to be inelastic, and we assume that the emission results in loss of both atoms

without transfer of atoms between energy states, so that the energy-space spin lattice model

remains appropriate.

As was introduced in § 2.1.4, loss due to two-body inelastic collisions between a particle

of species A and a particle of species B is generally modeled as

ṅA(r, t ) = ṅB (r, t ) =−K AB
2 nA(r, t )nB (r, t ) (3.70)

where nA(r, t ) is the 3D density of species A and nB (r, t ) is the 3D density of species B .

It is assumed that only A and B interact, and that each inelastic collisions causes both

atoms to be lost. Eq. 3.70 follows from the definition of the inelastic cross-section of the

AB interaction σAB
i ne l where K AB

2 ≡ 〈vr e lσ
AB
i ne l 〉 (the brackets denote the average over the

relative speeds vr e l ). This will be our basis for constructing our loss model.

To treat loss in the energy-space spin lattice, we consider the atoms at each axial energy

site E to be a “species” in the context of Eq. 3.70. We associate a 3D density nE (r, t ) to the

group of atoms with energy E and a collective spin vector S(E , t ), and sum the inelastic

collision rates for atoms of energy with E with atoms of energies E ′ over all E ′ ̸= E to obtain

ṅE (r, t ) =−
∑

E ′

K (E , E ′, t )nE ′(r, t )nE (r, t ). (3.71)

Here the total density is n (r, t ) =
∑

E nE (r, t ) and K (E , E ′, t ) is the effective energy-

dependent two-body loss rate coefficient.

We obtain K (E , E ′, t ) by computing the probability that the pair of atoms in energy

groups E and E ′ are in the antisymmetric spin state |Ψa (1, 2)〉. We assume that the spin of

each atom of energy E is polarized along S(E , t ), corresponding to the spin state |Ŝ(E , t )〉.
In this case, atoms of energies E and E ′ are in states with definite spin polarizations, so

that we can assume the incoming spin state for a colliding pair of atoms with energies E

and E ′ is |Ŝ(E , t )〉1 |Ŝ(E ′, t )〉2. The probability amplitude to be in the singlet state is then

found by the inner product of this state with |Ψa (1, 2)〉, so that

K (E , E ′, t ) = K a
2 | 〈Ψa (1, 2)| Ŝ(E , t )〉1 |Ŝ(E ′, t )〉2 |2. (3.72)

where K a
2 is the loss constant associated with the antisymmetric two-atom spin state, given

in Eq. 3.69. Suppressing the time dependence, the energy-dependent spin states take the
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form,

|Ŝ(E )〉1 = e −iφE /2 cos(θE /2) |↑z 〉1 + e iφE /2 sin(θE /2) |↓z 〉1
|Ŝ(E ′)〉2 = e −iφ′E /2 cos(θ ′E /2) |↑z 〉2 + e iφ′E /2 sin(θ ′E /2) |↓z 〉2 . (3.73)

A straightforward calculation gives

| 〈Ψa (1, 2)| Ŝ(E , t )〉1 |Ŝ(E ′, t )〉2 |2 =
1

4

�

1− cosθE cosθE ′ − sinθE sinθE ′ cos(φE −φE ′)
�

, (3.74)

or, in terms of the unit vectors and restoring the time dependence,

K (E , E ′, t )≡
K a

2

4

�

1− Ŝ(E , t ) · Ŝ(E ′, t )
�

. (3.75)

As expected, when the collective spin vectors for energy groups E and E ′ vectors are parallel,

the corresponding unit vectors Ŝ(E , t ) and Ŝ(E ′, t ) are parallel and there is no loss. In

contrast, maximum loss occurs when the unit vectors are anti-parallel, K (E , E ′, t )→ K a
2 /2.

The unit vectors Ŝ(E , t ) are found from Eq. 3.61, with S (E , t ) = NE (t )/2, where the atom

number NE (t ) is self-consistently determined from Eqs. 3.71 and 3.75, as we now show.

We assume that the spin-energy correlated 3D densities nE (r, t ) can be factored as

nE (r, t ) = nE (x ,ρ, t ) =NE (t )R(ρ, t ) |φE (x )|2, (3.76)

where x is the axial coordinate and ρ the transverse coordinate. As observed in the experi-

ments and shown in § 5.4, for nonzero K a
2 , the increase in the loss rate with increasing 3D

density reshapes the spatial profile. For this reason, we assume that both the atom number

NE (t ) in each energy group and the transverse probability densityR(ρ, t ) are functions of

time. Further, we assume thatR(ρ, t ) is independent of E , and take
∫

dρ 2πρR(ρ, t ) = 1

for all t . Using Eq. 3.76, the spatial integral of the total density, n (r, t ) =
∑

E nE (r, t ) yields

total atom number,

N (t ) =
∑

E

NE (t ). (3.77)

Using Eq. 3.76 in Eq. 3.71 and integrating over x , we obtain

d

d t

�

NE (t )R(ρ, t )
�

=−
∑

E ′

η(E , E ′, t )
�

NE ′(t )R(ρ, t )
� �

NE (t )R(ρ, t )
�

, (3.78)
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where

η(E , E ′, t )≡ K (E , E ′, t )

∫

d x |φE (x )|2|φE ′(x )|2. (3.79)

Integrating Eq. 3.78 over ρ and using Eq. 3.81, we find

ṄE (t )

∫

dρ 2πρR(ρ, t ) +NE (t )
d

d t

∫

dρ 2πρR(ρ, t ) =−n̄⊥(t )
∑

E ′

η(E , E ′, t )NE ′(t )NE (t ),

(3.80)

where n̄⊥(t ) is the time-dependent average transverse probability density

n̄⊥(t )≡
∫

dρ 2πρR2(ρ, t ). (3.81)

Since
∫

dρ 2πρR(ρ, t ) = 1, Eq. 3.80 immediately yields

ṄE (t ) =−n̄⊥(t )
∑

E ′

η(E , E ′, t )NE ′(t )NE (t ). (3.82)

Next, we sum Eq. 3.78 over E and use Eq. 3.77 to obtain

Ṅ (t )R(ρ, t ) +N (t )Ṙ(ρ, t ) =−R2(ρ, t )
∑

E

∑

E ′

η(E , E ′, t )NE ′(t )NE (t ) = Ṅ (t )
R2(ρ, t )

n̄⊥(t )
.

(3.83)

Here, the right-hand side has been simplified by using the sum of Eq. 3.82 over E and

Eq. 3.77,

Ṅ (t ) =−n̄⊥(t )
∑

E

∑

E ′

η(E , E ′, t )NE ′(t )NE (t ). (3.84)

Hence, the radial probability distribution obeys

Ṙ(ρ, t ) =
Ṅ (t )
N (t )

�

R2(ρ, t )
n̄⊥(t )

−R(ρ, t )

�

. (3.85)

Using Eq. 3.81, one readily verifies that the integral of Eq. 3.85 over ρ vanishes, so that the

total transverse probability remains normalized to 1 for all t . Further, the right hand side is

∝ Ṅ (t ) [R(ρ, t )− n̄⊥(t )], where Ṅ (t )< 0 when K a
2 ̸= 0. Hence, near the center of the cloud,

whereR(ρ, t )> n̄⊥(t ), the probability density decreases in time, while in the wings, where

R(ρ, t ) < n̄⊥(t ), the probability density increases in time. The net effect of the loss is to

increase the effective width ofR(ρ, t ), while preserving the normalization.
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3.5 Evolution of the Lattice with Loss

To model the energy-space lattice with optically-induced loss, we employ Eqs. 3.82 and 3.85,

together with Eq. 3.61. These equations determine the evolution of the density for each

energy group, the transverse profile and therefore the total density and the total number in

the presence of loss, which are compared with the measurements.

Including the E -dependent loss, the magnitudes of the collective spin vectors in Eq. 3.61,

S (E , t ) =NE (t )/2, decrease with time. The evolution of S(E , t ) includes both a rotation of

the unit vectors and a time-dependent magnitude,

Ṡ(E , t ) = S (E , t ) ˙̂S(E , t ) + Ṡ (E , t ) Ŝ(E , t ). (3.86)

The unit vectors Ŝ(E , t ) evolve according to Eq. 3.61, while the decay of the magnitudes

S (E , t ) is determined by Eq. 3.82 with NE (t ) = 2S (E , t ) and Eqs. 3.79 and 3.75,

Ṡ (E , t ) =−
∑

E ′

κ(E , E ′, t )
�

S (E , t )S (E ′, t )−S(E , t ) ·S(E ′, t )
�

. (3.87)

Here, the effective loss rate κ(E , E ′, t ) is given by

κ(E , E ′, t )≡
K a

2

2
n̄⊥(t )

∫

d x |φE (x )|2|φE ′(x )|2. (3.88)

We discuss the measurement of K a
2 for mixtures in § 5.3.

We rewrite the evolution of the transverse probability density, Eq. 3.85, as

Ṙ(ρ, t ) =
Ṡ (t )
S (t )

�

R2(ρ, t )
n̄⊥(t )

−R(ρ, t )

�

. (3.89)

Here we have defined S (t )≡
∑

E S (E , t ) =N (t )/2. As the site-to-site couplings g (E , E ′) of

Eq. 3.59 are proportional to n̄⊥, the time-dependence of n̄⊥ for K a
2 ̸= 0 results in g (E , E ′)→

g (E , E ′, t ); while the decay of S (E , t ) reduces the rotation rate of the unit vectors by reducing

the magnitude of the mean field.

Including loss, the evolution of the energy-dependent collective spin vectors is de-

termined by Eq. 3.86, using Eq. 3.61 to describe the rotation of the unit vectors and

Eqs. 3.87, 3.89, and 3.81 to determine the decay of the magnitudes. The collective spin

vectors are initialized according to Eqs. 3.62 and 3.63. The initial condition for the transverse

probability density,R(ρ,0), is given by Eq. 3.67 for a Thomas-Fermi distribution and by
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Eq. 3.68 for a Maxwell-Boltzmann distribution.

3.6 Method of Obtaining the Loss Constant K a
2

For the loss model described above, we require the loss constant K a
2 associated with a pair

of atoms in the antisymmetric two-atom spin state |Ψa (1, 2)〉. To obtain K a
2 , we measure the

loss in a 50-50 incoherent mixture of |↑z 〉 and |↓z 〉, for which the 50-50 ratio is maintained

throughout the evolution, and extract the fraction of the loss constant associated with the

state |Ψa (1, 2)〉. Considering the mixture to be comprised of atoms in the |↑z 〉 state and the

|↓z 〉 state, we define the 3D densities associated with each state n↑(r, t ) and n↓(r, t ) and apply

Eq. 3.70 to obtain

ṅ↑(r, t ) = ṅ↓(r, t ) =−K ↑↓2 n↑(r, t )n↓(r, t ). (3.90)

Since the probability of this incoming two-atom spin state to be in the antisymmetric

two-atom spin state is |〈Ψa (1, 2) |↑z 〉1 |↓z 〉2 |2 = 1/2, we have

K ↑↓2 = K a
2 ×1/2. (3.91)

With n↑(r, t )+n↓(r, t ) = n (r, t ) the total density and n↑(r, t ) = n↓(r, t ) = n (r, t )/2 for a 50-50

mixture, Eq. 3.90 yields

ṅ (r, t ) =−
1

4
K a

2 n 2(r, t ). (3.92)

Eq. 3.92 may be solved analytically:

n (r, t ) =
n (r, 0)

1+ 1
4 K a

2 n (r, 0) t
. (3.93)

Integrating Eq. 3.93 over all three spatial dimensions, the total atom number N (t ) is pre-

dicted as a function of time, given n (r, 0):

N (t ) =

∫

d x

∫

2πρdρ
n (r, 0)

1+ 1
4 K a

2 n (r, 0) t
. (3.94)

To measure K a
2 , then, we fit measurements of the atom number N (t ) in the 50-50 mixture

to Eq. 3.94. This is further described in § 5.3. In § 6.1, we show that K a
2 is independent of the

relative speed near the zero crossing of the broad Feshbach resonance in 6Li. However, as

will also be discussed in § 5, we must halve the measured K a
2 before inserting it into Eq. 3.74

in order to reach agreement with the loss measurements in the energy-space spin-lattice.
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CHAPTER 4

EXPERIMENTAL METHODS

As described in the last chapter, the conditions required to create the energy-space spin-

lattice are (1) an ensemble of fermions interacting via pure s -wave scattering, (2) a s -

wave scattering length as tuned to be in the “weakly interacting regime” (and, if desired,

able to access the full range of the phase transition, without introducing energy-changing

collisions), (3) a coherently prepared total spin state orthogonal to the magnetic field

axis, and (4) a trapping potential that exhibits some spin-dependence. To optically induce

inelastic collisions in the lattice, we must illuminate the fermions with an optical beam

beam near resonance with the g → e transition.

We achieve these conditions in an ultracold Fermi gas of neutral lithium-6 atoms, pre-

pared in the weakly interacting regime in a coherent superposition of the two lowest-energy

hyperfine states |1〉 and |2〉 (see § 2.2.2 and § A). The atoms are trapped in the focus of a

single 10.6 µm CO2 laser beam. The curvature from the applied magnetic field used to tune

as provides a spin-dependence to the trapping potential along the direction of the beam

(referred to from here on out as the axial direction), as depicted in Fig. 4.1. All but s -wave

collisions are “frozen-out” at the ultracold temperatures. The ultracold temperatures also

allow the spin rotation effect (introduced in the previous chapter) to dominate over the rate

of energy-changing collisions, since (Ṅc /N )/g (E , E ′)∝〈vr e l 〉, where 〈vr e l 〉 is the averaged

relative velocity. The beam that induces inelastic collisions is frequency-locked on the

transition between the ground molecular state g responsible for the (broad) magnetic

Feshbach resonance (the 38th vibrational state) and an electronically-excited molecular

state e (the 68th vibrational state) . The beam is large enough to provide a nominal uniform
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Figure 4.1: Depiction of our system: ultracold Lithium-6 atoms in a vacuum are trapped in
the focus of a CO2 laser with a 10.6 µm wavelength. Electromagnets are used to generate a
magnetic field up to 1200 G in order to control the s -wave scattering length. The curvature
of the magnetic field results in a spin-dependent trapping potential.
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illumination.

In this chapter, we describe how the ultracold gas is created and observed; then, once

created, how the loss-inducing beam is stabilized on the g → e transition.

4.1 Creation and Observation of an Ultracold Gas

Atoms in the gas state may be isolated in suspended, containerless traps via electromagnetic

forces. Given sufficient methods of energy removal from the atoms, the thermal isolation

of these traps (when placed in a vacuum) allows for the cooling of atoms to “ultracold”

temperatures, which can be low enough to be on the order of trillioniths of a Kelvin [Deppner

et al. (2021)]. Atomic speeds at these temperatures can range from millimeters per second

to meters per second. As these low temperatures are approached, the deBroglie wavelength

increases towards the interparticle distance and quantum-mechanical phenomena may be

observed.

When manipulating electrically-neutral atoms with electromagnetic forces, we may

exploit the inherent magnetic dipole moment µ of atoms to exert a force FB = (µ ·∇)B using

gradients in applied magnetic field B; or we may induce an electric dipole moment d with an

applied electric field E to exert a force FE = (d·∇)E=α(E·∇)E using gradients in E (assuming

a linear response d=αE). To create a trap, we would like the atoms to be forced back to one

point, wherever they move. Since a maximum in |B| is inconsistent with Maxwell’s Equations,

FB can only result in a trapping force if µ is counter to B, in which case a trap can be formed

about a minimum in |B| (though, the trap cannot be three-dimensional). A maximum in |E|
is similarly inconsistent with Maxwell’s Equations when E is time-independent and outside

of a charge distribution. FE will, however, always be attracted towards a maximum in |E|
(taking α> 0); which means that E must be time-dependent to create a trapping force. In

this case, three dimensional trapping can be realized.

We consider FE for the case that E is formed by a monochromatic electromagnetic wave,

E(r) = real
�

E (r)e i (k·r−ωt )
�

. (4.1)

The field induces a time-dependent electric dipole moment. The charges are then in motion,

which results in the full Lorentz force as the charges interact with magnetic field associated

with the plane wave. It can be shown that the time-averaged total force over the the time
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T >> 2π/ω—electric and magnetic— is




F j

�

T
≈



dk∂ j Ek )
�

T
. (4.2)

Then, α becomes frequency-dependent and may not be in-phase with E. Working in a

complex representation,

d= real
�

α(ω)E (R)e i (k·R−ωt )
�

. (4.3)

where R is the atom’s center-of-mass and α(ω), which may be modeled classically or

quantum-mechanically, peaks at a resonance frequency of the atom. The real part of α(ω)

corresponds to the in-phase component of the dipole, and the imaginary part corresponds

to the part that is 90◦ out of phase. There are, then, two contributions to the total force. One

is from the spatial derivative of the beam profile E (r), and one from the spatial derivative of

the phase of the field— the former is the induced dipole forceF d i p o l e , and the latter is the

radiation pressure forceF p r e s s u r e .




F
�

T
≈F d i p o l e +F p r e s s u r e (4.4)

F d i p o l e is conservative and proportional to the real part of α(ω),

F d i p o l e =
1

4
real
�

α(ω)
�

∇|E |2. (4.5)

andF p r e s s u r e is non-conservative and proportional to the imaginary part of α(ω)

F p r e s s u r e =
1

2
imag
�

α(ω)
�

|E |2k (4.6)

So far we have considered the electromagnetic field classically.F p r e s s u r e can also be

understood in a simple picture of the absorption and emission of photons. This turns out

to be an important distinction, since spontaneous emission events result in a random walk

(as first theorized by Einstein), which is not predicted by Eq. 4.6. This will be relevant for our

discussion of the Magneto-Optical Trap. When emission is dominated by the spontaneous

process, the atoms experience a constant force (averaged over may cycles)

F p r e s s u r e →



F
�

T
=R(∆)



pa b s
p ho t o n

�

T
(4.7)

where pa b s
p ho t o n is the momentum of the absorbed photon, R(∆) is the rate at which
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absorption-spontaneous emission rates occur when the detuning of the photon from

resonance is∆ (which may be calculated quantum-mechanically by considering an atom

with only two states). Note that we have assumed that the atom returns to its initial state

after emission. In this picture, the dissipative effect of the radiation pressure force is the

result of the emitted photon which, due to the Doppler effect, leaves at a higher frequency

(in the frame of the atom) than it came in. This only occurs, however, when atom slows

down upon absorption of the photon. (We note that we have neglected the Doppler shift of

the atom: as it experiences the radiation pressure force, the frequency of the wave in its

frame of reference changes).

In the following, we discuss howF p r e s s u r e andF d i p o l e may be used to create an ultra-

cold gas, and how this gas may then be observed.

4.1.1 The Zeeman Slower

Neutral atom traps are typically too shallow to load a hot atom source created by sublimation

or evaporation— the atoms are too fast to be stopped by the forces of the traps. Before the

atoms from the source can be trapped, they must be slowed.

This can be accomplished via the dissipative radiation pressure force: atoms may be

slowed by forming them into a beam (by shooting the evaporated/sublimated atoms out of

a nozzle) and counterpropagating laser beam along an axis z which is red-detuned from

a two-level transition. The Doppler shift of beam in the frame of the atoms makes them

resonant with the light. As an atom is slowed, however, the detuning of the laser beam in

the frame of the atom becomes Doppler-shifted outside of the bandwidth of the atomic

transition, ∆→∆(v ) =∆0 −k · v with v = v (z ) (where z is the axis along the beams, k is

the incident laser wavevector, v is the velocity of the incoming atom) so that the radiation

pressure force is no longer exerted. In order to apply the radiation force over the entire

trajectory of the atom, the resonance condition must be maintained as the atom decelerates.

To do this, we can use the Zeeman effect to tune the resonance frequency with an applied

magnetic field B(z ). The resonance frequency then shifts∆(v )→∆(v, B ) =∆0−k v + µ
ħh B .

Since the atoms and the laser counterpropagate, the Doppler shift is always negative, and

the Zeeman shift must always be positive. This means that only the upshifted state (with

µ ∥ B) can be used. Orienting B ∥ ẑ, the use of circularly polarized light allows selective

absorption of either the upshifted (or the downshifted state) by using the appropriate

handedness. We note that if B⊥ ẑ, both the upshifted and the downshifted states can be

excited with a linear polarization perpendicular to the magnetic field. This is undesirable,
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as the atoms may be “optically pumped” from the upshifted state to the downshifted, so

that they no longer absorb light resonant with the upshifted state. Further, the fraction of

absorbed light by a one state is reduced.

With B ∥ ẑ and the correct circular polarization used, the problem is to find B (z ) so that

∆ is constant as v changes, that is,∆(v (z ), B (z )) =∆(v (z ′), B (z ′)). We then need to know

the speed as a function of position v (z ). If the Doppler shift is completely countered by the

Zeeman shift, the rate of photon absorption is constant, and therefore the force is constant

too. The constancy of the force allows the speed to be easily computed as a function of

position v (z )2 = v (0)2− 2F
m z . To keep the detuning the same throughout the trajectory, then,

we must have −k v (0)+ µħh B (0) =−k v (z )+ µħh B (z )which allows the spatial dependence of the

magnetic field to be computed

B (z ) = B (0) +
ħhk

µ

√

√

v (0)2−
2F

m
z −
ħhk

µ
v (0). (4.8)

We note that, if the magnetic field is oriented parallel to the direction of the laser, the

magnetic field at the beginning of the trajectory B (0) is maintained at a high bias in order

to maintain the separation between the states, avoiding the “optical pumping” problem

mentioned above. The light intensity and detuning may be chosen in order to optimize

Eq. 4.7. Note that the force comes from absorption followed by spontaneous emission, so

the laser should not be at a high-enough intensity to drive stimulated emission.

This setup is called a “Zeeman Slower,” and can exert huge forces on atoms, even

stopping and reversing atoms along one direction when the atoms are initially hundreds

of Kelvin above room temperature. Note that the random emission of the spontaneously-

emitted photons induces motion into the two directions perpendicular to the incoming

beam.

4.1.2 The Magneto-Optical Trap

The radiation pressure force may be used to form a trap when one makes the following

observation: if two beams are made to counterpropagate and are tuned slightly below a

resonance frequency of an atom, then the atom will always experience a net force that

opposes its motion. For if it moves along the direction of one beam, the Doppler shift

of the beam in the frame of the atom will move the observed frequency further from

resonance, lowering the probability of absorption and therefore lowering the average force

exerted along the atom’s motion; and if it moves against the direction of a beam, the
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Doppler shift of the beam in the frame of the atom moves the observed frequency closer to

resonance, increasing the probability of absorption and therefore increasing the average

force counter to the atom’s motion. The average force will then always oppose the motion of

an atom, which both creates a trapping force for and removes energy from the atoms. Three

dimensional trapping may be realized by applying pairs of counterpropagating beams in all

three dimensions. The Brownian motion induced by the absorption-spontaneous emission

cycles will, however, result in atoms leaving the overlapping region of the three overlapped

beams, which means that the atoms are no longer exposed to the optical forces. To confine

atoms to the region formed by the overlapped beams, the direction of the beam absorbed

must be made spatially selective, which is accomplished by employing a spatially-varying

Zeeman shift. We describe this setup below.

Using Eq. 4.7, the force on an atom in the crossed beams is




F
�

=R(∆+)



pa b s
p ho t o n

�

+R(∆−)(−



pa b s
p ho t o n

�

) (4.9)

where∆± =∆0±k ·v are the detunings from resonance for the two beams where v is the

incoming velocity and k is the incoming wavevector. Take |∆0| >> |k · v| and let vk ≡ v · k̂.

Taylor-expanding the rates about the velocity, we see that we have a viscous damping force



F
�

=−bvk , where b≡ 2k



pa b s
p ho t o n

�

∂R
∂∆

�

�

�

�

∆0

.

Now, to make the trapping forces spatially-dependent, the resonance frequency of the

atoms may be spatially tuned using the Zeeman effect, as was done for the Zeeman Slower:

R(∆(v ))→R(∆(v, B )), where B = B (r) is the magnetic field that induces the Zeeman effect.

An atom which leaves the center of the overlapped beams must be made to preferentially

absorb light which will force it back to the center. But how can the effect of one laser beam

be different from the counterpropagating laser beam, when they must be maintained at

the same frequency? This problem is overcome by using the polarization-dependence of

the Zeeman-shifted spectral lines. When the magnetic field is oriented along the direction

of the beams, counter-clockwise circularly polarized light is associated with the upshifted

spectral line, and clockwise circularly polarized light is associated with the downshifted

spectral line. Then, by making one beam circularly polarized with a given handedness and

the other circularly polarized with the opposite handedness, the two counterpropagating

beams can be made to act on two different states of the atom




F
�

=R(∆⟲+)



pa b s
p ho t o n

�

+R(∆⟳−)(−



pa b s
p ho t o n

�

). (4.10)
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Now that the two counterpropagating beams can be made to have different effects on

the atom in space, what magnetic field results in a trapping force? Recall that the only

asymmetry in the Zeeman effect comes from which circularly-polarized beam is upshifted

and which is downshifted. If the magnetic field direction is reversed, the circular polarization

associated with each state switches. This means that, when the counterpropagating beams

are at a frequency near resonance with the one of the shifted states, the atom can switch

from absorbing the beam with one circular polarization to absorbing the beam with the

opposite circular polarization at a point where the direction of the magnetic field flips.

This, in turn, means that the direction of the average radiation pressure force will change

direction at this point. By choosing the appropriate circular polarization with the given

magnetic field direction, then, the atoms can experience an average force that directs them

towards the zero-point in the magnetic field (oriented along the axis of the beams). Let the

magnetic field vary linearly in the vicinity of the zero-point. Keeping the field the same in

two directions (with ρ being the radial vector in this plane),∇ ·B= 0 implies that we must

then have

B=Cρ −2 C z. (4.11)

Figure 4.2: A depiction of the Magneto-Optical Trap (in one dimension x ). Atoms experi-
ence a viscous force due two counter-propagating red-detuned beams, the motion towards
either of which results in preferential absorption from the beam counter to the atom’s
motion. Spatial confinement is established by employing the Zeeman effect: a magnetic
field oriented along the direction of the beams Bx varies linearly through a zero-point, so
that when the counter-propagating beams are made to have opposite circular polarizations
(oriented appropriately relative to the magnetic field), absorption occurs preferentially
from a beam which will force the atom back to the Bx = 0 point.
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Using the expression for∆(v, B ) in the last section, and taking the Zeeman shift to be

much less than the detuning of the beams |µħh B |<< |∆0|, we may Taylor-expandR in both

v and r to obtain



F
�

=−bv −2κBρ−κB z . (4.12)

where κB ≡C µ
ħh




pa b s
p ho t o n

�

∂R
∂∆

�

�

∆0
. The average force now acts to damp the motion of the atom

and confine it near the zero-point in the magnetic field, forming a “Magneto-Optical Trap”

(MOT). Note that the forces are half as strong in the ρ̂ plane compared the ẑ direction, so

that the distribution of the trapped atoms will be ellipsoidal. We further note that we have

assumed that the atom returns to its initial state after emission. If this is not the case, it is

possible to use a “repumper” beam to transfer the atom back into the initial state.

The damping component of the force causes the atoms to lose their energy at a rate

P = F · v ≈ −v b · v until the energy input from the spontaneously-emitted photons bal-

ances the energy output from the lower frequency of the emitted photon compared to the

absorbed photon. The removed energy may be optimized with an appropriate choices

of the beam power and frequency. This translates into optimizing b, which happens

when ∂R/∂∆|∆=∆0
is optimized. For a two-level atom, the detuning which optimizes

∂R/∂∆|∆=∆0
is∆=−Γ/2, where Γ is the natural linewidth of the spontaneously-emitted

photon. The equilibrium kinetic energy reached with this detuning is the lowest possible,

and the associated temperature is called the “Doppler limit” kB TD o p p l e r = ħhΓ/2. We note

that we have neglected the re-absorption of scattered light throughout this analysis.

4.1.3 Evaporative Cooling

While TD o p p l e r is on the order of milliKelvin for 6Li, we must further lower the temperature

in order to meet the requirements listed at the beginning of this chapter. To reach colder

temperatures, we turn to evaporative cooling.

In Evaporative Cooling, energy is removed from the sample by allowing particles that

acquire high energy through collisions to escape. The temperature may be continuously

lowered for a thermally isolated sample by forcing the hottest particles to leave at a pace

which allows enough time for the high-energy end of the thermal distribution to be re-

populated through collisions. There is no mechanism in this method which imposes a

fundamental limit on the achievable temperatures, but there is a trade-off between the

number of atoms lost and the amount of energy removed. The ability to tune the interactions

to be strongly interacting via the magnetic Feshbach resonance increases the efficiency
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of this process. With evaporative cooling, temperatures in the nanoKelvin range may be

approached. Even at these low temperatures and higher densities, however, the sample

does not “freeze,” as it remains dilute enough that two-body collisions dominate.

To avoid the heating due to spontaneous emission, the atoms must be transferred to a

trap formed by conservative forces.

4.1.4 The Optical Dipole Trap

To form a trap with conservative forces, we may use a magnetic trap or an optical trap based

on the dipole forceF d i p o l e . The magnetic traps are limited to trapping spin states oriented

oppositely to the magnetic field, butF d i p o l e is almost completely spin-independent. Evap-

orative cooling may be performed in the optical trap by lowering the power of the trapping

beam.

To create a trap with the dipole force, a local maximum or minimum in the light intensity

is required. The frequency of the beamωmust be detuned far from the atom’s resonant

frequencyω0 in order to avoid the radiation pressure force. Eitherω<ω0 and α(ω) > 0,

in which case the atoms will be attracted to points of maximum intensity, orω>ω0 and

α(ω)< 0, in which case the atoms will be repelled from points of maximum intensity. The

time-dependence of the electric field in a wave allows for a local maximum in the field

strength to be realized. One way to achieve a local extreme in light intensity is to create

a standing wave, which forms both local maxima and local minima. Another is to simply

focus a beam, forming a local maximum . Here we consider the latter approach, considering

a trap formed by a focused monochromatic gaussian beam with a frequency far below the

resonance frequency of the atom.

The “gaussian beam” is the azmuthally-symmetric (or elliptically-symmetric) beam

profile E (r) that is consistent with Maxwell’s equations. After passing a polarized beam

through a lens, the (azmuthally-symmetric) beam profile satisfies

|Ez |2 ≈ |E0|2
�

w0

w (x )

�2

e −2ρ2/w 2(x ) (4.13)

where x is the axial distance from the focus, ρ is the radial distance from the center of

the beam, k is the wavenumber, the “spot size” w (x ) = w0

p

1+ (x/x0)2 is the field 1/e

radius, and x0 =
1
2 k w 2

0 is the “Rayleigh length.” The above equation is obtained in paraxial

approximation, where it is assumed that the beam retains polarization as it is focused.

In reality, though, the polarization remains orthogonal to the local wavevector. The field
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Figure 4.3: A depiction of the action of an optical dipole trap formed by focusing a far-red-
detuned Gaussian laser beam. The atom polarizes along the direction of the electric field,
then feels a net force when the fields at each pole are different (as occurs near the focus).

vector then has some component directed toward the focus, which allows the dipole to

feel a trapping force in all three dimensions (see Fig 4.3). Now, from Eq. 4.5, the potential

associated with the dipole force is

U (r) =−
1

4
real
�

α(ω)
�

|E (r)|2. (4.14)

If atoms are cold enough relative to the trap depth to remain around the focus (x <<

x0,ρ <<w0), the trap may be well-approximated as harmonic

U ≈U0+
1

2
mω2

ρρ
2+

1

2
mω2

x x 2 (4.15)

where U is the potential energy, m is the mass of an atom, and U0 ≡ U (0) is the trap

depth. Note that the necessary minimum beam intensity can be calculated by setting

U0 = kB TD o p p l e r (to get high intensities, though, one cannot focus the beam to an arbitrarily

small size, as trapping volume must be close to the volume of the MOT for efficient transfer).

Performing the multi-variable Taylor expansion of |Ez |2, we have

ωx =

√

√ 2U0

m x 2
0

, ωρ =

√

√ 4U0

m w 2
0

. (4.16)

|E0|2 may be related to the beam intensity in order to relate the above terms to the measur-

able quantities of beam power and size. As the Rayleigh length x0 differs from field waist w0

by a factor k w0, x0 >>w0 at optical wavelengths, the axial trapping force is much weaker
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than the radial trapping force. To get strong trapping forces axially, one may cross two

focused beams perpendicularly. This can also increase the Evaporative Cooling efficiency,

as the sample becomes more dense.

The radial trap frequencyωρ may be measured by modulating the laser power until

heating due to parametric resonance occurs at 2ωρ. While this can be done to measure the

axial trap frequencyωx as well, we find a more accurate measurement by using another

focused optical dipole trap to move the atoms to the edge of the trap, turning off this second

beam, and measuring the oscillation of the cloud in the original trap. We note that any

periodic noise in the laser power at 2ωx or 2ωρ results in heating by parametric resonance

[Savard et al. (1997)].

While the optical dipole trap is spin-independent on its own, in our system, the curvature

in the magnetic field used to tune the interactions introduces spin-dependence into the

overall potential. Evidence of the spin-dependence is given in the RF spectra shown § 5.1.1.

Along the axis of the trapping beam, the magnetic force is directs atoms toward the focus.

Radially, the magnetic force repels atoms from the axis of the beam. This applies for the Li6

hyperfine spin states |1〉 and |2〉 (|↑〉 and |↓〉) used in our experiments. In the axial direction,

the magnetic and optical forces are comparable. In the radial direction, however, the optical

force dominates over the magnetic force. To avoid any offset in the two potentials (which

is especially problematic for evaporative cooling), the focus of the optical dipole trap is

aligned where the magnetic forces vanish.

4.1.5 Absorption Imaging

We observe the ultracold gas by shining a laser pulse on the sample and measuring the

change in the beam properties, from which we may extract the density of the atoms. These

properties could include the intensity, phase, or polarization. Our observation method is

to measure the change in intensity due to absorption, which we refer to as “absorption

imaging”: the atoms are illuminated with a resonant laser pulse and the transmitted light

is detected with a spatial-resolution on the order of 10µm. This blasts the atoms out of

the trap, accelerating them with the radiation pressure force. Afterwards the same pulse is

detected without the atoms, which we use to measure the intensity that was incident on the

atoms. By measuring the spatially-resolved change in intensity due to the atoms, and with

knowledge of the optical properties of 6Li, we can extract the 2-D density of atoms. Since

the resonant frequency is spin-dependent in the high magnetic field (due to the Zeeman

effect and hyperfine structure; see § A), we measure the density associated with each spin
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state.

The relationship between the attenuation of the intensity and the atom density can

be found with Maxwell’s equations: the known (dissipative) polariziblilty of a single 6Li

atom to an optical beam, which is related to α(ω), allows the change in the electric field

of the beam to be found for an arbitrary density. Inverting the result, the density may be

found. The calculation may also be performed from a two-body scattering perspective—

in this case, between atoms and photons. Let the cross section between an atom and

a photon be σa p (∆), where ∆ is the detuning of the incident photons from the atomic

resonance. Then, by definition, the probability of a collision between an atom and a photon

at a position r due an incoming fluxFp of photons during a short time increment∆t is

Pa p (r) = σa p (∆)Fp (r)∆t . We consider a small volume element located at r with a cross

sectional area of ∆A and length ∆z along the direction of the incoming photons. The

number of collisions in this volume during∆t is Nc =σa p (∆)Fp (r)∆t Na (r), where Na (r) is

the number of atoms in the volume element. With one photon lost from the incident beam

per collision (neglecting stimulated emission), the change in the number of photons Np is

∆Np =−Nc . Dividing by the volume of the element∆A∆z and by the time increment∆t ,

we have∆Fp (r)/∆z =−σa p (∆)na (r)Fp (r), where na (r) is the density of atoms at position

r. Since the flux of photons is proportional to the intensity of the beam, we have, in the

continuum limit,
d I (r)

d z
=−σa p (∆)na (r) I (r). (4.17)

We note that σa p (∆) can be a function of the intensity I due to saturation effects. We

make the beam large enough to illuminate the atoms uniformly, so I (r) = I (z ). Solving the

differential equation and isolating na (r), we integrate over the line-of-sight z to calculate

the 2-D density using the observed changes in intensity, obtaining an image like that shown

in Fig. 4.1.

The result is, in general, a function of the intensity of the beam. If the intensity is too

low, all of the light is absorbed and some of the atoms are not detected. If the intensity is too

high, the force on the atoms can be so high that they are Doppler-shifted out of resonance

during the pulse. We choose the intensity between these two regions, where the measured

atom number is not sensitive to local changes in the intensity.

The profile of the beam must be magnified in order to detect it with a camera with

spatial resolution. To determine the magnification, we can take a picture of atoms trapped

in a standing wave of the CO2 laser, for which we know the spacing between the maxima in

the laser intensity (10.6/2= 5.3µm), where atoms are trapped.
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To lower the density of the atoms (which avoids complete absorption) and increase the

imaged radial size, we generally release the gas from the optical dipole trap for a short time

before imaging. The timescale for doing so is small compared to the axial trap frequency,

such that the axial profile is effectively unchanged, while the radial profile has expanded.

We loss access to what the radial profile was before expansion, but are able to back out the

radial width before expansion by assuming that the pressure is isotropic (as it should be).

For a harmonic trap, this assumption results in 1
2 mω2

ρ〈ρ
2〉= 1

2 mω2
x 〈x

2〉, where the brackets

denote spatial averaging.

4.2 Frequency-Stabilization of the Optical Control Beams

In the experiments, we illuminate the ultracold gas with an optical beam resonant with

the g → e transition (see § 2.3). Spontaneous emission from e results in the loss of both

of the interacting atoms from the trap. The apparatus for generating this beam is the

optical control system discussed in § 2.3, which generates two beams [Jagannathan (2016);

Arunkumar (2018)]: the “control” beam which light-shifts the energy of the g state, and

the “EIT” beam which suppresses the accompanying loss via Electromagnetically-Induced

Transparency. The function of the optical control system is to produce these beams with (1)

stable absolute frequencies, (2) a stable frequency difference, and (3) the ability to tune

both frequencies. The stability of the frequency difference is much more important than

the absolute frequencies, as this is the relevant parameter for EIT. Only the control beam

is used in the loss experiments, but the entire apparatus must be understood in order to

stabilize its frequency with a tunable locking point.

Near the weakly interacting regime between hyperfine states |1〉 and |2〉, the correspond-

ing g → e frequency is ≈ 444.1398 THz and the corresponding g2 → e frequency is ≈
444.1965 THz. In order to stabilize the frequency difference between the two (as well as

the absolute frequency) we first use an absolute common frequency reference point. We

choose iodine gas to provide this reference, with absorption peaks located ≈ 2 GHz from

the control laser frequency. We cannot use an Acousto-Optic Modulator (AO) to overcome

this frequency difference, so we introduce a “reference" laser to operate at a frequency in

the iodine absorption spectrum. The reference and control beam frequencies are close

enough to form an electronically-observable beat. The ≈ 60 GHz difference between the

EIT beam and iodine frequencies is, however, too large to observe electronically. In order

to use this reference for the EIT beam as well, an optical cavity is kept resonant with the
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reference laser, which can then be used to keep the EIT beam resonant with the cavity at

a much higher frequency, “climbing” up the frequency difference along the “ladder” of

periodic resonances. The lock created by the reflection off of the cavity allows the laser

frequency to be stabilized to one of the cavity’s resonance frequencies quickly, so that rapid

changes can be accounted for as well as slow drifts.

At a high level, the design (depicted in Fig. 4.4) is as follows: The reference beam is split

into three paths. One path is directed into the cavity, and the reflection is observed with a

photodiode. This signal is used to create a Pound-Drever-Hall lock, which provides feedback

into the laser so that its frequency is resonant with a cavity resonance frequency. Another

path is made incident on the iodine gas, and the transmission signal is recorded with a

photodiode. This is used to generate an absolute frequency reference lock, which locks the

variable length of the cavity so that it stays resonant with the given iodine transition. When

the iodine signal is narrowed using Saturation Absorption Spectroscopy (described below),

the reference laser becomes both extremely sensitive to changes in frequency (due to the

narrowed iodine signal) and very quick to correct them (due to the rapid response of the

cavity). The third path of the reference laser combines with a path of the control laser, and

this combination is made incident on a photodiode. The frequency difference between the

two is low enough to observe in the electronic signal, which can be used to lock the control

laser frequency in a tunable fashion. A path of the EIT beam is directed into the cavity and

locked in the same way as the reference laser is (the Pound-Drever-Hall lock), even though

the difference in frequency between the two lasers is ≈ 62 GHz. An AOM placed before the

cavity allows the locking point of the cavity to be tuned within the range of the AOM.

In the following, we overview the locks used, deriving the error signal observed in each

case. An “error signal” is what is used to send the appropriate feedback to the laser in

order for it to remain at the desired frequency. It is interesting to note that we use resonant

phenomena to drive resonant phenomena.

4.2.1 The Absolute Frequency Reference Lock

A laser beam incident on a sample of atoms is absorbed at discrete frequencies, resulting

in “dips" in the transmission spectrum (see Figure 2a). These natural resonances provide

absolute frequency reference points (for an atom at rest). However, the dips are usually

symmetric about the resonance frequency, so that one cannot use the transmission/absorp-

tion signal to determine whether the laser frequency is higher or lower than the resonance

frequency. This presents a problem when attempting to use this signal to lock a laser, as a
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Figure 4.4: High-level diagram of the two-beam optical control system. Here, “AO” refers to
an Acousto-optic modulator (which shift the frequency), and “EO” refers to an electro-optic
modulator.
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servo loop cannot discriminate between an increase and decrease in laser frequency. To

lock the laser, we must inject some knowledge about which side of the resonance we are on.

We can do this by intentionally changing the frequency of the laser incident on the atoms

in a controlled way: by scanning around a given point and weighting it with the scan signal,

we effectively take the difference between the neighboring points (see Figures 2b and 2c).

(a) (b)

(c) (d)

Figure 4.5: Generation of a locking signal from an absorption spectrum. (a) The trans-
mission of laser light near a resonance in the medium through which it is passing. (b)
Illustration of the frequency modulation of the laser at the resonance. (c) Illustration of the
frequency modulation of the laser when off resonance. (d) Signal generated by weighting
the modulated signal with a signal of the same frequency and averaging.

We will show that this method is equivalent to taking the derivative of the dip. Let the

transmission spectrum through a sample with a resonance at f0 be given byP =P ( fS − f0),

where fS is the frequency of the beam exposed to the sample. If we scan over the peak by

modulating the laser frequency before it reaches the sample fL , then fS = fL + ε(t ). For
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ε<< | fL − f0|,

P ≈P (ε= 0) +ε
∂P
∂ ε

�

�

�

�

ε=0

. (4.18)

The derivative can be extracted from this signal by choosing ε to be periodic and multi-

pling the signal by the same periodic function. Averaging over an appropriate time T , the

non-periodic component vanishes, and the output is dependent on ∂P /∂ ε|ε=0 and the

phaseφ between the two periodic functions. Defining the error signal E ,

E =
1

T

∫ T

0

d t P
�

ε(t )
�

sin(ωt +φ). (4.19)

With Eq. 4.18,

E ≈P (ε= 0)
1

T

∫ T

0

d t sin(ωt +φ) +
∂P
∂ ε

�

�

�

�

ε=0

1

T

∫ T

0

d t ε(t )sin(ωt +φ) (4.20)

We choose ε(t ) =∆+β sin(ωt ). With T >> 2π
ω , the integrals over a single periodic function

are very small compared to the integral over the product of periodic signals with the same

frequency. Then,E is proportional to the frequency-derivative of the transmission spectrum

E ∝
∂P
∂ ε

�

�

�

�

ε=0

=
∂P
∂ fS

∂ fS

∂ ε

�

�

�

�

ε=0

=
∂P
∂ fL

, (4.21)

which results in an asymmetric signal about the resonance frequency, allowing the laser

frequency to be stabilized to an absolute point.

It is clear that the steepness of the derivative depends on the sharpness of the dip. A

more sensitive lock may then be formed by a sharper dip (a more sensitive lock may also

be generated by increasing the gain of the error signal, but this increases sensitivity to

noise as well). The sharper dip can be formed by the elimination of Doppler broadening.

This can be accomplished without cooling of the sample by using Saturation Absorption

Spectroscopy: a strong beam (which we refer to as the “pump”) pumps the atoms into

the excited state, and a weak counter-propagating beam (the “probe”) is overlapped with

this beam, driving stimulated emission from the atoms which are Doppler-shifted into

resonance with both beams. If the probe is at the same frequency as the pump, only the

near-stationary atoms are driven by the probe to stimulated emission. If the probe is

detuned by∆AO from the pump frequency, the velocity class of atoms resonant with both

beams and which therefore undergo stimulated emission can be determined by setting
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Figure 4.6: Diagram of the absolute frequency reference lock.

f p r o b e
r e s = f0− v

λ +∆AO equal to f p ump
r e s = f0+

v
λ . The result of this scheme is a narrowed peak

in the transmission spectrum over the absorption dip, at a location set by the detuning of

the probe. By taking the difference of this signal with that of another weak beam which does

not overlap a strong beam, the absorption dip is removed from the signal and the narrowed

peak is isolated. This narrowed peak can be turned into an error signal as described above.

A diagram depicting the setup to realize is lock is given in Fig. 4.6.
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Figure 4.7: The Fabry-Perot Cavity.

4.2.2 The Pound-Drever-Hall Lock

In order to stabilize a laser to a given frequency, the frequency must be able to be observed.

Aside from natural resonances, interference phenomena are usually exploited in order to

generate an error signal. To do this with a single (coherent) beam, one can interfere the

beam with itself by splitting it into two and recombining it after having taken different

paths. The frequency-dependent mismatched phases from the different paths can produce

an observable frequency-dependent interference signal.

The reflected signal from a one-dimensional optical cavity (a “Fabry-Perot Cavity,")

provides a way to generate self-interference which is dramatically sharp in its frequency

dependence (see Fig. 4.7). An incident beam is partially transmitted through a surface com-

posed of some highly reflective material, and then can reflect off of a second surface made

of the same material. The reflected beam is partially transmitted and partially reflected off

of the first. This sets up an infinite series of waves reflected out of the cavity, differing in

path length by twice the spacing between the two media.

The infinite combination of waves cancel one another unless they are nearly all in phase.

This is the cause of the sharp frequency dependence. We will show this dependence in

the intensity of the light reflected from the cavity. Let the incident wave be given by Ei n =

Λsin(k x −ωt ), where neglect polarization. Let the field at the photodetector positioned to

detect the reflected light from the cavity (at x = 0) be given by EP D . The total reflection from

the cavity is the combination of the initially reflected wave Er e f l and the infinite series of
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waves which have been reflected inside of the cavity {EOm
}

EP D = Er e f l +
∞
∑

m=0

EOm
. (4.22)

With a reflection coefficient fR , we have Er e f l =−Λ fR sin(ωt ) (note the π phase shift). Now,

each time a wave is reflected off of the second surface, it picks up a phase differenceδ= 2k L .

With the transmission coefficient fT , a wave reflected m+1 times from the second medium

is given by

EOm
=Λ f 2

T fR ( f
2

R )
m sin
�

k x +ωt + (m +1)δ
�

. (4.23)

In the complex representation, the sum of EOm
over m becomes geometric, resulting in

∞
∑

m=0

EOm
=Λ(1− f 2

R ) fR imag
�

e i (k x+ωt ) e iδ

1− f 2
R e iδ

�

. (4.24)

Then, with the photodiode positioned at x = 0,

EP D =Λ imag
�

e iωt F (ω)
�

(4.25)

where

F (ω)≡− fR +
(1− f 2

R ) fR e iδ

1− f 2
R e iδ

. (4.26)

In order to relate the field observed by the photodetector EP D to the intensity observed by

the photodetector, we square it. For fR = 0.99, we obtain a signal as seen in Fig. 4.8a.

We see that the light reflected from the cavity does indeed have a sharp frequency

response (set by the reflection coefficient). However, this single-frequency response cannot

be used as an error signal, primarily due to its symmetry. In principle, we may overcome

this in the same way that an error signal was created from an absorption spectrum. This

may be too sensitive though, as the derivative of the curve in the figure approaches infinity

at the resonance (furthermore, it turns out that this method is much slower servo loop

compared to method we are about to describe). If the frequency is not scanned, we must

introduce other frequencies simultaneously in order to have access to neighboring parts of

the spectrum. When two frequencies are incident on the cavity, we do not merely get the

sum of two single-frequency signals, as the fields interfere. We will show that, by introducing

two frequency “sidebands" detuned equally above and below the primary frequency, the

beats formed by interference with the primary frequency themselves interfere, and that
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this may be used to create an error signal. This method of locking a laser is called the

Pound-Drever-Hall lock [Drever et al. (1983)].

The two frequency sidebands with a fraction β of amplitude of Ei n are introduced at

the same polarization and out-of-phase, one detuned by −∆ from the central (angular)

frequency ω, and the other detuned by +∆. This can be accomplished with an electro-

optic modulator. In order to break the symmetry of the signal atω, one of these sidebands

is π phase-shifted. All of this may be accomplished by transmitting the beam through a

periodically-modulated electro-optic device before the beam is incident on the cavity. The

field at the photodiode is now E ′P D

E ′P D = EP D (ω) +βEP D (ω−∆)−βEP D (ω+∆) (4.27)

As the light intensity is proportional to the square of the field, the photodiode signal now

contains several frequency components.

E ′2P D =E 2
P D (ω) +β

2E 2
P D (ω−∆) +β

2E 2
P D (ω+∆)

+2β
�

EP D (ω)EP D (ω−∆)−EP D (ω)EP D (ω+∆)
�

−2β 2EP D (ω+∆)EP D (ω−∆)

(4.28)

We wish to extract the component of this signal which is the result of interference terms

with the central frequencyω, which we define as Ei n t

Ei n t ≡ 2β
�

EP D (ω)EP D (ω−∆)−EP D (ω)EP D (ω+∆)
�

. (4.29)

Expressing Ei n t in terms of F (which is non-trivial),

E ′i n t (∆) =Λβ
�

cos(∆t )real(η) + sin(∆t )imag(η)
�

(4.30)

where E ′i n t (∆) the component of Ei n t with frequency∆ and

η≡ F (ω)F (ω+∆)∗− F (ω)∗F (ω−∆). (4.31)

E ′i n t (∆)may be extracted from E ′P D by mixing the signal with a local oscillator at frequency

∆, resulting in a signalS ,

S ∝ E ′2P D cos(∆t +φ) (4.32)

and then sending S through a low-pass filter. All non-∆ frequency components of E 2
P D
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(a) (b)

Figure 4.8: Signals obtained from the laser light reflected from the Fabry-Perot cavity with
fR = 0.99, L = 10 cm as the frequency is scanned. (a) Photodetector readout when the beam
is monochromatic. (b) Readout after the photodetector signal is mixed and filtered, for light
at the scan frequency superimposed with frequency “sidebands," with the relative local
oscillator phase atφ = π

2 .

vanish, and we are left with a time-independent signal E

E ∝ cos(φ)real(η) + sin(φ)imag(η). (4.33)

The purely imaginary component of η ends up resulting in the best error signal, as it is

linear for a larger region about the resonance frequency. Tuning the phase of the local

oscillator until the purely imaginary component is obtained,

E
�

φ =
π

2

�

∝ imag(η). (4.34)

The result is shown in Figure 4b. We see that E (φ = π
2 ) possesses the desired properties of

an error signal. Furthermore, as a change in the frequency of the incident beam results in a

near-instanteous change of the photodiode signal, and the processing of the photodiode

signal is minimal, any deviations from a frequency resonant with the cavity are quickly

apparent in E . A diagram depicting the setup to realize is lock is given in Fig. 4.9.

4.2.3 The Tunable Frequency Offset Lock

Let two monochromatic lasers, one comprised of electric field oscillating at fL which is

locked to an absolute frequency reference, and the another of an electric field oscillating at

fU L which is unlocked, overlap. The intensity of this linear combination of will have one
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Figure 4.9: Diagram of the Pound-Drever-Hall lock.
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frequency component at f+ = fL + fU L and another f− = fL − fU L . If f− is low enough that it

can be observed in an electronic signal formed by shining the combined lasers on, say, a

photodiode, then the fU L is now observable electronically, since fL is fixed. We will show

that we can use this electronic signal to build a circuit that generates an error signal that

may be used to lock fU L [Schnemann et al. (1999)].

We mix the photodiode signal with a frequency f− with a local oscillator signal at a

frequency fR F and use a low-pass filter, obtaining a signal with a frequency∆ f = fR F − f−.

Since fR F is tunable,∆ f is tunable. To create a circuit that can “observe”∆ f , we exploit

interference phenomena, splitting the signal into two paths with different lengths. In our

circuit, the difference in the path lengths is ∆L ≈ 4 m. The signals are mixed (that is,

multiplied), resulting in one component of the signal oscillating at twice the frequency, and

the other which DC. The output is fed into a low-pass filter, so that only the DC signal is

left. This is sent to a phase detector (which is a nearly equivalent circuit to the frequency

mixer) which in conjunction with a low-pass filter, outputs a signal VOU T proportional to

the cosine of the phase difference of the two signals:

VOU T ∝ cos
�

2π∆ f
∆L

v

�

(4.35)

where v is the speed of the signal in the cable. When the effect of the low-pass filters are

accounted for, we obtain a signal like that in the Fig. 4.10. The signal is asymmetric about

several zero points and locally linear around these points, allowing it to function as an error

signal. By changing fR F by a given value, the locking point is shifted by the same value. A

diagram depicting the setup to realize is lock is given in Fig. 4.11.
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Figure 4.10: Error signal for the tunable probe lock. The periodicity is a result of the
changing phase difference between the the two interferometer signals as the probe laser
is scanned. The cutoff at ≈ 200 MHz is due to the low-pass filter operating after the pho-
todetector and RF generator signals are mixed. The artefact near the region of equal signal
frequencies (the zero-frequency point on the plot) is due to summed frequency component
of the mixed interferometer signals passing through the second low-pass filter.
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Figure 4.11: Diagram of the frequency offset lock. “S.t.” abbreviates “such that.”
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CHAPTER 5

MEASUREMENT OF THE OPTICALLY

INDUCED TWO-BODY LOSS RATES

Upon creation of an ultracold gas in which the energy-space spin-lattice may be realized, we

test the loss model from § 3 by illuminating the weakly interacting sample with an optical

field, frequency-stabilized on the g → e transition, and measuring the time-dependent

decay of the total atom number N (t ). The measurements are obtained for scattering lengths

aS = 0 a0 to 24 a0 which correspond to interacting strengths of ζ= 0 to 5.4 for the densities

used (N (0) = 6×104,σx
T F = 330µm,σρT F = 12µm ). As shown in § 3.3 in the absence of loss,

there is a phase transition over this range into a magnetized state.

The loss model requires the two-body loss constant K a
2 for a pair of atoms in the anti-

symmetric spin state. We extract this value from measurements of N (t ) in an incoherent

50-50 mixture of atoms in the |1〉 and |2〉 states for each scattering length.

In this chapter, we discuss how the ultracold gas is prepared in the weakly interacting

regime in order to realize the lattice, provide the details of the optical field used to induce

loss, and reveal the loss measurements and how they compare to the model.

5.1 Preparation of the Gas in the Weakly Interacting Regime

After reaching ultracold temperatures in the optical dipole trap (comprised of a single

focused CO2 laser) via evaporative cooling, the gas is in a 50-50 mixture of 6Li atoms in the
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two lowest hyperfine states |↑〉z ≡ |1〉 and |↓〉z ≡ |2〉. Evaporative cooling cannot, by definition,

occur in the weakly interacting regime, so after evaporation as must be magnetically tuned

to this regime. Maximum cooling efficiency occurs when as is tuned to the broad Feshbach

resonance near 832.2 G [Zürn et al. (2013)]. The narrow resonance cannot be used for

cooling, as three-body collisions occur, which result in loss. To reach the weakly interacting

regime (near 527 G) from the broad Feshbach resonance requires tuning the magnetic field

downward, which, as we saw in § 2.2.3, results in the formation of Feshbach molecules.

This is undesirable, as we lose atoms in the free state. We avoid the formation of Feshbach

molecules in a different way for the mixture and the coherently-prepared state, as we discuss

below.

5.1.1 Preparation in a Coherent Spin State

To prepare the lattice, the atoms must begin in a coherent spin state in the weakly interacting

regime. We first evaporatively cool at the broad Feshbach resonance near 832.2 G [Zürn

et al. (2013)] and then raise the trap depth to secure the atoms with a radial trap frequency

of ωρ = 2π× 668.0 Hz. The magnetic field is then swept upwards to 1200 G where the

interactions are much weaker, and resonant light is applied to expel one spin state, leaving a

ẑ-polarized spin sample. The remaining, spin-polarized sample is non-interacting, allowing

the magnetic field to be swept downward to produce scattering length aS (B ) of interest

near 527 G without the formation of Feshbach molecules.

To reach the desired scattering length as of interest, we use the known calibration of

as (B )with the magnetic field B near the weakly interacting regime [Pegahan et al. (2019)].To

determine the magnetic field, we perform RF spectroscopy on a ẑ-polarized sample for

which all atoms are in, say, the |1〉 state. For a two-level atom subject to an electromagnetic

wave that couples the two states together, the probability P1→2(t ) that an atom that starts in

a state |1〉 ends up in a state |2〉 after a time t is, in the rotating wave approximation,

P1→2(t ) =
Ω2

12

Ω2
12+∆2

sin2
�

t

2

q

Ω2
12+∆2

�

(5.1)

whereΩ12 is the Rabi frequency, proportional to the square root of the intensity of the pulse,

and∆ is the detuning of the wave frequencyω from the resonance frequency between the

two statesω0 (∆ =ω−ω0). We measure the hyperfine transition frequencyω0 by fixing

t =π/Ω12 (which we refer to as a “π-pulse”) and varyingω until all atoms are transferred

from |1〉 to |2〉. This uniquely determines the magnetic field. To coherently prepare the spins
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vectors of the atoms orthogonal to the magnetic field, the time of the pulse is cut in half,

resulting in a “π/2-pulse” (then, P1→2 = 1/2). Due to the spin-dependence of the trapping

potential, ∆ = ∆(E ). To ensure that atoms of all energies are universally affected by the

pulse, we choose Ω12 = π/(2 ms), for which Ω12 >> ∆(E ) (since max[∆(E )] ≈ 10 Hz). The

π-pulse is then 1 ms and theπ/2-pulse is then 0.5 ms. The spin-dependence of the trap may

be observed by varyingωwhen Ω12 is made comparable to∆(E ). For Ω12 ≈π/(2×17.3 ms),

the RF spectrum shows effectively no energy dependence (Fig. 5.1). For Ω12 ≈π/(2×70 ms),

however, the spin-dependence of the trap becomes apparent in the distorted shape of the

spectrum and the inability to fully transfer the atoms into the other state (Fig. 5.2).

Figure 5.1: RF spectrum for which the time of a π-pulse is ≈ 17.3 ms. The atoms begin in
state |1〉, the pulse is applied, and the number of atoms in state |2〉 is measured. The axial
trap frequency isωx ≈ 2π×34 Hz. Each data point is the average of four measurements.

After this preparation, the total number of atoms N (0)≃ 6.0×104. A fit of the measured

axial profile with a zero-temperature Thomas-Fermi distribution yields an axial width

σx
T F ≃ 331µm, Fig. 5.3. The radial widthσρT F is computed from the ratio of trap transverse

and axial frequencies,ωρσ
ρ
T F =ωxσ

x
T F . The curvature in the applied magnetic field results

85



Figure 5.2: RF spectrum under the same conditions described in Fig. 5.1, except that the
time for a π-pulse is ≈ 70 ms. The spectrum is noticeably distorted, reflecting the energy-
dependence of the resonance frequency.

in an axial trapping force in the axial direction, with a trap frequency ωma g = 2π× 16.3

Hz. For the combined optical and magnetic trapping potentials near 527 G, the net axial

trap frequency is measured to be ωx = 2π× 25.0 Hz. With ωρ = 2π× 668.0 Hz, we find

σ
ρ
T F ≃ 12.0µm.

To determine the temperature of this prepared sample, we fit a 1-D finite-temperature

Thomas-Fermi distribution to the initial axial profile. The Fermi temperature TF for our

harmonic trap is determined by

EF = kB TF = ħh (6Nω2
ρωx )

1/3. (5.2)

Note that the 6 in Eq. 5.2 reflects the fact that all N atoms initially begin in an identical spin

state. For the initial atom number and trap frequencies given in the last paragraph, we find

TF ≃ 0.75µK. Using the calculated Thomas-Fermi radiusσT F =
Æ

2EF /(mω2
x )≃ 317.0µm,

a fit to a finite-temperature Thomas-Fermi profiles yields T ≃ 0.20TF . Fig. 5.3 shows the

averaged initial axial profile for a sample that is coherently prepared at 0 Bohr, along
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with the corresponding fitted finite-temperature 1D Thomas-Fermi and zero-temperature

1D Thomas-Fermi profiles. The zero-temperature and finite-temperature Thomas-Fermi

profiles are nearly identical, as expected for T ≃ 0.20TF , justifying the use of an effective

zero-temperature profile with a fitted width in the model.

Figure 5.3: Thomas-Fermi fits to the sum of the initial axial profiles of the |↑z 〉 and |↓z 〉
states, immediately after the π/2 pulse, as used for measurement of N (t ) at 0 Bohr in the
coherently-prepared sample. The fit of a finite-temperature 1D Thomas-Fermi profile yields
the reduced temperature T /TF = 0.2. The fit is nearly identical to that of a zero-temperature
1D Thomas Fermi profile, justifying our use to a zero-temperature distribution in the model.

5.1.2 Preparation in an Incoherent 50-50 Mixture

To prepare an ultracold incoherent mixture near the weakly interacting regime, a 50-50

incoherent mixture of atoms in spin states |↑z 〉 and |↓z 〉undergoes evaporative cooling at 300

G. Then the magnetic field is then swept upward, without passing through any resonances,

to the magnetic field of interest in the weakly-interacting regime. This method avoids the

formation of Feshbach molecules, since the field is never swept though a magnetic field
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range where Feshbach molecules form. However, the efficiency of evaporation performed

at 300 G, where as is small, is reduced compared to that of the unitary gas at 832.2 G. For this

reason, the samples used to measure K a
2 are at a higher temperature than for the coherently

prepared samples. We assume that K a
2 is temperature independent, as K a

2 is expected to

exhibit a weak momentum dependence in the weakly interacting regime. At the magnetic

field of interest, the loss-inducing optical field is applied, and the total number of atoms is

measured as a function of time. The optical resonance frequency is determined by finding

the peak loss point at each magnetic field of interest. Using the measured initial axial width

and the initial radial width deduced from the ratio of the trap frequencies, the initial density

profile is determined and Eq. 3.92 is used to obtain Eq. 5.5, which is used to determine K a
2 .

This procedure is repeated for each scattering length aS employed in the experiments.

We determine the temperature from a fit of a Maxwell-Boltzmann distribution to the

spatial profiles, kB T =mω2
xσ

2
x/2, where σx is the fitted Gaussian width. For 15 a0, this

procedure gives T = 0.56 TF , where TF = 0.79µK is determined by

TF =
ħh
kB
(3Nω2

ρωx )
1/3. (5.3)

Note that we have used a factor 3= 6/2 in place of the factor 6 in Eq. 5.2, as a 50-50 mixture

has half of the total number of atoms N in each spin state. The initial profile with the

gaussian fit is shown in Fig. 5.5.

5.2 Illumination of the Gas with the Loss-Inducing Beam

For every scattering length, K a
2 is measured from the loss in a 50-50 mixture, as discussed

in § 5.1.2. Loss is induced by an optical beam propagating at an angle of≃ 49◦ relative to the

trap x -axis (i.e. the direction of the CO2 beam). The intensity half width at 1/e of the optical

beam is w = 1.1 mm, so that the projection of the full width of the optical beam at 1/e onto

the cloud x -axis, is 2 w sin(49◦)≃ 1.5 w = 1.6 mm. This can be compared to the full width of

the cloud 2σx ≃ 0.66 mm. Hence, most of the atoms are illuminated near the peak intensity,

I = P /(πw 2). The servo-stabilized beam power is 7.6 mW, so that I = 2.0 mW/mm2. The

Rabi frequency for the singlet electronic transition from the ground 38th vibrational state

|g 〉 to the excited 64th vibrational state has been measured [Arunkumar et al. (2019)] to be

Ω1/2π= 4.4 MHz
Æ

I [mW/mm2]. The Rabi frequency for the loss inducing beam is then

Ω1 = 0.53× γe , where γe = 2π× 11.8 MHz is the rate of spontaneous emission from the
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excited molecular state [Jagannathan et al. (2016a); Wu and Thomas (2012a)].

The optical field is frequency-stabilized on the g → e transition using the system de-

scribed in § 4.2. The tunable frequency offset lock allows the frequency to be adjusted by

changing the frequency of a local oscillator (an RF generator). The resonance frequency for

each magnetic field value is found by finding the peak loss in the incoherent mixture as a

function of frequency, which is prepared as described in § 5.1.2. Since the optical field is

locked on resonance, there is no optical shift in the scattering length.

In the coherently-prepared case, illumination occurs after the π/2 pulse. In the mixture,

it occurs whenever the magnetic field has stabilized at the desired value.

5.3 Measurement of Loss in a 50-50 Mixture

To measure the two-body loss constant K a
2 , we measure the decay of the total number of

atoms in an incoherent mixture of the |↑z 〉 and |↓z 〉 states. We employ a 50-50 mixture for

which Eq. 3.92 is valid, with Eq. 3.94 allowing K a
2 to be determined from measurements of

N (t ). We model n (r,0) as the Maxwell-Boltzmann distribution, which is appropriate for

the higher temperature samples used in the mixture measurements,

n (r, 0) =
N (0)

πσ2
ρσx
p
π

e −(ρ/σρ )
2−(x/σx )2 . (5.4)

With the axial sizeσx determined from the measured spatial profiles, the radial sizeσρ is

found from the ratio of the trap frequencies. Using the initial density n (r, 0) in Eq. 3.94, the

measured decay of the total number N (t ) determines K a
2 , which is used as a fit parameter.

From Eq. 3.94

N (t ) =

∫

d x

∫

2πρdρ
n (r, 0)

1+ 1
4 K a

2 n (r, 0) t
. (5.5)

Here we expect that K a
2 is independent of temperature, as will be discussed in § 6.1 (see

Eq. 6.1).

Measurements of N (t ) in 50-50 mixtures are shown in Fig. 5.4 for all of the scattering

lengths of interest, using Eq. 3.94 to determine K a
2 . The values extracted from the fit are

displayed in Table 5.1, where the uncertaintyσK a
2

is determined from the square root of the

covariance matrix of the fit (note that this neglects the uncertainty in the initial density).

The measured value of K a
2 changes by ≃ 10% as the scattering length is varied, most likely

due to changes in the optical detuning and alignment from run-to-run. We do not expect
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K a
2 to be a function of the magnetic field near the zero crossing. Note that the axial widths

are smaller for the measurements at 0 and 10 a0 than for 5, 15, and 24 a0 (as shown in

Table 5.1). The difference arises from the difference between the trap depths used for 0 and

10 a0, where the trap frequencies wereωρ = 2π×1075 Hz and ωx = 2π×34 Hz. The 5, 15,

and 24 a0 data employed the smaller trap frequencies given in § 5.1.1. The faster timescales

of loss for the 0 and 10 a0 measurements reflect the higher density of the sample in the

deeper trap.

Eq. 3.93 also predicts the time-dependent axial profiles n1D(x , t ), which can be compared

to measurements. For the Maxwell-Boltzmann distribution of Eq. 5.4,

n1D(x , t ) =

∫

dρ 2πρn (r, t) =
4πσ2

ρ

K a
2 t

ln

�

1+
K a

2 t

4πσ2
ρ

N (0)
σx
p
π

e −(x/σx )2
�

. (5.6)

In the limit K a
2 t → 0, n1D(x , t ) approaches a 1D gaussian distribution normalized to the

initial total atom number N (0), as it should. Using the K a
2 determined from the fit to N (t ),

we find that the predicted axial profiles are in quantitative agreement with the measured

profiles, as shown for aS = 15 a0 in Fig. 5.5.

Table 5.1: Two-body loss coefficients.

aS (a0) K a
2 (µm3/s) σK a

2
(µm3/s)

0 115 5
5 120 11.6

10 110 6.8
15 138 10
24 136 10

As we discuss below, if the measurements in Table 5.1 are used in the energy-dependent

loss rate coefficient K (E , E ′, t ) of Eq. 3.74, however, the loss model does not agree with

the measurements in the energy lattice given in § 5.4. To obtain quantitative agreement

between predictions and data for coherently prepared samples, we must divide the values

of K a
2 measured in the mixture by two. It is possible that we have incorrectly extracted K a

2

by using Eqs. 3.91, 3.92, and 5.5.
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Figure 5.4: Measurements and predictions of loss in the 50-50 mixture at each scattering
length. Different trap depths were used for 0 and 10 Bohr (ωρ = 2π×1075 Hz, ωx = 2π×34
Hz) than for 5, 15, and 24 Bohr (ωρ = 2π×675 Hz, ωx = 2π×23 Hz). (a) Loss at 0 Bohr, with
an initial gaussian width 213 µm; (b) loss at 5 Bohr, with an initial gaussian width 241 µm;
(c) loss at 10 Bohr, with an initial gaussian width 211 µm; (d) loss at 15 Bohr, with an initial
gaussian width 243 µm; (e) loss at 24 Bohr, with an initial gaussian width 260 µm.
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Figure 5.5: Measurements and predictions (Eq. 5.6) for the evolution of the axial profiles
in a mixture. The magnetic field is tuned so that aS = 15 a0. The two-body loss rate constant
K a

2 = 2×69.0µm3/s is determined from the fit of N (t ), Eq. 3.94 to the data.

5.4 Measurement of Loss in a Coherently Prepared Sample

To measure loss in the lattice, atoms are illuminated with the loss-inducing beam after

the π/2 pulse is applied to the spin-polarized sample. Measurements are obtained for

the scattering lengths as = 0, 5, 10, 15, and 24 a0, corresponding to interaction strengths

ζ = 0, 1.03, 2.32, 3.59, and 5.39 for our given densities. The fraction of atoms remaining

after τ= 370 ms of illumination, N (τ)/N (0), is shown in Fig. 5.6 for the different scattering

lengths. The data demonstrate the phase transition to a magnetized state, and the Fermi

suppression more than doubles the number of atoms remaining between the aS =0 and 24

a0 cases. Error bars represent the standard deviation of the mean for six shots. The prediction

generated by the loss model (red curve) agrees well with the data. For the prediction, we

use the averaged atom number, axial widths, and values of K a
2 from the measurements.

Measurements of the fraction of atoms remaining throughout the evolution N (t )/N (0)

for coherently prepared samples are shown in Fig. 5.7, along with the corresponding pre-

dictions using no free parameters. Predictions and measurements for aS = 0a0 (ζ = 0),

92



0 5 10 15 20 25

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4

Figure 5.6: Measurements of the atom fraction remaining after τ=370 ms of illumination
as the scattering length is increased (blue points), compared to the theoretical prediction
(red curve). The densities and values of K a

2 vary slightly for each measurement (see mixture
measurements. For the prediction, the averaged values of N (0) = 6.1×104 atoms, σT F =
332µm, and half of the average measured value of K a

2 , 62µm3/s are used. The data are also
plotted with the interaction strength ζ.

where interactions are absent, are shown as a reference, and agree very well. With scattering

lengths aS of 0, 5 (ζ = 1.03), and 10 a0 (ζ = 2.32), for which the system never becomes

strongly magnetized, the atom number is nearly stagnant for the first ≈80 ms, correspond-

ing to the time needed for the energy-dependent Zeeman precession rates to separate the

collective spin vectors. Once the spin vectors are sufficiently separated, the effective loss

rate coefficient K (E , E ′, t ) becomes non-negligible and the atom number begins to decay.

At aS = 5 a0, the data are almost indistinguishable from the aS = 0 a0 case, Fig. 5.7a. This is

consistent with Fig. 3.2, where, for aS = 5 a0 at our experimental densities, the system is still

in the energy-dependent precession-dominated regime. The data show that a phase transi-
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tion out of this regime occurs between aS = 5a0 and aS = 10a0, where the measurements

at aS = 10 a0 exhibit the onset of loss suppression, Fig. 5.7b. The loss is further suppressed

for the aS = 15a0 (ζ= 3.59) data, Fig. 5.7c, and even more for the aS = 24a0 (ζ= 5.39) data,

Fig. 5.7d, reflecting the increasing collective alignment of the spins, as depicted for the

lossless case of Fig. 3.2.
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Figure 5.7: Suppression of optically-induced loss versus illumination time as the scattering
length is increased. N (t )/N (0) is the atom fraction remaining after a time t . As a reference,
the data and model for the non-interacting gas aS = 0a0 (ζ = 0) are shown in black on
each plot. Each point represents the average of six shots, and the error bar is the standard
deviation of the mean. (a) aS = 5a0 (ζ = 1.03), (b) aS = 10a0 (ζ = 2.32), (c) aS = 15a0

(ζ = 3.59), (d) aS = 24a0 (ζ = 5.39). Note that the interaction strength ζ does not change
exactly linearly in the scattering length due to slight variations in the atom number and
width. The measured values of K a

2 and exact densities for each scattering length are given
in 5.3.

The importance of including the time dependence of the normalized radial density

R(ρ, t ) in the model can be seen in the difference between the predictions for n̄⊥ = n̄⊥(0)

and n̄⊥ = n̄⊥(t ) at aS = 0a0, as shown in Fig. 5.8. If n̄⊥ is taken to be constant, the model

disagrees with the data for longer times. Accounting for the decrease in n̄⊥(t ) reduces the

energy-dependent loss rate κ(E , E ′, t ) of Eq. 3.88, causing the tail of the loss curve to rise to
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match the data.

Figure 5.8: Predictions of loss in a coherently-prepared sample, with (blue) and without
(red) the time dependence of the average transverse probability density n̄⊥. The time-
dependence of n̄⊥(t ) arises from loss. Measurements for 0 Bohr in the coherently-prepared
cloud are in agreement with the model when n̄⊥ = n̄⊥(t ) (blue). When n̄⊥ is taken to be
constant (red), the tail of the loss curve does not agree with the measurements. For the 0
Bohr data, the inputs into the loss model are K a

2 = 58.0µm 3/s , the initial atom number
N = 6.3×104 and the widthσT F = 331.0µm.

Our collective spin vector model of loss for the energy-space lattice is in good quanti-

tative agreement with measurements. The average of the values of K a
2 used to generate

the curves in Fig. 5.7, 62 ± 6.2µm3/s , is in good agreement with the predicted value of

69.4µm3/s . However, we find that the values of K a
2 used in the model need to be half of

that extracted from measurements in a 50-50 mixture. For the 50-50 mixture, we assume

that given pair of atoms collides in a product state, with a probability of 1/2 to be in the

antisymmetric spin state , making the extracted K a
2 twice as large. This origin of this dis-

crepancy his not yet clear. Further, we have assumed that the simple two-body loss model

used for the mixture measurement may be trivially applied to the weakly interacting regime.
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We discuss this factor of two in in § 6.1
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CHAPTER 6

CONCLUSION AND OUTLOOK

In summary, we have observed dynamical collective suppression of optically-induced

inelastic scattering in a coherently-prepared, weakly-interacting Fermi gas. As the scattering

length is increased at fixed initial density, we observe a transition from high to low loss. We

understand this suppression via the Pauli principle, where the system makes a transition

into a magnetized state with parallel collective spin vectors, Fig. 3.2, causing suppression of

s -wave scattering. In this way, loss suppression serves as a new probe of the magnetization of

the system. We have developed a loss model that quantitatively agrees with observations and

incorporates the many-body evolution of the collective spin vectors. This model explains

the loss accompanying the optical tailoring of Hamiltonians in weakly interacting Fermi

gases.

6.1 Did we use the Correct K a
2 ?

While the loss model agrees very well with the data, we found that we must divide the

value of K a
2 that we extract from the measurements in the 50-50 mixture by two. To gather

evidence as to whether or not the factor of 1/2 is correct, we can compare the values of

K a
2 used to fit the coherently prepared sample in Fig. 5.7 to predictions for the optically-

induced loss rate constant in 6Li. We take K calc
2 =−2× 8πħh

m a ′′, where a ′′ < 0 is the imaginary

part of the scattering length, determined from the complex light-induced phase shift φ

using tanφ =−i k a ′′ at the optical resonance. Here, ħhk is the relative momentum, and we

assume |k a ′′|<< 1 as is the case for our experiments. Note that a factor of two is included
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to be consistent with the antisymmetrized hyperfine state of Eq. 3.69 that defines K a
2 ,

which in turn requires a symmetric spatial state with a total cross section [Bratten and

Hammer (2006)]σtot = 8π/k I m{ f (0)} and an elastic cross sectionσel = 8π | f |2, with f the

s-wave scattering amplitude. The corresponding inelastic cross sectionσinel =σtot−σel =

2× π
k 2 (1− |e 2iφ |2) is twice that of Ref. [Jagannathan et al. (2016a)], where the scattering

atoms were treated as distinguishable and a factor 4πwas used in the cross sections. The

supplementary material of Ref. [Jagannathan et al. (2016a)] determines a ′′ using x = k |ab g |
and ∆̃0 = (B−B∞)/∆B =−1 in Eq. S5, which gives L (∆̃0, x )≃ 1 in Eq. S8 of Ref. [Jagannathan

et al. (2016a)], yielding

K calc
2 = 2×

8πħh |ab g |
m

ħh γe

4µB∆B
Ω̃2

1 , (6.1)

where Ω̃1 ≡Ω1/γe . With the parameters of Ref. [Bartenstein et al. (2005)], ab g =−1405a0,

∆B = 300 G, andµB/ħh = 2π×1.4 MHz/G,γe = 2π×11.8 MHz we find K calc
2 = 277.4µm3/s Ω̃2

1,

which gives K calc
2 = 69.4µm3/s at Ω̃1 = 0.5 as used in the measurements. This result is

in good agreement with the value K a
2 = 69µm3/s that fits the decay of the coherently

prepared sample at 15a0, but is, however, half the value K a
2 = 138µm3/s extracted from

measurements in the 50-50 mixture using Eq. 3.92 as noted above. At present, we are

unable to resolve this discrepancy, which may arise from applying Eq. 3.92 to a very weakly

interacting mixture or from an incorrect choice of the incoming two-atom state in deriving

Eq. 3.92.

6.2 Prospects for Control of the Lattice

With the effect of the loss on the evolution successfully modeled, optical control can be

applied to the lattice. In the absence of optical control, the site-to-site couplings g (E , E ′)

(see Eq. 3.59) can only be adjusted (beyond a simple scale factor) by putting the atoms in a

different trap. With the spatial resolution offered by optical control, the couplings can be

tailored as as → as (x ), yielding

g (E , E ′) =
8πħh

m
n̄⊥

∫

d x |φE (x )|2|φE ′(x )|2 as (x ). (6.2)

For instance, if the beam is shone only on the edges of the trap, then only the high-energy

atoms can interact, and only the high-energy collective spin vectors can couple together.

Further, focusing the beam on the center of the trap would cause the interactions between
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atoms with even quantum numbers to dominate.

Optical control also allows for studies of information scrambling [Pegahan et al. (2021)]

in this system to be extended. In Ref. [Gärttner (2017)], spatial control of interactions was

suggested as a way to “experimentally study scrambling behavior in regimes intractable

to theory, to explore the possibility of fast scrambling in low temperature systems, and

to investigate possible connections between chaos and fast scrambling away from the

semi-classical limit."

Further manipulation of the site-to-site couplings may be achieved by temporal mod-

ulation. Note that in Eq. 3.61, if the Zeeman term dominates, Ŝ(E ) ≈ cos[ΩB (E )t ]x̂′ +

sin[ΩB (E )t ]ŷ′, where ΩB (E ) =
δωx
ω̄x

E . Consider varying the scattering length in time so that

as → as cos[δωx
ω̄x
(E − E ′)t ]. Time-averaging, only groups of energies which differ by E − E ′

will be coupled. This is possible with the temporal resolution offered by optical control, but

it may also be possible to achieve using purely magnetic control of the scattering length.

It may be possible to pair these different schemes for tailoring the site-to-site couplings

with site-to-site preparation. In § 5.1.1, we noted that the 0.5 msπ/2 pulse used to coherently

prepare the spin vectors orthogonal to the applied magnetic field affects each energy group

identically. As Ω12 is made smaller and smaller in comparison to∆(E ) in Eq. 5.1, it becomes

theoretically possible to rotate specific energy groups in the lattice.

Finally, we note that the lattice can be made to evolve from a state in which all of the

vectors are spread out, as opposed a state in which they are all aligned, by keeping as = 0

after the π/2 pulse. The energy-dependent precession rate will cause the vectors to fan out

in the plane orthogonal to the magnetic field. If interactions are introduced at this stage,

the S(E )×S(E ′) terms begin with a non-zero value.

6.3 Thoughts on Why the Lattice Model Fails

In Ref. [Pegahan et al. (2019)], the energy-space spin-lattice model was seen to reproduce

observation in the spin density profiles well during segregation, but for longer times in

the magnetized phase, the model failed. As discussed in § 3.3.1, the oscillations occur as

the vectors continuously align, then spread, then align again, and so on (see Fig. 3.2). This

oscillation in the length of the total spin vector is manifested in an oscillation of the center

of the difference between the spin density profiles. These observed oscillations appeared to

be damped. It was suggested that the apparent decay in the oscillations was simply due to

the averaging over measurements for which the phase of the oscillation differed. However,
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the individual measurements do not exhibit the expected variation over the predicted full

amplitude of the oscillation. This has yet to be explained. Here we discuss this breakdown

of the lattice model.

According to the model, the oscillations arise as the spin vectors begin to align, which

causes the S(E ′)× S(E ) term in Eq. 3.61 to decay, which allows the ΩB (E )× S(E ) term to

separate the vectors, which again allows the interaction term to bring them to come back

together, and so on (as discussed in § 3.3.1). The oscillation of the central density difference

between the spin profiles is the spatial testament to this behavior in energy space. At

lower interaction strengths, the Zeeman precession dominates and there is no oscillation,

resulting in a steady-state to the central spin density difference. To understand the mismatch

of the model with the observations in real space, we can use these intuitions to think of the

behavior in energy space.

We outline three possibilities: (1) the effect is not a consequence of the natural evolution

of the system, but an artifact of some experimental issue, (2) the basic premise of evolving

classical collective spin vectors is correct, but some adjustment must be made to the spin

vector evolution equations, or (3) this premise does not apply for longer times.

For the first possibility, perhaps some fluctuations in the magnetic field or CO2 beam

interfer with the “natural” evolution of the system. This seems unlikely: during my PhD, I

performed an experiment in which the system began to segregate and then stopped, as

I used a set of auxilary coils to change the magnetic field so that as = 0. During this time

without interactions, the profiles were stationary. After some waiting time, I turned off the

auxiliary coils, restoring the original as : the system then began evolving as expected, right

where it left off. If there was some “junk effect” in the experimental conditions, we would

have expected that the point at which the mismatch with the model happens is a function

of the overall time of the experiment. However, the result suggests that it is only a function

of the time during which the system interacts.

For the second possibility, it is difficult to see how the decay in the oscillation can be

accounted for by any adjustments to Eq. 3.61. We could imagine that the the basic form

of the rotation equations remains correct, but the g (E , E ′) term somehow decays, so that

the system breaks out of the oscillating phase and back to the stationary phase. However,

a lower interaction term (i.e., a lower as ) is associated with a larger central spin density

difference— a decay of the g (E , E ′) term would result in an increase in the central density

difference before it “flattens out,” which is not observed. If the vectors do not simply rotate,

then the lengths of the vectors would have to change. This, however, does not appear to

be consistent in the absence of loss. Another consideration is that the mismatch with the

100



model only arises after segregation— is there some consequence of the spatial separation

of spin states? Could there be an energetic cost to segregating? Further, if the issue is a

matter of dissipation, then where would the energy go? And while the “damping of the

oscillations” tempts one to add a dissipative term to the evolution equation, the central

density difference doesn’t decay to zero— it reaches some steady state.

The third possibility is the most open-ended. We can revisit into the assumptions that

were made in the model. Perhaps energy-changing collisions happen more often than we

think, and the collective spin vector picture becomes inappropriate at these higher times.

This, however, is inconsistent with the calculations. Or perhaps everything is right, but the

“classical” part is wrong— we neglected quantum effects (note that 〈ŝ1× ŝ2〉= 〈ŝ1〉×〈ŝ2〉 only

when entangled states are negelected). However, quantum-mechanical model suffers from

a combinatorial explosion and its predictions cannot be calculated. Furthermore, quantum

effects seem unlikely, as there are hundreds of atoms which comprise each collective spin

vector.

We consider the most likely possibility to be that the collective spin vector picture

becomes less and less appropriate as the system evolves is the magnetized phase in which

the length of the total spin vector oscillates. Note that we assumed that the approximation

in Eq. 3.53 that n̄ j k
⊥ ≈ 〈n̄

j k
⊥ 〉 j k = n̄⊥ is valid. If this assumption is not made, then the axial-

energy-dependent collective spin vector picture loses its validity and we would instead

have to consider the evolution of each atom at its position in a three-dimensional energy-

space spin lattice. The differing rotation rates for each atom comprising the collective spin

vector would cause the vector to break apart. This would effectively lower the effect of the

interactions, causing a transition back into the phase dominated by the energy-dependent

Zeeman precession. This could explain the decay in the oscillation in the central spin

density profiles. A simulation with a three-dimensional lattice could be used to see if this

theory begins quantitatively with the experiments. An experiment to test this hypothesis

could build off of this thesis— note that the suppression of the loss serves as a probe of the

magnetization. The loss-inducing beam could be made to illuminate the sample after the

system begins to segregate in the magnetized phase. The loss could then be measured, and

the suppression observed. The results should be predicted by the loss model in § 3.4. Then,

another experiment could be run in which the system evolves until the oscillations die out,

after which the loss-inducing beam illuminates the sample. If the loss is not suppressed,

this provides evidence that the sample is in the Zeeman-dominated phase.
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APPENDIX A

THE HYPERFINE STRUCTURE OF

LITHIUM-6

Consider a 6Li atom in a magnetic field B. The nucleus has a spin quantum number I = 1.

To describe the spin interactions, we consider only the nucleus, with a spin operator Î and

the single valence electron, with an intrinsic spin operator ŝ. We include contributions from

the hyperfine interaction, the interaction of the intrinsic electron spin with the field, and

the interaction of the intrinsic nuclear spin with the field to obtain the Hamiltonian

Ĥ = AH F Î j · Ŝ j +Ce Ŝ j ·B−Cn Î j ·B (A.1)

where Ce > 0 and Cn > 0. Note that we have neglected spin-orbit coupling, since, for the

alkali atoms, the valence electron has ℓ= 0. In this section, we determine the eigenstates

and the eigenvalues of H .

We work in the basis |ms mI 〉, where ms ∈ {−1/2, 1/2}, mI ∈ {−1, 0, 1} and

Ŝz |ms mI 〉=mS |ms mI 〉 (A.2)

Îz |ms mI 〉=mI |ms mI 〉 (A.3)

The z direction is defined by the magnetic field direction. We may express the spin operators

in the other directions as

Ŝx =
1

2
(Ŝ++ Ŝ−) (A.4)
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Ŝy =
1

2i
(Ŝ+− Ŝ−) (A.5)

where

〈s , m ′s | Ŝ+ |s , mS 〉=δm ′s ,ms+1

Æ

s (s +1)−ms m ′s (A.6)

〈s , m ′s | Ŝ− |s , ms 〉=δm ′s ,ms−1

Æ

s (s +1)−ms m ′s (A.7)

and likewise for the Îx and Îy operators.

We may then express Ĥ as

Ĥ = ĤD + ĤO D (A.8)

where

ĤD = AH F Ŝz Îz +Ce BŜz −Cn B Îz (A.9)

ĤO D =
1

2
AH F (Ŝ+ Î−+ Ŝ− Î+) (A.10)

Note that ĤO D is symmetric. Now, ĤO D |max(ms )max(mI )〉 = ĤO D |min(ms )min(mI )〉 = 0.

Then, |1/2, 1〉 and |−1/2,−1〉 are eigenstates of Ĥ

Ĥ |1/2, 1〉= ĤD |1/2, 1〉= E++ |1/2, 1〉 (A.11)

Ĥ |−1/2,−1〉= ĤD |−1/2,−1〉= E−− |−1/2,−1〉 (A.12)

where

E++ =
1

2
AH F +
�

Cn −
1

2
Ce

�

B (A.13)

E−− =
1

2
AH F −
�

Cn −
1

2
Ce

�

B (A.14)

Which leaves us with four more eigenvectors and eigenvalues.

Now, note that when ĤO D operates on

|φmI
〉= c +mI

|1/2, mI 〉+ c −mI
|−1/2, m ′I 〉 (A.15)

it does not couple to other |ms , mI 〉 states if m ′I =mI+1. This means that mI can be either−1

or 0. With two orthonormal states for both mI =−1 and mI = 0, all four other eigenstates of

Ĥ are accounted for. We then search for the values of the coefficients in the above equations,

as well as the eigenvalues EmI

Ĥ |φmI
〉= EmI

|φmI
〉 . (A.16)
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This results in

c ±mI
=

AH F ηmI
/2

EmI
∓AH F m±I /2+B Cn m±I ∓Ce B/2

c ∓mI
(A.17)

where ηmI
≡
p

1(1+1)−mI (mI +1), m+
I =mI , and m−I =mI +1. Note that η−1 =η0 =η= 2.

The eigenvalues are then

EmI
=−

1

2
(ΓmI
+ Γ ′mI

)±
1

2

Ç

(ΓmI
− Γ ′mI

)2+A2
H Fη2 (A.18)

where

ΓmI
=−

1

2
AH F mI +B Cn mI −

1

2
B Ce (A.19)

Γ ′mI
=

1

2
AH F (mI +1) +B Cn (mI +1) +

1

2
B Ce . (A.20)

The eigenvalues simplify to

EmI
=−

AH F

4
−

B Cn

2
(2mI +1)±

AH F

2
RmI

(A.21)

where

RmI
=
q

Z 2
mI
+η (A.22)

and

ZmI
=−(Ce +Cn )B/AH F − (mI +1/2). (A.23)

We may then obtain the eigenstates associated with each of the four eigenvalues.

We consider the electron to be in its ground state, for which Ce = 2.002µB , where µB is

the Bohr magneton. The hyperfine coupling constant for this state is AH F = 152.137 MHz

×h . The nucleus has Cn =+0.000448µB . In order of increasing energy, the eigenstates are

|1〉= sinθ0 |1/2 0〉− cosθ0 |−1/2 1〉

|2〉= sinθ−1 |1/2 −1〉− cosθ−1 |−1/2 0〉

|3〉= |−1/2,−1〉

|4〉= cosθ−1 |1/2 −1〉+ sinθ−1 |−1/2 0〉

|5〉= cosθ0 |1/2 0〉+ sinθ0 |−1/2 1〉

|6〉= |1/2, 1〉

(A.24)
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with eigenvalues

E1 =−
AH F

4
−

B Cn

2
−

AH F

2
R0

E2 =−
AH F

4
+

B Cn

2
−

AH F

2
R−1

E3 =
AH F

2
−Cn B +

Ce B

2

E4 =−
AH F

4
+

B Cn

2
+

AH F

2
R−1

E5 =−
AH F

4
−

B Cn

2
+

AH F

2
R0

E6 =
AH F

2
+Cn B −

Ce B

2

(A.25)

where
sinθ j = 1/
q

1+ (Z j +R j )2/2

sin2θ j + cos2θ j = 1

R j =
Ç

Z 2
j +2

Z0 =−(Ce +Cn )B/AH F −1/2

Z−1 =−(Ce +Cn )B/AH F +1/2.

(A.26)

These energy eigenvalues are plotted in Fig. 2.2 as a function of B .
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