
ABSTRACT

WANG, XIN. Hydrodynamic Relaxation in a Unitary Fermi Gas. (Under the direction of John
Thomas).

Thermodynamics and hydrodynamic transport properties in a resonantly interacting

or unitary Fermi gas are of special interest since they are universal functions of density and

temperature. However, the behavior of the shear viscosityη and the thermal conductivityκT

of a unitary Fermi gas is not yet established. This dissertation provides a new time-domain,

free evolution method of measuring hydrodynamic transport coefficients in quantum

gases, by observing the free decay of a spatially periodic density profile in a box potential.

Measurement of the evolution enables the first independent determination of both the

universal thermal conductivity and the universal shear viscosity in a normal fluid strongly

interacting Fermi gas, providing new parameter-free tests of predictions.
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CHAPTER

1

INTRODUCTION

A resonantly interacting or unitary Fermi gas is of special interest, as it is a scale-invariant,

strongly interacting quantum many-body system. It is unique in modeling exotic systems,

from high temperature superconductors and neutron stars to the quark-gluon plasma that

existed microseconds after the Big Bang. Studies in such systems widely connect to different

forms of matter across vast energy scales [Adams et al. 2012; Bloch et al. 2012; Strinati et al.

2018], including nuclear physics, astrophysics, condensed matter physics and high energy

physics. This system provides test-bed for variety of theories from thermodynamics to

string theory.

In unitary Fermi gases, thermodynamic and transport properties are universal functions

of the density and temperature, permitting parameter-free comparisons with predictions.

However, the behavior of the shear viscosity η and the thermal conductivity κT of a unitary

Fermi gas is not yet established.

A normal unitary gas, at temperatures above the superfluid transition Tc , is a single

component fluid that affords the simplest universal system for hydrodynamic transport

measurements, as the transport properties comprise only the shear viscosity η and the

thermal conductivity κT , since the bulk viscosity ξ vanishes in scale-invariant systems [Son

2007; Hou et al. 2013; Elliott et al. 2014]. Further, measurements in the normal fluid at high
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temperature T can be compared with benchmark variational calculations for a unitary gas

in the two-body Boltzmann limit [Bruun and Smith 2007; Braby et al. 2010],

η=
15

32
p
π

(mkB T )3/2

ħh 2 (1.1)

and

κT =
15

4

kB

m
η, (1.2)

with kB the Boltzmann constant and m the atom mass.

It has been found by experiments [Joseph et al. 2015], that a leading correction to

Eqs. 1.1 is required, which is proportional to density n [Bluhm and Schäfer 2016; Bluhm

et al. 2017]. This also suggests a density dependent correction to Eq. 1.2. However, before

this dissertation, η and κT in the strongly interacting normal fluid regime have never been

directly measured independently.

This dissertation presents a new time-domain, free evolution method for measuring

hydrodynamic transport coefficients in a normal fluid unitary Fermi gas. The universal

thermal conductivity and the universal shear viscosity in the normal fluid regime have

been measured independently for the first time.

We create an ultracold (∼ 100 nK) near-homogeneous sample of strongly interacting
6Li, confined in a box potential. A periodic spatial profile is initially created in thermal equi-

librium by a perturbing potential, Fig. 1.1. After the perturbation is abruptly extinguished,

we measure the free decay of the density profile. The dominant spatial Fourier component

exhibits an exponentially decaying (thermally diffusive) mode and a decaying oscillatory

(first sound) mode, enabling independent measurement of the thermal conductivity and

the shear viscosity directly from the time-dependent evolution.

Our new time-domain, free-decay experiments utilize advanced light-crafting tech-

niques. We employ digital micromirror devices (DMDs), containing millions of mirrors

in micron size-scale, to project laser light patterns into the ∼150 micron long rectangular

box, with programmable dynamic control. The laser light used for the DMD projection is

reshaped by a “top-hat” beam shaper, achieving a uniform intensity distribution on the

desired focal plane, which improves the box trap depth, thus enabling measurements in a

wide range of temperatures.
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Figure 1.1: A unitary Fermi gas is loaded into a box potential with a small static spatially
periodic perturbation δU , creating a spatially periodic 1D density profile. After δU is
abruptly extinguished, the dominant Fourier component exhibits a two-mode oscillatory
decay (see Fig. 1.6).

1.1 Tunable Interactions

Since quantum degeneracy was observed in laboratories [Anderson et al. 1995; Bradley

et al. 1995; Davis et al. 1995; DeMarco and Jin 1999] and strongly interacting Fermi gas was

produced [O’Hara et al. 2002], a dilute ultra-cold atomic Fermi gas has been a powerful

platform for studying quantum many-body physics, in which the interactions are precisely

tunable between non-interacting to scale-invariant strongly interacting. This tunability is
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accomplished through the existence of a magnetic Feshbach resonance, where a change in

the strength of an applied bias magnetic field can produce either strong or weak interactions

in the gas, with either an attractive or repulsive potential [Bloch et al. 2008; Ketterle and

Zwierlein 2008].

The interaction strength can be quantified by the s-wave scattering length as . Near a

resonating magnetic field, the scattering length is given by [Moerdijk et al. 1995]

as = ab g

�

1−
∆

B −Br e s

�

, (1.3)

where ab g = 1582a0 is the background scattering length,∆= 262.3G is the resonance width

and Br e s = 832.18G [Zürn et al. 2013] is the resonant magnetic field.

Before further explaining how the Feshbach resonances works, we need to know some

basic atomic structure for the 6Li. 6Li, which is a fermion, has 3 protons, 3 neutrons and

3 electrons. Its ground state 2S1/2 has a nuclear spin of I = 1, electronic spin S = 1/2 and

orbital angular momentum L = 0. The total atomic angular momentum then takes the

values F = 1/2, 3/2.

Without the presence of a magnetic field, the F = 1/2 level has two states, m f =±1/2;

while the F = 3/2 level has four states, m f =±3/2, ±1/2. With the presence of a magnetic

field, the atomic levels of 6Li further split into six states by the Zeeman interaction, see

Fig. 1.2).

The interaction Hamiltonian is given by [Houbiers et al. 1998]:

Hi n t =
ah f

ħh 2 S · I −
µB

ħh
(g J S + g I I ) ·B , (1.4)

where ah f /h = 152.14 MHz is the magnetic dipole constant, g J =−2.002 and g I = 0.000448

[Arimondo et al. 1977]. The eigenstates can be written in |mS mI 〉 basis, as

|1〉 = sinθ+ |1/2 0〉− cosθ+ |−1/2 1〉

|2〉 = sinθ− |1/2 −1〉− cosθ− |−1/2 0〉

|3〉 = |−1/2 −1〉

|4〉 = sinθ− |−1/2 0〉+ cosθ− |1/2 −1〉

|5〉 = sinθ+ |−1/2 1〉+ cosθ+ |1/2 0〉

|6〉 = |1/2 1〉 , (1.5)

where sinθ± = 1/
p

1+ (Z ±+R±)2/2, Z ± = (µn +2µe )B/ah f ±1/2, and R± =
p

(Z ±)2+2. The
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Figure 1.2: Magnetic field dependence of the 22S1/2 ground state of 6Li . We use a 50-50
mixture of the two lowest spin states |1〉(spin up) and |2〉(spin down) for the experiment.
Plot was originally drawn by Kinast [2006].

states are numbered in order of increasing energy, Fig. 1.2.

We use a 50-50 mixture of the lowest ground states |1〉 , |2〉 in the experiment. At high

field, the sinθ± term is close to zero and the two lowest states become |1〉= |−1/2 1〉 and

|2〉= |−1/2 0〉, split by ∼ 76 MHz at a B ∼ 832 G.

For a 6Li-6Li collision, the symmetry of the wavefunction must be taken into consid-

eration. The two particle wavefunction is a product of three terms: the center-of-mass

wavefunction (describing where in the trap the collision takes place), the spatial wavefunc-

tion (describing the relative position of the atoms), and the spin wavefunction (describing

the intrinsic angular momenta of the atoms). Since 6Li is a composite fermion, the overall

wavefunction must be antisymmetric. The center-of-mass wavefunction is clearly sym-

metric. As a result, the product of the spatial wavefuncton and spin wavefunction must be

antisymmetric.
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In an ultracold gas, higher energy collisions are greatly suppressed and the dominant

interaction is s-wave scattering. For s-wave collisions of atoms in the |1〉 , |2〉mixture, the

total magnetic quantum number M = 0 is conserved. In the |S , mS ; I , mI 〉 basis, where S is

the total electronic spin quantum number and I is the total nuclear spin quantum number,

there are five states for M = 0. The states |0, 0; 0, 0〉 and |0, 0; 2, 0〉 are called singlet states,

since S = 0, ms = 0. There are also three triplet states |1,−1; 1, 1〉, |1, 0; 1, 0〉 and |1, 1; 1,−1〉,
with S = 1, ms = 1, 0,−1, respectively.

When two atoms approach each other, they effectively reside in attractive potential wells.

In the triplet potential, the two atoms with their valence electronic spins are parallel (S =

S1+S2 = 1), where the spin wavefunction is symmetric, requiring the spatial wavefunction

to be antisymmetric. In such case, the electrons are excluded from the region between the

nuclei, yielding a shallow potential well. In the singlet potential, however, the two electronic

spins are antiparallel (S = S1 + S2 = 0), where the spin wavefunction is antisymmetric,

requiring the spatial wavefunction to be symmetric. The electrons are allowed to sit in the

region between the nuclei, and the electrostatic attraction between electrons and nuclei

leads to a deep potential well. Here, multiple molecular bound states are allowed in the deep

well. In an ultracold 6Li-6Li collision, where there are both triplet and singlet potentials,

with the presence of a magnetic field, the triplet potential threshold for a |1〉 - |2〉 collision

is lower than that of the singlet potential threshold. So the triplet potential is energetically

accessible as an open channel for the scattering; while the singlet potential is called a closed

channel, which is usually not energetically accessible.

However, a magnetic Feshbach resonance occurs when a bias magnetic field tunes

the total energy of a colliding atom pair in the open triplet channel into resonance with a

molecular bound state in the closed singlet channel [Chin et al. 2010]. Such tuning can be

realised since the singlet state (ms = 0) has much smaller energy shift in the bias magnetic

field compared to the triplet states with ms =−1, 1, while the nuclear magnetic moment is

negligible. The nearest bound state is lower than the triplet state, so the triplet state need

to be tuned downward, see Fig. 1.3.

Actually, we can find that the only triplet state that can be tuned down is |1,−1; 1, 1〉,
since it has ms =−1 and the tunable energy is −2µB B , where µB=1.4 MHz/G is the Bohr

magneton.

Now let us consider what is the change on the scattering length when a resonance

between the two channels happens. The collision cross section and the s-wave scattering
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Figure 1.3: Magnetic Feshbach resonance occurs due to the hyperfine coupling between
the scattering continuum in the triplet potential (open channel) and the molecular bound
state in the singlet potential (closed channel). When B = Br e s , the energy of the triplet state
moves downward into resonance with the singlet state.

length are given by [Sakurai and Napolitano 2020]

σc =
4π

k 2
sinδ2

as = − lim
k→0

tanδ

k
, (1.6)

where σc is the total cross section, as is the s-wave scattering length, δ is the scattering

phase shift and k is the wavevector. It can be shown from the partial wave approach that

the s-wave scattering length diverges when a resonance between bound and unbound

states happens, where the phase shift becomes odd number of π/2, thus sinδ= 1. Hereby,

near the Feshbach resonance, the zero energy (k = 0) scattering length rapidly increases.

Fig. 1.4 shows the zero energy s-wave scattering length near the magnetic Feshbach

resonance. At the Feshbach resonance Br e s , the scattering length diverges, leading to strong

interactions. For magnetic fields below the resonance, the scattering length is positive and

interactions are repulsive. This side of the Feshbach resonance is described by Bose-Einstein

condensation. Unbound atom pairs with opposite spins can form a BEC of molecules by
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inelastic three-body collisions[Jochim et al. 2003; Zwierlein et al. 2004] or an adiabatic ramp

across the Feshbach resonance [Greiner et al. 2003; Bourdel et al. 2004]. For magnetic fields

above the resonance, the scattering length is negative and interactions are attractive. This

side of the resonance can be understood in the famous framework of Bardeen-Cooper-

Schrieffer (BCS) theory [Bardeen et al. 1957]. Unbound free atoms can form Cooper pairs

with other fermions due to the presence of weak attractions between them.
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Figure 1.4: The s-wave scattering length as near a magnetic Feshbach resonance at Br e s =
832.18 [Zürn et al. 2013]. When B < Br e s , the scattering length is positive and the interactions
are repulsive, this regime is called BEC side of the Feshbach resonance. When B > Br e s , the
scattering length is negative and interactions are attractive, this regime is called BCS side
of the Feshbach resonance. When B = Br e s , the scattering length diverges, yielding strong
interactions.

At resonance, the scattering length no longer plays any role in the description of the

gas. The only length scales that remain are the thermal De Broglie wavelength λT and the

average distance between the atoms, or inverse Fermi wavevector L ∼ 1/kF . Therefore, this

scale-invariant region is also called the unitary regime, where the scattering cross section

reaches the unitary limit 4π/k 2, with k = 2π/λT .
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1.2 Unitary Fermi Gas

As we mentioned in the previous section, at the Feshbach resonance, the collisional be-

haviour in such strongly interacting system becomes independent of the scattering length.

This system is a scale-invariant unitary Fermi gas. In an unitary Fermi gas, thermodynamic

and transport properties are universal functions of the density and temperature [Ho 2004].

Thermodynamics in the unitary Fermi gas has been well established. The pressure p

and the energy density E are functions only of the density and temperature, as required

by universality, related by p = 2E/3 [Ho 2004]. Note that this equation relates the pressure

and local energy density for the unitary gas in the same way as for an ideal, noninteract-

ing homogeneous gas, although the energy densities are different [Thomas et al. 2005].

Dimensional analysis then shows that the energy density takes the simple form

E =
3

5
n εF (n ) fE (θ )≡ n E1, (1.7)

where E1 is the energy per particle and θ ≡ T /TF is the reduced temperature with TF the

local Fermi temperature. For a balanced 50-50 mixture of two spin components of total

density n , the local Fermi energy is

εF (n ) = kB TF =
m v 2

F

2
=
ħh 2(3π2n )2/3

2m
. (1.8)

The universal function fE (θ ) has been measured by Ku et al. [2012], which determines all

of the thermodynamic properties. The pressure is then

p =
2

5
n εF (n ) fE (θ ). (1.9)

The entropy density takes a similar form

s = nkB fS (θ ) = n s1(θ )≡ n s1, (1.10)

where s1 is the entropy per particle and fS (θ ) can be determined from fE (θ ).

Above are some examples of the thermodynamic properties as universal functions.

Other properties, such as the chemical potential µ, will be covered later in this dissertation.
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Hydrodynamics in an Unitary Fermi Gas

A hydrodynamic system can be described by three conserved charges: the mass density ρ,

the momentum density π=ρ v and the energy density E [Schäfer 2014], which obey the

conservation laws

∂tρ = −∇·π, (1.11)

∂tπi = −∇ jΠi j , (1.12)

∂tE = −∇· J. (1.13)

where Πi j is the stress tensor and J is the energy current.

In a simple non-relativistic fluid, rotational symmetry and Galilean invariance require

the stress tensor to take the form

Πi j =ρvi v j +pδi j +δΠi j (1.14)

where v is the velocity field and p is the pressure. The dissipative termδΠi j can be expanded

to the first order of gradient expansion1 as

δΠi j =−ησi j −ξσ′i j , (1.15)

withσi j ≡ ∂i v j+∂ j vi−2δi j∇·v/3 andσ′i j =δi j∇·v. Here, we have two transport coefficients

in the expression, namely, the shear viscosity η and the bulk viscosity ξ.

The energy current J is given by

J= (p +E )v+δJ, (1.16)

and the first order gradient expansion is

δ Ji = v jδΠi j −κT∇i T . (1.17)

The last term describes the contribution from heat transfer, which gives another transport

coefficient, i.e., the thermal conductivity κT .

So far, we have defined the transport coefficients to characterize a hydrodynamic system.

1Generally, the gradient expansion is an infinite expansion of the energy-momentum tensor. In fluids
dynamics, it is expanded around the perfect fluid in powers of gradients of fluid variables [Chapman et al.
1990; Florkowski et al. 2016]

10



These coefficients are parameters that have to be extracted from experiment. Actually, the

viscosity is determined by the rate of momentum diffusion, and the thermal conductivity

is determined by the rate of thermal diffusion.

In an unitary Fermi gas, hydrodynamic transport properties are also universal functions,

only depending on density n and temperature T , with transport coefficients as parameters

that have to be extracted from experiment.

We can express the viscosity in units of ħh n ,

η≡αηħh n (1.18)

ξ≡αξħh n (1.19)

and determine αη,αξ from the measurements. Similarly, we can express the thermal con-

ductivity in units of ħh n kB/m as

κT ≡ακħh n
kB

m
(1.20)

and determine ακ from the measurements.

The bulk viscosity is related to the changing of the volume and traditionally is considered

vanishing for an incompressible flow. Further, it has been proven both theoretically [Son

2007; Hou et al. 2013; Maki and Zhang 2020] and experimentally [Elliott et al. 2014] that in

an unitary Fermi gas, the bulk viscosity ξ is zero in the normal fluid regime, while a third

component ξ3 can be nonzero in the superfluid regime, which is beyond our purpose in

this dissertation.

Although there are plenty of theoretical studies for unitary Fermi gases. These include

the behavior of the shear viscosity η [Bruun and Smith 2007; Bluhm et al. 2017; Enss et al.

2011; Wlazłowski et al. 2012; Bluhm and Schäfer 2016; Nishida 2019; Hofmann 2020], and the

thermal conductivity κT [Braby et al. 2010; Frank et al. 2020; Zhou and Ma 2021]. However,

the transport properties of a unitary Fermi gas are not yet established due to experimental

challenges. Measurement of hydrodynamic flow in freely expanding clouds [Cao et al. 2011;

Joseph et al. 2015] enables extraction of η in the normal fluid regime, but requires a second

order hydrodynamics model to properly account for ballistic flow in the dilute edges [Bluhm

and Schäfer 2016; Bluhm et al. 2017].

Spectroscopic techniques have also been applied to the study of quantum gases [Vale

and Zwierlein 2021]. A recent study on sound modes by two-photon Bragg spectroscopy

reveals connection between the damping rate of sound excitation and the shear viscosity

just above Tc , but it neglects the contribution from thermal conductivity and cannot go fully
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into the hydrodynamic regime [Kuhn et al. 2020]. Since the required homogeneous density

is realized by tightly focused the Bragg laser on a small region near center of a harmonic

trap, the wavelength is too short to investigate hydrodynamic behavior.

1.3 Ultracold Gases in Homogeneous Potentials

From the previous subsection we can see a major challenge for studing the transport proper-

ties in unitary Fermi gases is that the density is varying in the trap. A proper interpretation of

experimental results usually needs some averaging estimations or theoretical corrections.

Ultracold gases have been traditionally produced in harmonic electromagnetic traps

and thus had inhomogeneous densities. Recent advances in light shaping technologies

pave the way for trapping in flat-bottomed optical box potentials, allowing the creation of

homogeneous samples [Navon et al. 2021]. The box potential, which has versatile geometric

nature, e.g., rectangle, disk and ring, has been achieved for both Bose and Fermi atomic

gases in various dimensionalities [Mukherjee et al. 2017; Ville et al. 2018; Hueck et al. 2018;

Tajik et al. 2019; Christodoulou et al. 2021], and even for molecular gases [Bause et al. 2021;

Zhang et al. 2021]. The technical advances are utilized by two types of programmable light

modulators, i.e., the liquid-crystal spatial light modulators (SLMs) that tune the phase of

laser beams and the digital micromirror devices (DMDs) that modulate the amplitudes

[Gauthier et al. 2021]. The applications can also involve static light modulators, such as

intensity masks and axicons, for their higher power tolerance.

A homogeneous sample in such box traps provides more direct connections with theory.

It also allows better quantitative determination of physical properties in experiments.

Recent measurements of the sound diffusivity are obtained by a MIT group [Patel et al.

2020], by observing sound attenuation in a driven, uniform density, unitary Fermi gas. The

study constrains η and κT , but they are not independently determined [MZT]. The sound

diffusivity is also measured in a 2D Fermi gas [Bohlen et al. 2020], but again, η and κT are

not independently determined.

Our group started to investigate hydrodynamic transport properties in a box by driving

a repulsive periodic optical potential through the uniform sample [Baird et al. 2019], with in-

spiration from an energy-absorption spectroscopy proposal by Zhang and Yu [2018]. Instead

of measuring the energy input, a hydrodynamic linear response model was established to

directly analyze the density profile, which allowed us to extract the thermal conductivity κT ,

assuming a known shear viscosity η from the high temperature diluteness expansion fit of
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Bluhm et al. [2017] to previous ηmeasurements of our group [Joseph et al. 2015]. However,

the contributions from η and κT were still not resolved, and only one temperature was

used.

Shortly before submission of this dissertation, a study on second sound attenuation in

the superfluid regime was reported by Li et al. [2022], in which they successfully extract both

η and κT . They probe the density response in a uniform sample, using a method similar

to the above study of Baird et al. [2019], but employ high-resolution Bragg spectroscopy

instead of driving the gas by the DMD. Taking advantage of a very high atom density

n ≃ 1.6× 1013c m−3, they are able to suppress the noise and precisely measure the first

and second sound attenuations. However, this method is only applicable in the superfluid

region for the purpose of determining η and κT independently, since both first and second

sound modes are needed for calculatingη andκT [Hu et al. 2018]. In contrast, for the normal

fluid, only one sound mode exists and the density response spectra cannot distinguish the

contributions from the shear viscosity and the thermal conductivity.
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1.4 Primary Results

The primary results of this dissertation are summarized below. Descriptions of the theo-

retical model, experimental procedure, data analysis methods and a detailed display and

discussion of the results will be covered in the following chapters.

We confine a cloud of 6Li atoms in a repulsive box potential, producing a sample of nearly

uniform density. A density perturbation is then created by applying a small static optical

potential that is spatially periodic along the long axis. After equilibrium is established,

the perturbing potential is abruptly extinguished. The atomic gas exhibits an oscillatory

decay under the free evolution of hydrodynamic relaxation. Fig. 1.5 shows the false color

illustration of the evolution.

Figure 1.5: Absorption images show the free evolution of the periodic density profile. An
oscillatory decay of the ripples is observed.

We measure the time-dependence of the dominant spatial Fourier component of the

density, δn (q , t ), Fig. 1.6, which exhibits an exponentially decaying mode that measures

the thermal conductivity and a decaying oscillatory mode that determines the sound speed
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and the sound diffusivity.

The data are well fit by a linear hydrodynamics analytic model, as will be discussed in

detail in chapter 2,

δn (q , t ) = A0 e −Γ t+ e −a t [A1 cos(b t )+A2 sin(b t )] , (1.21)

where A0, A1, A2 are constrained by initial conditions, and the frequencies Γ , a , and b are

related to the isothermal sound frequencyωT , the adiabatic sound frequencyωS , and the

transport properties γη ≡ 4ηq 2/(3n0m ), γκ ≡ κT q 2/(n0cV1
), with cV1

the heat capacity per

particle at constant volume.

Figure 1.6: Real part of the Fourier transform of the density perturbation δn (q , t ), normal-
ized to δn (q , 0), for q = 2π/λwith λ= 22.7µm. The reduced temperature T /TF = 0.46. Blue
dots: data; Red curve: analytic hydrodynamics model, Eq. 1.21. Inset shows contributions
of thermal diffusion (orange) and first sound (blue). The error bars are statistical.
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From the fit, we can determine the shear viscosity η, the thermal conductivity κT , and

also the reduced temperature T /TF in-situ.

For reduced temperatures T /TF > 0.45, we find that the shear viscosity measured by

this free hydrodynamic relaxation in the box is consistent with that extracted from data

on expanding clouds Bluhm and Schäfer [2016]; Bluhm et al. [2017], which includes a

significant density-dependent contribution. At lower temperatures, T /TF < 0.4, the shear

viscosity measured in the box is consistently larger than that of the expanding cloud. The

thermal conductivity for T /TF > 0.45 is close to the high temperature limit. In contrast

to the shear viscosity, the pure density dependent contribution to the high temperature

thermal conductivity appears to be quite small.

These results emphasize the need for rigorous calculations of the leading density-

dependent corrections to the two-body high temperature limits. The measured sound

diffusivity is self-consistent with a damped oscillator interpretation. Our data can be com-

pared to that of Patel et al. [2020], which is shifted upward relative to ours, but exhibits

nearly identical scaling with T /TF and appears to converge at low temperatures. Figures of

all these results are provided in chapter 5.

1.5 Significance of Current Work

We have developed a new time-domain, free evolution method for measuring hydrody-

namic transport coefficients in a normal fluid unitary Fermi gas. The thermal conductivity

and the shear viscosity in a universal normal fluid have been measured independently for

the first time.

Confined in a box potential, the dominant spatial Fourier component of a sinusoidal

density profile exhibits an exponentially decaying (thermally diffusive) mode and a decaying

oscillatory (first sound) mode after the extinguishing of an initial perturbation, enabling

independent measurement of the thermal conductivity κT and the shear viscosityη directly

from the time-dependent evolution.

The two-mode oscillatory decay of a spatially periodic density perturbation are well-

distinguished. For the isothermal static initial conditions employed in the experiments, the

thermally diffusive mode comprises ≃ 32% of the initial total amplitude of the dominant

Fourier component, which is readily apparent in the free hydrodynamic relaxation.

This method is complementary to frequency domain techniques, where transport

properties of quantum fluids have been determined by measuring the hydrodynamic
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linear susceptibility Hohenberg and Martin [1965]; Hu et al. [2018]; Zhang and Yu [2018];

Mukherjee et al. [2019].

Prior to our work, it was not obvious that simply measuring the hydrodynamic decay of

a periodic density perturbation, created in a box potential, would enable a clear separation

of the contributions of a zero frequency, thermally diffusive mode and an oscillating first

sound mode in a normal fluid unitary Fermi gas.

Of particular importance is that our data emphasize the need for rigorous calculations

of the leading purely density-dependent corrections to the two-body high temperature

limits of the transport coefficients.

1.6 Dissertation Organization

In the chapter 2, I will introduce the basic theory of thermodynamics, including unique

features for a unitary Fermi gas. Followed by a hydrodynamic linear response model and

the analytic solution to the equations in Fourier space, which we use to fit our data. The

two mode picture for both the density change and the temperature change over time is

discussed here. A damped oscillator model will also be discussed to illustrate the free

evolution of the density profile for the atomic gas.

In chapter 3, I will describe the experimental apparatus in our laboratory for creating,

cooling, trapping, modulating and watching the 6Li atomic gas. I will discuss challenges in

previous experimental setup and focus on the new techniques for realizing the box potential

and the method to create perturbations.

In chapter 4, I will provide four data analysis methods, starting with data taking and

processing procedures. These methods were gradually developed during the research. We

start from a straight-forward numerical integration of the hydrodynamic linear response

equations. Then as our understanding of the experiment deepens, an analytic model is

established, clearly interpreting the two mode physics. Examples of our fit to different data

are presented in Sec. 4.2.4, so the readers can see how good our fits are. The calculation of

statistical errors and a discussion on the central density will also be covered in this chapter.

In chapter 5, I will present the main results of this dissertation, which are the measure-

ments of the shear viscosity η, the thermal conductivity κT and the sound diffudivity D1,

following by comparison with existing theoretical prediction and previous experiments.

We will also evaluate the consistency of our measured results and estimate systematic

errors. Last, a brief discussion about the breakdown of hydrodynamics will be provided to
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stimulate further studies on the transport properties, including possible corrections to our

measurements.

Finally, in chapter 6, I will briefly summarize this dissertation and provide outlook for

future studies.
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CHAPTER

2

THEORY

In this chapter, we provide the thermodynamic and hydrodynamic theories we need to

describe the evolution of the atomic gas in the box potential. The derivations lead to a

hydrodynamic linear response model, with necessary thermodynamic relations, which

we use to extract the shear viscosity η, the thermal conductivity κT and the first sound

diffusivity D1, and to determine the temperature in-situ.

2.1 Thermodynamic Theory

Before we derive the hydrodynamic linear response model for the normal fluid regime, we

derive the elementary thermodynamic relations that appear in our hydrodynamic model.

2.1.1 Thermodynamic Relations

Defining the density n = 1/V1 in terms of the volume per particle V1, the expansivity is

β ≡
1

V1

�

∂ V1

∂ T

�

p
=−

1

n

�

∂ n

∂ T

�

p
, (2.1)
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which has a dimension of inverse temperature.

The isothermal sound speed cT is defined by

m c 2
T =
�

∂ p

∂ n

�

T
=−
�

∂ p

∂ T

�

n

�

∂ T

∂ n

�

p
, (2.2)

where we have used the chain rule. Similarly, the adiabatic sound speed cS is defined by

m c 2
S =
�

∂ p

∂ n

�

s1

=−
�

∂ p

∂ s1

�

n

�

∂ s1

∂ n

�

p
, (2.3)

where we have defined s1 as the entropy per particle.

Taking the ratio of Eqs. 2.2 and 2.3, and using (∂ T /∂ n )p = 1/(∂ n/∂ T )p and 1/(∂ p/∂ s1)n =

(∂ s1/∂ p )n , we obtain the well-known relation

c 2
T

c 2
S

=

�

∂ s1
∂ p

�

n

�

∂ p
∂ T

�

n
�

∂ s1
∂ n

�

p

�

∂ n
∂ T

�

p

=

�

∂ s1
∂ T

�

n
�

∂ s1
∂ T

�

p

=
cV1

cP1

, (2.4)

where cV1
= T (∂ s1/∂ T )n and cP1

= T (∂ s1/∂ T )p are the heat capacities per particle at con-

stant volume and at constant pressure, respectively.

Next, we find the first order pressure change, δp , which is needed later in eq. 2.32. We

have

δp =
�

∂ p

∂ n

�

T
δn +
�

∂ p

∂ T

�

n
δT =
�

∂ p

∂ n

�

T

�

δn +
�

∂ n

∂ p

�

T

�

∂ p

∂ T

�

n
δT

�

. (2.5)

The chain rule gives
�

∂ n

∂ p

�

T

�

∂ p

∂ T

�

n
=−
�

∂ n

∂ T

�

p
=βn , (2.6)

where we have used Eq. 2.1 for the expansivity β . With Eqs. 2.5 and 2.2,

δp =m c 2
T (δn +δT̃ ), (2.7)

where we have defined

δT̃ ≡β n δT , (2.8)

which has a dimension of density.

For the first order temperature change, we have

δT =
�

∂ T

∂ n

�

s1

δn +
�

∂ T

∂ s1

�

n

δs1 =
�

∂ T

∂ s1

�

n

�

�

∂ s1

∂ T

�

n

�

∂ T

∂ n

�

s1

δn +δs1

�

. (2.9)
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The chain rule gives
�

∂ s1

∂ T

�

n

�

∂ T

∂ n

�

s1

=−
�

∂ s1

∂ n

�

T
, (2.10)

which we evaluate as follows. Consider s1[T , n (T , p )]. Then,

cP1
= T
�

∂ s1

∂ T

�

p
= T
�

∂ s1

∂ T

�

n
+T
�

∂ s1

∂ n

�

T

�

∂ n

∂ T

�

p
= cV1
−β n T
�

∂ s1

∂ n

�

T
, (2.11)

where we have used Eq. 2.1. Hence,

�

∂ s1

∂ n

�

T
=−

cP 1− cV 1

β n T
. (2.12)

With (∂ T /∂ s1)n = T /cV1
and Eq. 2.10, Eq. 2.9 takes the simple form,

δT =

�

cP1

cV1

−1

�

δn

β n
+

T δs1

cV1

. (2.13)

Here, the first term is the adiabatic change in the temperature arising from the change

in density. For a monatomic gas in the high temperature limit, Eq. 2.1 with n = p/(kB T )

gives β → 1/T and cP 1/cV 1 − 1→ 2/3. Then, δT /T = 2/3δn/n , i.e., T /T0 = (n/n0)2/3 as

expected. For a unitary Fermi gas, where s1 = kB fS (θ ), see Eq. 2.17 below, this result holds at

all temperatures, since (∂ T /∂ n )s1
= (∂ T /∂ n )θ , with T = θ TF , and TF ∝ n 2/3. The second

term is the temperature change arising from the heat flow per particle, T δs1 =δq1.

2.1.2 Unitary Fermi Gas Thermodynamics

For the unitary Fermi gas, universality [Ho 2004] requires that the pressure p and the

energy density E are functions only of the density and temperature, related by p = 2E/3.

Dimensional analysis then shows that the energy density takes the simple form

E =
3

5
n εF (n ) fE (θ )≡ n E1, (2.14)

where E1 is the energy per particle and θ ≡ T /TF is the reduced temperature with TF the

local Fermi temperature. For a balanced 50-50 mixture of two spin components of total

density n , the local Fermi energy is

εF (n )≡ kB TF =m v 2
F /2= ħh

2(3π2n )2/3/(2m ). (2.15)
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The universal function fE (θ ) has been measured by Ref. Ku et al. [2012], which determines

all of the thermodynamic properties. The pressure p = (2/3)E is then

p =
2

5
n εF (n ) fE (θ ). (2.16)

The entropy density takes a similar form

s = nkB fS (θ ) = n s1(θ )≡ n s1, (2.17)

where s1 is the entropy per particle and fS (θ ) can be determined from fE (θ ).

The adiabatic sound speed Eq. 2.3 is easily obtained from Eq. 2.16, as Eq. 2.17 requires

constant θ for constant s1,

m c 2
S =
�

∂ p

∂ n

�

θ
=

2

3
εF (n ) fE (θ ) =

10

9
E1, (2.18)

where the last form on the right follows from Eq. 2.14.

With εF (n ) =m v 2
F /2, Eq. 2.18 yields

c 2
S =

v 2
F

3
fE (θ ). (2.19)

The isothermal sound speed, Eq. 2.2, is easily determined from Eq. 2.16, with p =

p [n ,θ (n , T )],

c 2
T =

1

m

�

∂ p

∂ n

�

T
=

v 2
F

3

�

fE (θ )−
2

5
θ f ′E (θ )
�

. (2.20)

where the ∂θ fE (θ )≡ f ′E (θ ).

Eqs. 2.19 and 2.20 yield cS (θ ), cT (θ ) from fE (θ ). Fig. 2.1 shows that for θ > 0.25, θ mono-

tonically increases with c̃S ≡ cS/vF and c̃T ≡ cT /vF , as measured by Ref. [Ku et al. 2012].

Eqs. 2.19 and 2.20 can be used as a thermometer to determine θ from c̃S and c̃T , respectively.

In practice, we use a fit with a cubic polynomial to θ (cS/vF ) and θ (cT /vF ), which as

shown in Figs. 2.1.

The heat capacity per particle at constant volume takes a simple form. Using Eq. 2.14,

cV1
= T
�

∂ s1

∂ T

�

n
=
�

∂ E1

∂ T

�

n
=

3

5
kB f ′E (θ ). (2.21)
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Figure 2.1: Reduced temperature θ = T /TF versus adiabatic sound speed c̃S ≡ cS/vF

and isothermal sound speed c̃T ≡ cT /vF . For θ > 0.25, θ monotonically increases with
c̃S (c̃T ), showing that the fitted c̃S (c̃T ) can be used as a thermometer to determine θ in
the normal fluid region. The blue dots are obtained from the equation of state of Ref. Ku
et al. [2012]. The upper (lower) red solid curve shows a fit with a cubic polynomial, θ (c̃S ) =
−0.399+0.958 c̃T +0.839 c̃ 2

T −0.059 c̃ 3
T , θ (c̃T ) = 0.478−4.410 c̃T +11.688 c̃ 2

T −5.711 c̃ 3
T .

Eq. 2.4 then determines cP1
from the ratio cP1

/cV1
= c 2

S /c
2
T using Eqs. 2.19 and 2.20,

cP1
=

fE (θ )

fE (θ )− 2
5θ f ′E (θ )

cV1
. (2.22)
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Similarly, we use quartic polynomials to fit cV1
and cP1

1, see Fig. 2.2.
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Figure 2.2: Reduced temperature θ = T /TF versus the heat capacities per particle at
constant volume cV1

and at constant pressure cP1
. The red lines are obtained from interpola-

tions of the equation of state of Ref. Ku et al. [2012]. The upper (lower) black dashed curve
shows the fit with a quartic polynomial, cV1

= 1.190−0.872θ +2.160θ 2−1.387θ 3+0.283θ 4

(cP1
= 1.904−3.223θ +7.998θ 2−5.500θ 3+1.194θ 4).

1We fit the smoothly varying part of cV1
and cP1

by limiting the θ range from 0.25 to 2. For θ = 0.25∼ 1.5,
we use interpolations of the measurements by Ku et al. [2012]; for θ = 1.5∼ 2, we use high temperature limits,
i.e., 3/2 for cV1

and 5/2 for cP1
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Finally, Eqs. 2.21 and 2.22 determine

1

cV1

−
1

cP1

=
1

kB

2

3

θ

fE (θ )
, (2.23)

which appears later in the sound diffusivity Eq. 2.66. With Eqs. 2.15 and 2.16, Eq. 2.23 can

also take the form [Ku et al. 2012]

1

cV1

−
1

cP1

=
4

15

nT

p
, (2.24)

with (5/2)θ/ fE (θ ) = n kB T /p .

It is also useful to derive the confining potential in a trap from chemical potential µ. We

find the force arising from the confining potential along one axis z , using a measured density

profiles n0(z ). The trapping potential is easily found in the local density approximation from

the local chemical potential, µ(z ), where µ(z ) +U0(z ) = µG , with µG the global chemical

potential. Then,

U0(z ) =µG −µ(z ) =µG −εF [n0(z )] fµ[θ (z )]. (2.25)

Here, fµ(θ ) is a dimensionless universal function of the reduced temperature θ , which

determines µ(n ,θ ) in terms of the local Fermi energy εF (n ). fµ(θ ) has been precisely mea-

sured Ku et al. [2012]. The reduced temperature θ (z ) = T0/TF (n ) = θ0/[ñ0(z )]2/3, where we

determine θ0 = T0/TF (n0) from the fitted isothermal sound speed cT and ñ0(z ) = n0(z )/n0,

with n0 the central density, which occurs at z ≡ zmax. The global chemical potential is then

µG = εF (n0) fµ(θ0), so that U0(zmax) = 0 by construction. It is convenient to find Ũ0(z ) =

U0(z )/εF (n0), with µ̃G = fµ(θ0). Then,

Ũ0(z ) = fµ(θ0)− [ñ0(z )]
2/3 fµ
�

θ0/[ñ0(z )]
2/3
�

. (2.26)

2.2 Hydrodynamic Theory

We consider a normal fluid Fermi gas, which is a single component fluid with a mass

density ρ ≡ n m , where n is the total particle density (we assume a 50-50 mixture of two

spin components) and m is the atom mass. ρ(r, t ) satisfies the continuity equation,

∂tρ+ ∂i (ρ vi ) = 0, (2.27)
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where a sum over i = x , y , z is implied. The mass flux (momentum density) is ρ vi , with

vi (r, t ) the velocity field.

The momentum density and corresponding momentum flux ρ vi v j obey [Landau and

Lifshitz 1959]

∂t (ρ vi ) + ∂ j (ρ vi v j ) =−∂i p −n ∂iU + ∂ j (ησi j +ξB σ
′
i j ), (2.28)

Here,−∂i p−n ∂iU is the force per unit volume arising from the pressure p and the externally

applied potential U (r, t ). The last terms describe the dissipative forces, which arise generally

from the shear viscosity η and the bulk viscosity ξB , withσi j ≡ ∂i v j +∂ j vi −2δi j∇·v/3 and

σ′i j =δi j∇·v. For generality, we retain ξB , which vanishes for a unitary gas [Son 2007; Hou

et al. 2013; Elliott et al. 2014].

Taking the divergence of Eq. 2.28, and using Eq. 2.27, we obtain

− ∂ 2
t ρ+ ∂i∂ j (ρ vi v j ) =−∂ 2

i p − ∂i (n ∂iU ) + ∂i∂ j (ησi j +ξB σ
′
i j ). (2.29)

2.2.1 Hydrodynamic Linear Response

We are interested in the hydrodynamic linear response to a perturbing external potential

δU (r, t ), which leads to first order changes in the density δn (r, t ) and pressure δp (r, t ),

n (r, t ) = n0(r) +δn (r, t )

p (r, t ) = p0(r) +δp (r, t )

U (r, t ) = U0(r) +δU (r, t ). (2.30)

Here, n0(r) and p0(r) are the equilibrium (time independent) density and pressure arising

from confinement in the box trap potential,U0(r). In equilibrium, the velocity field v0(r, t ) = 0

and Eq. 2.28 requires balance of the forces per unit volume arising from the box trap and

the pressure,

−∇p0(r)−n0(r)∇U0(r) = 0. (2.31)

Substituting Eqs. 2.30 and 2.31 into Eq. 2.29 and retaining terms to first order in small

quantities, we obtain

∂ 2
t δn =

1

m
∇2δp +

1

m
∇· [n0(r)∇δU +δn∇U0]−

1

m
∂i∂ j (ησi j +ξB σ

′
i j ). (2.32)
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Here, the second term on the left side of Eq. 2.29 is negligible, as the velocity field is first

order in small quantities, and we also neglect δn∇δU , which is also second order in small

quantities.

To evaluate the last term in Eq. 2.32, we assume that the dissipative forces are small

compared to the conservative forces and that the density n0 slowly varies in the region of

interest. Then we can ignore the spatial derivatives of η, ξB , and n0, yielding

∂i∂ j (ησi j +ξB σ
′
i j )≃η∂i∂ jσi j +ξB ∂i∂ jσ

′
i j ≃
�

4

3
η+ξB

�

∇2(∇·v). (2.33)

The velocity field is eliminated using∇·v≃−∂tδn/n0 =−δṅ/n0, which follows from

Eq. 2.27. With Eq. 2.7, δp =m c 2
T (δn +δT̃ ), Eq. 2.32 becomes

δn̈ = c 2
T ∇

2(δn +δT̃ ) +
1

m
∇· [n0(r)∇δU +δn∇U0] +

4
3η+ξB

n0m
∇2δṅ , (2.34)

where δT̃ ≡β n δT , from Eq. 2.8.

To complete the model, we require the evolution equation for δT̃ , which is determined

from Eq. 2.13,

δṪ = εLP

δṅ

β n
+

T δṡ1

cV1

. (2.35)

Here, εLP ≡ cP1
/cV1
−1 the Landau-Placzek parameter, T = T0 is the initial, spatially-uniform,

temperature and n = n0 is the initial spatially-uniform density.

The heating rate per particle, T δṡ1 is determined to first order in small quantities by

T δṡ1 = T (∂t +v ·∇)δs1 =
δq̇

n0
, (2.36)

where δq̇ is the heating rate per unit volume. The heating rate arising from the shear

viscosity is second order in vi , which is negligible compared to the heating rate arising from

heat conduction. Hence, δq̇ ≃ −∇ · (−κT∇δT ) ≃ κT∇2δT , where we neglect the spatial

derivatives of κT and

δṪ = εLP

δṅ

β n
+
κT

n0cV 1
∇2δT . (2.37)

Multiplying Eq. 2.37 by β n , we obtain finally

δ ˙̃T = εLP δṅ +
κT

n0cV 1
∇2δT̃ . (2.38)
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Note that by defining δT̃ ≡β n δT , the temperature terms have units of density, enabling

direct comparison with the density perturbation.

Eqs. 2.34 and 2.38 have simple physical interpretations. The c 2
T terms on the right-hand

side of Eq. 2.34 correspond to the pressure change. A viscous damping force arises from the

shear viscosity, η≡αηħhn0, while the bulk viscosity ξB vanishes for a unitary Fermi gas. The

final terms in Eq. 2.39 arise from the perturbing and box potentials, where ∂zU0(z ) is found

from the slowly varying background density n0(z ) and δU (z , t > 0) = 0 for our experiments.

The first term on the right-hand side of Eq. 2.38 describes the adiabatic change in the

temperature due to the change in density. The last term describes temperature relaxation

at constant density due to the heat flux, which is proportional to the thermal conductivity

κT ≡ακħhn0 kB/m .

Together, Eqs. 2.34 and 2.38 determine the evolution for the given forces∇U0 and∇δU ,

with the initial conditions δn (z , 0) (measured), δṅ (z , 0) = 0, and δT̃ (z , 0) = 0.

2.2.2 Analytic Solution in Fourier Space

For our experiments, we employ a one-dimensional approximation, where the only spatial

dependence is z . So∇⇒ ∂z . Eqs. 2.34 and 2.38 then become

δn̈ = c 2
T ∂

2
z (δn +δT̃ ) +

1

m
∂z · [n0(z )∂zδU +δn ∂zU0] +

4
3η+ξB

n0m
∂ 2

z δṅ , (2.39)

δ ˙̃T = εLP δṅ +
κT

n0cV 1
∂ 2

z δT̃ , (2.40)

where ∂zU0(z ) is a slowly varying function.

Note that in the experiments, we study the evolution after the perturbing potential is

extinguished, yielding δU = 0. Further, we measure in a nominally uniform region along z

in the middle of the box, where U0(z ) is a slowly varying function. Further we use a short

time scale so that the reflection of sound by the walls does not matter. Hence we have

∂zU0 ≃ 0.

With δU = 0, ∂zU0 = 0, a spatial Fourier transform of Eqs. 2.39 and 2.40 yields coupled

time-dependent equations for the Fourier amplitudes δn (q , t ) and δT̃ (q , t ),

δn̈ (q , t ) =− c 2
T q 2 [δn (q , t ) +δT̃ (q , t ) ]−4ηq 2/(3n0m )δṅ (q , t ) (2.41)

δ ˙̃T (q , t ) = εLP δṅ (q , t )−κT q 2/(n0cV1
)δT̃ (q , t ), (2.42)
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where εLP = cP1
/cV1
−1. Note that the bulk viscosity ξB = 0 for a unitary Fermi gas [Son 2007;

Elliott et al. 2014].

We can express the local shear viscosity in units of ħh n0,

η≡αηħh n0 (2.43)

and determine αη from the measurements. Similarly, we can express the thermal conduc-

tivity in units of ħh n0 kB/m as

κT ≡ακħh n0

kB

m
(2.44)

and determine ακ from the measurements.

To simplify the expressions, we can define q -dependent properties — an oscillation

frequencyωT and two decay rates γη, γκ to describe the evolution. Let

ωT (q ) = cT q

γ(q ) =
ħh
m

q 2

γη(q ) =
4

3
αηγ(q )

γκ(q ) = ακ
kB

cV1

γ(q ). (2.45)

Eqs. 2.41 and 2.42 then become

δn̈ (q , t ) =−ω2
T [δn (q , t ) +δT̃ (q , t ) ]−γη(q )δṅ (q , t ) (2.46)

δ ˙̃T (q , t ) = εLP δṅ (q , t )−γκ(q )δT̃ (q , t ). (2.47)

The above equations have an analytic solution. The general solution for δn (q , t ) and

δT̃ consists of

δn (q , t ) = Ae −s t

δT̃ (q , t ) = B e −s t . (2.48)
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Then Eqs. 2.46 and 2.47 require

(s 2+ω2
T −γη s )A+ω2

T B = 0 (2.49)

εLP s A− (s −γκ)B = 0. (2.50)

A nontrivial solution is obtained by setting the determinant of the coefficients equal to

zero,

(s 2+ω2
T −γη s ) (s −γκ) +εLP sω2

T = 0. (2.51)

So, we have

s 3− s 2 (γκ+γη) + s (ω2
S +γκγη)−ω

2
T γκ = 0, (2.52)

whereω2
S = (1+εLP )ω2

T = cP1
/cV1
ω2

T , i.e.,ωT = cT q andωS = cS q .

Eq. 2.52 is a cubic polynomial with real coefficients, which must have one real root Γ

and one complex pair a ± i b , i.e., it factors as (s − Γ ) [(s −a )2+ b 2]. Then,

s 3− s 2 (Γ +2 a ) + s (a 2+ b 2+2 a Γ )− Γ (a 2+ b 2) = 0. (2.53)

Comparing the coefficients of s n in Eq. 2.53 and Eq. 2.52, we find

Γ +2 a = γη+γκ (2.54)

a 2+ b 2+2 a Γ = c 2
S q 2+γηγκ (2.55)

Γ (a 2+ b 2) = c 2
T q 2γκ. (2.56)

As there are three solutions with three initial conditions, we take the density perturbation

to be

δn (q , t ) = A0 e −Γ t+ e −a t [A1 cos(b t )+A2 sin(b t )] , (2.57)

The first initial conditions δn (q ,0) = A requires A1 = A−A0, and from δṅ (q ,0) = 0, we

can obtain A2 = [(Γ −a )A0+a A]/b .

With δT̃ (q , 0) = 0, the third initial condition follows from Eq. 2.46, δn̈ (q , 0) =−ω2
T A. By

comparing δn̈ (q , 0)with a direct calculation from Eq. 2.57, this yields the amplitude A0,

[(Γ −a )2+ b 2]A0 = (a
2+ b 2− c 2

T q 2)A. (2.58)
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Similarly, the temperature perturbation is given by

δT̃ (q , t ) = B0

�

e −Γ t− e −a t cos(b t )+
Γ −a

b
e −a t sin(b t )
�

, (2.59)

which satisfies δT̃ (q , 0) = 0 and δ ˙̃T (q , 0) = 0, as required by Eq. 2.47 with the initial condi-

tion δṅ (q ,0) = 0. From Eq. 2.47, and using δn̈ (q ,0) =−ω2
T A, we also have the additional

constraint δ ¨̃T (q , 0) =−εLP c 2
T q 2 A. Using Eq. 2.59, we find B0,

[(Γ −a )2+ b 2]B0 =−εLP c 2
T q 2 A. (2.60)

We have developed a complete analytic solution for the evolution of δn (q , t ) and

δT̃ (q , t ), connecting all the coefficients and physical properties. We fit Eq. 2.46 to the

data using the three frequencies cT q ,γη,γκ, and the amplitude A as free parameters. We

can see that the solution consists of two independent modes. One is an exponentially

decaying thermal diffusion mode, and the other is a decaying, oscillating first sound mode,

see Fig. 2.3. The physics of these two modes is illustrated as follows.

Fig. 2.3 shows the modes that contribute to a typical fit for T /TF = 0.46 data, which sits

in the middle of our temperature range. From the fit, we can find the contributions of the

first sound mode and thermal diffusion mode to δn (q , t ) and δT̃ (q , t ). First, we determine

the frequencies Γ , a , and b from the fit parameters cT q ,γη,γκ using Eqs. 2.54-2.56. This

is most easily done by finding the real solution Γ of Eq. 2.52. Then Eq. 2.54 determines a

and Eq. 2.55 yields b . Eq. 2.58 then determines A0 in terms of the fitted amplitude A and

Eq. 2.60 determines B0. We scale the plots by A to normalize to 1 at t = 0.

From Fig. 2.3 we can see the contribution of the zero frequency, exponentially decaying

thermal diffusion mode to δn (q , 0) is initially ≃ 32%. The large amplitude enables indepen-

dent determination of the thermal conductivity through the decay rate Γ . In δT̃ (q , t ), we

see that δT̃ (q , 0) = 0 forces the first sound and thermal diffusion modes to be initially 180◦

out of phase, ensuring an isothermal initial condition.

On the other hand, the first sound mode is described by an oscillating exponential

decay. The oscillation frequency gives the first sound speed, which determines the reduced

temperature from Eq. 2.19 and the equation of state (see Fig. 2.1). The decay rate gives the

usual first sound diffusivity, D1 = 2a/q 2 ≃Dη+Dκ, which contains contributions only from

the shear viscosity and the thermal conductivity (see Eq. 2.66 below). So the shear viscosity

can be extracted by subtracting Dκ from D1.

We see that the decay rates of these two distinct modes determine both the thermal
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Figure 2.3: Components of the analytic fit function δn (q , t ) Eq. 2.57 and δT̃ (q , t ) Eq. 2.59
for a typical data at T /TF = 0.46. Red curve: Total fit function; Orange curve: Zero frequency,
exponentially decaying (thermal diffusion) mode; Blue curve: oscillating, exponentially
decaying first sound mode. Note that the two components are in phase for δn (q ,0) and
180◦ out of phase for δT̃ (q , 0), ensuring an isothermal initial condition.
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conductivity and the shear viscosity.

2.2.3 Damped Oscillator

In the previous subsection, we introduce the usual first sound diffusivity D1, which is given

by 2a/q 2 from the first sound mode.

We expect that the first sound mode behaves essentially as a damped oscillator of

resonance frequencyωS = cS q and damping rate 2a , for which the equation of motion is

ẍ +2a ẋ +ω2
S x = 0 (2.61)

The general solution x = A e −s t satisfies

s = a ± i
q

ω2
S −a 2 ≡ a ± i b . (2.62)

In this case, the damped oscillation frequency is b ≃
Æ

ω2
S −a 2, so thatωS should be

closer to
p

a 2+ b 2. Actually from our measurements, for T /TF = 0.28, 0.46 and 0.63, we

find thatωS/
p

a 2+ b 2 is 1.006, 1.015, and 1.008, nearly unity as expected.

We can understand this result using Eqs. 2.54 and 2.55, and rewrite them in the following

way

a 2+ b 2 =ω2
S +γηγκ−2 a Γ =ω2

S +γηγκ− Γ (γη+γκ− Γ ) =ω
2
S + (Γ −γκ)(Γ −γη), (2.63)

where a 2+b 2 ≃ω2
S . In the high temperature classical limit, where the decay rates are largest,

the last term is evaluated as follows,

Γ −γκ = γκ (
ω2

T

ω2
S

−1) = γκ(
cV1

cP1

−1).

Taking the high temperature limit of cV1
≃ (3/2)kB , cP1

≃ (5/2)kB and κT ≃ (15/4)(kB/m )η

[Braby et al. 2010], we can write Γ in terms of γη and obtain Γ −γη = (1/8)γη. Together, we

then have,

(Γ −γκ)(Γ −γη)≃−γηγκ/20≪ω2
S . (2.64)

A similar conclusion that (Γ −γκ)(Γ −γη)≪ω2
S for lower temperatures can be easily made

since the decay rates are even smaller.

Hence, we can take a 2+ b 2 =ω2
S = c 2

S q 2 in Eq. 2.56. With c 2
T /c

2
S = cV1

/cP1
and γκ/q

2 =
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κT /(n0cV1
), we obtain,

Γ

q 2
=
ω2

T

ω2
S

γκ
q 2
=
κT

n0 cP1

=DT , (2.65)

with DT the thermal diffusivity. With Eq. 2.65 andγη/q
2 = 4η/(3n0m ), Eq. 2.54 shows that the

measured 2 a/q 2 is, to a very good approximation, the usual first sound diffusivity [Landau

and Lifshitz 1959],

D1 =
2 a

q 2
=

4

3

η

n0m
+

�

1

cV1

−
1

cP1

�

κT

n0
=Dη+Dκ . (2.66)

Eq. 2.65 shows that the decay rate Γ of the thermal diffusive mode determines the ther-

mal conductivity κT . Measurement of the decay rate 2a of the first sound mode determines

D1 in Eq. 2.66, and yields η.
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CHAPTER

3

EXPERIMENTAL METHODS

In this chapter, I will discuss the preparation of an ultracold degenerate gas of 6Li atoms,

and the optical system for applying the perturbing potentials. The atoms are trapped and

cooled to a temperature near absolute zero (T ∼ 10-100 nK) before being transferred into a

box shaped potential. The basic technique and the experimental apparatus used in our lab

to trap and cool the atoms are well described in detail in the theses of our previous group

members, and this will only be briefly described here. Readers are encouraged to refer to

O’Hara [2000]; Gehm [2003]; Kinast [2006]; Joseph [2010]; Jagannathan [2016]. The main part

of this chapter will be focused on the new techniques to create a stable and relatively strong

box potential by utilizing a digital micro-mirror array (DMD) and a diffracting “top-hat”

(TH) beam shaper.

3.1 Atom Trapping and Cooling

There are several stages for preparing an ultracold atoms samples for our studies. 6Li atoms

are solid at room temperature in our source. First, we need to heat a sample of lithium to

create an atom gas flux. Then the atoms need to be captured and evaporatively cooled to
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low temperature. Last, we need to put them into the box potential, which is our final trap,

without additional heating.

The experimental apparatus contains a locking region and a main system. Each of these

is comprised of a vacuum system with an oven as atom source. Both ovens are heated to

approximately 400◦C to supply the atoms for our experiments.

The locking region is a system to generate laser beams with required frequencies in

the experiments. In this system, the frequency of a Coherent 899 dye laser, pumped by a

Coherent Verdi V10 diode pumped solid state laser, is refered to an atomic resonance of 6Li

near 671 nm, providing a stable “main beam” with a power of about 800 mW. This main

beam is then directed through different beam paths to the main system. Within each path

the frequency is modulated by one or more acousto-optic modulator (AOMs), which acting

as a grating to modulate the angle and frequency of the non-zeroth order passing-through

beams. We use the first order beams deflected outward from the AOM, and the frequency

is controlled by an applied driving voltage. With such a setup, we are able to tune the

individual laser beams to different desired frequencies, for atom trapping, cooling, and

imaging.

The main system makes use of two different physical mechanisms to trap and cool atoms.

The first mechanism is absorption and emission of photons and the second mechanism is

electric dipole interactions. The first mechanism applies to the setup of a Zeemann slower, a

magneto-optical trap (MOT) and another MOT optical beam called the “repumper”, which

will be discussed shortly. Fig. 3.1 shows the system set up for these trapping and cooling

stages.

The atoms initially travel at high velocity and they are quickly slowed and captured by

a slower beam. Photons in this red-detuned near-resonant counter-propagating beam is

absorbed by the atoms traveling towards the beam, with the Doppler effect shifting their

frequency to resonance. The atoms then emit photons in random direction, thus the atoms

slow down as a result of momentum conservation. Moreover, a magnetic field generated

by the Zeeman coils produce a spatially varying Zeeman shift to the energy levels of the

atoms to keep cooling them, compensating for the reduced Doppler effect when atoms

slow down. Together, this setup is called the Zeeman slower.

Then a magneto-optical trap or MOT traps the atoms near the center region of the

vacuum chamber and provides additional cooling. The MOT is a combination of 3 pairs of

retro-reflected beams and magnetic fields. It provides Zeeman shifts and Doppler shifts, by

the same mehanism as the Zeeman slower, but in all six directions. Also, the MOT beams

are polarized in a way to provide restoring forces when atoms move away from the center.
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Figure 3.1: Experimental setup for initial cooling of 6Li atoms by the Zeeman slower and
the slower beam and precooling by the MOT beams, repumper beams and MOT coils.
MOT and repumper beams are overlapped and are shown together in red. Inset shows
fluorescence from the atoms trapped in the MOT. This figure is directly taken form thesis of
Jagannathan [2016] for demonstration purpose.

In our lab, about 300 million atoms are cooled to the Doppler limited temperature of 140

µK in the MOT1.

The first mechanism cannot further cool the atoms below the Doppler limited tempera-

ture of about 140 µK [Kinast 2006]. To further cool the atoms, we load a far off resonance

trap or FORT generated by a ultra-stable Coherent DEOS LC100-NV CO2 laser (140 W) beam

and perform evaporative cooling. The cigar like shape FORT provides an electric dipole

potential that confines the atoms in space. The dipole potential is written as

Ud i p =−
2π

c
α I , (3.1)

where I is the intensity of the laser beam. The CO2 laser beam has a cylindrically symmetric

1In order to cool the atoms in both F = 1/2, 3/2 states, an additional beam called “repumper beam”, tuning
228 MHz lower than the MOT beam, co-propagates with the MOT beam
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gaussian profile, so the intensity can be written as,

I (r, z ,φ) =
I0

1+ (z/z0)2
exp

�

−
2r 2

w 2

�

, (3.2)

where I0 is the peak intensity, z0 is the Raleigh length andω is the 1/e 2 radius of the beam.

Here, the polarizability for the ground state of 6Li is

α=α0

ω2
0

ω2
0−ω2

, (3.3)

where α0 is the static polarizability for frequencies far below resonance, taking the form of

2µ2
e g /ħhω0.

The wavelength of the CO2 beam is 10.6 µm, which is much larger than resonant wave-

length of the atom∼ 671 nm. So from Eq. 3.1 - 3.1 we can easily find that the FORT potential

is attractive, deeper in the center.

In the FORT, we use a bias the magnetic field to tune to the strongly interacting regime,

and the atoms collide with each other, sharing energy and rethermalizing. The hot atom

escape the trap and the colder atom effectively cool down after rethermalization. A passive

evaporative cooling with full CO2 trap depth is called the free evaporation, during which

the atoms can be cooled to ∼ 50µK. After this stage, a forced evaporation by lowering the

trap depth provides the final cooling. We use a lowering curve,

U (t ) =U0

�

1+
t

τ

�−1.44

, (3.4)

which ensures efficient evaporative cooling while, at same time, keeping the most atoms

in the trap [O’Hara et al. 2001], where t and the lowering constant τ can be adjusted for

different final trap depth.

The lowering of the FORT is realized by controlling the applied RF voltage on the CO2

AOM, which acts as a beam intensity modulator here. We applied two RF signals (40 MHz

and 32 MHz) on the AOM to maintain the total RF power during the lowering to ensure

temperature stability in the AO, avoiding beam angle changes. The output beam modulated

by the 40 MHz RF signal is what we use for the FORT. At the end of the forced evaporation

stage, the temperature of the atoms can be as low as 10 nK.

Finally, the atoms are slowly transferred into a box potential, which comprises six sheets

of replusive blue-detuned light, created by two digital micromirror devices (DMDs). The
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top and bottom sheets employ a 669 nm beam from a diode laser. The four vertically

propagating sheets are produced by a 532 nm diode laser beam, which passes through a

diffractive optical element and an imaging lens to produce a “top-hat” shaped intensity

profile on the surface of the DMD array.

With the flexibility of the DMD (we will discuss in Sec.3.3.2), we are able to transfer

the atoms from the FORT smoothly to the box without moving in space, which avoids

losing or heating the atoms. The repulsive dipole force confines the atoms inside the

box with nominally uniform or slowly varying density profiles in all three directions. The

“walls” built by the repulsive force are designed to be strong enough to hold the atoms of

various temperatures, without noticeable atom loss during the experimental time scale.

This provides an ideal platform to measure thermodynamic and transport properties.

3.2 Imaging

After the atoms are cooled and trapped in the final box potential, the vertical 532 nm

beam crafted by the DMD is used to generate a spatial periodical perturbing potential for

experiments (see Sec.3.4.2). After re-reaching thermal equilibrium, the perturbing potential

is turned off and the atoms then undergo free evolution inside the box.

To observe the atom evolution, we use absorption imaging to extract the density profile

of the atom cloud. This technique uses a pulse of resonant light to image the atom cloud,

the transmitted intensity profile is then recorded on a CCD camera. The density profiles

can be obtained by reconstructions of the images.

Fig. 3.2 shows the beam setup for the box and the referencing frame (x-y-z). We have

two cameras to look at the atom cloud: one views the horizontal (y) direction and the other

views the vertical (x) direction.

The imaging beams for these cameras are differ in frequency by about 76 MHz away, so

each of them can image one spin species of the mixture in-situ. Note that we use a 50-50

mixture of spin-up (|1〉) and spin-down (|2〉) atoms. Their energy difference at high field of

832 G is calculated to be about 76 MHz. By tuning the frequencies of two imaging beams 76

MHz apart, we are able to use two cameras, with each of them viewing one spin species of

the mixture. Since the imaging beam only resonantly absorbed by one spin state without

interrupting the other spin state, this yields in-situ imagery of both spins.

The images we take are processed by a converting code, which relates the extracted

column density to the photon counts in each pixel and some camera characteristics to
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Figure 3.2: Illustration of the box trap. A 532 nm beam propagating in the vertical (x)
direction provides 4 vertical walls of the box. A 669nm beam propagating in the horizontal
plane (y-z) provides the top and bottom sheets. Two CCD cameras view through x and y
directions at each of the two spins, enabling in-situ imagery for both spins.

give us 2D density profiles of the atoms as function of position. Then we use a “spline”

method 1-D interpolation to smoothly covert the density profiles to be in units of microns

(atoms/µm).

3.3 Optical Box

Many previous studies of quantum gases are limited by the trapping beam shapes, which is

usually a gaussian profile in space. One downside of the gaussian shaped trap is that the

density of the trapped atoms varies near the cloud edges, which makes theories hard to

test. To investigate the properties of the gases more properly, beam-shaping techniques are

essential for creating controlled profiles for different applications.

As I mentioned in the introduction, a uniform sample of unitary Fermi gases in a box is

the ideal platform for studying hydrodynamic transport properties. A good way to realize

uniform density distribution is to transfer the cold atoms from FORT to another trap, which

has the geometry of a rectangular box. By carefully aligning the position of the box in the
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center of the magnetic bowl, formed by gradient of the bias magnetic field (see Sec. 3.3.4),

once the FORT is turned off, the only trapping potential arises from the 6 walls of the box.

The atoms can then flow almost freely to uniformly occupy the space inside the box.

It was not easy to build a box potential with sharp edges and strong confinement in the

past. However, by combining some new technology, a good box potential is accomplished

in our lab. The basic apparatus includes 2 blue-detuned laser beams, 2 Digital Micromirror

Devices (DMDs), a “top-hat” beam shaper with adjustable telescopes and two wavelength

selecting optics. A schematic of the optical setup is shown in Fig. 3.3.

Figure 3.3: Box beam path along with the main chamber and imaging system. Top(bottom)
orange(green) colored shapes represent a 669 nm gaussian (532 nm “top-hat”) laser beam.
Red colored shapes represent the imaging beams.

While the details of these new techniques will be described later, it is useful to know

some basic concepts to understand the system setup. The DMD is a dynamic spatial light

modulator that can reshape the incoming light. It puts an arbitrary pattern on the incoming

beam and projects the pattern onto the atoms, with a de-magnification by a microscope

objective. Also, a diffractive optic, called “top-hat” beam shaper, is used to make the incom-

ing beam intensity flat on the DMD, increasing the box potential (the reasons are explained
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in following subsections).

3.3.1 Box Beam

To build a box for the atoms, the first question one naturally asks is what’s the material for

the “walls”. We learn from the previous section that electrical dipole forces can be used to

trap the atoms without resonant interactions. Similarly, we can use pure optical beams for

box trapping. However, we need a repulsive beam here.

After the forced evaporation, the atoms reach the desired temperature in the FORT. We

can then release the atoms to the box potential, constructed by 6 repulsive laser beam

sheets, taking advantage of dipole forces. As we discussed in Sec. 3.1, the dipole potential

takes the form of

Ud i p =−
2π

c
α0

ω2
0

ω2
0−ω2

I . (3.5)

It is obvious that we need a beam frequencyω higher than the resonant frequencyω0, in

other words, a blue-detuned light, to give us a repulsive potential.

We want to build a strong box trap with the capability of holding atoms with a variety

energies. The depth of the optical potential should be at least few times of the typical

Fermi energy in experiments, which is ∼ 0.2µK. Since the optical potential scales roughly

as inverse ofω2
0−ω

2, tuning closer to the resonance frequency would provide a deeper box.

Meanwhile, we also need to be careful not to use a beam too close to the atomic line. Even

for a box trap setup, where most of the beam does not directly shine on the atoms, if the

wavelength is close enough to the resonance, light scattering will heat the gas and cause

loss.

Taking these ideas into consideration, a diode laser centered around 669 nm is a very

good choice for our box beams. This wavelength is about 2 nm away from atomic resonance,

which gives strong dipole force without too much light scattering. For a typical Toptica

diode laser tuned at 669 nm, the output power is around 200 mW. With power losses through

the necessary optical elements, this power is still sufficient to provide a trap of a few µK

when it’s focused on the atoms. This energy is much bigger than the nominal Fermi energy

≃ 0.2µK , so the optical trap depth is very good.

To create a 3D box, we need two perpendicularly propagating beams to form 6 sheets

for the walls. A straight forward choice is to use the 669 nm beams for both propagating

directions. However, we also need to think about the separation of imaging beams, which

are at 671 nm.
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We have two CCD cameras taking images for the horizontal and the vertical views. For

our vacuum chamber, there is only one pair of window ports for beams in the vertical

direction. Notice that the MOT configuration needs three perpendicularly propagating

beams, so one of the MOT beams has to co-propagate with the vertical image beam. This is

not a problem since we always take pictures after the MOT procedure is done. So a simple

electronically controlled flipper mirror can separate those two vertical beams and turn

each on in a sequence. However, for the box beam, we cannot use the same method.

For the best measurements, we always want to take in-situ images so that we minimize

any disturbance to the properties we study. This means the imaging beams need to be

turned on when the box beams are present. To solve the problem, we can use dichroic beam

splitters. Dichroic mirrors or beam splitters can spectrally separate light by transmitting and

reflecting light as a function of wavelength. Lowpass dichroic mirrors have a transmission

and reflection band that are divided by a cut-on wavelength. This type of dichroic is highly

reflective below the cut-on wavelength and highly transmissive above it. It allows us to

separate the box beam from the imaging beam right outside of the vacuum chamber. Now,

we look back at our candidate beam of 669 nm. It’s only 2 nm away from the imaging beam

which is tuned to resonance. This makes it extremely hard to find a dichroic mirror that

can separate them.

Also, let’s think more about the general ideas of the experiment. We want to build a

versatile platform that can conduct different kinds of experiments in a uniform box potential.

Besides building a box, we also want to apply some perturbing potentials on the atoms,

either static or moving. To make the apparatus not too complicated, we prefer to use the

same laser beam for the box and perturbing potentials. If the optical force is too strong,

we will lose dynamic range for designing an spatially varying perturbations. This will be

discussed in detail in Sec. 3.3.2.

Another disadvantage of a near resonance beam is that we cannot shine the beam on

atoms for long time without exciting the atoms. Indeed, for the purpose of holding the

perturbing potential long enough for reaching a thermal equilibrium, we would rather use

a far off resonance light.

Based on the two concerns above, it is better to choose a wavelength further away from

resonance for the vertical box beam. But with limitation of the damage threshold of the

DMD, we cannot go too far away from the resonance where a very high power is required

for a strong trap. We use a Coherent Verdi V10 diode-pumped laser to generate a high power

stable green beam at 532 nm. This wavelength is well below the atomic resonance, which

allows us to effectively separate it from the imaging beam using a dichroic beam splitter.
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Although the dipole polarizability is smaller compared to that of the 669 nm beam, the

output power of Verdi can go up to 10 W, which is much higher than the power of the 669

nm beam. This compensates for the overall strength of the force, making a strong enough

force for the box walls and not too strong for the perturbing potentials.

Another fact we need to take into consideration is the effect of bias magnetic field

curvature, which inevitably exerts forces on the atoms inside the box. Without going deeply

to this topic, a brief conclusion is that the force is repulsive in the vertical direction and

attractive in the horizontal plane. Both are small but not negligible compare to optical

potential. So we would prefer the horizontal box beams to be stronger to give additional

vertical confinement against the magnetic force, for the top and the bottom sheets.

Fig. 3.4 shows the beam setup for the box. We chose to build our box with two different

beams. A horizontal red 669 nm beam provides stronger top and bottom walls; a vertical

green 532 nm beam provides the other four walls, as well as creating perturbing potentials.

The red beam propagates in a path that does not overlap with imaging beams. The green

beam shares part of the vertical path with the imaging beam, and they are separated by a

longpass dichroic mirror. Additionally, since the selective efficiency of a dichroic mirror

is not 100 %, a lowpass filter is placed in front of the camera to minimize green light

transmission.

Figure 3.4: Illustration of the box trap. A 532 nm beam propagating in the vertical (x)
direction provides 4 vertical walls of the box. A 669nm beam propagating in the horizontal
plane (y-z) provides the top and bottom sheets.
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3.3.2 Digital Micromirror Devices

With the laser sources of the box beams chosen, let us move forward to discuss the beam

shaping. Some beam shapes can be generated from passive approaches, such as a diffractive

phase plate, refractive aspheric lens or axicon pairs, or a binary-transmissive metal mask.

However, these methods cannot adjust for variations in input beam profiles due to imperfect

optical systems or produce different types of output beam profiles on demand. Spatial

light modulators (SLMs), on the other hand, provide a programmable modulation of phase

and/or amplitude. It opens possibilities for arbitrary beam shape designs. Furthermore,

if a programmable SLM is able to update patterns fast enough, the beam shapes can be

controlled in both space and time, which allows us to dynamically control the optical

potentials [Gauthier et al. 2021].

The digital micromirror array (DMD) emerges as a versatile tool for arbitrary beam

shaping and dynamical control. The TI-DLP chipset has been used in image display, indus-

trial and medical applications, for high resolution and high speed spatial light modulation.

However, recently it has been applied to laser beam shaping and atom trapping in re-

search. The DLP chipsets utilize highly reflective aluminum micromirrors, known as a

digital micromirror device (DMD).

Each DMD contains up to 8 million individually controlled micromirrors built on top

of an associated CMOS memory cell. During operation, the DMD controller loads each

underlying memory cell with a “1” or a “0”. Next, a mirror set pulse is applied, which causes

each micromirror to be electrostatically deflected about a hinge to the associated +/- 12

degree state, defining as “on” and “off”. The deflection angle of these two valid states is very

repeatable due to a physical stop against two spring tips [DMD]..

There are two types of patterns that can be realized by the DMD: binary and grayscale.

Binary patterns are created by direct display of black and white pictures. Grayscale patterns

are created by programming the on/off duty cycle as functions of time for each mirror,

which allows additional flexibility for pattern design.

In our system, the ‘on’ state beam is reflected to the main vacuum chamber and the ‘off’

state beam goes to a beam damp (black paper board). This acts as an intensity mask on the

original beam, which is a “top-hat” beam in our case (Sec. 3.3.3, to reshape the light. The

designed patterns are programmable, and they are stored in the CMOS memory cell in the

form of image files. The displayed pattern on the mirrors constructed by ‘on’ and ‘off’ pixels

can be held or changed by receiving internal or external triggers. This allows dynamical

control of the light in a very precise way.
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In our application, we chose a DLP 6500 to shape the horizontal beam for its fine pixel

size and DLP 7000 to shape the vertical beam for its fastest pattern rate. Reasons for this

selection will be discussed in detail later.

In our applications, we have some specific requirements for the beams. The DMD

chipset models and the way to program them need to be carefully considered. First of

all, the device needs to handle relatively high beam intensity for forming a deep box trap.

However, since the primary applications of DMD were for displays, they were not originally

designed for high power handling. In order to do laser beam shaping safely, we need to

carefully check the thermal responses of the DMD. According to the general DMD data

sheets, the average power density (peak power density • duty cycle) cannot exceed the

specification of 25 W/cm2 for all DMDs. So we don’t have the flexibility to choose a higher

power DMD.

However, we use some methods to increase power without damaging the device. First,

when we don’t need the box beam, instead of turning the DMD to the “off” states while

keeping the laser beam on, we chose to turn off the AOM for the 532 nm beam and direct

the input beam to a beam dump. This way we keep the active duty cycle short to give the

device enough time to cool down. Second, we expand our laser beam and chose a relatively

large area on the DMD to illuminate for lower intensity on it, and then de-magnify the

beam to hit the atoms. This also gives the advantage of using more pixels on the DMD for

higher pattern resolution. Third, we make the intensity profile of the 532 nm beam almost

uniform on the DMD surface, by using the “top-hat” technique, to avoid possible local

damage near the high intensity gaussian peak. Note that we do not apply such technique

to the 669 nm beam, since its power is much lower than the 532 nm beam.

Now, let us look at two key features of the DMD, the pixel size and the highest pattern

rate. The DMD mirrors has two states: on and off, so the pattern on the DMD is binary. A

smaller pixel (mirror) size grants us more pixels to use for grayscale pattern designs, which

improves their resolution and fidelity. Indeed, all of the DMD chipsets have very small

mirror sizes, from 5.4 µm to 13.6 µm. That is where the name “micromirror” comes from.

A nominal input beam size is roughly about 1 mm, so either DMD gives good number of

useful pixels for creating patterns.

Now we look at the highest pattern rates. From the company’s product descriptions,

for an 8-bit pattern, the DLP portfolio offers max pattern rates from 60 Hz to 4069 Hz.

For our application (binary), the rate is 8 times larger. Considering the system we study,

typical hydrodynamic characteristic frequencies are several thousand rad/s. In order to

study hydrodynamic properties thoroughly, we prefer to have the capability to drive or
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perturb the system at frequencies from well below to well above those frequencies. So with

a reasonable size of the micromirrors, we want to choose the fastest chipset we can find

for the direction (vertical) we apply modulations. And for the horizontal direction, we are

more flexible to choose any handy model.

Based on the considerations above, we build our vertical direction beam shaping system

by a DLP 7000 DMD, with key features of 13.68µm micromirror pitch and a 32552 Hz pattern

rate. It crafts the 532 nm beam for building the four vertical walls of the box, as well as

for applying spatial perturbations on the atoms. For the horizontal 669 nm beam shaping,

we use a DLP 6500 DMD, with key features of 7.56 µm micromirror pitch and a 11574 Hz

pattern rate. The biggest reason for chosing this DMD is very simple: much cheaper!

Now with right DMD chosen, we need to think about the alignment. It is not easy to set up

a DMD since its mirror orientations are tilted (mirrors flip by ±12◦ along diagonal direction

of the array). Usually the incoming beam and reflected beam are nearly overlapping. A neat

optic called a total internal reflection (TIR) prism is helpful for an easier setup, since it

allows us to introduce the incoming beam at a surface almost perpendicular to the reflected

beam. A high power fiber collects the beam from the laser side of the optical table and

sends the beam to the TIR prism. Since the DMD is basically nothing other than a 2D array

of mirrors, it acts as a diffraction grating, where there is more than one order of beam

diffracted. It is important to adjust the blaze angle to get the most power out of the zero

order diffracted beam. From the specifications, the maximum diffraction efficiency can

reach 86 %. We optimized the angle by placing a power meter right after the DMD and

maximizing the power. The application of the TIR prism also makes this process easier.

It is worth mentioning that we use an IRIS-like aperture to block any other orders of the

diffracted beams. The reflected beam from the DMD goes to a microscope objective for

de-magnification. A roughly 1-to-1 lens system then projects the de-magnified image onto

the atoms. The lens closest to the vacuum chamber is sitting on a 3-axis translation stage

to provide fine adjustment for positioning.

With all the hardware setup for the DMDs described, now is a good time to explain how

they are programmed in our experiments. Generally, we use our vertical (532 nm beam)

DMD for building the four sides of the box and for dynamic perturbing potentials. The

horizontal (669 nm beam) DMD is only used to create top and bottom sheets of the box.

The DMD displays images pre-uploaded to its CMOS memory cell; one at a time based

on triggers. The triggers can be either internal or external. While internal trigger mode is

slightly more accurate, external trigger mode is more programming friendly, since it can

be easily integrated to our MATLAB timing controls. So, we use external triggers for the
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(a) DMD setup

(b) DMD mirror array

Figure 3.5: (a) Setup of the horizontal DMD, key elements including a high power fiber,
the DMD, a higher order diffraction beam block, a microscope objective and lenses. (b)
Micromirror landed position and light paths [DMD], the orientation of the mirrors are
diagonal respect to the DMD chip frame.
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vertical DMD.

In our experiments, we use a sequence of different patterns to display on the DMD.

These patterns are binary images of which pixel number is the same as the DMD’s mirror

number. We use MATLAB code to generate patterns for different boxes and perturbing

potentials. There are several display modes for the DMDs, and the patterns switch differently

for different modes. For the experiment, it is important to make sure we are applying a

stable trapping and perturbing potential on the atoms without extra heating. So ideally,

we don’t want the mirrors to tilt off and back on when we switch the patterns. We carefully

chose a setting called “slave mode”. In this mode, when we trigger a next pattern, the mirrors

remaining in the same state (“ON” or “OFF”) do not move. Only those that need to change

state tilt correspondingly. This guarantees constant box walls through the whole experiment,

avoiding unwanted heating or atom losing. Our shortest time interval for switching between

different patterns is 1 ms, which is slow compare to this DMD’s maximum rate. However,

we would like to know how fast the mirrors can respond to a trigger to complete a stage

change. In the experiment, we want to measure the free decay of the gas, so it’s important

to know when the decay begins. The response time of mirrors is important since it tells us

how well we know the beginning of the evolution.

We measured the response time by using a photodiode to detect the change of light

signal before and after the triggers. The result shows that in the “slave mode”, the response

times, both from “on” to “off” and “off” to “on” are less than 10µs The mirrors do not change

orientation without a trigger.

For comparison, another measurement with the photodiode shows internal refreshes

of the mirrors, when the DMD is in a “no dark time” mode. The internal refresh is caused

by a setting of “picture time”. It occurs even if a external trigger is not present, see Fig. 3.6.

This comparison shows the importance of programming the DMD in the correct way.

Our typical data taking time interval is 100 µs and our typical evolution to watch time is

3000 µs. Since the response time is 10 µs, we can assume an instant release when we trigger

the perturbation off in the “slave mode”.

Now we have a clear picture of how the DMD works. The only thing left to do is to draw

the patterns. The horizontal DMD is used to create the top and bottom sheets for the box.

So, we simply draw two parallel bars with a spacing equals to the desired box width. The

vertical DMD is used for building the other 4 sheets which I call the box frame, as well

as the perturbing potential inside the frame. The rectangular frame is rotated by a small

angle on the DMD to match the orientation of the FORT. Before we talk about some more

details of the patterns, we need to take a look at some other technical details. Some special
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(a) Slave Mode (b) No Dark Time Mode

Figure 3.6: Left: In the proper trigger “slave mode”, mirrors only respond to external triggers.
Right: Example of another mode, where the mirrors refresh at a fixed time interval.

considerations for the patterns will be described in Sec. 3.4.

3.3.3 The “Top-Hat” Beam Shaper

With the correct laser wavelength and DMD choices, we have the foundation to build

our box. However, due to some limitations of the apparatus, we need to take additional

measures to make the box better.

The biggest problem for building a box of light is the spatial profile of the input beam

intensity. For a single mode laser beam, the intensity distributed as a gaussian in space. On

any surface the light shines, the intensity peaks in the center and decreases to the edge. With

the use of DMDs, we can effectively put a transmissive mask on the beam to create a 2D box

frame. In this case, we do not change the intensity distribution of the input beam. This fact

can cause two problems. First, we are not utilizing all of the power of our light source, which

in practice is only limited by the damage threshold of the high power fiber. Remember

that we need a strong box potential to hold the Fermi gas at different temperatures. For a

gaussian beam, the intensity region used by the DMD for projecting the box frame is only a

small portion of the region near the peak. With a fixed input beam width, the bigger the

box is, the lower the intensity. Fig. 3.7 show a gaussian beam on a long box frame, we can

see the intensity decreases rapidly for the long sides.

For the longest box we use in the experiment, the intensity of the box walls is only about

25 % of the peak. Notice that damage threshold of the DMD is still set by the peak intensity,
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Figure 3.7: Grayscale image of a box made by the DMD with a gaussian input beam, taken
by a ThorLabs CMOS camera. The light intensity varies and decrease rapidly for the long
side.

since the mirrors in the beam for both “on” or “off” state. In other words, we would waste

substantial power to build a strong box by using a Gaussian beam directly.

So, we want to reshape the gaussian input beam before it reaches the DMD. Our goal is

to increase power efficiency for the box, so let’s look at the geometry of the box first. The

box is designed to be long in the axial direction (z) and relatively short in the two radial

directions (x and y) for three reasons. First, this is similar to the shape of the FORT, which

makes the loading from the FORT to the box easier.

Second, uniformity is the most important condition we want to realize for the studies of

3D hydrodynamic transport properties, especially for the directions we integrate through.

In our relaxation experiment, the imaging beam is integrating through the atom sample (y

direction) to give a 2D density profile. We then integrate through the radial (x) direction,

which is along the perturbing potential, to get a 1D density profile. Hence these two direc-

tions need to be very uniform. Due to the confining effect of the magnetic curvature (see

Sec. 3.3.4), the longer the box, the more density variations of the atom cloud. Also, we need

to maintain a high atom density to ensure the relaxation is in the hydrodynamic region. So

a shorter box dimension in the x and y directions is preferred.

Third, the box should be long in the axial (z) direction, since we apply the periodical per-

turbing potential across the sample in this direction. The perturbation needs to be at least of

a few spatial periods, as needed for a good data analysis. The perturbing wavelength cannot
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be too short due to limited DMD dynamic range. Also, the hydrodynamic requirements

(the long wavelengh limit, see chapter 5) prefer long perturbing wavelength. Moreover,

although we can model the evolution of the gas by considering the edge reflection of the

box walls, it is much more convenient to focus on a central region, where the walls have no

affect (see chapter 4). This again requires a longer z direction length for the box since we

can then leave off the close-to-box region for modeling.

Based on these considerations, we chose the x and y width of the box to be about 50

µm, for good uniformity and high gas density. The width is slightly bigger than the radial

diameter of the FORT after forced evaporation (the diameter varies a little depending on

different final trap depth), so that we can load the atoms from the FORT into the box without

radial clippings. The z length of the box actually varies in our experiment, depending on

desired temperature, density, and spatial perturbation wavelengths. We actually use a box

length from 110 µm to 180 µm in the experiments. Fig. 3.8 shows the geometry of the box

with respect to the bias magnetic coils.

Figure 3.8: Illustration of the box position, with respect to the magnetic coils proving high
field (832 G).

To realize a more efficient setup for the box shape above. We first tried is to use a

cylindrical telescope to expand the gaussian beam in one direction (for the long side of

the box). This application improves the power efficiency for building longer boxes. For a
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gaussian beam, the spatial intensity distribution takes the form of:

I (r, z ,φ) =
I0

1+ (z/z0)2
exp

�

−
2r 2

w 2

�

I0 =
2P0

πw 2
, (3.6)

where w is the 1/e 2 radius of the beam and r is distance from the propagating axis.

Fig. 3.9 shows simple calculations of the relative intensity at a fixed distance r as function

of the ratio of w /r . We can find an expanded gaussian beam increases the intensity far

away from the peak.
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Figure 3.9: A simulation of the relative intensity, as a function of the ratio of the ra-
dius(distance to the center) to the gaussian width. A certain radius prefers one optimal
width; for radius larger than the Gaussian width, expanding the beam will increase intensity.

However, this method has two shortcomings. First, the beam profile is still a gaussian in

each of the perpendicular directions, which means the peak intensity is still in the center.

Second, one cylindrical telescope with a fixed magnification only works best for one box

length. When we use boxes of different sizes in the experiments, some of them are not

optimized.

Fortunately, we found a newly developed optical element that can make the beam much
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better for our box. The “Top-Hat” (TH) beam shaper is a phase element, mainly based on

diffractive technology (Diffractive Optical Element - DOE). This shaper is used to transform

a near-gaussian (TEM00) incident laser beam into a uniform-intensity spot. Based on

different diffractive structures for the element, the spot can be either round, rectangular,

square, line or other custom shapes with sharp edges in a specific work plane. This is a

perfect choice for our beam shaping with two advantages. First, by transforming a gaussian

spot to a uniform one, it increases the power efficiency significantly. When we focus the

uniform spot on the DMD, the intensity of light for the box walls is the peak intensity. This

allows us to utilize maximum power handling of the DMD to build a strong box.

The second advantage is that a uniform input beam profile makes optical potential

crafting much easier. When we design the patterns for applying a perturbing potential on

the DMD, for a gaussian incoming beam, we need to consider the gaussian envelope. The

desired potential should be the desired pattern multiplied by the gaussian profile of the

incoming beam. However, for a uniform spot, the desired potential is the same as the DMD

pattern.

There are two types of TH beam shapers in terms of the focal point. One focuses at

infinity and one focus at a fixed focal point depending on a build-in lens. Also, each TH

beam shaper is designed for one particular input beam size, wavelength and output spot

shape and size.

Fig. 3.10 demonstrates a typical setup for the application of the TH beam shaper. Note

that we use a round spot in our experiments instead of the squared one shown in Fig. 3.10.

This figure is only for demonstration.

We use a Holo/Or TH-228-Q-Y-A “Top-Hat” beam shaper. It takes a Gaussian beam of 3

mm width and transforms it to a round uniform spot with 1.5 mm diameter near its focus.

A simulation tool made by the company helps us to find this element, which best fits our

application. The simulation result for the designed intensity profile is shown in Fig. 3.11.

The TH beam shaper is designed for highly uniform images and superb accuracy output

shape. For better performance, some considerations are needed for setting up the beam

path. The element is

(a) Sensitive to X-Y displacement;

(b) Sensitive to input beam diameter;

(c) Sensitive to working distance;

(d) Requires M 2 < 1.3 (higher value will result in poorer results), where M 2 is the quality

factor;

(e) Some designs are rotation sensitive (mainly, non-radial designs).
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Figure 3.10: Typical setup for the “Top-Hat” beam shaper, including a collimated laser
beam, a beam shaper element, a focusing lens and a focal plane for the application [THS].
EFL is effective focal length, D is the input beam size, d is the spot size. Figure only for
demonstration, we actually use a round spot in the experiments.

(a) 2D spot profile (b) Intensity along radial axis

Figure 3.11: Simulation results for the designed intensity profile for a TH-228-Q-Y-A “Top-
Hat” beam shaper, with 3 mm input beam size and a perfect alignment. Image of the actual
spot in experiments is shown in Fig. 3.12.

The solutions for our optical system to fulfill those requirements are

(a) We put the element on a X-Y-Z micrometer translation stage.

(b) We use custom high power fiber collimators for ideal output beam size, and we use

an adjustable beam expander for fine controls.
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(c) An additional long Z translation stage provides larger range for axial positioning.

(d) We use high quality Toptica diode laser and high power fiber.

(e) The element is mounted in a premium mirror mount for fine tilt control. We use

round spot shape for better flexibility for box orientations.

With these added features to a basic TH beam shaper setup, we actually have the ability

to customize the final spot for the DMD. In practice, we align the TH beam by placing a

ThorLabs DCC1545M CMOS camera (∼ 5.3µm pixel resolution) at the focal plane of the

microscope objective, which we use to de-magnify the DMD pattern (see Fig.3.3). We first

turn the DMD to an all on state, so it acts as a mirror. We adjust the expanding telescope

until we see a nice round spot with clear edges on the camera. Notice that the intensity

distribution may not be uniform at this point. We then pick up the X-Y-Z position and the

rotation of the TH beam shaper to carefully distribute the intensity, making it uniform, see

Fig. 3.12.

Next, we use the DMD to generate the pattern for our box frame, and watch how it

overlaps with the TH spot. The position of the box pattern can be changed digitally by

editing the uploaded image, and the TH beam can also be moved across the DMD surface.

By adjusting both ways, we can realize a very good near uniform TH spot, with a little more

intensity on the outer edge on purpose. Examples of a good TH beam profile and a box

frame made by the TH beam combined with the DMD are shown in Fig. 3.12. These images

are ∼ 250µm long, about the same size as those on the atom cloud. The axial diffraction

pattern on the TH spot is an artifact of the camera.

Actually, with our setup described above, we can intentionally change the input beam

size, tilt or defocus the TH beam shaper to put more intensity on the box walls. We can

also use this trick to make the most power efficient configuration for each box of different

size. Since we have an adjustable expanding telescope, the most convenient way to modify

the spot profile is to change the input beam size. With the other conditions being ideal,

we use the simulation tool to predict effect of beam size change on the spot profile. The

result shows when the input beam size changes, at the same focal plane, the profile in radial

direction varies from a gaussian-like one for smaller beam to a hollow one for bigger beam

(see Fig. 3.13).

By using the top hat beam shaper with an adjustable beam expander, we make the best

use of the DMD as a dynamical spatial light modulator to build a strong optical box.
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(a) Top Hat beam profile. (b) A box pattern on the TH beam, shaped by the DMD.

Figure 3.12: CMOS camera images of typical Top Hat beam applications. The disk in (a) is
about 250 µm in diameter. The box pattern in (b) is about 200 by 95 µm. This figure is just
to show our capability of making very shape edges, the box we actually use in experiments
are much thicker to prevent atoms from accumulating outside of it and affecting the image
(see Sec. 3.4).

3.3.4 Alignment of the Box

We have all the optical elements to make the box now. The only remaining question is where

to position the box in the main chamber. Recall that during the entire trapping procedure,

the atoms are loaded to three different traps: the MOT, the FORT and the box. Since the box

is the final trap where we perform the experiment, we need to carefully position it in the

best place to make the other traps overlap with it.

At high field, the magnetic field is generated by two coaxial coils running parallel current.

The coils generate a large field (832 G), on top of the dipole trap. The finite size and distance

of the coils result in a slowly varying field, which has a cylindrical symmetry. Here, a potential

is generated by the magnetic field due to the field curvature. Let us consider a virtual move

of the atom cloud in the bias magnetic field. Based on the geometry of the field, if we

assume the trapped atom cloud is located in the center. When it moves along the x axis, the

magnetic field it experiences will increase; and when it moves in the y-z plane away from

the x-axis, the magnetic field drops.

To understand the magnitude and direction of the magnetic force, we need to review

the basic atomic structure for the 6Li. Note that we use a |1〉 , |2〉 mixture of the lowest

ground states. These states are highfield seeking, i.e., when placed in a magnetic gradient,
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Figure 3.13: Simulation results for a beam width departs from 3 mm. A larger beam is
transformed to a hollow top and a smaller beam is transformed to a gaussian-like top. Above
are 2-D spots at focal plane; Bottom are radial intensity profiles.
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they are drawn to regions of high field. As a result, the potential is attractive in the plane

perpendicular to the axis of the magnet coils (horizontal y-z plane) and repulsive along the

axis of the coils (vertical x-axis), see Fig. 3.8. The net magnetic potential can be written as

harmonic oscillator potentials for a simple magnetostatic treatment:

Uma g =
m

2
(−ω2

m x x 2+ω2
m y y 2+ω2

m z z 2). (3.7)

The magnetic dipole moment µ of the atom will align itself with the local magnetic field

direction, so we have Uma g = −µ · B = −µB . Maxwell’s equations require ∇2B = 0, and

comparing the two forms of U we have,

∇2B = ∇2(
−Uma g

µ
) x̂ = 0 (3.8)

−ω2
m x +ω

2
m y +ω

2
m z = 0. (3.9)

From cylindrical symmetry, we haveω2
m y =ω

2
m z =

1
2ω

2
m x , hence the vertical magnetic force

is twice as big as the horizontal force.

Also, note that our magnetic field gradient is small, so the effect of gravity cannot be

ignored since it’s comparable to the magnetic force. Together, the total potential due to

gravity and magnetic force is referred as the “magnetic bowl”.

We need to align our box in the center of the magnetic bowl, where the horizontal

magnetic force is minimized and radially symmetric on the atom cloud. The vertical position

can be set a little off the geometric center, so the magnetic force is pushing the cloud center

up to cancel the gravity. In such a configuration, the net force on the cloud is minimum

and the density along x (vertical) is roughly symmetric along the center. We hereby can call

this location the “center” of the magnetic bowl.

The way to center the box in such position is to do a so called “Slosh Mode” experiment,

which is to release the atom from the optical trap to the magnetic bowl. It is obvious that

we always want to overlap the box with the FORT for the best loading. So we can start the

best-position search with atoms releasing from the FORT. For the horizontal plane, when

we release the gas from a position that is not centered, the gas will migrate towards the

magnetic potential center. The center of mass motion can be monitored by eye coarsely

and by computer finely to direct us to the center of the magnetic bowl. The magnetic coils

are fixed so we can move the CO2 beam focal point by translating focusing lens to change

the FORT position. Repeating so leads us to center the FORT in the magnetic bowl. For the

vertical direction, we basically follow the same procedure, but it’s a bit harder since the
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atom cloud expands in a repulsive potential. However, since the vertical magnetic force is

twice bigger than the horizontal forces, the vertical alignment of the box is more critical.

A better way for adjust the position finely is to load the gas to the box from a good FORT

position and measure its density profile. The x profile obtained by the horizontal view

camera should be symmetric about the vertical center, and a little curved to the top and

bottom when the box is in the correct position. We can also use this method to find the

horizontal center better.

Note that for different final depths of the forced evaporation stage, which determines

the temperature, the atoms are actually sitting at different places due to thermal effects on

the focusing optics. So for each different final FORT depth, we need to repeat the search

procedure and re-align the CO2 beam.

3.4 Box Loading and Perturbation

Before I describe how to load the atoms to the box, there is another consideration for the

box potential. We have a good understanding and control for the atoms inside the box

now, but the atoms outside the box could also affect our observations. For our imaging

system, the CCD camera integrates through the whole optical path and cannot distinguish

the atoms inside the box from the atoms outside.

From the example of the slosh mode experiment, we know that without any other

confinement, the magnetic force will push the atoms away from the vertical center and

attract them to the center of the magnetic bowl in the horizontal plane. When we load the

atoms from the FORT to the box, we cannot catch all the atoms in the long axial direction

for high temperature cases, since the FORT is longer at higher depth. For such situations,

we need a repulsive potential to keep the atoms away from the box walls.

This can be done simply by creating proper DMD patterns for both directions. For the

vertical DMD, we can turn all the mirrors on except those inside the box. Although the box

frame width does not affect atom trapping since the trapping potential only depends on

how sharp the edge is, a wider frame repels the atoms outside the walls to prevent them

from entering the imaging path of the box. On the other hand, for the horizontal DMD, we

can make the length of the top and bottom bars barely longer than the box, so the atoms

outside of the box can escape easily.

Actually, with the possible capability to edit an arbitrary optical potential. The DMD

- TH beam shaper system can be utilized to create a balancing potential of the magnetic
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bowl. The density variation caused by the magnetic curvature can therefore be improved

or eliminated, giving us a one level more uniform box for the next generation experiments.

To realize this, I have two constructive ideas. The dynamic range of the DMD is limited by

the area illuminated on the array, so it may not be enough for the current optical setup,

since the magnetic potential is small compared to the box depth. So, one could design an

appropriate duty circle2 for the mirrors to apply a grayscale projection, which effectively

increases the dynamic range. The other idea is to adjust the beam expanding telescope for

the top hat beam shaper to generate a somewhat hollow intensity profile. This would help

since we need more repulsive force further away from the center of the magnetic bowl to

cancel the stronger magnetic force.

3.4.1 Box Potential

With the box set up and positioned properly, the last quest to prepare our sample is to

load the atoms to the box U0(r ) and generate a perturbing potential δU (z ) in the long axial

direction.

The box loading procedure comprises releasing the atoms from the FORT and capturing

them by the box beams. Regarding general expansion dynamics, atom clouds confined in

optical traps expand more rapidly as the optical trap oscillation frequencies are increased.

Since the region we are interested in is at very low temperature, we always use very shallow

FORTs (low frequencies), where the gas expands slowly. Also, our box walls are very close to

the atom cloud in the FORT. So the atoms will flow gently into the box when the FORT is

extinguished, and there is no need for controls slow release.

Hereby, for the release, we simply turn off the RF signals applied on the CO2 AOM. This

makes all the CO2 beam goes to a beam dump, thus extinguishing the FORT. We use an RF

switch to turn off both the 40 MHz and 32 MHz signals to ensure that there is no CO2 beam,

diffracted by the AOM, leaks to the box and affect the cloud.

For the box beams, we need to treat the 532 nm beam for the frame and the 669 nm

beam for the top-bottom sheets differently. Notice that an atom cloud in the FORT is long

in the z direction and short in the x-y directions, see Fig. 3.14.

When aligning the box with the FORT, we can make the x and y-side of the box wider

than the FORT, while the z-side is shorter or comparable to the FORT. This is due to our

system limitation for the box length, and also to obtain high atom density. Since the box

2A duty circle is to create a serials of DMD patterns with desired holding times. For a observation time scale
much longer than the holding time for each pattern, the observer sees an averaged image of those patterns.
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Figure 3.14: Relative position of the box, the FORT and the atom cloud during the box
loading. Blue: atom cloud; Pink: FORT at final depth of forced evaporation; Gray: the optical
box.

potential is partially overlapped with the FORT, it is better to ramp up the box beam slowly

to avoid abrupt kicks on the atoms. We ramp up the power of both 532 nm and 669 nm

beams from 0 to maximum in 0.5 second while the FORT is sitting at its final trap depth.

Note that our 669 nm beam is only 2 nm away from atomic resonance. Although it doesn’t

resonantly interact with the atoms when used for box trapping as mentioned previously, we

need to be careful not to let any red beam go to the main chamber before the box loading

stage. We use a mechanical shutter to block the red beam before we trigger the ramping.

Since a mechanical shutter has a finite response time, we want to open it a little earlier (50

ms) than when the beam is needed. We put an “all off” pattern on the DMD for 100 ms

before switching to the two bars pattern to ensure no light leak to the atom cloud.

With these methods, we are able to load the atom cloud from the FORT into the box

without a significant change of temperature or atom number. Before the gas re-thermalizes

in the box, there is an optional step. Sometimes we want to study the gas in a smaller box

for higher density. We can use our longest box to catch as many atoms as we can from the

FORT, and then perform a near isothermal compression by squeezing the box slowly. Such

a step can be accomplished by using the dynamic feature of the DMD. Instead of using a

static pattern of a box frame, we generate a series of shrinking boxes that share the same

center position for the vertical beam DMD. By choosing an appropriate display-switching

interval, we can effectively squeeze the box. Here, again thanks to the application of the

top-hat beam shaper, we don’t need to worry about a varying beam intensity that would

affect this process.

After loading the atoms into the box, we allow 50 ms for the gas to reach thermal equilib-

rium. The box potential U0(r ) yields a rectangular density profile with typical dimensions
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(x , y , z ) = (52×50×150)µm, see Fig. 3.15. The density varies slowly in the direction of the

long (z ) axis, due to the harmonic confining potential∝ z 2 arising from the curvature of

the bias magnetic field, which has little effect on the shorter x and y axes. The typical total

central density is n0 = 4.5×1011 atoms/cm3, with the Fermi energy εF 0 ≡ kB TF = kB×0.22µK

and Fermi speed vF ≃ 2.5 cm/s. The box depth U0 ≃ 1.1µK.

(a) Horizontal view of the box.

(b) Vertical view of the box.

Figure 3.15: 2D absorption images from the horizontal and vertical directions. The box
dimension is roughly 52 (x) by 50 (y) by 160 (z) µm. Upper(lower) image pixel size, which is
the camera pixel size divides by magnification, is 1.06(1.34) µm.

Fig. 3.15 shows typical 2D column density views for a long box (160 µm). Ideally, we

would like to do all the experiments in the same box with the same density, and only change

the reduced temperature T /TF and the perturbing potential δU (z ). However, in the real

world, it is difficult to keep the density the same for different temperatures, since our atom

cooling technique is dependent on the degree of evaporative cooling. A lower temperature

63



is realized by more evaporations which also results in fewer atoms remaining in the FORT.

Also, our current box potential U0 ∼ 1µK, limited by the DMD damage threshold, is not

enough to hold atoms of both high density and high temperature.

So changing the box size and the way to load the atom from the FORT is a more practical

way to do the experiment. In fact, the box length we use is from 110 µm to 160 µm. A bigger

box yields lower density, which helps us investigate the gas at higher reduced temperate.

Meanwhile, we need to keep the density high enough for staying in the linear hydrodynamic

region (see Sec. 5.3), as well as for good imaging signal to noise ratio. Accordingly, a variety

of density, from about 3×1011 to 6×1011atoms/cm3, is studied.

3.4.2 Perturbing Potential

In our hydrodynamic relaxation experiments, the initial condition is set by applying a

small perturbing potential δU (z ) onto the atom cloud and waiting for equilibrium. The

sinusoidal periodic optical potential is created by the vertical beam DMD, and takes the

form

δU (z ) = ε [1+ cos (q z +φ)]. (3.10)

Here, ε is a small amplitude coefficient, which determines how strong the maximum per-

turbation is. q =wπ/λ is the spatial frequency of the modulation andφ is a phase factor

for positioning the perturbation relative to the box. These values are set as programmable

input parameters to generate the DMD patterns. Note that this perturbing potential δU (z )

is built only inside the box.

We only use the binary display feature of the DMD during the experiment. For a proper

interpretation of the sinusoidal potential, we need a method to write the binary pattern

that works effectively as a grayscale image. A reprographic technique called “halftone” finds

great usage here. Halftoning is a method for creating the illusion of continuous-tone output

with a binary device. It simulates continuous-tone imagery through the use of dots, varying

either in size or in spacing, thus generating a gradient-like effect. For our application, we

use a “Jarvis Halftone”, in which an input grayscale image is converted into a halftone image

of same size using Jarvis’s Error Diffusion Method (see Appendix).

Also, due to the finite aperture sizes of the projection system, the projected pattern on

the atom cloud is blurred compared to the original one on the DMD. Usually blurring is

an adverse effect for an imaging system. However, it actually helps us in smoothing the

perturbing potential, see Fig. 3.16. The blurred halftone pattern is very similar to the desired
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pattern.

Figure 3.16: For a sinusoidal potential, the desired pattern (left); the digital halftoned
binary pattern (middle); and the blurred halftoning pattern (right). A Jarvis Halftoning
operation and the blurring effect of the projecting system, together, make the optical
potential close to ideal.

As we mentioned in the previous subsection, we do not want to turn on a potential

abruptly. In contrast, by ramping up the perturbation slowly, we are able to compress the gas

almost isothermally, creating the initial density profile without changing temperature. To

do so, however, the most straight-forward way of changing the beam power does not work,

since the perturbing potential and the box share the same laser beam and DMD pattern.

Alternatively, we can make use of the high dynamic range of the DMD to create a series of

patterns for different modulation amplitudes. We divide the programming parameter ε to

10 segments (from 0.1ε to 1ε) and use each of them to generate a corresponding pattern.

Those patterns share the same box frame. Then we upload them to the DMD in ascending

order of ε and set the holding times for them. In experiment, we display each pattern for

1000 µs before triggering the next to simulate a slowing ramping perturbation. The last

potential is held for 36 ms to ensure sufficient thermalization.

A typical pattern for the box and the ramped up perturbation is shown in Fig. 3.17. The

DMD pattern shown here has greater modulation amplitude than those we actually use

in experiments for better visibility to the reader. The measured modulation amplitudes
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δn/n0 range from 7% to 22%.

(a) DMD pattern design.

(b) Atom cloud hold by the box and perturbing potential.

Figure 3.17: Design of a sinusoidal perturbing potential (7 spatial periods of 23µm wave-
length), and the observed column density of the atom cloud from the horizontal view CCD
camera.

The wavelength in Fig. 3.17 is for demenstration only so it is irrelevant. In the exper-

iments, we use several perturbation wavelengths, from 18 µm to 42 µm to check the q -

dependence of our measured results, which will be discussed in detail in Chapter 5. We
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find that a perturbation wavelength λ≃ 23µm yields good dynamic range for decay mea-

surements over time scales that avoid perturbing δn (z , t ) in the measured central region

by reflections from the walls of box potential, which then can be neglected (see Sec. 4.2). So

most of our experiments are using a perturbation wavelength of 23µm.

The perturbing potential is then turned off abruptly (within 10µs) while the box potential

stays on. The gas begins a free oscillatory decay subsequently, and absorption images are

taken at desired time intervals (usually every 100 µs) to study the evolution.
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CHAPTER

4

DATA ANALYSIS METHODS

In this chapter, I will show the measured results of the hydrodynamic relaxation experiments

and how we extract the transport coefficients. The experimental methods have been covered

in the previous chapter. Here, I will start with data taking procedures and some necessary

data processing methods.

4.1 Data Taking and Processing

After the small perturbing potential is turned off, we measure the free evolution of the atom

cloud as a time varying density profile n (r , t ). We need to measure the background n0(r , t )

as well, since what we study is the density perturbation δn (r , t ) = n (r , t )−n0(r , t ).

A typical observation duration for the relaxation is from about 2 ms to 4 ms. So an

appropriate time step to take each image is 100 µs or 150 µs. For the background, we need

to be a little careful.

A perfect background n0(r , t ) should be taken at the same time as n (r , t )with all the

conditions identical to it, except that there is no perturbation. However, this is impossible to

do in real life. The best approximation is taking an image of the same amount of atoms at the
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same temperature in the same box at the same time without perturbation. For convenience,

let me call the experiment of measuring perturbed n (r , t ) as the relaxation run, and that of

unperturbed n0(r , t ) as the background run. We first try to measure the background in a

separate background run aside from the relaxation run, by only turning the box potential

on and taking images at several different times. These times are chosen to be within the

range when we take images for the relaxation run. The advantage of doing so is to minimize

the time difference between those two runs, so that the measured background n0(r ) is close

to what we want.

However, later on we noticed that there is a significant shortcoming of this method.

Even though we have shown that the stored energy in the initial perturbation is very small

(see Sec. 5.2.2), we find the gas has slightly different density profiles before and long after

(to ensure rethermalization) application of the perturbation. Since our optical box potential

is static, as is the magnetic bowl, n0(r , t ) can be treated as a time-independent quantity

n0(r ). Therefore we can take the background at any time as long as the gas is in thermal

equilibrium. Hereby, it is better to measure the background within the relaxation run, after

the oscillation dies out and thermal equilibrium is re-established. In the experiments, we

usually take 20 to 30 background shots, randomly from 7 ms to 17 ms after releasing the

gas, and do an average. Although those images are taken over a large time span, the density

profiles show no obvious difference from each other.

Note that we have two cameras to look at the atom cloud: one views the horizontal

direction and the other views the vertical direction. The imaging beams differ in frequency

by about 76 MHz, so each of them can image one spin species of the mixture in-situ1. The

images we take are processed by a converting code, which relates the extracted column

density to the photon counts in each pixel and some camera characteristics to give us 2D

density profiles of the atoms as function of position. Then we use a “spline” method 1-D

interpolation to smoothly covert the density profiles to be in units of microns (atoms/µm).

Images taken by the vertical view camera are only used to calculate the central density

in the box (see Sec. 4.3.2). The images from the horizontal view, on the other hand, are used

for data analysis, as the spatial resolution is better and the images are of higher quality than

those of the vertical view camera. Fig. 4.1 shows the 2D column density evolution for our

coldest sample. An oscillatory decay can be seen.

Since we are only interested in the z direction where the density varies, we first integrate

1Note that we use a 50-50 mixture of spin-up (|1〉) and spin-down (|2〉) atoms. Their energy difference at
high field of 832 G is calculated to be about 76 MHz, so each of the imaging beams is resonantly absorbed by
one spin state without interrupting the other spin state, yielding in-situ imagery of both spins
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Figure 4.1: Evolution of the atom cloud in the first 1400 µs is shown as 2D column den-
sity images (using a MATLAB ‘jet’ colormap with a shifted zero-color for better look). An
averaged background is subtracted from each image to show better contrast of the pertur-
bations. Also, each image is averaged by a vertical-flipped “mirror” image to show better
vertical symmetry. Clearly we see a oscillatory decay.
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through the x direction to get 1D density profiles n (z , t ), n0(z , t ). Actually, we find the center

of the box in the x direction by a fitting and choose a region of ± 20 pixels (43.5 µm) to

integrate through, since we want to avoid the edges.

Note that in real world experiments, the atom number for each run always fluctuates. To

obtain δn (z , t ) correctly, we need to normalize the 1D profiles of n (z , t ) and n0(z , t ) to the

total atom number before subtraction. Also, the atom number fluctuations of the system

result in statistical errors characterized byσn (z ,t ), which are used later in the data analysis.

Since we take a large number of backgrounds,σn0(z ,t ) can be neglected for convenience. In

this dissertation, we always assumeσδn (z ,t ) =σn (z ,t ).

4.2 Data Analysis Methods

We have developed four methods for data analysis based on different assumptions. These

methods reveal different physical insights and have their own pros and cons in practice.

I will first introduce all of them and then focus on those we prefer, which enable better

interpretation of the physics and are easier to use. Some results of our study are shown here

to illustrate these methods.

4.2.1 Numerical Integration of the Complete Equations

We have already shown all the derivations leading to our hydrodynamic linear response

model in chapter 2. Here, we start our data analysis from the complete time dependent

hydrodynamic linear response equations for δn ,δT

δn̈ = c 2
T ∂

2
z (δn +δT̃ ) +

1

m
∂z [n0(z )∂zδU +δn ∂zU0] +

4η

3n0m
∂ 2

z δṅ (4.1)

δ ˙̃T = εLP δṅ +
κT

n0cV 1
∂ 2

z δT̃ . (4.2)

Here, cT is the isothermal sound speed, η is the shear viscosity, κT is the thermal conductiv-

ity, εLP ≡ cP1
/cV1
−1 the Landau-Placzek parameter, where cP1

is heat capacity per particle

at constant pressure and cV1
is heat capacity per particle at constant volume. n = n0 is the

initial spatially-uniform density, obtained from the central region of the atomic cloud (see

Sec. 4.3.2).

Note that we have employed a one-dimensional approximation, i.e., the only spatially

varying direction is z. We have also omitted the bulk viscosity term since ξB = 0 in unitary
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Fermi gases [Son 2007; Elliott et al. 2014].

These equations are space-time coupled, so there is no easy way to solve the differential

equations analytically. We developed a numerical integration method to simulate the

density response according to these two coupled equations (see Appendix).

In the numerical integration, we vary cT , η and κT as global fit parameters to find the

best fit to the experimental data. cV1
and εLP ≡ cP1

/cV1
− 1 are obtained by the equation

of state, since cT is a known function of T /TF from Eq. 2.20, and T /TF yields cV1
, cP1

from

Eqs. 2.21 and 2.22 (see Sec. 2.1.2). δU is 0 in our case, and U0 will be discussed shortly.

The initial condition δn (z , 0) is given by the measured initial density profile; the initial

δṅ (z , 0) = 0, due to static equilibrium, and the isothermal condition requires δT̃ (z , 0) = 0.

Usually we do 5 to 8 trials for each data. However, the data at t=0 is particularly important

since it sets the initial condition for solving those differential equations, so we take a total

of 25 to 40 shots here to make the best measurement.

We obtain the static box potential U0(z ) from the background density profile. To reduce

noise and statistical errors, we do not simply use one measured background density profile.

Instead, we fit our averaged 1-D background density with an analytic function (see Fig. 4.2).

Figure 4.2: Column Density n0(x , z ) and 1D background density ñ0(z ) (blue dots). Red
curve: Fit of Eq. 4.3.

When working on a 1-D density profile, it is convenient to refer the density to a fixed

value, which we choose to be the peak density n0. Note that actually we define our 1-D n0

as the average density of the central 35 micron region.

72



The analytic function for fitting ñ0(z ) = n0(z )/n0 is a tanh function multiplied by a

polynomial,

h (z ) =
tanh[(z − z10)/w1]− tanh[(z − z20)/w2]

2

∑

n

an z n . (4.3)

The difference of the tanh functions produces a top-hat shape of nominal width z20−
z10 and slopes on each side determined by w1 and w2. The flat top is modulated by the

multiplying polynomial. Fig. 4.2 shows a typical fit using a fifth order polynomial. The

density offset arises from atoms trapped outside the box, in between the repulsive sheets

and the magnetic confining potential arising from the bias magnetic field.

With a smooth density profile obtained from the fit, we can now use the equation we

derived in Sec. 2.1.2 from the chemical potential µ= εF (n ) fµ(θ ),

Ũ0(z ) =U0(z )/εF (n0) = fµ(θ0)− [ñ0(z )]
2/3 fµ
�

θ0/[ñ0(z )]
2/3
�

, (4.4)

to obtain U0(z ) in unit of εF (n0), as shown in Fig. 4.3.

Figure 4.3: Box potential in units of local Fermi energy εF (n0) for the central density n0.
The potential is determined from the measured background density n0(z ) using Eq. 4.4.
Note that the curvature at the bottom of the box potential energy arises from curvature in
the bias magnetic field, which produces a small confining harmonic potential. A typical
εF (n0)≃ 0.2µK, and the box depth U0 ≃ 1.0µK.
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For finding the box potential from Eq. 4.4, the density offset in Fig. 4.2 is subtracted so

that the density smoothly vanishes at the walls of the box and the peak density is scaled to

1. The central 3D density n0 is determined as described below in Sec. 4.3.2. The reduced

temperature θ0 = T0/TF (n0) is determined from the isothermal sound speed cT , which

is one of the fit parameters for the δn (z , t ) data. The box potential then determines the

corresponding force −εF (n0)∂zŨ0(z ) for use in Eq. 4.1. In our experiments, where εF (n0)≃
0.2µK, the box depth U0 ≃ 1.0µK.

In our data analysis, we usually avoid the effects of the walls by choosing a central

region of the atom cloud for δn (z , t )measurement. It is worth mentioning that, for this

method, including the wall potential gives us almost identical results to those without walls.

However, due to finite imaging resolution and background noise, the calculation of the box

depth is not precise, so it is better to avoid the walls.

Now we have everything we need for the simulation. Here, the beauty of a free evolution

experiment can already be seen from this data analyzing method. The initial condition

is directly measured without any approximation or involvement of free fit parameters.

Comparing this method with our previous approaches of investigating hydrodynamic

linear response [Baird et al. 2019], the number of fit parameters reduces by two (avoids

fitting for δU and U0). Therefore, the sensitivity to the transport coefficients increases.

Starting from the spatial density profile, see Fig. 4.4, we can find the numerical integra-

tion simulates the evolution of the density profile well and we are able to catch the overall

shapes of the perturbation. However, we also notice that it is easily effected by noise, some

artificial pattern such as imaging diffraction and the effect of walls, especially at where the

oscillation amplitude is small. A common trick to improve the performance of fittings is to

apply a noise filter (low-pass filter or band-pass filter) to the data.

We take a T /TF = 0.28 case as an example to show what a filter does for the fittings, see

Fig. 4.4. The region of interest (ROI) for the numerical integration is chosen to be sufficiently

long to cover the entire box and even outside of the box. Although the region out side of the

box does not matter, it is interesting to see how the simulation evolves.

The filter we use is a band-pass filter, which selects a range of Fourier components near

the peak in frequency space. When the filter is applied, it is on both the data and the initial

condition δn (z ,0) for a smooth simulation. Note that we obtain the static potential term

∂zU0(z ) from a poly-tanh fitting, so it’s already a smooth function that does not need a filter.

As we can see in Fig. 4.4, the band-pass filter smooths the data and the simulation,

yielding a much better agreement between them. Applying a filter also restrict the changes

in the density profile, so we don’t run into troubles of a diverging integral or some artificial
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(a) No filter.
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(b) With filter.

Figure 4.4: Spatial profile of measured data and numerical simulation of δn (z , t ) for the
T /TF = 0.28 case at t = 0.9 ms, with (b) or without (a) a band-pass filter based on dominant
spatial frequencies. In (b), the filter is applied on both the data and the initial condition for
the simulation.

walking away near edges of the region of interest.

Clearly a noise filter helps us to better extract useful information from the data. Let us

think a little further. What a noise filter does for a spatial function is selecting some Fourier

component in the frequency domain and transferring it back to space. However, since we

75



watch the evolution of a sinusoidal density perturbation, it has a well-defined wavelength.

We find that it is better to look at only the dominant Fourier component q , which

contains most useful information, see Fig. 4.5. Also, since the evolution of the density

profile can be regarded as a damped oscillator, whose characteristic frequencies and decay

rates are q-dependent functions, using this method gives us clearer physical interpretations

and comparisons.

(a) δn (z )/n0 profile.

(b) δn (q ) spectrum.

Figure 4.5: Spatial profile and absolute values of the Fourier transformed spectrum at
t = 0.2 ms for a T /TF = 0.28 data. Here, q is in unit of cm−1 for convenience, since most of
our calculations are in the cgs units.
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We perform a fast Fourier transform of the measured density perturbation δn (z , t ) to

obtain the Fourier componentδn (q , t ). The wave vector q is obtained by doing an averaged

“findpeak” search from the data taken at first few times, when the periodic structures are

clearest. The q is then fixed for all the other data and for the simulations. The predicted

time-dependent δnP r e d (z , t ), obtained by the numerical integration of Eqs. 4.1 and 4.2

can also be Fourier transformed, yielding δnP r e d (q , t ), which is used in a χ2 calculation to

compare with the measured δn (q , t ) at each time,

χ2(q ) =
∑

ti

(δn (q , ti )−δnP r e d (q , ti ))2

σ2
δn (q ,ti )

. (4.5)

Here, each prediction of nP r e d (q , ti ))2 is obtained from the simulation trial of given cT ,η,κT

as described previously. χ2(q ) has been summed over all the measurement times ti .

There are different ways to obtain information from the Fourier transform. The most

straightforward way is to look at the magnitude of the dominant Fourier component, which

is done by taking an absolute value. However, the magnitude of a well-defined periodic

function should come solely from the real part of its transform. The imaginary part contains

the phase information, which ideally should be a constant. So, if we carefully choose a

integer number of spatial periods to transform and set the phase to minimize the imaginary

part, we can study only the real part of the Fourier transform. This yields less statistical

uncertainty by getting rid of the noise in the phase. Hence, theσδnr e a l (q ,t ) obtained this way

is smaller for calculating the χ2.

We start from some reasonable guess of the fit parameters and do some coarse searches

to narrow the range down. Then a multi-loop integration of fine-spaced fit parameters

yields a best global fit by minimizing the χ2. The best fit is used to extract the transport

coefficients, as well as the reduced temperature (given directly from cT , n0 and the equation

of state, see Sec. 2.1.2).

To speed up the fitting process, we use the data taken at a few early times of the evolution

to get a good estimate of cT . The reason why we can do in this way is that cT sets the overall

oscillation frequency of δn (q , t ) which can be easily determined (the evolution can be

modeled as a damped oscillator, as shown in Sec. 4.2.3). cT is relatively uncorrelated with

other fit parameters. Then we set cT as a constant to find the corresponding minimal

χ2(η,κT ) by running parallel “for-loop” computations of an array of finely spaced {η,κT }
values. Varying the value of cT with our approximated range will lead to the global χ2

minimum. A typical surface plot of χ2(η,κT ) is showed in Fig. 4.6.

From the χ2 surface plot, we can see this method shows good sensitivity to both η
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Figure 4.6: A surface plot ofχ2 as function ofη andκT . EachδnP (q , t ) for theχ2 calculation
is obtained by performing the numerical integration for a given set of {η,κT } , with cT fixed.
χ2 shown here is per number of measurement times, which is summed over all the times
we take measurements and divided by total number of measured times.

and κT . Although they are somewhat correlated, the very small number of fit parameters

needed (only three) in the fitting makes it possible to extract these two important transport

coefficients independently2.

It is interesting to see how the simulations deviate from the data after a longer time

2Actually the physics is there are two modes evolving quite differently, which will is illustrated by the
analytic fit model in chapter 2 and in later this chapter.
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when we choose a region of interest close to the walls. For a low temperature T /TF ≃ 0.28

data, we compare the data range of a central region of 70 micron (3 spatial periods) with

one of a whole range of 112 micron (5 spatial periods), Fig. 4.7. Using this complete solution,

we can see that the best fit for the first 2.5 ms holds for both cases, and deviates a little for

the 112 micron case due to the effect of walls.

Also, here we can see that the simulations, with, and without, including the walls are

almost identical. We see that even if the walls have influence on the atoms nearby, a Fourier

transform helps us to filter out the high frequency sharp response at the walls, which makes

the overall dominant q component almost unaffected.

The numerical integration method makes use of the complete hydrodynamic linear

response equations of δn (z , t ) and δT (z , t ). It includes the spatially dependent box poten-

tial U0(z ), so it works well even without the uniform density assumption for the z direction.

It should also work for the case that the region of interest is close to or including the walls.

Although we don’t use this the numerical method for our final measurements on the

transport coefficients, it helps to determine the time scale over which the box potential has

a negligible effect on the spatial region of interest, enabling the determination of an analytic

fit function for δn (q , t ), which we will discuss later. While this method already works well

for our study, we are motivated to develop some other methods for three reasons.

First, this method is very slow. This numerical integration is done by step by step cal-

culations, or in other words, by “brute force”. The number of iterations can be huge for a

fine-step simulation towards a long end time, with finely spaced fit parameters. In fact,

during practice, we are interested to investigate what different fitting regions both in space

and time could affect our results, so we may need to run the simulation many times for a

single peace of data. Therefore, we prefer much faster methods.

Second, this method relies significantly on an accurate measurement of the density

profile at t = 0, which sets the initial condition for the integration. In principle, we could

add a free fit parameter to compensate for a small uncertainty in δn (q ,0). However, this

could reduce the performance of the fitting and will definitely make it even slower. So, to

make the method work better, we need to take more data at t = 0 to get the best average of

the density profile.

Third, although this method is able to extract the shear viscosity coefficient η and the

thermal conductivity κT independently, it does not provide clear physical insights why we

can distinguish these parameters. We would like to unravel the contributions for each of

them to the evolution of the gas.
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Figure 4.7: Evolution of δn (q ) as function of time, where T /TF = 0.28 and q = 2π/λ, with
λ= 23.5µm, for the 3 central spatial periods, compared with all 5 spatial periods. Here, η is
in units of ħh n0 and κT is in units of ħh n0 kB/m . The best fit simulation works for both cases
in the first 2.5 ms, and deviates from the 5 periods data after 2.5 ms due to effect of walls.
Error bars are statistical (see Sec. 4.3.1).
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4.2.2 Solving Ordinary Differential Equations

The quest for a faster and better method lead us to think about how to simplify the hydro-

dynamic linear response equations Eqs. 4.1 and 4.2, which we repeat here

δn̈ = c 2
T ∂

2
z (δn +δT̃ ) +

1

m
∂z · [n0(z )∂zδU +δn ∂zU0] +

4η

3n0m
∂ 2

z δṅ (4.6)

δ ˙̃T = εLP δṅ +
κT

n0cV 1
∂ 2

z δT̃ , (4.7)

where δU = 0 for t > 0 in our experiment.

These equations are slow to solve since they are coupled partial differential equations

(PDEs) with respect to t and z . However we can perform a Fourier transform on these

equations to extract information of the dominant frequency component δn (q , t ).

In practice, we can choose to limit the spatial region for the Fourier transform to the

region near the center of the box, where the background density varies very slowly within

about 10%. Further, the phase of the transform is selected so that the Fourier amplitudes

are real, by choosing an integral number of periods for the length of the transformed region.

When the evolution is measured over short enough time scales, the box potential makes a

negligible contribution to the time-dependent density profile in the region of interest, so

that we can safely ignore it. Therefore, within such range, we can let∇U0 = 0.

Actually, a Fourier transform will convert these linear PDEs with constant coefficients

to ordinary differential equations (ODEs). For Eqs. 4.6 and 4.7, the z-partial derivatives

become −q 2 after a Fourier transform, thus greatly simplifies the equations.

As shown in Sec. 2.2.2, applying a spatial Fourier transform on Eqs. 4.6 and 4.7 yields

coupled time-dependent equations for the Fourier amplitudes δn (q , t ) and δT̃ (q , t ),

δn̈ (q , t ) =−ω2
T [δn (q , t ) +δT̃ (q , t ) ]−γη(q )δṅ (q , t ) (4.8)

δ ˙̃T (q , t ) = εLP δṅ (q , t )−γκ(q )δT̃ (q , t ). (4.9)
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with εLP = cP1
/cV1
−1, and

ωT (q ) = cT q

γ(q ) =
ħh
m

q 2

γη(q ) =
4

3
αηγ(q )

γκ(q ) = ακ
kB

cV1

γ(q ), (4.10)

where by definition

η≡αηħh n0 (4.11)

κT ≡ακħh n0

kB

m
. (4.12)

Here, we see that Eqs. 4.8 and 4.9 are now ordinary differential equations with respect to

time. It is very easy to solve them numerically with given initial conditions, i.e., δn (q , 0) ̸= 0

(measured), δṅ (q , 0) = 0 and δT̃ (q , 0) = 0.

We use a MATLAB ODE 45 solver to solve these second-order equations numerically.

Notice that the MATLAB ODE solvers only solve first-order equations. We need to rewrite

higher-order ODEs as an equivalent system of first-order equations using the generic

substitutions.

We varyωT , γη and γκ as fit parameters to run a similar χ2 search for finding the global

minimum. Then the shear viscosity coefficient αη, thermal conductivity coefficient ακ can

be obtained from Eq. 4.10, and with the isothermal sound speed cT = ωT /q , again, the

reduced temperature T /TF can be obtained (see Sec. 2.1.2).

So far, our second data analysis method, solving time-dependant ODE method, has

been established. Let us see what we have gained.

The first benefit is that it’s much easier to write the code this way. With a well-developed

MATLAB solver can be used directly, the code for solving the equations can be written

in just 10 lines. Applying the solutions to our search loop for the numerical integration

method easily works.

Second, the speed is much faster than the previous method mainly because we eliminate

the space dependence. Also, the ODE 45 solver uses an algorithm faster than the “brute

force” method for the PDE’s. For comparison, we run a same size of search points with the

two methods. It takes 525 seconds for the numerical integration method, while only taking
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2.5 seconds for the solving ODE method3.

Solving the ODE for δn (q , t ) is built on the assumption that ∇U0 = 0, so it is worth

comparing the results of the two methods. We look at some typical cases we measured. For

the T /TF = 0.28 case, the extracted αη differ by 9.5% (solving ODE is bigger) and ακ differ

by 0.9% (solving ODE is bigger). For the T /TF = 0.52 case, the extracted αη differ by 3.7%

(solving ODE is bigger) and ακ differ by 3.0% (solving ODE is bigger).For the T /TF = 0.63

case, the extracted αη differ by 3.0% (solving ODE is bigger) and ακ differ by 2.0% (solving

ODE is smaller).

We can see that there is no big difference. Considering the accumulated deviation from

the different algorithms for the two methods, the actual difference should be even smaller.

By taking the derivative term of potential∇U0 out of the equation, we make the hydro-

dynamic linear response equations even neater. The direct implementation is that solving

by the ODE method speeds up the fitting process significantly. However, there is no change

in the physical interpretation. Also, a well-measured initial density profile is still needed.

4.2.3 Analytic Fit Function

Let us take another look at our time dependent ordinary differential equations 4.8 and 4.9.

Instead of solving them numerically, we can try to find an analytic solution, as shown in

Sec. 2.2.2).

The density and reduced temperature perturbation can be written as

δn (q , t ) = A0 e −Γ t+ e −a t [A1 cos(b t )+A2 sin(b t )] , (4.13)

and

δT̃ (q , t ) = B0

�

e −Γ t− e −a t cos(b t )+
Γ −a

b
e −a t sin(b t )
�

, (4.14)

where the coefficients are connected by

Γ +2 a = γη+γκ

a 2+ b 2+2 a Γ = c 2
S q 2+γηγκ

Γ (a 2+ b 2) = c 2
T q 2γκ. (4.15)

with γη, γκ given by Eq.4.10.

3The elapsed time is for a single given cT with a typical data length of 26 different times. The actual time
we spend to search for the global minimal is much longer.
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Restriction are set by the initial conditions of Eqs. 4.13 and 4.14, as follows. For the

density perturbation, the initial condition δn (q ,0) = A requires A1 = A − A0, and from

δṅ (q ,0) = 0, we can obtain A2 = [(Γ − a )A0 + a A]/b . With δT̃ (q ,0) = 0, the third initial

condition yields the amplitude A0 should follow

[(Γ −a )2+ b 2]A0 = (a
2+ b 2− c 2

T q 2)A. (4.16)

Similarly, the temperature perturbation satisfies δT̃ (q , 0) = 0 and δ ˙̃T (q , 0) = 0. From Eq. 4.9,

we have the additional constraint

(Γ −a )2+ b 2]B0 =−εLP c 2
T q 2 A. (4.17)

Here, we have developed an analytic solution for the evolution of δn (q , t ), connecting

all the coefficients and the physical properties. We see that the solution consists of two

independent modes, i.e., thermal diffusion and first sound.

Actually, the analytic solution method unravels the physics of why we can measure the

shear viscosity and the thermal conductivity independently. The thermal diffusion mode,

described by an exponential decay rate Γ , determines the thermal conductivity, which is

proportional to the temperature relaxation rate.

On the other hand, the first sound mode is described by an oscillating exponential

decay. The oscillation frequency gives the first sound speed, which determines the reduced

temperature from the equation of state. The decay rate 2a gives the usual first sound

diffusivity D1 = 2a/q 2 ≃Dη+Dκ, which contains contributions only from the shear viscosity

and the thermal conductivity (see Eq. 2.66). So the shear viscosity can be extracted from

subtracting Dκ from D1.

Hereby, the decay rates of these two distinct modes determine both the thermal conduc-

tivity and the shear viscosity. The contributions of the two modes to δn (q , t ) are illustrated

by an example of our fit for the T /TF = 0.46 data in Fig. 4.8. The contributions to δT̃ (q , t ) is

also shown in Fig. 2.3 in chapter 2.

With enough interpretation of the analytic solutions, let us now move forward to discuss

how to use this method practically.

The straight-forward way is to do a 4-parameter fit to the δn (q , t ) equation: Eq. 4.13.

Three of the parameters are Γ , a , b , relate to the three frequencies cT q ,γη,γκ we want to

find from Eq. 4.15. The other parameter is the amplitude A, which also gives A0 by Eq. 4.16.

To get the best fit, we construct a χ2(q , t ) , similar to the previous two methods, and use a
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Figure 4.8: Components of the analytic fit function δn (q , t ) Eq. 4.13 for a typical data in
the middle temperature range of our measurements, where T /TF = 0.46 and q = 2π/λ,
with λ= 22.7µm. Red curve: Total fit function; Orange curve: Zero frequency, exponentially
decaying (thermal diffusion) mode; Blue curve: oscillating, exponentially decaying first
sound mode.

“fminsearh” MATLAB function to return us the corresponding fit parameter for the global

minimum4. One can use other algorithms for the same purpose.

Then solving Eq. 4.15 numerically and using Eq. 4.10 gives us the shear viscosity η and

the thermal conductivity κT and the isothermal sound speed cT , which we use to get the

reduced temperature T /TF since T /TF is a known function of cT (Sec.2.1.2).

For the sound diffusivity D1, although we could calculate it from Eq. 2.66 with known

η,κT , the more straight-forward way is to get D1 directly form the fit parameters a . Note

that by definition, the measured sound diffusivity D1 = 2 a/q 2 [Landau and Lifshitz 1959] (a

detailed discuss about the measured sound diffusivity is shown in Sec. 2.2.3).

There are also alternative ways to use the analytic function. Actually, even though we

know the restriction on A0, which is given by Eq. 4.16, we can construct a 5-parameter fit ,

4“fminsearch” is programmed to find real local minimum of unconstrained multi-variable function using
derivative-free method. In our case, the local minimal is the global minimal, so no additional search is needed.
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with both A and A0 as fit parameters. This method fits our data reasonably well, especially

for good data, yielding a A0/A almost same as Eq. 4.16. It shows the analytic fit method

has potential for future applications on more complicated systems, in which more fit

parameters are needed5.

Also, although our fit function works well when A is set to be a fit parameter, notice

that the initial condition requires δn (q , 0) = A, where δn (q , 0) can be measured. So we can

force A to be our measured δn (q ,0), then the fit becomes a 3-parameter fit. One should

find that doing so immediately makes the analytic fit function method equivalent to the

solving δn (q , t )ODE method6.

Here, we can see one beauty of the analytic fit function method is that it does not require

a very well-measured initial density profile. A perfectly measured profile, on the other hand,

could slightly increase the sensitivity to other fit parameters.

The speed of this method is the fastest among all our methods. It takes less than 1 second

for both the 4-parameter fit and the 5-parameter fit, for our largest data set including 32

different times. In practice, it’s about 5000 times faster than the numerical integration

method (the slowest), and it is easy to program.

The analytic fit function reveals physically why we can distinguish the shear viscosity

and the thermal conductivity in the evolution of the atomic density profile, i.e., the two

independent modes of thermal diffusion and first sound, which evolve differently. However,

we can still improve it for practical purpose.

4.2.4 Exact Analytic Fit Function

Followed by the previous subsection, while the fit parameter A is just an amplitude, the

useful fit parameters directly from the analytic fit function are a , b and Γ . Then we need

to use Eq. 4.15 to solve for γκ,γη and cT . Actually we can use the latter three directly as fit

parameters to avoid accumulated solver inaccuracies in the numerical solving process for

Eq. 4.15.

We write down an analytic fit function in terms of the two decay rates γκ,γη and the

oscillation frequency ωT . We rewrite Eq. 4.15 in frequencies ωS ≡ q cS , ωT ≡ q cT for

5It is important to mention that we should not use the 5-parameter fit in practice, since there are too many
free parameters for getting a reliable result. However, seeing a good agreement between the 5-parameter
fit and the 4 or 3 parameters fit for some well measured data shows a promising potential for applying the
method to more complicated systems, e.g., where the equation of state is unknown.

6Actually the two methods still differ in terms of chosen fit parameters. Changing the fit parameters from
(a , b ,Γ ) to (cT ,γη,γκ) lead to the so-called “exact analytic fit function”, which we will discuss shortly.
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convenience

Γ +2 a = γκ+γη

a 2+ b 2+2 a Γ =ω2
S +γηγκ

Γ (a 2+ b 2) =ω2
T γκ, (4.18)

whereω2
S = (1+εLP )ω2

T = cP1
/cV1
ω2

T , εLP ≡ cP1
/cV1
−1, γη = (4ħhq 2/3m )αη,

γκ = (kBħhq 2/cV1
m )ακ (see chapter 2 for complete derivations).

The decay rate Γ is obtain by finding the real solution to the cubic polynomial

s 3− s 2 (γκ+γη) + s (ω2
S +γκγη)−ω

2
T γκ = 0. (4.19)

Solving for a and b , we have

a =
1

2
(γκ+γη− Γ )

b =

√

√

ω2
S + (Γ −γκ) (Γ −γη)−

1

4
(γκ+γη− Γ )2. (4.20)

Also, from the initial conditions, we have

A0 =
a 2+ b 2−ω2

T

(Γ −a )2+ b 2
A

A1 = A−A0

A2 = [(Γ −a )A0+a A]/b . (4.21)

Now, with Eqs. 4.20 and 4.21, we can fit the analytic function, repeating here:

δn (q , t ) = A0 e −Γ t+ e −a t [A1 cos(b t )+A2 sin(b t )] (4.22)

using the three frequenciesωT ,γκ,γη, and the amplitude A as free parameters.

We define this method as the “exact analytic fit function”, since it uses exactly what

we want to extract as fit parameters. We use this method for obtaining the final results we

published in our paper [Wang et al. 2022].

To practice, we first perform fast Fourier transfers (FFTs) on our 1-D density profiles at

each time during the evolution, which gives us both δn (q , ti ) andσδn (q ,ti ). The q value is

found by performing a MATLAB “findpeak” search on the Fourier spectrum for each of the
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first five t , and then doing an average. We define the χ2 function as

χ2 =
∑

ti

(δn (q , ti )−δnP r e d (q , ti ))2

σ2
δn (q ,ti )

, (4.23)

where δn (q , ti ) and σδn (q ,ti ) are measured, ti is the range of times we want to sum over,

which is nominally for all the data we take. However, there are cases we choose to omit

some data points, which show large deviations.

To compute the above χ2, we need to know δnP r e d (q , ti ), which is obtained from the

“exact analytic fit function” with givenωT , γκ, γη, A,ωS , Γ (see Appendix).

Here, we defineωT ,γκ,γη and A as free fit parameters. Γ can be obtained by solving the

cubic polynomial Eq. 4.19.ωS is related toωT byω2
S = cP1

/cV1
ω2

T , with

cP1

cV1

=
fE (θ )

fE (θ )− 2
5θ f ′E (θ )

. (4.24)

We also have

c 2
T =
ω2

T

q 2
=

v 2
F

3

�

fE (θ )−
2

5
θ f ′E (θ )
�

. (4.25)

where fE (θ ) is measured precisely by Ku et al. [2012]. From Eqs. 4.24 and 4.25, we can solve

for cP1
/cV1

with given q , vF as constants, and thus obtainωS . In practice, we fit cP (θ )/cV (θ )

and θ (cT /vF )with polynomial to speed up fit process (see Sec. 2.1.2).

Finally, by providing an initial guess of the free fit parameters, we use the MATLAB

“fminsearch” function to find the global minimum of the constructed χ2, yielding the best

fit parameters.

Examples of our fit for different temperatures are shown below, Fig. 4.9 ∼ Fig. 4.14. In

these figures, blue dots are measured data with errorbars. Red curves are best fits from this

“exact analytic fit function” method. For the evolution, note that the decay rate Γ∝ q 2∝λ−2.

In order to give the reader a better view of the different decay rates versus the reduced

temperatures T /TF , we keep the same wavelength λ for all these 6 figures here.

We also compare the data measured at different wavelengths (see Figs. 4.15 and 4.16) to

check whether we get consistent results. We do not see significant change in the extracted

transport coefficients for neither longer nor shorter wavelengths. A more detailed discussion

will be covered in Chapter 5.
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Figure 4.9: T /TF = 0.28, λ= 23.5µm .
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Figure 4.10: T /TF = 0.34, λ= 23.5µm .
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Figure 4.11: T /TF = 0.40, λ= 23.0µm .
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Figure 4.12: T /TF = 0.46, λ= 22.7µm .
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Figure 4.13: T /TF = 0.52, λ= 23.0µm .
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Figure 4.14: T /TF = 0.63, λ= 23.3µm .
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Figure 4.15: T /TF = 0.56, with longer wavelength λ= 41.7µm .
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Figure 4.16: T /TF = 0.37, with shorter wavelength λ= 18.2µm .
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4.3 Data Analysis Details

In this section, we discuss some data analysis details, including the calculation of statistical

errors, the determination of the central density, and the estimation of the systematic shifts

in our experiments.

4.3.1 Statistical Uncertainty

Our statistical uncertainty in the experiment comes from the shot-to-shot variation of the

density profile. At the beginning of each measurement cycle, the number of atoms loaded

into the box varies. Also, even assuming that the atom number is the same for all runs, the

spatial distribution can vary as well.

All the properties we measure depend on the density of the atomic gas. In a single

experiment, we usually take about 150-200 shots and assume they all represent the same

system, i.e., same density and temperature etc. So we need to ensure that the atom number

fluctuation is not too big for the data we study. Actually, the first step of our data analysis

is to calculate the standard deviation σs in atom number of our entire data set, and to

exclude those data 2σs away from the mean. This step helps us select the data for the same

condition statistically.

We use a standard statistical measureσm =
1p
N
σs , i.e., the standard error of the mean

(SEM), to estimate the variations. Here, σs is the corrected sample standard deviation7,

given by

σs =

√

√

√ 1

N −1

N
∑

i=1

(xi −µ)2, (4.26)

where µ= 1
N

∑N
i=1 xi , and xi are measurements of the sample. We omit the notation m and

use the usual symbol for standard deviationσ to denote SEM in the rest of this thesis for

convenience. Since we are mainly interested in the density perturbation in the Fourier

domain, SEM here is expressed byσδn (q ,t ).

In our plots for δn (q , t ), the statistical variation is shown as error bars, each denoting

for ±1σ. As we mentioned in Sec. 4.1, since we take a large number of backgrounds,σn0(z ,t )

can be neglected andσδn (z ,t ) ≃σn (z ,t ).

The hydrodynamic transport coefficients extracted by the fit parameters are examined

by an error matrix for goodness of fit [Taylor 1997]. Supposeχ2 depends on two independent

7Note that the corrected sample standard deviation is still biased downward for small sample size, but it
performs better than the uncorrected one; Either method is good enough for our application.
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parameters (u , v ), and we find the minimum at (u0, v0). To evaluate the uncertainty for the

minimum, we expand χ2 by a Taylor expansion up to second order:

χ2(u , v )≃χ2(u0, v0) +
∑

i=u ,v

Di εi +
1

2

∑

i , j=u ,v

Hi j εiε j , (4.27)

where ε is a small step walking away from (u0, v0) to (u , v ), i.e., u = u0+εu and v = v0+εv .

Di is the partial derivative with respect to each parameter, and Hi j is the Hessian matrix,

defining as follows,

Du =
∂ χ2

∂ u

Dv =
∂ χ2

∂ v

Hu u =
∂ 2χ2

∂ u 2

Hv v =
∂ 2χ2

∂ v 2

Hu v = Hv u =
∂ 2χ2

∂ u ∂ v
. (4.28)

The minimum ofχ2 requires Di = 0. The uncertainty in the coefficients (u , v ) is evaluated

by a change of 1 of the χ2 with respect to a change of the coefficients. Taking the correlation

between u and v into account, the corresponding uncertainty is given by the square root

of the error matrix, where a factor of
p

2 comes from the Taylor expansion in Eq. 4.27. So,

we have

σu =

√

√ 2 Hv v

Hu u Hv v −Hu v
2

σv =

√

√ 2 Hu u

Hu u Hv v −Hu v
2 . (4.29)

Use this method, we calculate our uncertainties in the extracted hydrodynamic transport

coefficients. For the shear viscosity coefficient αη and the thermal conductivity coefficient

ακ, we evaluateχ2(αη,ακ) holdingωT and A as constants for the “exact analytic fit function”

method (4.2.4), and findσαη andσακ from Eqs. 4.28 and 4.29, by letting u ≡αη and v ≡ακ.

For the sound diffusitivity 2a/q 2, we evaluate χ2(a , b ) holding Γ and A as constants

for the analytic fit function method (4.2.3), and findσa from Eqs. 4.28 and 4.29, by letting

u ≡ a and v ≡ b . Then we calculateσD1
= 2σa/q

2.
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4.3.2 Determination of the Central Density

The central 3D-density n0 is used to find the central Fermi energy, corresponding Fermi

temperature TF , and Fermi speed vF , which determines the reduced temperature T /TF

from the measured sound speed cT using the known equation of state [Ku et al. 2012]. The

reduced temperature then determines the thermodynamic properties of the sample.

(a) x profile from the horizontal camera. (b) y profile from the vertical camera.

Figure 4.17: Density profiles along the x and y directions of the box potential. The hori-
zontal imaging path is cleaner than the vertical imaging path, where an artificial distortion
can be seen.

To find n0, we observe the trapped cloud along the x and y axes with two cameras

(see Fig. 4.17). In this way, we measure the two-dimensional column densities ñ (z , x ) =
∫∞
−∞d y n (x , y , z ) and ñ (z , y ) =

∫∞
−∞d x n (x , y , z ), for each spin state, where z denotes the

long axis of the box potential and x denotes the direction of the bias magnetic field. For our

experiments, the typical box dimensions are∆x = 52µm,∆y = 50µm and∆z = 150µm.

The curvature of the bias magnetic field produces a harmonic confining potential∝ z 2,

which causes a noticeable variation of the density over 150µm. In contrast, the confining

potential∝ y 2 produces a much smaller variation of the density over 50µm along the y

axis. Further, the number of atoms trapped outside the box along x and y is negligible (see

Sec. 3.3.4). We note that the measured n (y ) is distorted in Fig. 4.17 (b). This is an artifact of

the imaging path for the vertical camera, which is collinear with the vertically projected

beams that form the sides of the box potential. We assume that the true shapes are nearly

identical.
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The one-dimensional density that we analyze in the experiments as a function of time,

is obtained by integrating the measured 2D-column density over a limited central region

along x (about 43.5 microns long), where the density is slowly varying,

n (z ) =

∫ x2

x1

d x ñ (z , x ). (4.30)

The n (z ) contains most of the atoms (usually more than 80%) along x , while the edges are

avoided.

To estimate the 3D density, we assume that n (x , y , z ) approximately factors, as it would

in a true 3D box potential,

n (x , y , z )≃ ñ (x , z )n (y ). (4.31)

We normalize
∫∞
−∞d y n (y ) = 1, so that

∫∞
−∞d y n (x , y , z ) = ñ (x , z ) as it should. The normal-

ized 1D density n (y ), averaged over the “top-hat” region near the center of the box y = yc ,

is essentially the inverse of the box length L y along y , i.e., n (y ) = 1/L y , as it would for a

true box potential. We measure

n (y ) =

∫ z2

z1
d z ñ (z , y )

∫∞
−∞d y
∫ z2

z1
d z ñ (z , y )

, (4.32)

where ñ (z , y ) is the column density measured by the camera oriented along the x -axis.

n (y ) satisfies
∫∞
−∞d y n (y ) = 1 for any choice of z1 and z2. We take z1 and z2 in the central

region of the cloud (about 35 micron long), where the density is nearly uniform, to measure

the Fourier transform δn (q , t ).

Averaging the column density near the center, xc , zc , where the 2D density is nearly

uniform, we obtain the total central density n0 = 2 ñ (xc , zc )n (yc ). For a single spin state,

typical values are n (yc ) = 0.0204/µm = 204/cm, i.e., L y = 49.0µm, and ñ (xc , zc ) = 1.10×
109/cm2, which yields n0/2= 2.24×1011/cm3. From n0 we find the Fermi speed vF . This in

turn determines the reduced temperature θ (cT /vF ), where cT =ωT /q is determined from

the fit to δn (q , t ).

Note that there is a systematic effect that could make our measured density slightly

lower than the actual density. For any absorption imaging technique, true atom number is

measured when the imaging beam is right on the atomic resonance frequency. But every

laser beam has a finite bandwidth and the imaging frequency drifts around the resonance

in real life, which results in a overall downward shift of the measured average atom number.
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A detailed discussion can be find in the thesis of our former group member [Joseph 2010].

However, we don’t expect a significant downward shift of the measured density we

obtain compared to an estimate of ∼12% from Joseph [2010]. First, our high field magnet

power supply has been upgraded to a very stable one, eliminating the variation in B-field

and hence imaging resonance frequency, which plays a significant role in Joseph’s model.

More importantly, as mentioned in the previous subsection, we exclude data 2σs away

from the mean atom number. So, our shifts should be significantly smaller than what has

been estimated by Joseph [2010].
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CHAPTER

5

RESULTS

In this chapter, I will show the main experimental results, i.e., our measured shear viscosity

η, thermal conductivity κT , and sound diffusivity D1. I will also discuss some details of the

results to check consistency and generality in our model, and to provide corrections to

the measurements based on our best understanding. I also compare our sound diffusivity

results with a recent measurement by the MIT group [Patel et al. 2020]. Further, I extend

our analysis beyond the current model to the region where hydrodynamics breaks down,

to motivate future studies.

5.1 Experimental Results

In the previous chapter, I described four data analysis methods. They give identical results

for the extracted transport coefficients within errorbars1. Here, I show the measurements

of the shear viscosity η, the thermal conductivity κT , and the sound diffusivity D1 from the

1The method of numerical integration of δn (z , t ) (Sec.4.2.1) gives slightly different (a few percent) results
compared to the other three methods, which are based on Fourier componentδn (q , t ). This is simply because
the density profile is slowly varying in the region we measure, even though we have already chosen the most
uniform region. A perfectly uniform potential is expected to make results from all methods identical.
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“exact analytic fit function” method (see Sec. 4.2.4).

I briefly summarize this method here to show how we get the shear viscosity η, the

thermal conductivity κT and the sound diffusivity D1, while readers are encouraged to read

chapter 4 for details.

In chapter 1, we have pointed out that the transport coefficients in unitary Fermi gases

are universal functions of density and pressure. Here, we define

η ≡ αηħh n0 (5.1)

κT ≡ ακħh n0

kB

m
. (5.2)

We fit the analytic solution for a density perturbation in Fourier space to the data,

δn (q , t ) = A0 e −Γ t+ e −a t [A1 cos(b t )+A2 sin(b t )] , (5.3)

using the amplitude A and three frequenciesωT ≡ q cT ,γκ,γη as free parameters. These

three frequencies are connected to the above equation by

Γ +2 a = γκ+γη (5.4)

a 2+ b 2+2 a Γ =ω2
S +γηγκ (5.5)

Γ (a 2+ b 2) =ω2
T γκ, (5.6)

where ω2
S = cP1

/cV1
ω2

T , γη = (4ħhq 2/3m )αη, γκ = (kBħhq 2/cV1
m )ακ. The initial conditions

require A0 = (a 2+ b 2−ω2
T /(Γ −a )2+ b 2)A, A1 = A−A0, A2 = [(Γ −a )A0+a A]/b .

The decay rate Γ is obtained by finding the real solution to the cubic polynomial

s 3− s 2 (γκ+γη) + s (ω2
S +γκγη)−ω

2
T γκ = 0. (5.7)

Here, the heat capacities per particle at constant volume cV1
and at constant pressure

cP1
can be determined from the measured equation of state as function of the reduced

temperature T /TF = θ (cT /vF ), which is self-consistently determined from cT ≡ωT /q by

the equation of state, with vF given for the average central density n0 (see Sec.2.1.2). The

fits determine the frequencyωT within 2%, enabling in-situ thermometry.

A typical fit to our data is shown in Fig. 5.1. We can see our model describes the evolution

of δn (q , t ) very well. The inset shows two independent modes, an exponentially decaying

thermal diffusion mode (orange) and a decaying oscillatory first sound mode (blue).
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Figure 5.1: Real part of the Fourier transform of the density perturbation δn (q , t ) for
q = 2π/λ with λ= 22.7µm. The reduced temperature T /TF = 0.46. Blue dots (data); Red
curve: Analytic fit of our hydrodynamics model. Inset shows contributions of thermal
diffusion (orange exponential) and first sound (blue). The error bars are the standard
deviation of the mean of δn (q , t ) (see Sec. 4.3.1).

We find that fitting the data with A0 = 0 increases the χ2 per degree of freedom from ≃ 1

to ≃ 20, demonstrating the importance of the thermal diffusion mode, which determines

the thermal conductivity in our measurements. In fact, for the isothermal static initial

conditions employed in our experiments, the thermally diffusive mode comprises ≃ 32% of

the initial total amplitude of the dominant Fourier component δn (q ,0), which is readily

apparent in the free hydrodynamic relaxation.

Also, from the inset in Fig. 5.1, we can see that these two modes (orange and blue)

evolve very differently as functions of time, enabling well-distinguished determination of
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η and κ. To be more specific, κT is, to a very good approximation (see Sec. 2.2.3), found

from the decay rate Γ of the thermal diffusion mode. Meanwhile, the first sound diffusivity

D1 = 2a/q 2 =Dη+Dκ contains contributions from η and κT . Hereby, subtracting Dκ from

D1 immediately yields Dη, which gives η (see Eq. 2.66).

Our measured shear viscosity, Fig. 5.2, can be compared to the high temperature di-

luteness expansion of Bluhm et al. [2017], ηexp(θ ) = (α0θ
3/2+α2)ħhn , where α0 = 2.77(21)

and α2 = 0.25(08) are measured by using a second order hydrodynamics model to fit as-

pect ratio data for freely expanding clouds of Joseph et al. [2015]. Here, the first term is

the high temperature limit, where θ 3/2n ∝ T 3/2 depends only on the temperature. The

extracted α0 is in excellent agreement with a variational calculation based on the two-body

Boltzmann equation for a unitary gas [Bruun and Smith 2007; Bluhm et al. 2017]. The

leading correction from α2 depends only on the density. The red curve in Fig. 5.2 shows that

ηexp(T /TF ) is in agreement with the measurements in the box potential for T /TF ≥ 0.45.

At lower temperatures, T /TF < 0.4, the shear viscosity measured in the box is consistently

larger than that of the expanding cloud.

For comparison, the red-dashed curve shows the high temperature limit, where α2 = 0.

Comparing the red curve and the red-dashed curve, we find that there is a significant

density-dependent contribution to the shear viscosity. The top purple-dashed curve is

a theory prediction of Enss et al. [2011], by evaluation of the Kubo formula within the

T-matrix approximation. This prediction is in reasonable agreement with our data.

Our measured thermal conductivity, Fig. 5.3, can be compared with variational calcu-

lations for a unitary Fermi gas in the high temperature, two-body Boltzmann equation

limit [Braby et al. 2010], where κT (θ ) = 15/4α0θ
3/2ħhn kB/m , with kB the Boltzmann con-

stant. The red-dashed line in Fig. 5.3 shows that the high temperature prediction is in

reasonable agreement with measurements in the box potential for T /TF ≥ 0.45, without a

temperature-independent correction. Note that, in contrast to the shear viscosity, the pure

density dependent contribution to the high temperature thermal conductivity appears to

be quite small. Meanwhile, our measured thermal conductivity is significantly smaller than

some recent predictions (a Luttinger-Ward approach by Frank et al. [2020]; a Kubo-based

microscopic calculation by Zhou and Ma [2021]2).

For lower temperatures, T /TF < 0.4, the thermal conductivity measured in the box

2As mentioned by the author, in their paper, the theory yields different Tc to experiments in the crossover
regions, so a direct comparison between their plots with experiments may not be appropriate. However, we
can estimate that our measurement is lower than their calculation, but in closer agreement compared to the
prediction of Frank et al. [2020]
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Figure 5.2: Shear viscosityη in units ofħhn versus reduced temperature T /TF . Blue dots:λ≃
23µm. Orange dots: Left (right) λ= 18.2 (18.9)µm. Pink dots: Left (right) λ= 32.3 (41.7)µm.
Red solid curve: Fit to cloud expansion data, α0θ

3/2+α2, where α0 = 2.77,α2 = 0.25 [Bluhm
et al. 2017]. Shaded region denotes the standard deviation of the fit. Upper purple-dashed
curve: Prediction of Enss et al. [2011]. Lower red-dashed curve: High temperature limit,
α0θ

3/2. Data error bars are statistical (see Sec. 4.3.1).
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seems to be larger than the high temperature prediction, but is significantly smaller than

the predictions by Frank et al. [2020]; Zhou and Ma [2021].

The sound diffusivity D1 = 2 a/q 2, in units of ħh/m , Fig. 5.4, is determined by Eqs. 4.15

from the fit parameters cT q , γη, and γκ. We obtain the same results within our error bars,

by directly fitting Γ , a and b in Eq. 4.13, constraining A0/A using the long wavelength (LW)

limit (see Sec. 5.2.3), where b ≃ cS q determines T /TF . The red-dashed curve shows the

predicted LW D1, using the high temperature limits for both the shear viscosity and the

thermal conductivity, with cP1
= 5/2 kB and cV1

= 3/2 kB , i.e., 1/cV1
−1/cP1

= 4/15. For the red

solid curve, the high temperature shear viscosity term in D1 is replaced with the measured

viscosity for the expanding gas, ηe x p (θ ) and the thermal conductivity term remains the

same, i.e., D1 = 4/3 (α0θ
3/2+α2) +α0θ

3/2, yielding a good fit to the data for T /TF ≥ 0.45,

consistent with our measured η and κT . Our diffusivity data can be compared to that of

Patel et al. [2020], which is shifted upward relative to that of Fig. 5.4, but exhibits nearly

identical scaling with T /TF . More details of sound diffusivity, including the comparison

with Ref. Patel et al. [2020], will be discussed shortly in Sec. 5.1.1.

As can be seen in Figs. 5.2 ∼ 5.4, we use several perturbation wavelengths in the ex-

periment, from 18 µm to 42 µm to check the q -dependence of our measured results. We

compare data for λ≃ 23µm to data points with λ= 18.2µm (4-spatial periods3), 18.9µm

(4-spatial periods), 32.3µm (3-spatial periods) and 41.7µm (2-spatial periods). These mea-

surements show that there are no large systematic shifts with wavelength.

Meanwhile, we find that a perturbation wavelength λ ≃ 23µm yields good dynamic

range for decay measurements over time scales that avoid perturbing δn (z , t ) in the mea-

sured central region by reflections from the walls of box potential, which then can be

neglected (see Sec. 4.2). This explains why most of our experiments are using a perturbation

wavelength of 23µm.

3Number of spatial periods here indicates the range of the 1-D profile we use to perform the FFT, see
Sec.4.2
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Figure 5.3: Thermal conductivity κT in units of ħhn kB/m versus reduced temperature
T /TF . Blue dots:λ≃ 23µm. Orange dots: Left (right)λ= 18.2 (18.9)µm. Pink dots: Left (right)
λ= 32.3 (41.7)µm. Red-dashed curve: High temperature limit, 15/4α0θ

3/2, where α0 = 2.77.
Error bars are statistical (see Sec. 4.3.1).
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Figure 5.4: Sound diffusivity D1 = 2a/q 2, in units of ħh/m versus reduced temperature
T /TF . Blue dots:λ≃ 23µm. Orange dots: Left (right)λ= 18.2 (18.9)µm. Pink dots: Left (right)
λ = 32.3 (41.7)µm. Red-dashed curve: Long wavelength, high temperature limit, D1 =
7/3α0θ

3/2. Red solid curve: D1 = 4/3 (α0θ
3/2+α2) +α0θ

3/2, where α0 = 2.77,α2 = 0.25. Error
bars are statistical (see Sec. 4.3.1).
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Since the measured hydrodynamic transport coefficients are particularly important

for theoretical studies, here, we provide a complete table for our measurement of the

coefficients, including the total central density4 n0 and perturbing wavelength λ.

Table 5.1: Measured Transport Coefficients

T /TF αη σαη ακ σακ D1 σD1
cT [c m/s ] λ[µm ] n0[c m−3]

0.278 0.879 0.021 2.432 0.081 1.759 0.032 1.185 23.53 6.20E+11
0.343 0.991 0.023 2.618 0.090 1.997 0.046 1.097 23.53 4.13E+11
0.352 0.967 0.021 2.928 0.075 2.043 0.038 1.197 24.10 5.24E+11
0.376 1.010 0.065 2.329 0.229 1.975 0.115 1.167 18.18 4.59E+11
0.381 1.149 0.026 3.348 0.072 2.423 0.048 1.078 32.26 3.58E+11
0.398 1.025 0.027 2.937 0.065 2.147 0.054 1.083 22.99 3.49E+11
0.453 1.057 0.041 3.044 0.220 2.240 0.076 1.201 18.87 4.22E+11
0.462 1.050 0.025 3.458 0.097 2.337 0.041 1.198 22.73 4.11E+11
0.494 1.211 0.035 3.628 0.138 2.617 0.079 1.118 22.99 3.13E+11
0.521 1.368 0.046 3.798 0.117 2.906 0.103 1.221 22.99 3.86E+11
0.557 1.440 0.044 4.596 0.118 3.256 0.071 1.139 41.67 2.94E+11
0.634 1.659 0.027 4.813 0.127 3.621 0.098 1.343 23.26 4.20E+11

Here, η≡ αηħh n0, κT ≡ ακħh n0 (kB/m ), D1 = 2a/q 2 is in units of ħh/m , cT is the isothermal
sound speed, λ≡ 2π/q is the perturbing wavelength and n0 is the total central density for
both spin states;σ is the uncertainty (see Sec. 4.3.1).

5.1.1 Sound Diffusivity

In Chapter 2, from the model of a damped oscillator, we have shown that the measured

2 a/q 2 is, to a very good approximation, the usual first sound diffusivity [Landau and Lifshitz

1959],
2 a

q 2
=

4

3

η

n0m
+

�

1

cV1

−
1

cP1

�

κT

n0
=D1 . (5.8)

The same result follows immediately from the long wavelength (LW) limit (which we will

discuss shortly in Sec. 5.2.3), where cS q >>γκ,γη, although we do not require this approxi-

mation for the initial analysis of our data.

The analytic fits of Eq. 5.3 to the data, determine the measured sound diffusivity 2 a/q 2

4Note that what we actually measure is the density for one spin state, the total density n0 is obtained
simply by doubling the measured one-spin-density, since we use a 50-50 mixture.
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shown in Fig. 5.4 and later in Fig. 5.5. The measured 2 a/q 2 can be compared to Eq. 5.8. For

the unitary Fermi gas, where
1

cV1

−
1

cP1

=
1

kB

2

3

θ

fE (θ )
, (5.9)

Eq. 5.8 and Eq. 5.9, with Eqs. 5.1, and 5.2 yield

D1(θ ) =
�

4

3
αη(θ ) +

2

3

θ

fE (θ )
ακ(θ )
� ħh

m
. (5.10)

Here, fE (θ ) is the measured universal function [Ku et al. 2012] that determines the energy

density, Eq. 2.14. This universal function determines the heat capacities and the sound

speeds employed in our data analysis, as described in Sec.2.1.2.

We evaluate the viscosity term in Eq. 5.10 using a diluteness expansion,

αη(θ ) =α0θ
3/2 + α2, (5.11)

where α0 = 45π3/2/(64
p

2) ≃ 2.77 [Bruun and Smith 2007; Bluhm et al. 2017]. Here, we

include an α2 term, which arises from the purely density-dependent part of the viscosity.

α0 = 2.77(21) and α2 = 0.25(08) are obtained from the fits to cloud expansion data [Bluhm

and Schäfer 2016; Bluhm et al. 2017].

For the thermal conductivity term, we use the high temperature two-body Boltzmann

equation limit [Braby et al. 2010],

κT =
15

4

kB

m
η. (5.12)

This result follows from kinetic theory, where η = τηp and κT = 5/2kB/m τκp , with p

the pressure. Using τκ = (3/2)τη, which can be shown to hold for any isotropic collision

cross section, one obtains Eq. 5.12. This result is consistent with the thermal conductivities

obtained in ref. [Braby et al. 2010] for a unitary Fermi gas and for a Fermi gas with a constant

collision cross section. While Eq. 5.12 is rigorously derived only for the leading α0 term in

η, we take

ακ(θ ) =
15

4
(α0θ

3/2+α′2), (5.13)

to include a pure density-dependent correction.

Using Eqs. 5.11 and 5.13, the sound diffusivity for a unitary Fermi gas, Eq. 5.10, takes

the form

D1(θ ) =
�

4

3
(α0θ

3/2 + α2) +
5

2

θ

fE (θ )
(α0θ

3/2 + α′2)
� ħh

m
, (5.14)
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where 5/2θ/ fE (θ ) = n kB T /p , as we have proven in chapter 2.

The red-dashed curve in Fig. 5.4 shows the high temperature classical limit of eq. 5.14

where p = n kB T and 5/2θ/ fE (θ )→ 1. Here, we take α2 = α′2 = 0, so that D1 = 7/3α0θ
3/2

with α0 = 2.77. The red-solid curve in Fig. 5.4 shows Eq. 5.14 with α2 = 0.25, consistent with

our shear viscosity data, and α′2 = 0.0, consistent with our thermal conductivity data. For

simplicity, we again take the classical limit with 5/2θ/ fE (θ )→ 1. The good fit to our sound

diffusivity data demonstrates the consistency with our extracted transport properties, η

and κT .

Similar results are obtained using the fE (θ ) from the measured equation of state [Ku

et al. 2012] in Eq. 5.13 with 5/2θ/ fE (θ ) = n kB T /p . This is shown in Fig. 5.5.

In Fig. 5.5, we also compare our data with those of Patel et al. [2020] (red dots). In both

data sets, the error bars are statistical, and denote 1σ. For our data, we show the statistical

error from the χ2 fits. We estimate a systematic downward shift of ≤ 5%, arising from the

density variation, as discussed in Sec.5.2.1. For Patel et al. [2020], the estimated systematic

error is 13%, arising from the width of the end caps. We observe an upward shift of the

diffusivity data of Patel et al. [2020], compared to that of the present work, but the scaling

of the normal fluid diffusivity with reduced temperature T /TF is in good agreement.

It is also interesting to compare our data with those of Patel et al. [2020] by fitting both

with D1 = 4/3 (α0θ
3/2+α2)+α0θ

3/2 with α0 = 2.77, and chosing different value for α2. Fig. 5.6

shows the same trend of the two measurements, while the optimal α2 appear to be differ by

0.7. This is interesting for future theoretical studies.

5.2 Systematic Shifts of the Results

In this section, we discuss some important details of our theoretical model and measured

results to evaluate possible shifts, including an estimation for the effect of density variation

on the measured results, a consistency check by calculating the stored energy in the initial

perturbation, and a discussion of the long wavelength (LW) approximation.

5.2.1 Effect of Density Variation on the Measured Transport Coefficients

Figs. 5.2 - 5.4 and Table. 5.1 show the measured transport coefficients, where the error

bars denote the statistical errors from the χ2 fits, which we find from the error matrix (see

Sec. 4.3.1). The transport coefficients αη and ακ, and 2 a/q 2, are determined by Eqs. 5.4-5.6,

which do not explicitly depend on the density.
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Figure 5.5: Sound diffusivity, D1 = 2a/q 2, in units of ħh/m versus reduced temperature
θ = T /TF . Blue, Orange and Pink dots: Current work. Red dots: Patel et al. [2020]. Red-
dashed curve: Long wavelength, high temperature limit, D1 = 7/3 (α0θ

3/2), where α0 = 2.77.
Red solid curve: D1 = 4/3 (α0θ

3/2+α2) + (n kB T /p )α0θ
3/2.
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Figure 5.6: Another comparison of sound diffusivity, D1 = 2 a/q 2, in units of ħh/m versus
reduced temperature θ = T /TF . Blue, Orange and Pink dots: Current work. Red dots: Patel
et al. [2020]. Red-dashed curve: Long wavelength, high temperature limit, D1 = 7/3 (α0θ

3/2),
where α0 = 2.77. Red solid curve: D1 = 4/3 (α0θ

3/2+α2) +α0θ
3/2, with α2 = 0.25. Shaded

region denotes the standard deviation of the fit to first term on the right-hand side [Bluhm
et al. 2017]. Purple solid curve: D1 = 4/3 (α0θ

3/2+α2) +α0θ
3/2, with α2 = 0.95.
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However, the measured decay rates are inherently averages over the sample. To estimate

the effect of the density variation, we consider the high temperature limit, where cT ∝
p

T

is independent of density, as are the transport properties, η and κT , which are∝ T 3/2. The

decay rates then scale inversely with density, γη ≡ γη(0)n0/n , and γκ ≡ γκ(0)n0/n , so that

the decay rates are larger in the low density regions compared to the center, where n (0) = n0.

In a simple model, we can average the exponential decay factors with a normalized

density profile for the region measured in our 160µm boxes, where the density variation over

the central 100 microns is≃ 10%. We use the central values γη(0) and γκ(0) as fit parameters,

since these correspond to the density n0 that determines T /TF in the figures. These fit

parameters are adjusted so that the average decay factors agree with the measurements.

We find that γη(0) and γκ(0) are shifted downward by 5% compared to the measured values.

These results are confirmed by numerical modeling of δn (z , t )with Eqs. 4.1 and 4.2, where

we find a downward shift of 3-9% for γη(0) and 1-4% for γκ(0) (see Sec. 4.2.2).

We also compute the corresponding average for the density profile n (y ) along the line-

of-sight direction, where we cannot choose the central region. We divide the density n (y )

into 30 segments, find δn (q , t ) for each segment, and sum the density weighted decay

curves, yielding comparable down shifts.

From these estimates, we see that the corrected transport parameters, corresponding to

the central density n0 and the given T /TF , are systematically shifted downward, compared

to the given measured values, by at most 5% for an average, and no more than 10% for any

individual measurement shown in Figs. 5.2 - 5.4 and Table. 5.1.

5.2.2 Stored Energy

We also estimate the change in the energy per particle W1 that arises from the energy stored

in the initial spatially periodic density profile. This is important since we assume the average

energy per particle does not change during the entire evolution.

The initial density perturbation stores energy, which is converted into kinetic energy

after the perturbation is extinguished and finally into heat. To show that the change in the

average energy per particle is negligible, we determined the stored energy W for the ideal

case of an adiabatic change of the density, δn , starting from a uniform density n0. As the

total number of atoms does not change during the compression, we must have

∫

d 3rδn (r) = 0. (5.15)
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Now consider a small volume∆V of the cloud, containing a small number of atoms

∆N = n∆V . Changing the volume for fixed ∆N , we have d ∆N = d n∆V +n d ∆V = 0.

Taking n ≃ n0, the density before perturbation is applied, we have

d ∆V =−∆V
d n

n0
. (5.16)

The work to change∆V by d ∆V is just

d ∆W =−p d ∆V = (p0+δp )∆V
d n

n0
. (5.17)

Then the net work to change the local density from n0 to n is

∆W =∆V

∫ n

n0

d n

n0
(p0+δp ). (5.18)

Using as the integration variable the local change in density δn ≡ n − n0, d n = dδn .

Assuming an adiabatic change in pressure, p −p0 ≡ δp =m c 2
S δn , with cS the adiabatic

sound speed and p0 the uniform background pressure, we have

∆W =∆V

∫ δn

0

dδn ′

n0
(p0+m c 2

S δn ′) =∆V

�

δn
p0

n0
+m c 2

S

(δn )2

2 n0

�

. (5.19)

Replacing the local volume∆V by d 3r, we have for the total stored energy

W =

∫

d 3r

�

δn
p0

n0
+m c 2

S

(δn )2

2 n0

�

≃
m c 2

S

2

∫

d 3r n0

�

δn (r)
n0

�2

. (5.20)

In Eq. 5.20, since the background pressure p0 and density n0 are spatially uniform, Eq. 5.15

requires that the term linear in δn vanish. For simplicity, we ignore the spatial variation

of the sound speed cS and background density n0 in the region of the perturbation. Defin-

ing the energy per particle W1 = W /N in terms of the mean square fractional density

perturbation, we have finally

W1 =
m c 2

S

2

�

�

δn (r)
n0

�2�

. (5.21)

The same result can be obtained by finding the rate of change of the total kinetic energy K
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from the dissipationless equation of motion n0m∂t v=−∇δp . Starting from

n0m∂t v2 =−v ·∇δp . (5.22)

and defining the total kinetic energy integrating over volume, we have

K ≡
∫

d 3r
mv2

2
, (5.23)

∂t K = −
∫

d 3r v ·∇δp =

∫

d 3r∇·vδp . (5.24)

From the continuity equation δṅ +n0∇·v= 0, and using δp =m c 2
S δn , we have

∂t K = −
∫

d 3r
δṅ

n0
δp =−m c 2

S

∫

d 3r
δṅ

n0
δn

= −
m c 2

S

2
∂t

∫

d 3r n0

�

δn

n0

�2

(5.25)

Finally from ∂t (K +W ) = 0, we see that W is the effective potential energy. Dividing W by

the atom number N , we obtain the same result for W1, i.e., Eq. 5.21.

Note that for a unitary Fermi gas, m c 2
S = 10 E1/9 from Eq. 2.18. For a sinusoidal perturba-

tion with a 20% amplitude, δn/n0 ≃ 0.2 cos
�

q z
�

, we have W1 ≃ 0.01 m c 2
S . As m c 2

S = 10/9 E1,

with E1 the energy per particle [Patel et al. 2020], the change in E1, and hence in θ = T /TF ,

is negligible.

5.2.3 Long Wavelength Limit

Our hydrodynamic linear response model is based on an application of the fluid dynamics

in many-body quantum system, which requires some validity considerations.

Despite its classical history, fluid dynamics can be used as an effective theory for the long-

distance, long-time properties of any material. The only requirement for the applicability of

fluid dynamics is that the system relaxes to approximate local thermodynamic equilibrium

on the time scale of the observation [Schäfer 2014].

According to Schäfer’s description, there are two basic time scales associated with

the behavior of a many body system. The first is a microscopic time scale τ f l ui d that

characterizes the rate at which a generic disturbance relaxes. The second time scale τd i f f

is associated with the relaxation of conserved charges, decaying by diffusion or collective
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motion. In a normal non-relativistic fluid, the conserved charges are the mass density, the

momentum density, and the energy density. The gradient expansions of these conserved

charges give us transport coefficients, the shear viscosity η, the bulk viscosity ζ and the

thermal conductivity κT [Schäfer 2014].

Fluid dynamics is based on the separation of scales τ f l ui d ≪ τd i f f , where the time

τd i f f increases with the length scale λ of the disturbance, i.e. τd i f f ∝λ2. This condition

τ f l ui d ≪τd i f f can be referred as the long wavelength (LW) limit.

In our case, the fastest time scale for the changes in density and temperature is set

nominally by the adiabatic sound frequencyωS of the first sound mode, i.e., τd i f f =ω−1
S .

So the LW limit requiresωSτ f l ui d ≪ 1. WitωS = cS q , the LW limit effectively requires that q

is small.

Starting from our analytic solutions, there are two ways to check whether long wave-

length approximation is valid. First, rewriting Eqs. 5.4 and 5.5,

b 2− c 2
S q 2 = γηγκ−2 a Γ −a 2 (5.26)

a =
1

2
(γη+γκ− Γ ). (5.27)

Note that γη,γκ,Γ ∝ q 2, and from Eq. 5.27, a is easily found as∝ q 2. b ≃
Æ

ω2
S −a 2 –

the damped oscillation frequency of the first sound, ẍ + 2a ẋ +ω2
S x = 0 (see Sec. 2.2.3),

should also be a function of q . In the long wavelength limit, q is small. The right-hand

side of Eq. 5.26,∝ q 4, while on the left-hand side c 2
S q 2 is of course∝ q 2. This means

the right-hand side is close to 0 for small q, and thus b ≃ cS q ≡ωS . In our experiments,

where the typical λ≃ 23µm, we find that b is smaller thanωS by 2.2 %, 4.3 % and 5.7 % for

T /TF = 0.28, 0.46, and 0.63, respectively, close to the LW limit. A data-by-data comparison

is provided in Table. 5.2.

Second, we can rewrite Eq. 4.16 as

A0

A
=

a 2+ b 2−ω2
T

(Γ −a )2+ b 2
. (5.28)

For b 2≫ a 2, (Γ −a )2 in the LW limit, we have

A0

A
≃

b 2−ω2
T

b 2
. (5.29)
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Since b ≃ωS , from Eq.5.29 andω2
S/ω

2
T = cP1

/cV1
, we obtain

A0

A
= 1−

ω2
T

ω2
S

= 1−
cV1

cP1

. (5.30)

Here, LW limit requires A0/A = 1− cV1
/cP1

, which is ≃ 0.3 for our T /TF range. As a cross

check, we compare the A0/A, where A is from the fit and A0 = (a 2+b 2−ω2
T /(Γ −a )2+b 2)A,

with the calculated 1− cV1
/cP1

from the equation of state. We find the difference is within

5.3%, as showed in Table. 5.2.

From these cross checks, we can see that all our data is close to the long wavelength

limit, which suggests our hydrodynamic method is appropriate.

Table 5.2: Validity of the Long Wavelength Limit

T /TF ωS b ωS−b
ωS

ωS−
p

a 2+b 2

ωS
A0/A 1− cV1

/cP1

0.278 3707.5 3625.9 2.20% 0.58% 0.265 0.271
0.343 3479.3 3374.6 3.01% 0.63% 0.289 0.292
0.352 3716.1 3609.3 2.87% 0.89% 0.284 0.294
0.376 4825.3 4646.6 3.70% 0.30% 0.312 0.301
0.381 2514.9 2449.7 2.59% 0.70% 0.297 0.303
0.398 3556.7 3418.4 3.89% 0.98% 0.301 0.307
0.453 4857.6 4619.2 4.91% 1.15% 0.319 0.322
0.462 4034.5 3862.0 4.28% 1.45% 0.310 0.324
0.494 3737.0 3541.3 5.24% 1.29% 0.328 0.332
0.521 4101.1 3902.9 4.83% 0.81% 0.347 0.338
0.557 2123.5 2074.3 2.32% 0.60% 0.345 0.346
0.634 4538.1 4279.6 5.70% 0.81% 0.380 0.361

Here, a , b , A, A0 are fit parameters to Eq. 5.3,ωS is the calculated adiabatic sound frequency.
cV1

, cP1
are heat capacity per particle at constant volume and pressure, respectively, calcu-

lated by the equation of state with fitted reduced temperature θ .

5.3 Breakdown of Hydrodynamics

In our hydrodynamic linear response model, we apply a long wavelength (LW) approxi-

mation which assumes instantaneous relaxation to local equilibration, or in other words,

115



a zero relaxation time τ ≃ 0. However, the relaxation rate τ−1 is not infinity even in our

strongly interacting system.

For a finite relaxation time, it is interesting to take a glance at microscopic theories that

provides second order corrections to the transport coefficients.

The simplest microscopic description of a fluid is kinetic theory, which describes the

long distance behavior of an underlying classical or quantum many-body system [Schäfer

2014]. Kinetic theory can be used to relate properties of long-lived quasi-particles, such as

masses and scattering cross sections, to the equation of state and the transport coefficients.

The basic concept of kinetic theory applies to solve the Boltzmann equation of the

quasi-particle distribution function f (r , p , t ), i.e.,

�

∂

∂ t
+v

∂

∂ r
−
∂ V

∂ r

∂

∂ p

�

f =−I [ f ], (5.31)

where V is the trapping potential and I [ f ] is the collision term. In the relaxation-time

approximation [Bhatnagar et al. 1954], the collision integral of the Boltzmann equation

becomes I [ f ] =δ f /τ, where δ f = f − f0 is the deviation of the distribution function from

local equilibrium and τ is the relaxation time. Solving the Boltzmann equation gives us

connections between the static transport coefficients with the finite relaxation time.

In kinetic theory, the static shear viscosity takes the form η = τηp [Chapman et al.

1990], where p is the pressure and τη is a collisional relaxation time. Similarly, the static

thermal conductivity is κT = (5/2)(kB/m )τκp . For a unitary Fermi gas, the pressure is

p = 2
5 n εF (n ) fE (θ , so for the shear viscosity we have

τη =
5

2

ħh
εF (n )

αη(θ )

fE (θ )
. (5.32)

Similarly, for the thermal conductivity, we have

τκ =
ħh
εF (n )

ακ(θ )
fE (θ )

. (5.33)

From above, we can see the relaxation times are characterized by the transport scattering

times, which are functions of density and temperature. In our experiments, the relaxation

times are ∼ 100µs, which are listed in Table.5.3.

In the long wave length (LW) limit, these relaxation times need to be small compared to

the time scale for density and temperature changes, set nominally by the adiabatic sound

frequencyωS of the first sound mode. So, for a givenωS , the LW limit generally requires a
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sufficiently high density and a low temperature of the gas. Hence, we would expect that

a relaxation time correction is significant for the data taken at the lowest densities and

the highest temperatures in our experiments, where the shallow box potential prevents

measurements at both high temperature and high density.

We can relate the desired static transport properties to those measured at finite fre-

quency by using a simple Drude model. Before we use this model, it is important to point

out this is not a rigorous way to correct our measurements. First, the Drude model is only a

crude estimate for the second order hydrodynamic effects, and it has not been proven to

be true in the strongly interacting normal fluid regime where we working. Second, as men-

tioned before, we actually measure the thermal conductivity κT from the thermal diffusion

mode, and obtain the shear viscosity η from Dη, which is by subtracting the contribution of

Dκ from the first sound diffusivity D1 =Dη+Dκ. So a direct correction by Drude model to η

and κT may not be appropriate.

However, the purpose of giving an example of Drude model here is to demonstrate how

breakdown of first order hydrodynamics could effect our measured results, and also to

estimate the extreme cases of possible corrections to our measurement. More rigorous

studies are expected in the future.

In the Drude approximation Braby et al. [2011]; Enss [2012], the viscosity measured at

finite frequency η(ω) is related to the static viscosity η(0) by

η(ω) =
η(0)

1+ (ωτη)2
(5.34)

and similarly for κT (ω).

We takeω≃ωS , the adiabatic frequency for data taken with a spatial period λ, is just

ωS = (2π/λ) cS (θ ). Here, the adiabatic sound speed cS (θ ) = vF

p

fE (θ )/3 from Eq. 2.18, where

fE (θ ) is determined by the measured equation of state Ku et al. [2012], and vF =
p

2εF (n )/m

is the Fermi speed, with n the total density. Using these results, we find

ωSτη ≃ 5π

√

√

√ 2ħh 2

3 mλ2εF (n )

αη(0)
p

fE (θ )
(5.35)

and

ωSτκ ≃ 2π

√

√

√ 2ħh 2

3 mλ2εF (n )
ακ(0)
p

fE (θ )
, (5.36)

where the static viscosity coefficient αη(0) and the static thermal conductivity coefficient
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ακ(0) are defined by Eqs. 2.43 and 2.44.

Letting αη(ωS ) be the measured shear viscosity coefficient, we estimate the static vis-

cosity coefficient,

αη(0) = [1+ (ωSτη)
2)]αη(ωS ), (5.37)

where we can approximate αη(0) on the right hand side of eq. 5.35 by the measured value

αη(ωS ) for simplicity, when the correction is not too large. Similarly, we estimate the static

thermal conductivity coefficient from the measured value,

ακ(0) = [1+ (ωSτκ)
2)]ακ(ωS ), (5.38)

replacing ακ(0) on the right hand side of eq. 5.36 by the measured value ακ(ωS ).

Eqs. 5.37 and 5.38 give us a crude estimation on what corrections could be made for the

measured transport coefficients. In this Drude model, our measured shear viscosity and

measured thermal conductivity is shifted upward, depending on the different relaxation

rates, densities and perturbing wavelengths, as listed in Table.5.3. For data taken with high

density or long perturbing wavelength, the Drude shift is small. The shift is more significant

for data taken with both a low density and a short wavelength. We also list the decay rates

γη, γκ and the adiabatic sound frequencyωS in Table.5.3, giving a direct comparison of all

the time scales in our experiments for readers of interests.

Although these results suggest that the static transport coefficients need to be shifted

up compared to what we measured, we do not expect large changes to our conclusion since

most of our data is taken at relatively low temperature and higher density, as shown in

Table. 5.3. Again, the Drude model is a crude way to evaluate second order behavior. In the

strongly interacting normal fluid region, the gas is not simply Bolzmann quasi-particles.

The appropriate relaxation times and the characteristic time scale of disturbance also need

to be more carefully defined. In the analysis provided above, we chose the fastest time scale

ωS to estimate the extreme cases, while the exponential decay rate Γ can also be considered

as the characteristic time scale. Using this slower frequency would result in less upward

shifts compared to those in Table.5.3.

Based on the above discussion, a more rigorous second order hydrodynamic description

is expected to shed additional light on our measured results. Meanwhile, it illustrates the

ideal condition for future studies for the first order hydrodynamics, i.e., a perturbation

of very long wavelength in a gas of very high density5. Also, it is instructive to design

5The high density setup is already accomplished based on current method, e.g., the USTC group of Ref. Li
et al. [2022] achieved a density of n ≃ 1.6×1013c m−3.
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Table 5.3: Comparison of Time Scales and Drude Corrections

T /TF γη γκ ωS τη τκ ∆η ∆κT λ[µm ] n0[c m−3]
0.278 881.96 1831.17 3707.5 80.54 88.96 8% 10% 23.53 6.20E+11
0.343 994.29 1970.86 3479.3 102.7 108.6 12% 14% 23.53 4.13E+11
0.352 925.65 2101.79 3716.1 83.72 101.4 9% 14% 24.10 5.24E+11
0.376 1697.62 2936.47 4825.3 90.88 83.84 19% 16% 18.18 4.59E+11
0.381 613.71 1341.10 2514.9 121.3 141.3 9% 12% 32.26 3.58E+11
0.398 1078.02 2316.61 3556.7 106.39 121.9 14% 18% 22.99 3.49E+11
0.453 1650.24 3563.71 4857.6 87.39 100.7 18% 23% 18.87 4.22E+11
0.462 1129.95 2790.10 4034.5 87.18 114.8 12% 21% 22.73 4.11E+11
0.494 1272.99 2861.71 3737.0 114.2 137 18% 26% 22.99 3.13E+11
0.521 1438.09 2995.67 4101.1 107.1 119 19% 23% 22.99 3.86E+11
0.557 460.87 1103.35 2123.5 128 163.5 7% 12% 41.67 2.94E+11
0.634 1704.56 3709.63 4538.1 103.6 120.2 22% 29% 23.26 4.20E+11

Here, γη = (4ħhq 2/3m )αη, γκ = (kBħhq 2/cV1
m )ακ are the decay rates as we defined in Sec. 5.1,

ωS is the adiabatic sound frequency. These three are all in units of inverse second in the
table. τη and τκ are relaxation times for η and κT , respectively, in units of microsecond.∆η
and∆κT

are upward shift percentage by the Drude model for η and κT , respectively. λ is
the perturbing wavelength and n0 is the total density for both spin states.

experiments studying higher order behavior by gradually reducing the wavelength and

density, with independent controls.
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CHAPTER

6

CONCLUSION

6.1 Summary

This dissertation has presented new time-domain, free evolution methods for measuring

hydrodynamic transport coefficients in a normal fluid unitary Fermi gas. The thermal

conductivity and the shear viscosity in a universal normal fluid have been measured inde-

pendently for the first time.

I have demonstrated the theoretical basis and experimental setup for measuring the

free decay of a sinusoidal density profile in a normal fluid strongly interacting Fermi gas.

In the experiment, the gas was confined in a box potential, creating a near-homogeneous

sample before being perturbed. The spatial profile was initially created in thermal equilib-

rium by a perturbing potential. After the perturbation was abruptly extinguished, the dom-

inant spatial Fourier component exhibited an exponentially decaying (thermally diffusive)

mode and a decaying oscillatory (first sound) mode, enabling independent measurement

of the thermal conductivity κT and the shear viscosity η directly from the time-dependent

evolution.

This dissertation has also shown that the oscillatory decay of a spatially periodic density
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perturbation well distinguishes these two modes. For the isothermal static initial condi-

tions employed in the experiments, the thermally diffusive exponentially decaying mode

comprises ≃ 32% of the initial total amplitude of the dominant Fourier component, which

is readily apparent in the free hydrodynamic relaxation. This mode enables independent

measurement of the thermal conductivity κT . The oscillatory decaying first sound mode

determines the sound diffusivity D1 =Dη+Dκ, yielding independent measurement of the

shear viscosity η.

For our results, we find that the shear viscosity measured by this free hydrodynamic re-

laxation in the box is consistent with that extracted from data on expanding cloud by Bluhm

and Schäfer [2016]; Bluhm et al. [2017], which includes a significant density-dependent

contribution, for reduced temperatures T /TF > 0.45. At lower temperatures, T /TF < 0.4,

the shear viscosity measured in this relaxation experiment is consistently larger than that

extracted from the expanding cloud. The thermal conductivity for T /TF > 0.45 is close to

the high temperature limit. In contrast to the shear viscosity, the pure density dependent

contribution to the high temperature thermal conductivity appears to be quite small. The

measured sound diffusivity can be compared to that of Patel et al. [2020], which is shifted

upward relative to ours, but exhibits nearly identical scaling with T /TF and appears to

converge at low temperatures.

These results emphasize the need for rigorous calculations of the leading density-

dependent corrections to the two-body high temperature limits.

The method in this dissertation is complementary to frequency domain techniques,

where transport properties of quantum fluids have been determined by measuring the

hydrodynamic linear susceptibility Hohenberg and Martin [1965]; Hu et al. [2018]; Zhang

and Yu [2018]; Mukherjee et al. [2019]. However, this method has several advantages over

traditional frequency domain techniques.

First, the freedom of designing proper initial conditions in the time domain allows

decoupling of physical properties. In our case, the contribution of the thermal diffusion

mode and the first sound mode are in phase for the density perturbation δn (q , 0), but 180◦

out of phase for the temperature perturbation δT (q , 0), allowing separation of the thermal

conductivity and the sound diffusivity.

Second, frequency domain techniques usually require driving the system to a steady

state, during which additional uncertainties could be added, such as extra energy exchanges

or an uncertain driving sufficiency. In contrast, free evolution methods start from the steady

state, making measurements simple.

In conclusion, I believe the new time-domain free evolution methods presented in this
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dissertation will shed new light on measuring in ultracold quantum gases, or even other

few-body or many-body quantum systems.

6.2 Outlook

Prior to our work, it was not obvious that simply measuring the hydrodynamic decay of a

periodic density perturbation, created in a box potential, would enable a clear separation

of the contributions of a zero frequency, thermally diffusive mode and an oscillating first

sound mode in a normal fluid unitary Fermi gas. It can be expected that this idea can be

applied to many other experiments.

For the next generation experiments in our laboratory, one would expect to explore in

the superfluid regime, where the exponentially decaying mode will evolve into an oscillating

second sound mode. It is also interesting to change the interaction strength across the

BEC-BCS crossover, and from strong to weak interactions, to study the breakdown of fluid

dynamics and other novel phenomenon. Also, trapping a spin-imbalanced mixture to study

transport properties is another interesting topic.

As discussed in chapter 5, our experiments were not performed in a perfect hydrody-

namic regime due to systematic limits. We hope to build a system with higher atom density

and longer perturbing wavelength to measure those first order transport properties one

level better. In contrast, lowering the density and reducing the wavelength would move

the system away from first order hydrodynamic regime, proving a platform to study higher

order transport properties. Also, we hope to use the DMD to flatten the potential inside the

box, making density uniform in all directions.

Furthermore, since our data emphasize the need for rigorous calculations of the lead-

ing purely density-dependent corrections to the two-body high temperature limits of the

transport coefficients, related theoretical studies are expected.

We expect that for the general application of arbitrary optical beam modulating tech-

niques, including the DMDs and diffractive beam shapers, great prosperity in future ex-

periments on cold atoms and molecules in all dimensionalites and geometries can be

foreseen.
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APPENDIX

A

CODE FOR JAVIS HALFTONING

This code is found online by the author below for performing Javis Halftoning.

1 %Program f o r Image Halftoning by J a r v i s Method

2

3 %Program Description

4 % The input gray image w i l l be converted i n t o h a l f t o n e image

5 % of same s i z e using J a r v i s ’ s Error D i f f u s i o n Method .

6 %

7 %Parameters

8 % inImg − Input Gray Image

9 % outImg − Output Halftoned Image

10

11 %Author : Athi Narayanan S

12 %Student , M. E , EST ,

13 %K . S . R College of Engineering

14 %Erode , Tamil Nadu , India .

15 %s_athi1983@yahoo . co . in
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16 %http : / / s i t e s . google . com/ s i t e /athisnarayanan /

17 %

18 function outImg = j a r v i s H a l f t o n e ( inImg )

19 % inImg = f l i p u d ( inImg ) ;

20 inImg = double ( inImg ) ;

21

22 [M,N] = s i z e ( inImg ) ;

23

24 % 255/2

25 % T = 1 2 7 . 5 ;

26 T = . 5 ;

27 y = inImg ;

28 e r r o r = 0 ;

29

30 y= [1 2 7 . 5* ones (M, 2 ) y 127.5* ones (M, 2 ) ; 127.5* ones ( 2 ,N+4) ] ;

31 z = y ;

32

33 f o r rows = 1 :M

34 f o r c o l s = 3 :N+2

35

36 % round up or down to be binary

37

38 z ( rows , c o l s ) =T*2*( y ( rows , c o l s )>=T ) ;

39

40 % e r r o r of the rounding c a l c u l a t e d

41

42 e r r o r = −z ( rows , c o l s ) + y ( rows , c o l s ) ;

43

44 %e r r o r i s d i s t r i b u t e d among neighboring p i x e l s

45

46 y ( rows , c o l s+2) = 5/48 * e r r o r + y ( rows , c o l s+2) ;

47 y ( rows , c o l s+1) = 7/48 * e r r o r + y ( rows , c o l s+1) ;

48

49 y ( rows+1 , c o l s+2) = 3/48 * e r r o r + y ( rows+1 , c o l s+2) ;

50 y ( rows+1 , c o l s+1) = 5/48 * e r r o r + y ( rows+1 , c o l s+1) ;
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51 y ( rows+1 , c o l s+0) = 7/48 * e r r o r + y ( rows+1 , c o l s+0) ;

52 y ( rows+1 , cols −1) = 5/48 * e r r o r + y ( rows+1 , cols −1) ;

53 y ( rows+1 , cols −2) = 3/48 * e r r o r + y ( rows+1 , cols −2) ;

54

55 y ( rows+2 , c o l s+2) = 1/48 * e r r o r + y ( rows+2 , c o l s+2) ;

56 y ( rows+2 , c o l s+1) = 3/48 * e r r o r + y ( rows+2 , c o l s+1) ;

57 y ( rows+2 , c o l s+0) = 5/48 * e r r o r + y ( rows+2 , c o l s+0) ;

58 y ( rows+2 , cols −1) = 3/48 * e r r o r + y ( rows+2 , cols −1) ;

59 y ( rows+2 , cols −2) = 1/48 * e r r o r + y ( rows+2 , cols −2) ;

60 end

61 end

62

63 outImg = z ( 1 :M, 3 :N+2) ;

64 % outImg = im2bw( uint8 ( outImg ) ) ;
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APPENDIX

B

CODE FOR NUMERICAL INTEGRATION

Use this code for the numerical integration method in Sec. 4.2.1, based on the hydrodynamic

linear response model.

1 function [ f , fax1 , f a x 1 e r r , faxN1 , dn , ndata , ndataerr , nbgdata , bigax ,

bigaxN ] = . . .

2 XinLinearHydroNI ( n0peak2use , axnormbg2use , axihat1 , axnorm1 ,

axerrnorm1 , camera , timestep , t1 , t4 , lower , upper , cT , SDif f , eta ,

CR, FEtheta , n )

3

4 % input 1D density as d e l t a n

5 % axnorm1 and axerrnorm1 are the points exclude 2 sigma away

6 tn=t4−t1+1;

7

8 s f t = 0 ;

9 s t a r t p o i n t = 1 ; endpoint = length ( axnormbg2use ) ;

10 a x c r t 1 = axnorm1 ( s t a r t p o i n t : endpoint−s f t , : )−axnormbg2use (

s t a r t p o i n t+s f t : endpoint ) ;
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11 a x e r r c r t 1 = axerrnorm1 ( s t a r t p o i n t : endpoint−s f t , : ) ; % bg e r r o r

i s small

12

13 a x c r t=zeros ( length ( a x c r t 1 ) , tn ) ;

14 a x c r t ( : , 1 )=axihat1 ;

15 a x c r t ( : , 2 : tn )=a x c r t 1 ( : , 6 : tn+4) ;

16

17 a x e r r c r t=zeros ( length ( a x e r r c r t 1 ) , tn ) ;

18 a x e r r c r t ( : , 1 )=mean( a x e r r c r t 1 ( : , 1 : 5 ) , 2 ) . / s q r t ( 5 ) ;

19 a x e r r c r t ( : , 2 : tn )=a x e r r c r t 1 ( : , 6 : tn+4) ;

20

21

22

23 [ n f i t , d e n s i t y O f f s e t ] = PolyTanhAnalyticFunction ( axnormbg2use (

s t a r t p o i n t+s f t : endpoint ) ) ;

24

25 % r e s c a l e the data from p i x e l s to microns

26 ntwid = abs ( n f i t −(max( n f i t ) −1) ) . /max( n f i t −(max( n f i t ) −1) ) ;

27 x = l i n s p a c e ( 1 , length ( ntwid ) , length ( ntwid ) ) . * camera . psize ;

28 numzpoints = f l o o r (max( x ) ) ;

29 z = l i n s p a c e ( 1 , numzpoints , numzpoints ) ;

30 dz = z ( 2 ) − z ( 1 ) ;

31 nscale = max( i n t e r p 1 ( x , ntwid , z , ’ s p l i n e ’ ) , 0 . 0 0 0 1 ) ;

32 n f i t z = i n t e r p 1 ( x , n f i t , z , ’ s p l i n e ’ ) ;

33 n d a t a i n i t = i n t e r p 1 ( x , a x c r t ( : , 1 ) , z , ’ s p l i n e ’ ) ;

34 ndata = i n t e r p 1 ( x , axcrt , z , ’ s p l i n e ’ ) ;

35 ndataerr = i n t e r p 1 ( x , a x e r r c r t , z , ’ s p l i n e ’ ) ;

36 nbgdata = i n t e r p 1 ( x , axnormbg2use ( s t a r t p o i n t+s f t : endpoint ) , z , ’

s p l i n e ’ ) ;

37 % load Martin ’ s fE data and i n t e r p o l a t e

38 load ( ’ MartinEEOS . mat ’ ) ;

39 dtheta = 0 . 0 0 1 ;

40 t h e t a 0 s t e p s = 0 : dtheta : 1 . 5 ;

41 fE = i n t e r p 1 ( FEtheta ( : , 1 ) , FEtheta ( : , 2 ) , theta0steps , ’ pchip ’ ) ;

42 fEprime = gradient ( fE , dtheta ) ;
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43

44

45 % f i n d theta0 from sound v e l o c i t y and average density

46 % boxvol = (167 e−4)*(43 e−4)*(54 e−4) ; % box s i z e in microns

f o r c y l i n d r i c a l gaussian box

47 % boxvol = (160 e−4) * ( 4 3 . 5 e−4)*(51 e−4) ; % box s i z e in microns

f o r TH box

48 % boxvol = (107 e−4) * ( 4 3 . 5 e−4)*(51 e−4) ; % box s i z e f o r center

of Smaller TH box

49 % n0 = 2*Nctrbg2use/boxvol ; % use t h i s f o r data taken a f t e r

spin balance f i x

50

51 n0 = 2*n0peak2use ; % use t h i s f o r max density in the

center

52 kB = 1.3806504E−16;

53 hbar = 1.0545716E−27;

54 mLi6 = 9.9883414E−24;

55

56 eF0 = hbar ^2/(2*mLi6 ) *(3* pi ^2*n0 ) ^ ( 2/3 ) /kB ; %cgs

57 vF0 = s q r t (2* eF0*kB/mLi6 ) ;

58 cTInterp = vF0* s q r t ( fE /3 −(2/15) . * fEprime . * t h e t a 0 s t e p s ) ;

59

60 theta0 = i n t e r p 1 ( cTInterp , theta0steps , cT , ’ pchip ’ ) ;

61

62 fE0 = i n t e r p 1 ( theta0steps , fE , theta0 , ’ pchip ’ ) ;

63 fE0prime = i n t e r p 1 ( theta0steps , fEprime , theta0 , ’ pchip ’ ) ;

64

65

66 thetaZ = theta0 . / ( nscale . ^ ( 2/3 ) ) ;

67

68 fEthetaZ = i n t e r p 1 ( FEtheta ( : , 1 ) , FEtheta ( : , 2 ) , thetaZ , ’ spchip ’ ) ;

69 grad_fEthetaZ = gradient ( fEthetaZ , dz ) ;

70

71 % hydro−thermal p r o p e r t i e s

72 CV1 = ( 3/5 ) * fE0prime ;
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73 CP1 = CV1 * fE0 / ( fE0 −(2/5) * theta0 * fE0prime ) ;

74

75 a l f a = ( hbar/mLi6 ) * eta ;

76

77

78 C1 = CR − 1 ;

79 C2 = S D i f f * ( hbar/mLi6 ) ;

80

81 % gradient method

82 dU0dz = (−2/3) . * ( fEthetaZ − ( 2/5 ) . * thetaZ . * . . .

83 grad_fEthetaZ ) . * ( gradient ( n f i t z , dz ) . / ( nscale . ^ ( 1/3 ) ) ) ;

84 % f i g u r e ; p l o t ( dU0dz ) ;

85

86 U0 = zeros ( s i z e ( dU0dz ) ) ;

87 f o r i = 1 : length ( dU0dz )

88 U0( i ) = sum( dU0dz ( 1 : i ) ) ;

89 end

90

91 dt = 1e−6;

92 tend=timestep *( t4−t1 )+1; % f o r ending time in simulation

93 t = l i n s p a c e ( 0 , tend , tend+1) * dt ;

94

95 dn = zeros ( length ( t ) , length ( z ) ) ;

96 dn ( 1 , : ) = n d a t a i n i t ;

97 dn ( 2 , : ) = n d a t a i n i t ;

98 dndot = zeros ( length ( t ) , length ( z ) ) ;

99 dUdz = ones ( length ( t ) − 1 , length ( z ) ) . * dU0dz * 1e4 ;

100 V0force = zeros ( length ( t ) − 1 , length ( z ) ) ;

101 dT = zeros ( length ( t ) , length ( z ) ) ;

102

103

104

105 f o r i = 3 : ( length ( t ) )

106 dndot ( i −1 , : ) = 1/dt . * ( dn ( i − 1 , : )−dn ( i − 2 , : ) ) ;

107
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108 dndotdz = gradient ( dndot ( i − 1 , : ) , dz*1e−4) ;

109 d2ndotdz2 = gradient ( dndotdz , dz*1e−4) ;

110

111 dndz = gradient ( dn ( i − 1 , : ) , dz*1e−4) ;

112 d2ndz2 = gradient ( dndz , dz*1e−4) ;

113

114 dTdz = gradient ( dT ( i − 1 , : ) , dz*1e−4) ;

115 d2Tdz2 = gradient ( dTdz , dz*1e−4) ;

116

117

118

119 V0force ( i − 1 , : ) = 0 . 5 . * vF0 .^2 . * gradient ( dn ( i − 1 , : ) . *
dUdz( i − 1 , : ) , dz*1e−4) ;

120

121

122 dn ( i , : ) = 2 . * dn ( i − 1 , : ) − dn ( i − 2 , : ) + dt . ^ 2 . * ( cT ^ 2

. * ( d2ndz2 + d2Tdz2 ) . . .

123 + ( 4/3 ) . * a l f a . * d2ndotdz2 + V0force ( i − 1 , : ) ) ;

124 supress = dn ( i , : ) ;

125 old = dn ( i − 1 , : ) ;

126 supress ( nscale < .0003) = old ( nscale < .0003) ;

127 dn ( i , : ) = supress ;

128

129 dT ( i , : ) = dT ( i − 1 , : ) + C1 . * ( dn ( i , : )−dn ( i −1 , : ) ) + dt . *C2 . *
d2Tdz2 ;

130 end

131

132 dn=dn ’ ; % reshape to agree with ndata

133 dn=dn ( : , ( ( t1 : t4 )−t1 ) * timestep+1) ; %reduce num of dn to the same

as data

134

135

136

137 %% Fourier transform

138
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139

140 % n=2000;

141

142 ax=ndata ( lower : upper , : ) ;

143 a x e r r=ndataerr ( lower : upper , : ) ;

144 bigax=zeros ( n , s i z e ( ax , 2 ) ) ;

145 b i g a x e r r=zeros ( n , s i z e ( axerr , 2 ) ) ;

146 bigax ( n/2+1−round ( length ( ax ) /2) : n/2+round ( ( length ( ax ) −1)/2) , : )=ax ;

147 b i g a x e r r ( n/2+1−round ( length ( ax ) /2) : n/2+round ( ( length ( ax ) −1)/2) , : )=

a x e r r ;

148

149 axN=dn ( lower : upper , : ) ;

150 bigaxN=zeros ( n , s i z e ( axN , 2 ) ) ;

151 bigaxN ( n/2+1−round ( length ( ax ) /2) : n/2+round ( ( length ( ax ) −1)/2) , : )=

axN ;

152 f a x=zeros ( s i z e ( bigax , 1 ) , s i z e ( bigax , 2 ) ) ;

153 f a x e r r=zeros ( s i z e ( bigaxerr , 1 ) , s i z e ( bigaxerr , 2 ) ) ;

154

155 Fs=n ; % sampling frequency

156

157

158 f o r i =1: s i z e ( bigax , 2 )

159

160 f a x ( : , i )=r e a l ( f f t ( bigax ( : , i ) ) ) ; % method of d i r e c t FFT

161 f a x e r r ( : , i )=abs ( r e a l ( f f t ( b i g a x e r r ( : , i ) ) ) ) ;

162

163 end

164

165 fax1=f a x ( 1 : n/2+1 , : ) ;

166 f a x 1 e r r=f a x e r r ( 1 : n/2+1 , : ) ;

167 fax1 ( 2 : end−1 , : )=2* fax1 ( 2 : end−1 , : ) ;

168 f a x 1 e r r ( 2 : end−1 , : )=2* f a x 1 e r r ( 2 : end−1 , : ) ;

169

170

171
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172 faxN=zeros ( s i z e ( bigaxN , 1 ) , s i z e ( bigaxN , 2 ) ) ;

173 f o r i =1: s i z e ( bigaxN , 2 )

174 faxN ( : , i )= r e a l ( f f t ( bigaxN ( : , i ) ) ) ;

175 % faxN ( : , i )= abs ( f f t ( bigaxN ( : , i ) ) ) ;

176

177 end

178

179

180 faxN1=faxN ( 1 : n/2+1 , : ) ;

181 faxN1 ( 2 : end−1 , : )=2*faxN1 ( 2 : end−1 , : ) ;

182 f = Fs * ( 0 : ( n/2) ) /n ;

Use this code to get the Fourier transform of δn (z , t ). The filter applied on the initial

condition δn (z , 0) is only for the purpose of choosing region of interest.

1 function [ axihat1 , axOrig1 , f , mfax1 , mfax2 , sfax1 , s f a x 2 ] = . . .

2 X i n F o u r i e r A n d F i l t e r ( camera , MyData1 , CDIndArray1 , NormPoint ,

Nctrbg2use , axnorm1 , axnormbg2use , c t r , lower , upper , n ,wd)

3 % Get the FFT of each s i n g l e shots and c a l c u l a t e the e r r o r

4 [ n f i l e s 1 , ~ ] = s i z e ( MyData1 ) ;

5

6 f f = ones ( n f i l e s 1 , 1 ) ;

7

8 PSummary = unique ( MyData1 . Parameter ) ;

9 Nparams = length (PSummary) ;

10

11 x = l i n s p a c e ( 1 , length ( axnormbg2use ) , length ( axnormbg2use ) ) . *
camera . psize ;

12 numzpoints = f l o o r (max( x ) ) ;

13 z = l i n s p a c e ( 1 , numzpoints , numzpoints ) ;

14

15 % n=2000;

16 f = 0 : n/2 ;

17

18 mfax1 = zeros ( n/2+1 ,Nparams−4) ;
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19 mfax2 = zeros ( n/2+1 ,Nparams−4) ;

20 s f a x 1 = zeros ( n/2+1 ,Nparams−4) ;

21 s f a x 2 = zeros ( n/2+1 ,Nparams−4) ;

22

23 % For i n i t i a l condition , which i s average of f i r s t 5 shots

24 f o r i =1:5

25 fparam= l o g i c a l ( ( MyData1 . Parameter==PSummary( i+0) ) . * f f ) ;

26 CDsum=sum( CDIndArray1 ( : , c t r−wd: c t r+wd, fparam ) , 2 ) ;

27 Nctr1=sum(sum( CDIndArray1 ( : , c t r−wd: c t r+wd, fparam ) ) ) *camera . psize

^2;

28 axn = CDsum. / reshape ( Nctr1 , 1 , 1 , [ ] ) *Nctrbg2use/NormPoint −
axnormbg2use ;

29

30 fax2F ( : , i ) = mean( f f t ( axn ) , 3 ) ; % f o r the i n i t i a l goes to

f i l t e r

31 ax = i n t e r p 1 ( x , axn , z , ’ s p l i n e ’ ) ;

32 bigax=zeros ( n , 1 , s i z e ( ax , 3 ) ) ;

33 bigax ( n/2+1−round ( length ( ax ( lower : upper , : , : ) ) /2) : n/2+round ( ( length

( ax ( lower : upper , : , : ) ) −1)/2) , : )=ax ( lower : upper , : , : ) ;

34 f a x= f f t ( bigax ) ;

35 fax1=f a x ( 1 : n/2+1 , : , : ) ;

36 fax1 ( 2 : end − 1 , : , : )=2* fax1 ( 2 : end − 1 , : , : ) ;

37

38 s f a x 1 ( : , i )=std ( r e a l ( fax1 ) , 0 , 3 ) / s q r t (sum( fparam ) ) ;

39

40 end

41

42 f a x 2 F i l t e r=mean( fax2F , 2 ) ;

43

44 % apply the f i l t e r f o r i n i t i a l condition here

45 f i g u r e ( 1 0 7 ) ; p l o t ( abs ( f a x 2 F i l t e r ( : , 1 ) ) ) ;

46 d l g _ t i t l e= ’ Cutoff Input ’ ;

47 num_lines=[1 3 0 ] ;

48 d ef a ul ta n s={ ’ 0 . 5 ’ } ;

49 prompt1= ’ enter the c u t o f f value : ’ ;
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50 answer1=str2double ( inputdlg ( prompt1 , d l g _ t i t l e , num_lines , d e fa ul t an s

) ) ;

51 i n d i c e s=abs ( f a x 2 F i l t e r ( : , 1 ) )>answer1 ; % only apply f i l t e r to

i n i t i a l condition

52 c l o s e f i g u r e 107;

53 axhat1= f a x 2 F i l t e r ( : , 1 ) . * i n d i c e s ;

54 axihat1= i f f t ( axhat1 ) ;

55

56 % FFT of the new i n i t i a l condition

57

58 ax1 = ( i n t e r p 1 ( x , axihat1 , z , ’ s p l i n e ’ ) ) ’ ;

59 bigax1=zeros ( n , 1 ) ;

60 bigax1 ( n/2+1−round ( length ( ax1 ( lower : upper , 1 ) ) /2) : n/2+round ( ( length

( ax1 ( lower : upper , 1 ) ) −1)/2) , 1 )=ax1 ( lower : upper , 1 ) ;

61 f a x= f f t ( bigax1 ) ;

62 fax1=f a x ( 1 : n/2+1 , : ) ;

63 fax1 ( 2 : end−1 , : )=2* fax1 ( 2 : end−1 , : ) ;

64

65

66 mfax1 ( : , 1 )=r e a l ( fax1 ) ;

67 % mfax1 ( : , 1 )=abs ( fax1 ) ;

68 s f a x 1 ( : , 1 )=mean( s f a x 1 ( : , 1 : 5 ) , 2 ) / s q r t ( 5 ) ;

69

70 % mfax2 ( : , 1 )=imag ( fax1 ) ;

71 mfax2 ( : , 1 )=abs ( fax1 ) ;

72

73

74 % campare with non−f i l t e d one

75 axOrig = mean( axnorm1 ( : , 1 : 5 ) − axnormbg2use , 2 ) ;

76 axOrig1 = ( i n t e r p 1 ( x , axOrig , z , ’ s p l i n e ’ ) ) ’ ;

77 f i g u r e ( 1 2 0 ) ; p l o t ( axOrig1 ) ; hold on ;

78 p l o t ( ax1 ) ; hold o f f ;

79

80

81 f o r i =6:Nparams
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82 fparam= l o g i c a l ( ( MyData1 . Parameter==PSummary( i+0) ) . * f f ) ;

83 CDsum=sum( CDIndArray1 ( : , c t r−wd: c t r+wd, fparam ) , 2 ) ;

84 Nctr1=sum(sum( CDIndArray1 ( : , c t r−wd: c t r+wd, fparam ) ) ) *camera . psize

^2;

85 axn = CDsum. / reshape ( Nctr1 , 1 , 1 , [ ] ) *Nctrbg2use/NormPoint −
axnormbg2use ;

86

87 ax = i n t e r p 1 ( x , axn , z , ’ s p l i n e ’ ) ;

88 bigax=zeros ( n , 1 , s i z e ( ax , 3 ) ) ;

89 bigax ( n/2+1−round ( length ( ax ( lower : upper , : , : ) ) /2) : n/2+round ( ( length

( ax ( lower : upper , : , : ) ) −1)/2) , : )=ax ( lower : upper , : , : ) ;

90 f a x= f f t ( bigax ) ;

91

92 fax1=f a x ( 1 : n/2+1 , : , : ) ;

93 fax1 ( 2 : end − 1 , : , : )=2* fax1 ( 2 : end − 1 , : , : ) ;

94

95

96 mfax1 ( : , i −4)=r e a l (mean( fax1 , 3 ) ) ;

97 % mfax1 ( : , i −4)=abs (mean( fax1 , 3 ) ) ;

98

99 % mfax2 ( : , i −4)=imag (mean( fax1 , 3 ) ) ; % use mfax2 as imaginary part

100 mfax2 ( : , i −4)=abs (mean( fax1 , 3 ) ) ; % use mfax2 as absolute value

101

102 s f a x 1 ( : , i −4)=std ( r e a l ( fax1 ) , 0 , 3 ) / s q r t (sum( fparam ) ) ;

103 % s f a x 1 ( : , i −4)=std ( abs ( fax1 ) , 0 , 3 ) / s q r t (sum( fparam ) ) ;

104

105 s f a x 2 ( : , i −4)=std ( imag ( fax1 ) , 0 , 3 ) / s q r t (sum( fparam ) ) ;

106 % s f a x 2 ( : , i −4)=s q r t ( var ( r e a l ( fax1 ) , 0 , 3 )+var ( imag ( fax1 ) , 0 , 3 ) ) / s q r t (

sum( fparam ) ) ;

107

108

109 end

110

111 end
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APPENDIX

C

CODE FOR EXACT ANALYTIC FIT

FUNCTION

This code is used for the “exact analytic fit funciton” method in Sec. 4.2.4. It provides both

the 4-parameter fit (floating A) and the 3-parameter fit (fixing A for measured δn (q , 0).

1 function EAnFit = f i t E x a c t A n a l y t i c ( x , t , dnQ0 , q , densi ty )

2

3 i f length ( x )==4

4 A = x ( 1 ) ;wT = x ( 2 ) ; Geta = x ( 3 ) ; Gkappa = x ( 4 ) ;

5 e l s e

6 A = dnQ0 ;wT = x ( 1 ) ; Geta = x ( 2 ) ; Gkappa = x ( 3 ) ;

7 end

8

9 cT = wT/q ;

10 syms ( ’ S ’ , ’ r e a l ’ )

11 Cub_eq = S^3−S^2*(Gkappa+Geta )+S *(wT^2*GetCPoverCV ( density , cT )+

Gkappa*Geta )−Gkappa*wT^2 == 0 ;
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12 Gamma = double ( s o l v e ( Cub_eq ) ) ;

13

14 a = ( Gkappa+Geta−Gamma) /2 ;

15 % wS = wT * s q r t ( GetCPoverCV ( density , cT ) ) ;

16 b = s q r t ( (wT^2*GetCPoverCV ( density , cT )+(Gamma−Gkappa ) *(Gamma−Geta )

−0.25*(Gkappa+Geta−Gamma) ^2) ) ;

17 A0 = A*( a^2+b^2−wT^2) / ( (Gamma−a ) ^2+b^2) ;

18

19

20 EAnFit = A0 . * exp(−Gamma. * t ) + exp(−a . * t ) . * ( ( A−A0 ) . * cos ( b . * t ) +((

Gamma−a ) *A0+a*A) . /b . * s i n ( b . * t ) ) ;
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