
ABSTRACT

LI, XIANG. Universal Density Shift Coefficients for Hydrodynamic Transport Properties of a
Unitary Fermi Gas . (Under the direction of John E. Thomas).

This dissertation present the first measurement of the universal density shift coefficients for

the shear viscosity and thermal conductivity of a unitary Fermi gas in the normal fluid regime.

The experiment was performed with a near homogeneous unitary Fermi gas confined in a

box potential, which is created by two Digital Micromirror Devices (DMDs). A third DMD was

implemented to independently control the perturbation beam, which enables a full dynamic

control of the perturbing potential. We developed a kinetic theory model to extract the hydro-

dynamic relaxation times τη and τκ from the time-dependent free-decay of a spatially periodic

density perturbation, yielding the static transport properties and density shifts, corrected for

finite relaxation time.
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CHAPTER

1

INTRODUCTION

1.1 History

In 1995, the first Bose-Einstein condensate (BEC) were created in dilute vapors of alkali-metal

atoms [Anderson et al. (1995); Bradley et al. (1995); Davis et al. (1995)], marking the new

beginning of ultracold atomic physics. In the next few years, most studies, both experimental

and theoretical, were devoted to the quantum gas of Bosons and were aimed at investigating

the important consequences of BEC, which, before 1995, remained an elusive and inaccessible

phenomenon. Soon after, the attention of experimentalists and theorists was oriented toward

the study of Fermi gases.

When we cool down Bosons and Fermions (single component), we can immediately see

the difference. The Bose gas shrinks continuously and form a tiny BEC at last , while the Fermi

gas stops shirking at some point due to Pauli blocking [Truscott et al. (2001)], as shown in

Figure 1.1. The first degenerate Fermi gas was obtained in JILA [DeMarco and Jin (1999)]. They

worked with two spin components of 40K atoms with attractive interaction, they achieved

temperatures on the order of fractions of Fermi Temperature. The Bardeen-Cooper-Schrieffer

(BCS) theory suggests that two atoms with different spin states should form Cooper pair and the

gas should exhibit superfluidity at sufficient low temperature. However, the critical temperature

of traditional BCS type superfluid is very small, typically less than 1% of Fermi temperature.

1



The Fermi gases created above are extremely dilute, the critical temperature required to enter

superfluid phase was too small to reach in these experiments.

Figure 1.1: Simultaneous cooling of a bosonic and fermionic gas of 7Li and 6Li to quantum
degeneracy. In the case of Fermi gas, the Fermi pressure prevents the atom cloud from shirking
further in space as quantum degeneracy is approached. Figure adopted from [Bloch et al.
(2008)], original from [Truscott et al. (2001)].

It did not take very long to achieve superfluidity with Fermi gas, as physicists realized that

a crucial tool to do it is provided by accessing the Feshbach resonance. We will introduce

Feshbach resonance in detail in the next chapter. In a nutshell, this resonance characterize the

two-body interaction and permit one to change the value and even the sign of the scattering

length by simply tuning the external magnetic field [Chin et al. (2010)]. When we tune the

magnetic field toward Feshbach resonance, the interaction gets stronger and stronger. Right at

Feshbach resonance, the scattering length divergence, the interaction is as strong as quantum

mechanics allows. In 2002, our group reported the first experimental realization of such strongly

interacting Fermi gas with 6Li atoms [O’hara et al. (2002)]. Right around Feshbach resonance,

which is called unitary regime, the gas is peculiar since it is simultaneously dilute ( the effective

range of interacting potential is much smaller than the inter-particle distance ) and strongly

interacting (the scattering length is much larger than the inter-particle distance). All length

scales associated with interactions disappear from the problem and the system is expected to

exhibit a universal behavior, independent of the details of the interatomic potential [Zwierlein

(2016)].

Such strong interaction dramatically changes the properties of the system. One of the

remarkable properties is the rising of critical temperature, which is now on the order of the

Fermi temperature, TC ≃ 0.17TF when at resonance. The superfluid phase is much easier to
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access in this case. The first evidence of superfluidity came from the measurements of collective

oscillation [Kinast et al. (2004)]. Another important evidence is the measurement of the pairing

gap observed in radio-frequency excitation spectra [Chin et al. (2004)]. But neither of these

evidence are conclusive enough since these phenomena can also occur in the normal fluid

regime. Convincing proof of superfluidity was provided by the observation of quantized vortices

that were realized on both sides of Feshbach resonance [Zwierlein et al. (2005)].

No other system has ever been observed with a transition temperature as high as roughly

17% of their Fermi temperature. If we scale to the density of electrons in metal, TC would occur

far above room temperature. The strongly interacting Fermi gas has become one of the most

important candidates to study high-temperature superconductor.

1.2 Motivation

The topic of this thesis does not include superfluid. Instead, we focus on the normal fluid

regime, i.e. T > TC . When the temperature is above superfluid transition TC , the unitary Fermi

gas is a single component normal fluid and obeys hydrodynamic transport laws for universal

system.

The unitary Fermi gas is a hydrodynamic system, this is conformed by the observation of

elliptical expansion after releasing the gas from the harmonic trap [O’hara et al. (2002)]. In

2012, our group did the first comprehensive measurement of shear viscosity with an expanding

unitary Fermi gas [Cao et al. (2011)]. Over the years many group around the world have done

various transport measurements of unitary Fermi gas, for example the spin transport or spin

diffusivity [Sommer et al. (2011)], solitons and vortices [Yefsah et al. (2013); Ku et al. (2014)],

second sound [Sidorenkov et al. (2013)], charge transport and conductivity [Krinner et al. (2015)].

All these experiments were done in a harmonic trap, the density varies from central maximum

to zero at the edge. This large density variation is very unfriendly for the transport measurement.

First, the inhomogeneous density profile means we are measuring an inhomogeneous transport

coefficients. That’s why the shear viscosity measured in [Cao et al. (2011)] is a cloud averaged

value. Second, hydrodynamics does not valid all the way to the edge because the cloud is so

dilute. To overcome these issues caused by inhomogeneous density, many groups, including

us, switched to the techniques of optical box potential, where the density is nominally uniform.

Not only did it resolve the issue of inhomogeneous density, but also enables new measurements

of hydrodynamic transport properties.

Measurements of the universal hydrodynamic transport properties of unitary Fermi gas

connect ultracold atoms to nuclear matter [Adams et al. (2012); Bloch et al. (2012); Strinati

et al. (2018)] and provide new challenges to theoretical prediction [Bruun and Smith (2007);
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Taylor and Randeria (2010); Braby et al. (2010); Enss et al. (2011); Wlazłowski et al. (2012);

Romatschke and Young (2013); Bluhm et al. (2017); Frank et al. (2020); Hofmann (2020); Zhou

and Ma (2021)].

For a unitary Fermi gas, the second bulk viscosity vanishes, as predicted for scale-invariant

systems [Son (2007); Hou et al. (2013)] and demonstrated in experiments on conformal sym-

metry [Elliott et al. (2014)]. Hence, in the normal phase at temperature above the superfluid

transition [Ku et al. (2012)], the hydrodynamic transport properties comprise only the shear

viscosity η and the thermal conductivity κT .

Remarkably, the measured shear viscosity and thermal conductivity in the normal phase

are well fit by the simple expression [Wang et al. (2022)],

η=
15

32
p
π

(mkB T )3/2

ħh 2 +α2ηħhn0 (1.1)

and

κT =
15

4

kB

m
η(α2η→α2κ) (1.2)

with kB the Boltzmann constant and m the atom mass. The density shift coefficients α2η and

α2κ are fit parameters. Here, the temperature T and density n0 contributions can be understood

by dimensional analysis. For the shear viscosity, with the dimension of momentum/area, we

expect η∝ħh/L 3, with L a length scale. At high temperature, L→λT , the thermal de Broglie

wavelength∝ T −1/2. At lower temperature, where the cloud is degenerate, L is roughly the

inter-particle distance, i.e. 1/L 3 = n0. For both η and κT , the leading high temperature T 3/2

dependence is obtained by variational calculations for a unitary gas in the two-body Boltzmann

limit [Bruun and Smith (2007); Braby et al. (2010); Bluhm et al. (2017)]. Density shifts, relative

to the high temperature limits, can arise from Pauli blocking in an ideal Fermi gas, but are

reduced by in medium effects in a unitary Fermi gas [Frank et al. (2020)]. In contrast to the T 3/2

coefficients, the density shift coefficients α2η and α2κ are unknown universal constants, which

can be determined by precise measurements of the static transport properties.

The density shifts of the transport properties measured at finite frequency are sensitive

to the hydrodynamic relaxation times τη and τκ. Here we need to discuss more detail about

relaxation times of a system. Generally, there are two time scales related to the behavior of

a many body system. The first is a microscopic time scale τ1, such as τη and τκ. This is the

time scale for the system to reach local thermal equilibrium, which should only depend on

the collisional properties of the particle. The other is the macroscopic time for the conserved

charges, such as mass, momentum and energy, to diffuse τ2. Fluid dynamics is an effective
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Figure 1.2: A unitary Fermi gas is loaded into a repulsive box potential created by two Digi-
tal Micromirror Devices, or DMDs (top and right). A third DMD (bottom) generates a static
spatially periodic perturbation δU (z ) with an adjustable wavelength λ, creating a spatially
periodic initial 1D density profiles (left). After δU is abruptly extinguished, the dominant
Fourier component exhibits an oscillatory decay.

5



theory, technically it applies to any many-body system as long as τ1≪τ2
1.

In this dissertation, I present our work, which determines the universal density shift co-

efficients for both shear viscosity and thermal conductivity of a normal phase unitary Fermi

gas trapped in an optical box potential. This work reports the first measurements of these next

order pure density dependent terms for the transport properties.

We realize an ultracold (about 100 nK), near-homogeneous gas of strongly interacting
6Li atoms, confined in a repulsive box potential. The optical box is created by two Digital

Micromirror Devices (DMD). Figure 1.2 shows a schematic setup of our box beam. The top

and right side DMD create the six box sheets (green and red light). Previously we used the top

DMD to create the perturbing potential to probe the gas simultaneously [Baird (2019); Wang

et al. (2022)]. For the experiment discussed in this dissertation, we upgraded our optical box

system by implementing a third DMD, the bottom one with yellow beam, to independently

project a static repulsive potential δU that spatially varies with an adjustable amplitude and

wavelength λ along axial direction z. After reaching thermal equilibrium, the gas exhibits a

spatially periodic density variation. The third DMD is illuminated with a low intensity beam to

utilize its full dynamic range. Left side of Figure 1.2 are absorption images of atom cloud with

four different periodic density variation, created by the third DMD.

The perturbation beam is then abruptly extinguished, causing an oscillatory decay of the

measured density perturbation δn (z , t ) = n (z , t )−n0, with n (z , t ) the doubly integrated 3D

density. We measure the free decay of the density profile by performing a Fast Fourier transform

(FFT), then observing the time evolution of the dominant Fourier component. In previous

work [Wang et al. (2022)], we used a hydrodynamic linear response model that assumed a

fast relaxation, i.e. τη =τκ = 0. The measured shear viscosity and thermal conductivity were

not their static values, we were unable to determine the universal density shift coefficients.

In this work, in order to determine the static transport properties, we explicitly include the

finite relaxation times in our model. We developed a kinetic relaxation model in the linear

response regime by constructing four coupled equations: two describe the changes in the

density δn (z , t ) and temperature δT (z , t ), and two describe the relaxation of the viscous force

and heat current [Braby et al. (2010, 2011)]. Figure 1.3 shows a typical oscillation data (blue) we

obtained , red solid curve is fitting to the new kinetic relaxation model.

We show that time-domain hydrodynamic relaxation experiments are well-suited to kinetic

theory models that explicitly include the transport relaxation times for the viscous force and

heat current, which are driven at the frequency and damping rate of the first sound mode

and at the thermal decay rate of the thermally diffusive mode. Using this method, we obtain

the static shear viscosity, thermal conductivity, and corresponding density shift coefficients,

1We can say that if the observation time is long enough, any system should behave like fluid.
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relative to the high temperature limits, for a normal-phase unitary Fermi gas in a box potential.

Figure 1.3: Relaxation model fit for T /TF ≃ 0.37, perturbation wavelength λ≃ 37.0 µm. Data
(blue dots), model (red solid curve).
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CHAPTER

2

SCATTERING PHYSICS AND FESHBACH

RESONANCE

In this chapter,we briefly introduce the properties of ultracold Fermi gas of 6Li with tunable

interaction. We start with a general introduction of scattering physics, since this forms the basis

for all the effects we want to study. Then we will provide a detailed description of Feshbach

resonance, which is the main tool used in tuning the scattering properties of our sample.

2.1 Scattering theory

The topic of scattering problems can be found in any quantum mechanics textbook. Here we

only cover the basis of it and the important results we need, detail introduction can be found

in [Shankar (2012),Sakurai and Commins (1995)]

The problem we want to solve involves two atoms scattering against each other. We assume

the interaction potential is a function that only depends on the distance between the two atoms

V (|r1− r2|). The time-independent Schrodinger’s equation takes the form Hψ=Eψwith the

Hamiltonian H= P 2

2µ +V (r ), where µ= m1m2
m1+m2

is the reduced mass, m1, m2 are the mass of two
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atoms. Substituting these into the time-independent Schrodinger’s equation, we obtain:

∇2ψ+ (k 2−V (r ))ψ= 0, (2.1)

where k =
p

2µE /ħh is the associated wave vector. Solving the scattering problem equals to

solving this equation. In actual experiment, measurements are taken at distance far away from

scattering center, therefore we only need to find the form ofψ as r →∞.

The general form of a wavefunction undergoing scattering, written in spherical coordi-

nates,is given by,

ψ(r,θ ) = e i k z + f (θ , k )
e i k r

r
. (2.2)

Here we define z-axis as the wave propagating direction, the wavefunction therefore has

azimuthal symmetry. The first term represents the incoming wave, while the second term

represents the scattering wave at large distance. f (θ , k ) denotes the scattering amplitude. f = 0

if no scattering occurs. Integrating | f |2 over a sphere gives a measure of the scattering strength,

also known as scattering cross sectionσc ,

dσc

dΩ
= | f (θ , k )|2. (2.3)

As the scattering potential provided by the target is spherically symmetric, we can expand

the scattering wave in partial waves as

f (θ , k ) =
∑

l=0

(2l +1) fl (k )Pl (c o sθ ), (2.4)

Here, l indicates the order of the angular momentum of outgoing wave and Pl are Legendre

polynomials. The partial wave amplitude fl (k )is related to the scattering phase shift δl by

fl (k ) =
exp(iδl )sinδl

k
. (2.5)

The total scattering cross section can be obtained as:

σc =
4π

k 2

∑

l=0

(2l +1)sin2δl . (2.6)

Remember we are dealing with ultracold gases, the temperature is often 1µK or lower, corre-

sponding to a thermal de Broglie wavelength λt h = h/
p

2πmkB T ≈ 700nm . This corresponds

to a linear momentum pma x = h/λt h = 9.5×10−28m/s. Furthermore, if we consider an inter-

particle potential with an effective range r0 = 20a0,where a0 is the Bohr radius, a reasonable
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approximation for the triplet potential that dominates the interaction of the particles, then the

maximum quantized angular momentum lma x can be estimated as:

ħhlma x = r0pma x =⇒ lma x =
2πr0

λd B
≈ 0.001. (2.7)

Since l must be a nonnegative value, we are left with l = 0. Therefore at ultracold temperature,

only s-wave scattering is permitted. Under this condition, Eq. 2.6 reduces to

σc =
4π

k 2
sin2δ0. (2.8)

Therefore we only need to calculate s-wave phase shift δ0.

Now, we need to introduce an important quantity , the s-wave scattering length as , which

is defined [Shankar (2012)]by:

as ≡− lim
k→0

tanδ0

k
. (2.9)

Then we can write the s-wave cross section in terms of s-wave scattering length as and incident

wave vector k as

σc =
4πa 2

s

1+k 2a 2
s

. (2.10)

As we stated before, the momentum we are dealing with is negligibly small. When k as → 0,

we have

σc ≈ 4πa 2
s . (2.11)

Eq. 2.11 provides some important information because the cross section can be understood

as a crude characterisation of the scattering power of the potential. For low-energy scattering

process, it can be effectively parameterized by a single quantity, as . when |as | is large, the

interaction between scattering atoms is strong. On the other hand, small |as | corresponds to

weak interaction. Furthermore, as > 0 indicates repulsive interaction , while as < 0 indicates

attractive interaction .

Last but not the least, remember the wave function is a two-particle wave function. For

identical particles, it has to be symmetric for bosons and anti-symmetric for fermions. However,

the spatial part of s-wave collision is symmetric, so an ultracold Fermi gas is entirely collisionless

unless two different spin states are trapped. In the experiment, we trap the two lowest hyperfine

ground states of 6Li, labeled as |1〉, |2〉, or as spin-up and spin down. Detail electronic structure

of 6Li is covered below. Control of these internal spin states are accomplished by applying

radio-frequency pulse.
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2.2 Electronic structure of 6Li

In this section we cover the detail of the electronic structure of 6Li, focusing on the two-

component Fermi system used in our lab. The 6Li atom is composed of 3 protons, 3 neutrons,

and 3 electrons. The nuclear ground state has nuclear spin of I = 1, while the electronic ground

state consists of 2 electrons in 1s orbital and 1 unpaired electron in 2s orbital. The unpaired

electron in the valence band is the only electron of interest. For the ground state , the orbital

angular momentum quantum number is L = 0, the spin quantum number is s = 1/2, and the

total angular momentum F , which includes contributions from nuclear, orbital, and electron

spin,can have two possible values, F = 1/2, F = 3/2. Therefore, the possible spin projection for

F = 1/2 are mF =±1/2,and for F = 3/2 are mF =±1/2,±3/2. The presence of a magnetic field

lifts the degeneracy. The Hamiltonian we wish to solve is given by

Hi =
ah f

ħh 2 S · I+
µB

ħh
(g J S+ g I I) ·B, (2.12)

where ah f is the hyperfine constant, g J is the electronic g-factor for 6Li ground state, g I is the

nuclear g-factor, µB is the Bohr magnetton, B is the external magnetic field. The eigenstates

of Eq.2.12, written in the basis of electron spin projectionms and nuclear spin projection mI ,

|ms , mI 〉, are[Houbiers et al. (1998)]:

|1〉= sinΘ+|
1

2
, 0〉− cosΘ+| −

1

2
, 1〉 (2.13)

|2〉= sinΘ−|
1

2
,−1〉− cosΘ−| −

1

2
, 0〉 (2.14)

|3〉= | −
1

2
,−1〉 (2.15)

|4〉= cosΘ−|
1

2
,−1〉+ sinΘ−| −

1

2
, 0〉 (2.16)

|5〉= cosΘ+|
1

2
, 0〉+ sinΘ+| −

1

2
, 1〉 (2.17)

|6〉= |
1

2
, 1〉 (2.18)

The above hyperfine states are labeled by increasing energy, with |1〉 being the lowest energy

state and |6〉 is the highest. The coefficients in Eq.2.13 through Eq.2.18 are dependent on

magnetic field.
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The energy eigenvalues associated with eigenstates |n〉 are:

E1 =−
1

4
(ah f −2g IµB B +2ah f R+) (2.19)

E2 =−
1

4
(ah f +2g IµB B +2ah f R−) (2.20)

E3 =
ah f

2
−
µB B

2
(2g I + g J ) (2.21)

E4 =
1

4
(−ah f −2g IµB B +2ah f R−) (2.22)

E5 =
1

4
(−ah f +2g IµB B +2ah f R+) (2.23)

E6 =
ah f

2
+
µB B

2
(2g I + g J ) (2.24)

sinΘ±, cosΘ±, R± are coefficients dependent on B [Zhang (2012)]. We can plot the energy

eighenvalues as a function of magnetic field shown in figure.2.1

Figure 2.1: Hyperfine ground state structure of 6Li plotted in units of hah f versus magnetic
field in gauss. The two red curves are states |1〉, |2〉.

We can see in Figure. 2.1 that as the magnetic field increases, the original degenerate states

for F = 1/2, F = 3/2 split into six different states. At high field, the hyperfine energy shifts are

almost linear with magnetic field (about -1.4MHz/G for lowest three states).
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2.3 Feshbach resonance and BEC-BCS crossover

With the material we have introduced so far, we can now introduce the concept of Feshbach

resonance. Consider two 6Li atoms, one in state |1〉 and one in state |2〉. If they are far apart from

each other , the two atoms can be treated as independent particles, and there is no restriction

on the wavefunction since their wavefunction hardly overlap. However, during the scattering

process, the two atoms approach each other sufficiently so that their wavefunctions start to

overlap, this is when the quantum nature starts to play its role. Quantum mechanics calls

for a different treatment of the electrons, where we sum their spins, leading to singlet and

a triplet state. Therefore, we introduce two different interaction potentials between the two

atoms: one for the singlet, one for the triplet state, which correspond to the antisymmetric and

symmetric spin-wavefunctions, respectively. The two potentials coincide at large distances

since the individual wavefunction hardly overlap.

Figure 2.2: Triplet(red curve) and Singlet(blue curve) potentials involved in 6Li Feshbach
resonance, figure adopted from [Ketterle and Zwierlein (2008)].

In typical experiments, the magnetic field are larger than 500G, in such high field, the
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valence electron in 6Li atom will be fully polarized for both states. This can also be observed

from the eigenstate wavefunction of state |1〉 and |2〉, namely Eq. 2.13 and Eq.2.14. For large B,

sinΘ± are negligible, therefore

|1〉→−|−
1

2
, 1〉 (2.25)

|2〉→−|−
1

2
, 0〉 (2.26)

Both states have electron spin ms =− 1
2 . The two scattering atoms are in triplet potential, but

they still have different nuclear spin. This gives a total spin F =ms +mI =± 1
2 , which represent

our spin-up and spin-down atoms,repectively. Figure.2.2 shows the triplet VT (r ) and singlet

potentialVS (r ) of two colliding atoms as function of interparticle distance. We refer to the triplet

configuration as open channel since the atoms are in triplet state, and the singlet configuration

as closed channel. The singlet state has a total electron spin S = 0, and only triplet state has a

nonvanishing Magnetic quantum number Ms ̸= 0. Therefore, only triplet state can couple to

magnetic field.

If there is no coupling between VT and VS , then the two atoms would simply scatter off

each other in VT , acquiring some fixed phase shift. However, VT and VS are coupled through

hyperfine interaction Vh f between electrons and nucleons. To see this, recall from the text book

that Vh f is given by Vh f = ah f s1 · i1, s1 and i1 are electron spin and nuclear spin for one atom,

then the total hyperfine interaction between the two atoms are[Ketterle and Zwierlein (2008)]

Vh f =Vh f 1+Vh f 2 = ah f (s1 · i1+ s2 · i2) (2.27)

=
ah f

2
S · (i1+ i2) +

ah f

2
(s1− s2) · (i1− i2), (2.28)

Vh f is not diagonal in the total electron spin S= s1+ s2 of the two atoms. The second term

in Eq.2.28 connects singlet and triplet states since s1− s2 is antisymmetric in 1 and 2, therefore

coupling triplet state and singlet state. Thus, Vh f is totally off-diagonal in triplet and singlet

basis, the off-diagonal element describes the coupling of two states.

The singlet potential contains a bound state that is close to the dissociation limit. By

applying an external magnetic field , we can shift down the triplet channel relative to singlet

channel until the continuum is at the same level as the weakly bound state in singlet channel.

The existence of a bound state close to the dissociation limit greatly changes the scattering

length of the atoms. Theoretically, we have a bound state coupled to a continuum scattering

states. This was treated independently in nuclear physics by Feshbach[Feshbach (1958)] and

in atomic physics by Fano[Fano (1961)], and is well-known in cold atom community as Fano-

Feshbach resonance, or simply Feshbach resonance.
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At Feshbach resonance, the s-wave scattering length diverges, as →∞. Referring back on

Eq.2.10, this implies that

σc = lim
as→∞

4πa 2
s

1+k 2a 2
s

=
4π

k 2
. (2.29)

Here, k is on the order of Fermi wave vector kF , which only depends on the density of the gas.

This suggests that the scattering properties of the system become independent of the sign,

strength, or any detailed structure of the interparticle interaction. In this situation , the gas

is called unitary Fermi gas. Figure.2.3 shows the s-wave scattering length (i.e. the interaction

strength) of state |1〉, |2〉 of 6Li atoms as a function of external magnetic field near Feshbach

resonance.

Figure 2.3: s-wave scattering length vs external magnetic field for 6Li state |1〉, |2〉

Atomic physics would not be the same without Feshbach resonance, we are now able to

control the interaction by simply tuning the external magnetic field. For the states |1〉, |2〉 of
6Li, Feshbach resonance occurs at B ≈ 832G as shown in Figure.2.3. On the left side of the

resonance, as > 0, interaction is repulsive, the energy of the triplet state is still above the singlet

bound state, atoms therefore tend to fall into the bound state and form stable molecules,

Bose-Einstein condensate (BEC) can form at ultracold temperature. This side is called the BEC

side. On the other side of the resonance , where as < 0, interaction is attractive. The Energy of
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the triplet state is lower than the singlet bound state, allowing atoms to form weakly bound

Cooper pairs at low temperature and turn into a superfluid. This side of resonance is called the

BCS side. The entrie region across the Feshbach resonance is known as BEC-BCS crossover. In

fact, by tuning the interaction strength between two fermionic spin states, one can smoothly

cross over from a regime of tightly bound molecules to a regime of long range Cooper pairs,

whose characteristic size is much larger than the interparticle spacing. In the middle, we have

a new type of superfluidity, where the pair size is comparable to interparticle spacing.

Figure 2.4: Atom pairs in the BEC-BCS crossover, figure adopted from [Ketterle and Zwierlein
(2008)].
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CHAPTER

3

EXPERIMENTAL SETUP

This chapter introduces our experimental setup for trapping and cooling 6Li atoms, specifically

highlighting the innovative use of Digital Micro-Mirror Devices (DMDs) to create a versatile

box potential and manipulate ultracold atomic gases. Our apparatus consist of a high vac-

cum chamber featuring the lithium source, Zeeman slower, a magnet system providing high

magnetic field surrounding the chamber, a Coherent 899 ring dye laser for lasering cooling

and imaging, two CCD cameras, a high power CO2 laser for evaporative cooling, three DMDs

for creating box potential and perturbation, and all other associated optics. Comprehensive

details of our trapping and cooling techniques can be found in previous students’ theses [Kinast

(2006); Elliott (2014)], this chapter provides a concise summary of our standard techniques

and focuses on the upgrade of our box potential-the additional DMD and associated optics

that we added for creating an independent controlled perturbation inside the box.

3.1 Optical cooling and trapping

3.1.1 Zeeman slower

For daily experiment, it starts with heating up the lithium sample in the oven region. Typically

when temperature reaches 3950C, the lithium sample is adequately vaporized. As atoms exit
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the oven region, they attain speeds of approximately 2 km/s, which is too fast to be captured

by the Magneto-optical trap(MOT) in the main chamber. Therefore the first stage of cooling

is provided by a Zeeman slower. The slower is composed of several wire coils coaxial with

the slowing beam direction, creating a spatially varying bias magnetic field. Upon entering

the slower, the motion of atoms is impeded by a slowing beam ,which is red-detuned from

the D2 transition of 6Li by roughly 200 MHz. The velocity of atomic beam and slowing beam

are counterpropagating, causing a Doppler shift that brings a portion of the atoms close to

resonance with slowing beam. Atoms therefore absorb counterpropagating photons and then

emit photons in random directions. The net result is slowing down of atom speed. The tapered

bias field shifts the energy level of atoms, making sure atoms remain resonant with the Doppler-

shifted slowing beam as they travel along the slower. Upon exiting the slower, atom speed drops

to approximately 30 m/s, which is sufficiently slow for them to be captured by the MOT.

Figure 3.1: Left: 6Li oven. Right: Zeeman slower

3.1.2 Magneto-optical trap(MOT)

When atoms enter the main vacuum chamber, they undergo trapping and cooling through the

interaction with three pairs of retroreflected, mutually orthogonal, red-detuned laser beams.

These beams are carefully arranged to intersect near the zero point of a quadrupole magnetic

field, forming what is known as a Magneto-Optical Trap (MOT). The laser beams employed

in the MOT are generated by a Coherent 899 ring dye laser, which is pumped by a Verdi-12

solid-state laser, alongside standard frequency stabilization techniques. The wavelength of

these beams is finely tuned to the D2 transition,as illustrated in Fig 3.2, resonating near 670.79

nm with FWHM of 5.9 MHz.

The cooling mechanism of the Magneto-Optical Trap(MOT) comprises two parts: velocity-

dependent radiation pressure and spatially-dependent radiation pressure. We are going to
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Figure 3.2: Fine structure and hyperfine structure of 6Li.
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discuss the velocity -dependent part first. Consider an atom with a simple two level transition

frequencyωa moving from right to left, illuminated by a counterpropagating laser beams com-

posed of photons with a frequencyωp that is red-detuned from atomic transition,ωp <ωa , as

illustrated in Figure 3.3. As the atom moves, the laser beam approaching from the left undergoes

a Doppler shift toward resonance with the atomic transition, while the beam approaching from

the right experiences a Doppler shift further away from resonance. Consequently, the atom

is more likely to absorb photons from the beam propagating from left to right, opposite to

its velocity direction, resulting in a reduction of the atom’s momentum in that direction. This

one-dimensional illustration can be extended to three dimensions, involving three pairs of

mutually orthogonal, counterpropagating, red-detuned laser beams. This optical aspect of the

MOT constrains atoms in momentum space without spatial confinement. To achieve spatial

confinement, the magnetic component is required.

Figure 3.3: Illustration of Doppler cooling. Laser frequency is smaller than atomic transition
frequency,ωp <ωa . Atom moving from right to left , photons propagating from left to right is
Doppler shifted towardsωa , photons propagating from right to left are Doppler shifted away
fromωa , therefore atom is more likely to absorb photons travelling from left to right, reducing
its momentum. Same principle applies to atoms travelling from left to right.

To elucidate the achievement of spatial confinement, consider an atom with a ground state

total angular momentum F = 0 and an excited state with total angular momentum is F ′ = 1.

For ground state, mF = 0, while for excited state, m ′F = 0,±1. A spatially varying magnetic

field will induces a spatially dependent energy shift, or Zeeman shift, for the m ′F =±1 excited

sublevels of 6Li atom. Figure 3.4 shows how the energy tuning of magnetic field sublevels

in the ground and excited states varies with dimension x . The laser frequency is slighted

red-shifted relative to the atomic transition from F = 0 to F ′ = 1 at zero magnetic field by δ.

Transition from ground state to excited state with m ′F = 1 requires absorption ofσ+-circularly

polarized photons, while transition to excited state with m ′F =−1 requires absorption ofσ−

-circularly polarized photons. Now consider an atom move freely in a magnetic field increasing

linearly in the positive direction about a zero point x = 0. If we arrange our beams such thatσ−
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polarized light travelling from right to left,σ+ polarized light travelling from left to right. The

laser frequency is red-detuned with respect to atomic transition from F = 0 to F ′ = 1, then an

atom in regions of negative magnetic field is more likely to absorbσ+ photon, likewise an atom

in regions of positive magnetic field is more likely to absorbσ− photon. The net result is that

the atom will move toward the zero point. For small displacement about x = 0, this restoring

force is linear. Again, this 1D case can be generalized to 3D, together with the momentum

damping.

Figure 3.4: The spatial restoring force of MOT arises from preferential absorption of photons
with a particular polarization based on atom’s position.ωp is laser frequency, it is red-shifted δ
relative to atomic transition frequency. In the figure atom is on the x < 0 part, it is more likely to
absorb photons withσ+ polarization since this transition is Zeeman shifted toward resonance,
atom is pushed toward x = 0. When atom wanders toward x > 0, it is more likely to absorbσ−

photon, again pushed toward x = 0.

The frequency of the MOT beam primarily corresponds to the transition from F = 3/2

ground state to the excited state,as illustrated in Figure 3.2. However, upon exiting the Zeeman

slower, atoms populate both F = 1/2 and F = 3/2 ground states. The F = 1/2 ground state

is about 228 MHz lower than F = 3/2 state. To effectively cool down atoms in both states, an
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Acoustic-Optical Modulator is employed to generate an additional ’repumper’ beam, corre-

sponding to the transition from the F = 1/2 ground state to the excited state. These repumper

beams are then combined with the MOT beams before entering the vacuum chamber. The

power ratio of the MOT beam to the repumper beam is set to 3:1 based on experience for

best cooling performance.Figure 3.6 is the schematic setup of the MOT around the vacuum

chamber, inset shows the fluorescence of atom cloud trapped in the MOT.

Figure 3.5: The Magneto-Optical Trap(MOT) configuration. Three pairs of mutually orthogo-
nal, counter propagating, red-shifted, fix polarized laser beam and the quadrupole magnetic
field generated by two Anti-Helmholtz coils.

Despite the success of laser cooling and trapping in MOT, there are limitations on how

cold this method can reach. These techniques rely on atoms constantly absorbing and re-

emitting photons. Trapped atoms therefore experience small, random momentum transfers

that fundamentally restrict how low a temperature can be reached. This lower bound is given

by [Fox (2006)]

Tl i mi t =
ħhΓ
2kB

, (3.1)

where Γ is the linewidth of the relevant optical transition. For 6Li, this yields Tl i mi t ≈ 140µK.

While 140µK sounds already a very low temperature, it is still many orders of magnitude above

the temperature to reach quantum degeneracy. Therefore, we require a second stage of cooling,

known as evaporative cooling, which does not involve absorption and emission of photons.
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Figure 3.6: Schematics of the setup of MOT,along with Zeeman slower and lithium oven. Inset
shows fluorescence from atoms trapped in the MOT.

3.2 Far Off-resonance Trap(FORT)

In our lab, evaporative cooling is conducted in a far off-resonance trap(FORT) that is produced

by a Coherent GEM CO2 laser. The output power of this laser is approximately 140 watts,

operating at a wavelength of 10.6 µm. This wavelength is almost sixteen times larger than the

670.9 nm D2 transition of 6Li. As a result, the absorption rate is only 2 photons/hour.

3.2.1 Electric Dipole Force

Our CO2 laser is positioned so that the focus of the beam overlaps with the location of 6Li

atoms confined in the MOT. The beam induces an electric dipole moment on the atoms. The

interaction energy associated with an atom of polarizability α in the electric field E is given by

Ud =−
αE2

2
. (3.2)

Here, the bar indicates that the field is averaged over many optical cycles. Assuming electric

field is slowly varying, then E2 = E 2
0 /2, whre E0 is the magnitude of electric field. Ud can be
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expressed in terms of laser intensity I , in MKS units as

Ud =−
1

2ε0c
αI . (3.3)

Here, ε0 is the permittivity of free space,c is speed of light. Since ε0, c , I are all positive quan-

tities, whether the dipole potential is attractive or repulsive denpends on the sign of α. For a

cylindrically symmetric system, the intensity of a focused Gaussian beam is given by[Brooker

(2003)]

I (r, z ) =
I0

1+ (z/z0)2
exp

�

−
2r 2

r 2
0

�

. (3.4)

Here, I0 is the maximum beam intensity, z0 =
πr 2

0
λ is the Rayleigh range, and r0 is the 1/e 2

intensity radius of the beam at z = 0. λ is the wavelength of the beam. Therefore, the dipole

potential Eq.3.2 can be expressed as

Ud (r, z ) =−
U0

1+ (z/z0)2
exp

�

−
2r 2

r 2
0

�

. (3.5)

Here, the maximum trap depth in MKS units is given by

U0 =
αI0

2ε0c
. (3.6)

The polarizability can be written as

α=
α0ω

2
0

ω2
0−ω2

(3.7)

α0 is the static polarizability,ω is the laser frequency,ω0 is the transition frequency. Notably,

atoms are drawn towards regions of high intensity when exposed to red-detuned beams and re-

pelled by blue-detuned beams. Figure.3.7 shows the geometry of the attractive dipole potential.

Furthermore, due to the considerable detuning of our CO2 beam from any considered atomic

transition frequency, atoms in different quantum states undergo essentially identical forces.

This aspect is particularly significant for our experiments, as we consistently confine at least

two distinct hyperfine ground states of 6Li. Consequently, the trapping potential generated by

the CO2 beam offers a state-independent trapping mechanism.

3.2.2 Evaporative cooling

Evaporative cooling is a very powerful cooling method to reach nano-Kelvin temperature.

In fact, it is so far the only cooling method for Boson and Fermion gas to reach quantum
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Figure 3.7: Attractive dipole potential generated by a focused laser beam propagating in z
direction

degeneracy with high density1.

The mechanism of evaporative cooling, as its name suggests, is very similar to cooling

down a cup of coffee. When a cup of coffee cools, it does so because the most energetic water

molecules escape. The molecules which have become steam trade some of their kinetic energy

to overcome the heat of evaporation, and when they do, they can leave the cup. Because only

the most energetic molecules can surmount this evaporation barrier, the atoms which leave

have, on average, more energy than the atoms in the cup, and the total average energy of the

tea is reduced. In the same way, we design our experiments so that the most energetic atoms

will leave the trap.

At the beginning of evaporative cooling, the FORT loaded completely, the MOT beam

extinguished. At this point, we have over 2 million atoms confined in the FORT. Assuming

atoms equally populate state |1〉 and |2〉, then all the atoms start to collide with each other.

When the trap depth is way higher than the average energy of trapped atom, the probability of

an atom escaping the trap is negligible. However, if the trap depth is only a few times greater

1Recently, direct laser cooling to quantum degeneracy are achieved by several groups [Stellmer et al. (2013);
Hu et al. (2017)]
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than the average energy of a trapped atom, collisions between atoms result in some acquiring

sufficient energy to escape the trap, while others lose energy and go into deep portion of the

trap. As high-energy atoms exit the trap, those remaining are left with lower average energy.

This process occurs continuously: the hottest atoms leave the trap, the remaining cooler atoms

rethermalize via collision. Consequently, evaporative cooling is a cooling procedure that we

sacrifices majority of hot atoms to get ultracold atoms with high phase space density.

Figure 3.8: Forced evaporative cooling by lowering the trap depth, atoms with high energy
continuously leave the trap.

Evaporation with trap depth hold at constant,i.e. the CO2 laser maintaining at full power,

the process is called " free evaporation." Using this method, atoms can be cooled down to 50µK.

Further cooling of the sample is achieved through "forced evaporation", wherein the trap depth

is gradually reduced. This reduction is accomplished by applying a 40 MHz RF signal to an

acoustic-optical modulator (AOM) placed at the output of CO2 laser. Consequently, the output

beam undergoes modulation by the RF signal. A lowering curve is sent to the function generator

with user defined parameters including final trap depth and lowering time. A standard lowering

curve is

U (t ) =U0

�

1+
t

τ

�−1.44

. (3.8)

By the end of the process, we are left with around 100,000 atoms in each spin state, and

temperature as low as a few tens of nano-Kelvin.

3.2.3 Imaging the atoms

To image the atomic cloud, we perform absorption imaging with two CCD Andor cameras, one

for horizontal imaging, the other for vertical imaging[Elliott (2014)], to image the atoms in two

orthogonal directions. Approximately 1 mW of resonant light from the dye laser illuminates

the atoms for about 5 µs. The atoms absorb the resonant light from the imaging pulse and
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prevent the light from reaching the CCD array of the Andor camera that is placed behind the

atom cloud. As the size of the imaging beam is much larger than the size of the atom cloud, a

shadow of the atom cloud is observed in the camera. This imaging beam completely destroys

the cloud. Immediately after imaging the atoms, the camera is set to take another shot with no

atoms present. We refer to the first shot with cloud shadow as signal shot, the second shot as

reference shot or background shot. The image of atomic cloud can be extracted by subtracting

the reference shot from signal shot.The subtracted image is further processed to extract the

total atom number and the width of the atom cloud. From the total atom number and the

width of the atom cloud, the temperature and the density of the atom cloud is calculated.

Figure 3.9 shows the typical absorption image of forced evaporative cloud taken by horizontal

CCD camera. The final trap depth is 0.18% of total CO2 power, the cloud is around 200 µm long

along axial direction. Each imaging beam is set to on-resonance with one of the two spins at

magnetic field of 832G. The imaging frequency is controlled by two different AOMs. At 832G,

we calculate the frequency separation between the two trapped states |1〉 and |2〉 is 76.2 MHz.

Figure 3.9: Absorption image of atomic cloud after forced evaporation to 0.18% of the maxi-
mum trap depth, the cloud is one spin of the atoms.

3.3 Optical box potential

At the end of forced evaporation, we maintain the CO2 laser at final depth power, simultaneously

we ramp up the repulsive box potential. Once the box potential reaches its maximum intensity,

the FORT is turned off, allowing the atoms to be released into the box. Our Box potential are

formed by 2 blue-detuned laser beams and 2 digital-micromirror devices(DMDs), along with
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other associated optics. One DMD produces four vertical beam sheets at a frequency of 532 nm,

while the other generates two horizontal beam sheets at a frequency of 669 nm. The reason

why we chose beams with different wavelengths will be addressed later. We carefully align

the box to the position of the center of the magnetic bowl formed by the bias magnetic field.

A schematic configuration of the box potential is depicted in Figure 3.10. From now on, we

denote the DMD responsible for generating the four vertical box walls as the vertical DMD, and

the one generating the two horizontal box walls as the horizontal DMD. For the experiment

discussed in this dissertation, we added a third DMD which enables independent control of

the perturbation used to probe the atoms. We refer to this DMD as perturbation DMD.

Figure 3.10: Configuration of the box potential. The box is formed by two horizontal beam
sheets with wavelength 669 nm and four verical beam sheets with wavelength 532 nm.

3.3.1 Motivation for using box potential

Many previous experiments conducted by our group [Joseph et al. (2007); Cao et al. (2011);

Elliott et al. (2014); Joseph et al. (2015)], which focused on studying the transport properties

of unitary Fermi gas, were performed in the harmonic trap generated by the focused CO2

laser beam. However, this method has a significant drawback: the cloud density varies from

central maximum to zero at edge. As a result, the transport coefficients extracted from these

experiments were always "cloud averaged" values [Joseph et al. (2015)]. This feature makes

the theoretical calculation [Bluhm et al. (2017)]much more complicated. The theorists would
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rather have a uniform density. That’s why we decided to switch to the spatial light modulation

techniques. The box potential creates an almost uniform density distribution inside the trap.

Although there is still variation from the center of the box to the edge due to magnetic curvature

as shown in Figure 3.16, that is a considerable improvement over the harmonic trap. Box

potentials have been widely adopted by research groups worldwide over the last decade to

study many-body physics of quantum gas. For further details on the subject, we recommend

consulting a recent review [Navon et al. (2021)].

3.3.2 Digital Micromirror Devices(DMDs)

A digital micromirror devices(DMDs) is essentially a prgrammable rectangular array of millions

highly reflective aluminum micromirrors, each around 10 µm in size,capable of being individ-

ually switched ’on’ or ’off’ (corresponding to different tilting angles) to spatially modulate the

amplitude of a beam. This enables the creation of arbitrary intensity patterns. Additionally,

DMDs offer the advantage of fast full-frame refresh rates on the order of 20 kHz, approximately

20 times faster than comparable liquid crystal-based spatial light modulators (SLMs).

Figure 3.11: Two micromirrors, one in on state, one in off state. Figure adopted from [Lee
(2008)]

The two DMDs we utilized for the horizontal box walls and perturbation are TI-DLP6500
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Figure 3.12: A rectangular pattern is loaded into the DMD chip.

models, with an array size of 1920x1080 and each mirror measuring 7.56 µm in size, resulting

in over 2 million micromirrors. Each micromirror can be tilted to +/-12o relative to a flat state,

corresponding to an ’on’ or ’off’ state, with a refresh rate of 9500Hz for binary patterns. The

DMD chip is connected to a DLPC900 digital controller via a ribbon cable, and the controller is

linked to our lab computer, providing a reliable and efficient programming environment. We

program the DMD array with binary image patterns of corresponding resolution, where "1"

represents the ’on’ state, directing the beam into the vacuum chamber, and "0" represents the

’off’ state, diverting the beams away from the system. To control the horizontal and perturbation

patterns, we utilized a graphical user interface (GUI) downloaded from the Texas Instruments

website, offering sufficient functions for pattern control.

For the vertical box DMD, we utilize VIALUX V7001 SuperSpeed V-Modules, which incorpo-

rate TI-DLP7000 with a high performance controller board. Together, they provide a pattern

refresh rate up to 32 kHz, mirror size is 13.56um. Figure 3.12 displays a picture showing the

binary box pattern loaded into the vertical DMD.

The choice of these DMDs, along with the associated projection beams, is driven by practical

considerations. The goal is to construct a box potential that is robust enough to confine atoms

with a range of energies for a reasonably long duration, ideally on the order of seconds. The

depth of the potential needs to exceed the typical Fermi energy by several times, which is

approximately 0.2 µK. Referring back to the expression of the dipole potential in Eq.3.5,3.6

and 3.7, the potential scales inversely withω2
0−ω

2. A beam with frequency close to atomic

transition frequency will produce a much deeper potential. However, the beam frequency
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cannot be too close to the atomic transition frequency, as this would lead to the loss of most

atoms. Therefore, we utilize a Toptica single-mode diode laser centered at 669 nm as the source

beam for the horizontal DMD. The output for this laser is about 200 mW. This frequency is 2

nm away from atomic transition frequency, which is close enough to produce a strong box

wall, about a few µK deep, with such low power (consider the loss of power through the optical

path). Also, we only use the horizontal beam to project the two horizontal beam sheets of the

box, to ensure negligible atom loss due to this closer to resonance beam.

The setup for the vertical beam requires some additional considerations. We have only two

window ports available in the vertical direction of the vacuum chamber: one at the top and one

at the bottom. These ports are primarily used for the vertical MOT beams and vertical imaging

beams. Given this limitation, we have no other choice to setup the vertical box beam but to

share partial of the same beam path with MOT and imaging beam. This arrangement poses no

issues for the MOT, as the MOT beam is extinguished at the start of forced evaporation, well

before data collection begins. However, for optimal measurements, it is desirable to capture

in-situ images to minimize any disturbances to the properties under study. This means that

the imaging beams need to be activated when the box beams are present. To separate the

imaging beam from the box beam, we utilize a dichroic mirror capable of spectrally separating

light based on wavelength. Lowpass dichroic mirrors feature a transmission and reflection

band divided by a cut-on wavelength. These dichroics are highly reflective below the cut-on

wavelength and highly transmissive above it. By employing such a dichroic mirror, we can

separate the box beam from the imaging beam just outside the vacuum chamber.

However, a challenge arises due to the proximity of the 669 nm box beam to the frequency of

the imaging beam, which is at 671 nm. This close frequency match makes it nearly impossible

to find a suitable dichroic mirror capable of effectively separating them.

Another factor we need to consider is that the vertical beams are also utilized as perturbation

beams. Given that the dipole force exerted by the 669 nm beam, even with a small amount

of light, is still too strong, we risk losing control over the perturbation strength. Additionally,

light close to resonance is more likely to be absorbed by atoms, resulting significant atom loss,

therefore it cannot illuminate the atoms for too long.

All of these considerations lead us to opt for a vertical beam that is far from resonance.

However, this necessitates a significant increase in input power compared to the horizontal

input power. We employ a Coherent Verdi 10 diode laser, which outputs a high-power beam at

532 nm. This wavelength is sufficiently below the atomic transition wavelength, allowing the

dichroic mirror to efficiently separate the box beam and imaging beam. The Verdi 10 has an

output power of up to 10 watts, but considering the damage threshold of the DMD and losses

along the optical path, a 2.2-watt output power is deemed sufficient. Figure 3.13 displays the
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(a) (b)

Figure 3.13: Box beam pattern taken by Thorlab camera at focus of microscopic objective, the
size of the box is 150 µm× 50 µm . (a) image of box only, (b) image of box plus perturbation.

image of pure box pattern(left) along with typical sinusoidal perturbation(right).The images

are taken by a ThorLabs DCC1545M CMOS camera(pixel size ≈ 5.3µm) placed at the focal

plane of the microscopic objective, which we use to de-magnify the DMD pattern.

3.3.3 Box alignment and loading

With the DMDs and other optical components[Wang (2022)] in place, the next step is to position

the box correctly inside the main chamber. Obviously we need to align the box with the FORT,

but there is one more thing we need to be aware of: the effect of the bias magnetic field. The

experiment is typically conducted in the strongly interacting regime, where |B | ≈ 832G. Chapter

2 covered the detail electronic structure of 6Li. Refering back to Figure.2.1, we can see that the

two lowest states |1〉, |2〉 are both high-field seeking, which means they tend to fall into the

high field region. The geometry of the magnets allows for the measurement of single harmonic

oscillation frequency to describe the magnetic potential in all three directions. The large size of

the magnet coils relative to the atomic cloud creates a harmonic potential for initial energies

of the confined atoms, and elementary magnetostatics relates the oscillation frequency of a

single direction to the remaining two.

If we position the origin at the center of the atomic cloud, with the CO2 beam propagating

in the z-direction and the two coils aligned along the x-direction, the magnetic field decreases

as we approach the origin along the x-axis, while it increases toward the origin in the y-z

plane. Given that the two trapped states are high-field seekers, the magnetic potential must be

repulsive along the x-axis and attractive along the y and z axes. Thus, we have

Uma g =−
1

2
mω2

x m x 2+
1

2
mω2

y m y 2+
1

2
mω2

z m z 2 (3.9)
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Meanwhile, the magnetic dipole moment µ aligns itself with local magnetic field, leading to

Uma g =−µ ·B=−µB . Maxwell’s equation requires∇2B= 0. Assuming B= B x̂ , we have

∇2B=∇2B x̂ =∇2
�−Uma g

µ

�

x̂ = 0 (3.10)

Using Eq.3.9 yields

−ω2
x m +ω

2
y m +ω

2
z m = 0 (3.11)

Cylindrical symmetry of the magnets requiresωy m =ωz m , therefore

ω2
z m =ω

2
y m =

ω2
x m

2
(3.12)

This implies that the magnetic force in the vertical direction is twice as strong as in the horizontal

direction. Additionally, since the force is repulsive, any vertical misalignment of the box position

can be easily detected by observing a density distribution leaning toward one side of the wall.

Horizontal alignment is more complex, as the force is weaker and attractive. To align the

box centered on the magnetic field, first we need to find where the center is. This is achieved

through what we refer to as the "Slosh mode" experiment, where we intentionally release the

gas from the FORT at an off-centered position. The cloud then moves toward the horizontal

center of the magnetic field and oscillates around this center with an angular frequency of

ωz m . The trajectory of the cloud is captured by two CCD cameras. The measurement position

of the central density versus time after release in the y-direction is depicted in Figure 3.14. This

enables us to determine the degree of deviation from the horizontal center.

With the box positioned correctly, the actual experiment starts with transfer the atoms from

FORT into box potential. At the conclusion of forced evaporation, the FORT is maintained at

its desired minimum value, and we gradually ramp up (a process taking 0.5 seconds) both

the vertical and horizontal box beams to their maximum strength. Subsequently, we release

the atoms from the FORT into the box trap by turning off the CO2 laser power, allowing 80

milliseconds for the atoms to thermalize. Unfortunately, the axial size of the cloud in CO2 trap,

which is over 200 µm, is larger than the typical axial size of the box, 150µm. Consequently,

there will always be some portion of the atoms that cannot be captured by the box, as depicted

in Figure 3.15.

One might question why not utilize a longer box to capture the entire cloud. The reason

lies in the bias magnetic field, which causes the density to vary gradually from the center of

the box to its edge. As the length of the box increases, this effect becomes more pronounced.

Furthermore, a larger box implies lower density. To maintain a better signal-to-noise ratio

and operate within the hydrodynamic regime, it is essential to maintain a reasonably high
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Figure 3.14: Measured position of the central density of the atomic cloud vs time after release
from a shallow optical trap which has been moved off of the magnetic bowl center in the
attractive y-direction. The magnets are producing a field of 832 Gauss. Though only a portion
of one oscillation is visible in the plot, the frequency is found within a quarter of one hertz to
beωy m= 2π × 21.5(0.25)Hz.

Figure 3.15: Atomic cloud after forced evaporation in the FORT, with box beam raising up.
The cloud is over 200 µm long in z direction. The vertical box beam (green) cut at the edge of
the cloud,result loss of portion of the atoms.
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atom density. For day to day experiments, we can load approximately 75,000 to 80,000 atoms

per spin state into the box. Figure 3.16 are images of atoms trapped inside the box, where the

box potential U0(r) produces a rectangular density profile with typical dimension (x , y , z ) =

(52×50×150) µm . The density varies slowly in the axial z direction due to the magnetic field

curvature, but exhibits almost no effect on the narrow radial x and y directions.

Figure 3.16: Absorption image of atomic cloud confined by the box potential(upper), taken
by the horizontal CCD camera, with the normalized 1D density distribution along axial direc-
tion(lower left) and radial direction(lower right)

3.3.4 Perturbing potential

For the hydrodynamic experiments, we establish the initial condition by introducing a small

perturbation potential, δU (z ), to the atom cloud and allowing it to reach equilibrium. This

sinusoidal periodic optical potential is generated using the vertical beam DMD and has the

following form:

δU (z ) = ε[1+ cos(q z +φ)]. (3.13)

Here, ε represents a small amplitude coefficient, which determines the maximum strength
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Figure 3.17: Binary pattern of the sinusoidal perturbation with six spatial periods, generated
by the “JarvisHalftone” error diffusion method.

of the perturbation. The parameter q = 2π/λ is the spatial frequency of the modulation, while

φ denotes a phase factor used to position the perturbation relative to the box. These values are

designated as programmable input parameters to generate the DMD patterns.

To generate the binary pattern of the sinusoidal perturbation, we employ the error diffusion

algorithm [Floyd (1976); Ulichney (1987)]. Error diffusion, a form of halftoning, operates by

dispersing the quantization error accrued during the conversion process to neighboring pixels,

thereby spreading the error across the image. In our application, we utilize "JarvisHalftone", a

method where an input grayscale image is converted into a halftone image of the same size

using Jarvis’s Error Diffusion Method. Figure 3.17 depicts the typical binary pattern utilized for

the hydrodynamic relaxation experiment.

3.3.5 Independent control of perturbations

As we have mentioned before, in our previous experiments, the vertical DMD was responsi-

ble for generating both the box walls and the perturbations within the box trap. In the first

experiment [Baird et al. (2019)], where we measured the hydrodynamic linear response, the

sinusoidal perturbation needed to propagate through the box axially with different speeds,

ranging from subsonic to supersonic. In the second experiment [Wang et al. (2022)], where we

measured the hydrodynamic relaxation, a static sinusoidal perturbation needed to be smoothly

ramped up then turned off instantly. Figure 3.18 shows the binary pattern we used to project

the perturbation. The perturbation was created by switching the patterns in sequence. All

these experimental conditions can only be fulfilled with the high refresh rate DMD, where

the micromirror arrays can be switched between on and off below 30 µs. However, this setup

has some serious limitations. First, the perturbation beam comes from the same source-the
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vertical DMD-as the vertical box beam, which means we can only control the strength of the

perturbation by reducing or increasing the number of micromirrors projecting the perturbation.

Therefore only a small portion of micromirrors could be used to generate the perturbation;

otherwise, it would be too strong to perform any experiments.

Figure 3.18: Perturbation patterns switching on one by one in the hydrodynamic relaxiation
experiment. These binary patterns were uploaded on vertical DMD and triggered in sequence.

Due to this limitation in dynamic range, our ability to vary the wavelength for the perturba-

tion was restricted. This constraint led to the experiment in [Wang et al. (2022)] primarily using

a wavelength around 22 µm. In our new experiment, however, we seek to investigate whether

the measured coefficients depend on the wavelength or remain independent. Consequently,

we require a new method that allows for reliable changes in the perturbation wavelength.

Additionally, the changing of perturbation was realized by flipping the micromirrors.For

the hydrodynamic relaxation experiments, the perturbation was gradually switched on pattern

by pattern, as shown in Figure 3.18. This approach may result in unexpected heating of the

atoms. Additionally, the mirror switching procedure inevitably results in some atom loss.

To address the previously discussed challenges, we adopted a straightforward solution:

separating the box beam from the perturbation beam. Our goal was to independently control

both the wavelength and intensity of the perturbation relative to the box beam. To achieve this,

we redesigned our vertical beam path and introduced a third DMD dedicated to projecting the

perturbation only, the new optical layout is depicted in Figure 3.19. Figure 3.20 is the picture of

the new optical system setup in our lab for the vertical beam path.

The perturbation DMD we employed is TI-DLP6500. After the DMDs projecting the de-

sired patterns, the box beam and perturbation beam are combined using a polarizing beam

splitter(PBS) before entering the chamber. The intensity of each beam is controlled by two

AOMs (not shown in the figure). So the intensity of perturbation is fully controlled by the AOM

now. During the experiment cycle, after the box beam reaches its full strength, we switch off

the CO2 laser trap and allow the atoms to thermalize within the box trap. Subsequently, the

perturbation AOM gradually ramps up the perturbation beam. We load only one pattern into
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Figure 3.19: New box beam and perturbation beam setup around main chamber. The vertical
box DMD and perturbation DMD generate vertical box bema and perurbation beam separately.
They are combined at the polarizing beam splitter placed before the microscopic objective.
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Figure 3.20: Picture of the new vertical optical system setup in our lab. Vertical DMD and
perturbation DMD are shown in the picture.

the perturbation DMD, generating the desired perturbation on the atoms. The perturbation

beam takes approximately 10 ms to reach its maximum intensity. Figure 3.21 illustrates the

power ramp of the perturbation beam over time, measured by a photodiode detector. In the

actual experiment, we first load the sinusoidal pattern into the perturbation DMD. Once atoms

have thermalized inside the box trap, the AOM ramps up the perturbation beam linearly, then

hold it at its maximum for tens of milliseconds until the atoms come to equilibrium again. The

overall atomic cloud exhibits the sinusoidal modulation as shown in Figure 3.22. Subsequently,

we abruptly switch off the perturbation and allow the density profile to relax.

This ramping method is much better than previous method of switching mirrors, thereby

avoiding unnecessary heating and potential atom loss. More importantly, this independent

control of perturbation frees us from the limitation of dynamical range. We are now able to

utilize essentially arbitrary perturbation wavelengths, and the perturbation strength can be

easily adjusted by the AOM to match the desired pattern. Figure 3.22 and Figure 3.23 are the

absorption images of the atomic cloud trapped in the box potential with perturbation of four

different wavelengths. We also plot the corresponding normalized density variation along

z-direction. In actual experiments, this sets the initial condition for studying the hydrodynamic

relaxation.
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Figure 3.21: Measured perturbation beam power versus time, it takes roughly 10ms to ramp
up the perturbation. The power is controlled by a separate AOM. The perturbation power is
held at its maximum for tens of miliseconds so that the system can thermalize, then abruptly
turned off to initialize the relaxiation.

Figure 3.22: Absorption images of atomic cloud in the box trap with perturbation wavelength
of 25 µm and 31 µm.
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Figure 3.23: Absorption images of atomic cloud in the box trap with perturbation wavelength
of 28 µm and 37 µm.

3.3.6 Cancelling the density variation due to the bias magnetic field

The perturbation DMD can now project any pattern without restriction of the intensity of

light. One experiment we did is to try to cancel the density variation of the axial direction

caused by the magnetic bowl, as shown in Figure 3.16. The bias field creates a harmonic

confining potential∝ z 2 in the axial direction, resulting the near quadratic density variation.

In order to cancel this effect, we need to program the DMD to project an inverse quadratic

intensity distribution using the perturbation beam. When combined, these two potentials

effectively raise the bottom of the magnetic bowl, resulting in an almost uniform density profile

as illustrated in Figure 3.24.

In principle, we can calculate the 2D image of DMD pattern numerically and design the

pattern to obtain desired potentials. However, due to optical interference, the actual dipole

potential is sensitive to precise alignment of optical elements and imperfections in the setup,

making it difficult to predict accurately in a real-world setting. Hence, an iterative pattern

optimization is necessary to obtain the best possible reconstruction of the target potential.

Figure 3.25 shows the atomic cloud trapped in the box with added correcting potential. We

plot the normalized 1-dimensional density distribution along axial direction(red curve), and

compare it with the original non-perturbed distribution(blue curve). It shows that we have

created a region over 100µm long around the center of the box where the density distribution
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Figure 3.24: Illustration of cancelling the density variation due to bias field. The magnetic po-
tential(black curve) is harmonic near the center. We project a customized beam with quadratic
intensity distribution(green dashed curve). This intensity profile needs to achieve the target
potential(blue curve).

is nominally uniform.

Figure 3.25: Absorption image of an almost uniform atom density distribution(upper) and
the normalized 1D density profile along z direction(lower). Blue curve is the original density
distribution, red curve is with correcting potential.
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CHAPTER

4

HYDRODYNAMICS AND

THERMODYNAMICS

This chapter covers hydrodynamic and thermodynamic theory, which are the main frame for

describing the evolution of a unitary Fermi gas following a perturbation inside the optical box

potential for our experiment. I will first cover the basic of hydrodynamics and thermodynamics.

Then I will describe the new relaxiation model, which we directly fit the two relaxiation times,τη
and τκ, associated with shear viscosity η and thermal conductivity κ. We then calculate η and

κ from the extracted relaxiation times. There is an important benefit of fitting the relaxation

times directly, instead of fitting the transport coefficients, η and κ, as we did in the previous

experiments [Wang et al. (2022)]. We extract the universal hydrodynamic relaxation times τη
and τκ directly from fitting the free-decay of the spatially periodic density perturbation. The

extracted relaxation times determines the static shear viscosity, static thermal conductivity,

and universal density shift parameters, corrected for the finite response time over which the

viscous force and heat current relax to their Navier-Stokes forms. In the following, we first

derive the thermodynamic relations that appear in our hydrodynamic model. Then briefly

discuss the universal thermodynamics of the unitary Fermi gas. Finally we will cover in detail

the hydrodynamic relaxation model.

43



4.1 Thermodynamic relations

We begin by deriving the basic thermodynamic relations that will be used in our later hydrody-

namic model. Defining V1 as the volume per particle, the density is n = 1/V1. The expansivity

is

β ≡
1

V1

�

∂ V1

∂ T

�

p
=−

1

n

�

∂ n

∂ T

�

p
. (4.1)

Note that β has a dimension of inverse temperature.

The iosthermal sound speed cT and adibatic sound speed cS are defined by

m c 2
T =
�

∂ p

∂ n

�

T
=−
�

∂ p

∂ T

�

n

�

∂ T

∂ n

�

p
, (4.2)

m c 2
S =
�

∂ p

∂ n

�

s1

=−
�

∂ p

∂ s1

�

n

�

∂ s1

∂ n

�

p
, (4.3)

where we have defined s1 as the entropy per particle in Eq 4.3.

Taking the ratios of Eq 4.2 and Eq 4.3, noticing that (∂ T /∂ n )p = 1/(∂ n/∂ T )p and (∂ p/∂ s1)n =

1/(∂ s1/∂ p )n , we obtain the well-known relation

c 2
T

c 2
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�

p

=
cV1

cP1

(4.4)

where cV1
= T (∂ s1/∂ T )n and cP1

= T (∂ s1/∂ T )p are the heat capacities per particle at constant

volume and at constant pressure.

Next, we find the first order pressure change, δp which will be needed later. We have

δp =
�

∂ p

∂ n

�

T
δn +
�

∂ p

∂ T

�

n
δT =
�

∂ p

∂ n

�

T

�

δn +
�

∂ n

∂ p

�

T

�
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∂ T

�

n
δT

�

. (4.5)

Applying the chain rule gives

�

∂ n

∂ p

�

T

�

∂ p

∂ T

�

n
=−
�

∂ n

∂ T

�

p
=βn , (4.6)

where we have used Eq 4.1 for expansivity β . From Eq 4.2, Eq 4.5 and Eq 4.6, we have

δp =m c 2
T (δn +δT̃ ). (4.7)
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Here, we have defined a scaled temperature that has a dimension of density

δT̃ ≡βnδT . (4.8)

For the first order temperature change, we have

δT =
�

∂ T

∂ n

�

s1

δn +
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∂ s1

�

n
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�
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�
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∂ n

�

s1
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. (4.9)

The chain rule gives
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, (4.10)

which we evaluate as follows. Consider s1[T , n (T , p )]. Then

cP1
= T
�

∂ s1

∂ T

�

p
= T
�

∂ s1

∂ T

�

n
+T
�
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∂ n
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∂ T
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p
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−βnT
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. (4.11)

Therefore,
�

∂ s1

∂ n

�

T
=−

cp1
− cV1

βnT
. (4.12)

With (∂ T /∂ s1)n = T /cV1
and Eq 4.10, Eq 4.9 takes the simple form,

δT =

�

cP1

cV1

−1

�

δn

βn
+

T δs1

cV1

. (4.13)

Here, the first term is the adiabatic change in temperature arising from the change in density.

For a monatomic gas in the high temperature limit, Eq 4.1 with n = p/kB T gives β → 1/T and

cP1
/cV1
− 1→ 2/3. Then, δT /T = 2/3(δn/n ), i.e., T /T0 = (n/n0)2/3 as expected. For a unitary

Fermi gas, where s1 = kB fS (θ ), this result holds for all temperature, since (∂ T /∂ n )s1
= (∂ T /∂ n )θ ,

with T = θTF , and TF ∝ n 2/3. The second term is the temperature change arising from the heat

flow per particle, T δs1 =δq1.

4.2 Universal thermodynamics

For the unitary Fermi gas, universality [Ho (2004)] requires that the pressure p and the energy

density E are functions only of density and temperature, related by p = 2E/3. Dimensional

analysis then shows that the energy density takes the simple form

E =
3

5
nεF (n ) fE (θ )≡ n E1, (4.14)
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where E1 is the energy per particle and θ ≡ T /TF is the reduced temperature with TF the local

Fermi temperature. For a balanced 50-50 mixture of two spin components of total density n,

the local Fermi energy is kB TF = εF (n ) = ħh 2(3π2n )2/3/(2m ). The universal function fE (θ ), which

has been measured in [Ku et al. (2012)], determines all of the thermodynamic properties. The

pressure is then

p =
2

5
nεF (n ) fE (θ ). (4.15)

At high temperature limit, fE (θ )→ 5θ/2, we have the classic thermodynamic relation

p = nkB T (4.16)

The entropy density is

s = nkB fS (θ ) = n s1(θ )≡ n s1, (4.17)

where s1 is entropy per particle and fS (θ ) can be determined from fE (θ ).

The adibatic sound speed Eq 4.3 is obtained from Eq 4.15, as Eq 4.17 requires constant θ

for constant s1,

m c 2
S =
�

∂ p

∂ n

�

θ
=

2

3
εF (n ) fE (θ ) =

10

9
E1, (4.18)

where the last form on the right follows from Eq 4.14. Since εF (n ) =m v 2
F /2, Eq 4.18 yields

c 2
S =

v 2
F

3
fE (θ ). (4.19)

The isothermal sound speed, Eq 4.2, is determined from Eq 4.15, with p = p [n ,θ (n , T )],

c 2
T =

1

m

�

∂ p

∂ n

�

T
=

v 2
F

3

�

fE (θ )−
2

5
θ f ′E (θ )
�

, (4.20)

where f ′E (θ ) = ∂θ fE (θ ). At high temperature limit, fE (θ )→ 5θ/2, we have

m c 2
T = kB T (4.21)

From Eq 4.19 and Eq 4.20, we can see that cS/vF and cT /vF are completely determined

by the universal function fE (θ ). With the measured fE (θ ) in [Ku et al. (2012)], we can plot

cS/vF and cT /vF as a function of reduced temperature θ ,i.e. T /TF . Alternatively, because θ is

monotonically increasing with increasing cS/vF and cT /vF , we can plot T /TF as a function of

cS/vF or cT /vF , as shown in Figure 4.1. This relation is very important, it serves as thermometer

for our experiment: we can determine the reduced temperature of atoms trapped in the box

potential from the measured density and sound speed. The data in Figure 4.1 are fitted with a
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(a) (b)

Figure 4.1: (a) Reduced temperatureθ = T /TF as a function of cT /vF . (b) Reduced temperature
θ = T /TF as a function of cS/vF . For θ > 0.2, θ increases monotonically with cT /vF and cS/vF .
Blue dots are obtained from measured Equation of State from [Ku et al. (2012)]. Red curves are
fitting with cubic polynomials: θ (cT /vF ) = 0.478−4.410(cT /vF )+11.688(cT /vF )2−5.711(cT /vF )3

; θ (cS/vF ) = −0.399+ 0.958(cS/vF ) + 0.839(cS/vF )2 − 0.059(cS/vF )3. These relations serve as
thermometers in our experiments, where the reduced temperature is determined from the
fitted sound speed.

cubic polynomial θ (cT /vF ) and θ (cS/vF ).

The heat capacity per particle at constant volume takes a simple form. Using Eq 4.14,

cV1
= T
�

∂ s1

∂ T

�

n
=
�

∂ E1

∂ T

�

n
=

3

5
kB f ′E (θ ). (4.22)

Eq 4.4 then determines the ratio cP1
/cV1
= c 2

S /c 2
T from Eq 4.19 and Eq 4.20,

cP1

cV1

=
fE (θ )

fE (θ )− 2
5θ f ′E (θ )

. (4.23)

Finally, Eq 4.22 and Eq 4.23 determine

1

cV1

−
1

cP1

=
1

kB

2

3

θ

fE (θ )
(4.24)

which will appear later when we derive the equation for sound diffusivity.

With Eq 4.15, we have

θ

kB fE (θ )
=

T

TF kB fE (θ )
=

T

εF fE (θ )
=

2

5

nT

p
, (4.25)
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Eq 4.24 then takes the form [Ku et al. (2012)]

1

cV1

−
1

cP1

=
4

15

nT

p
. (4.26)

4.3 Hydrodynamic theory

The hydrodynamic theory forms the foundation of our data analysis model. In this section, we

derive a kinetic theory relaxation model, which is used to extract the hydrodynamic transport

time τη for the shear viscosity and τκ for the thermal conductivity from the measured free

oscillatory decay of a spatially periodic density perturbation in the normal phase of a unitary

Fermi gas.

4.3.1 Hydrodynamic linear response for a normal fluid

Consider a normal phase unitary Fermi gas, which is a single component fluid with with mass

density ρ ≡mn , where n is the total particle density (we assume a 50-50 mixture of two spin

components) and m is the atom mass. ρ(r, t ) satisfies the continuity equation,

∂tρ+ ∂i (ρvi ) = 0, (4.27)

where a sum over i = x , y , z is implied. The mass flux (momentum density) is ρvi , with vi (r, t )

the velocity field.

Our experiments measure the response of the density in the central region of the box over

short enough time scales that forces arising from the walls of the box can be neglected. As the

perturbing potential δU = 0 during the measured evolution, then momentum density and

corresponding momentum flux ρvi v j obey

∂t (ρvi ) + ∂ j (ρvi v j ) =−∂i p − ∂ j p 1
i j , (4.28)

where −∂i p is the force per unit volume arising from the scalar pressure p and ∂ j p 1
i j is the

viscous force per unit volume, which we will determine using a kinetic theory relaxation model

later. Taking the divergence of Eq 4.28 and using Eq 4.27, we immediately obtain

−∂ 2
t ρ+ ∂i∂ j (ρvi v j ) =−∂ 2

i p − ∂i∂ j p 1
i j . (4.29)

In the linear response regime, the second term on the left hand side is second order in small

quantities and can be dropped. Focusing on one dimension, taking δn = n −n0, where n0 is
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the unperturbed background density, the change in density δn (z , t ) obeys

∂ 2
t δn =

1

m
∂ 2

z δp +
1

m
∂ 2

z p 1
z z . (4.30)

As our initial condition is isothermal, we find the pressure change δp = p −p0 in terms of

the changes in the density δn and temperature δT . In this case, the pressure change can be

written in the form δp =m c 2
T (δn +δT̃ ), as in Eq. 4.7, so that

δn̈ = c 2
T ∂

2
z (δn +δT̃ ) +

1

m
∂ 2

z p 1
z z (4.31)

where δT̃ ≡ n0βδT with β =−1/n (∂ n/∂ T )p the expansivity.

Next, we require the evolution equation for δT , which obeys [Wang et al. (2022)],

δṪ = εLP

δṅ

βn0
+
δq̇

n0cV1

, (4.32)

where εLP = cP1
/cV1
−1 is the Landau-Placzek parameter, which describe the adibatic change

in the temperature arising from the change in density. cV1
, cP1

are heat capacities per particle.

The heat flow per unit volume δq̇ =−∂z JE , where JE is the energy current, which we determine

from a kinetic theory relaxation model later. Multiplying Eq 4.32 by n0β , we obtain

δ ˙̃T = εLPδṅ −
β

cV1

∂z JE (4.33)

4.3.2 Kinetic theory relaxation model

In this section, we derive the relaxation model equations for the normal phase unitary Fermi

gas, which determine how the viscous force and heat current relax to their Navier-Stokes forms.

To proceed, we rewrite Eq 4.31 as

δn̈ = c 2
T ∂

2
z (δn +δT̃ ) +δQη (4.34)

where

δQη ≡
1

m
∂ 2

z p 1
z z . (4.35)

Similarly, Eq 4.33 is written as
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δ ˙̃T = εLPδṅ +δQκ (4.36)

with

δQκ =−
β

cV1

∂z JE . (4.37)

We derive the evolution equations for δQη and δQκ using a relaxation time approximation

for the Boltzmann equation. In this case, the single particle phase space distribution f (r, v, t )

obeys

∂t f +v ·∇ f =−
1

τ
( f − f0)≡−

1

τ
f1 (4.38)

with τ is the relaxation time and f = f0+ f1, with f0 the equilibrium distribution.

In the high-temperature Maxwell-Boltzmann limit, the equilibrium distribution is

f0 = n0W0(U) , (4.39)

where U= v−u is the particle velocity relative to the stream velocity u(r, t ) and
∫

d 3UW (U) = 1.

Here

W0(U) =
e −U2/v 2

0

(v0
p
π)3

, (4.40)

where v0 =
p

2kB T /m is the thermal speed. In general, the background temperature T0 spatially

varies T ≡ T (r). For convenience, we drop the subscript 0 and use T for the temperature in

deriving the relaxation equations.

Without specifying the phase space distribution f , the pressure tensor is given by

pi j =m

∫

d 3UUiUj f (r, v, t ). (4.41)

Taking pi j = p 0
i j +p 1

i j , the scalar pressure p0 ≡ p , is immediately obtained from p 0
i j =δi j p with

f = f0 and i = j = x ,

p =m

∫

d 3UU 2
x f0. (4.42)

Writing
∫

d 3UU 2
x f0 = n0〈U 2

x 〉 ≡ n0U 2
x , we have

p = n0mU 2
x (4.43)

which gives p → n0kB T0 in the Maxwell-Boltzmann limit with Eq 4.40.
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Shear viscosity

We find the relaxation equation for δQη of Eq 4.35 from that of p 1
i j , assuming that the stream

velocity u(r, t ) is position dependent, producing a shear stress. Here, we assume that the

background temperature T0 is spatially constant. To proceed, we first consider Eq 4.41 for i ̸= j .

The equilibrium distribution f0 is a symmetric function of U, so that

∫

d 3UUiUj f0 = 0. (4.44)

Then Eq 4.41 with f = f0+ f1 and Eq 4.44 yield

p 1
i j =m

∫

d 3UUiUj f =m

∫

d 3UUiUj f1. (4.45)

Multiplying Eq 4.38 by
∫

d 3UUiUj and using Eq 4.45, we obtain

ṗ 1
i j +m

∫

d 3UUiUj v k∂k f =−
1

τη
p 1

i j , (4.46)

where we define τ≡τη for the shear viscosity. Then

ṗ 1
i j +

1

τη
p 1

i j =−Ii j , (4.47)

where

Ii j =m

∫

d 3UUiUj v k∂k f =m

∫

d 3UUiUj v k ∂U l

∂ x k

∂ f

∂U l
. (4.48)

For fast relaxation, where f1→τηvk∂k f in Eq 4.38, we see that p 1
i j ⋍τηIi j is already first order

in τη, so that we can take f → f0 in Eq 4.48. Using U= v−u,

∂U l

∂ x k
=−

∂ u l

∂ x k
. (4.49)

Then with vk =Uk +uk in Eq 4.48, we obtain

Ii j =−m
∂ u l

∂ x k

∫

d 3UUiUj (Uk +uk )
∂ f0

∂U l
. (4.50)

Integrating by parts, we then have

Ii j =m
∂ u l

∂ x k

∫

d 3U
∂

∂U l
[UiUj (Uk +uk )] f0, (4.51)
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Using ∂Ui/∂Ul =δi l and defining
∫

d 3Ug (U) f0(U) = n0〈g (U)〉, Eq 4.51 can be rewritten as

Ii j =m
∂ u l

∂ x k
n0{δi j 〈Uj (Uk +uk )〉+δ j l 〈Ui (Uk +uk )〉+δk l 〈UiUj 〉} (4.52)

Eq 4.52 is simplified with

n0〈Uj (Uk +uk )〉=
∫

d 3UUj (Uk +uk ) f0 = n0δ j kU 2
x , (4.53)

where the uk term vanishes since f0 is symmetric in Uj . Hence, we can write 〈UiUj 〉=δi jU 2
x .

With p = n0m U 2
x from Eq 4.43, we have

Ii j = p
∂ u l

∂ x k
{δi lδ j k +δ j lδi k +δk lδi j }. (4.54)

Carrying out the sums over repeated indices, we obtain

Ii j = p

�

∂ u i

∂ x j
+
∂ u j

∂ x i
+δi j∇·u
�

, (4.55)

where the δi j term vanishes for i ̸= j .

To determine p 1
i j for all i , j , we consider the symmetric second rank traceless pressure

tensor,

p 1
i j →m

∫

d 3U
�

UiUj −
1

3
δi j U2
�

f1. (4.56)

where the f0 part of f vanishes because it is scalar function of U. Since U2 = T r {UiUj }, evaluat-

ing Eq. 4.56 just changes Ii j in Eq. 4.47 and Eq. 4.55 to

Ii j → Ii j −
1

3
δi j T r {Ii j } ≡ p σi j . (4.57)

The δi j term in Eq. 4.55 makes no contribution to the symmetric traceless tensor, yielding

σi j =
∂ u i

∂ x j
+
∂ u j

∂ x i
−

2

3
δi j∇·u (4.58)

With Eq. 4.57 and Eq. 4.58, Eq. 4.47 determines the relaxation equation for the shear stress

tensor,

ṗ 1
i j +

1

τη
p 1

i j =−p σi j . (4.59)
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For small τη, ṗ 1
i j ≪ p 1

i j/τη, we see that

p 1
i j →−τηp δi j =−ησi j , (4.60)

where

η=τηp (4.61)

is the static shear viscosity.

Now we can evaluate δQη, Eq. 4.35. To first order in small quantities, current conservation,

Eq. 4.27, requires δṅ +n0 ∂z vz = 0, so that

σz z =
4

3
∂z vz =−

4

3

δṅ

n0
. (4.62)

Then, using Eqs. 4.35, 4.58 and 4.59, we obtain finally,

δQ̇η+
1

τη
δQη =

4

3

p

mn0
∂ 2

z δṅ . (4.63)

For fast relaxation, δQ̇η≪δQη/τη, we find,

δQη→
4

3

τηp

mn0
∂ 2

z δṅ =
4

3

η

mn0
∂ 2

z δṅ . (4.64)

In this limit, Eq. 4.34 with Eq. 4.64 reproduces the Navier-Stokes form used in [Wang et al.

(2022)]. We note that Eq. 4.63 is independent of the form of the single particle phase space

distribution, f0(r, v), which has not been explicitly used.

Thermal conductivity

Next, we assume a temperature gradient T (r) and find the relaxation equation for δQκ of

Eq. 4.37 from that of the 1D energy current, JE ,

JE =

∫

d 3v vz

m

2
v2 f , (4.65)

which vanishes for f = f0, since the integrand would be odd in vz . Using Eq. 4.38 with τ≡τκ,

we have

J̇E +
m

2
∂z

∫

d 3v v 2
z v2 f0 =−

1

τκ
JE (4.66)
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or

J̇E +
1

τκ
JE =−∂z Iz z . (4.67)

Here

Iz z =
m

2

∫

d 3v v 2
z v2 f0. (4.68)

We take the equilibrium phase space distribution to be f0(r, v) = n0(r)W0(v), where

W0(v) =
e −v2/v 2

0

(v0
p
π)3

(4.69)

with v0 =
p

2kB T /m the thermal speed. We assume that T = T (r) spatially varies, producing a

temperature gradient, as discussed below. Then,

Iz z =
m

2

1

3
〈v 4〉n (r). (4.70)

Here,

〈v 4〉=
∫

d 3v v 4 W0(v) =
4
p
π

v 4
0

∫

d
�

v

v0

��

v

v0

�6

e −(v /v0)2 , (4.71)

which yields

〈v 4〉=
15

4
v 4

0 = 15
�

kB T

m

�2

. (4.72)

Using Eq. 4.72 in Eq. 4.70, and the pressure p (r) = n (r)kB T (r), we have

Iz z =
5

2

kB

m
n (r)kB T 2(r) =

5

2

kB

m
p (r)T (r). (4.73)

With Eq. 4.67, we then obtain

J̇E +
1

τκ
JE =−

5

2

kB

m
∂z [p (r)T (r) ]. (4.74)

For pure heat flow, mechanical equilibrium requires

∇p (r) = 0. (4.75)

Therefore, Eq. 4.74 becomes

J̇E +
1

τκ
JE =−

5

2

kB

m
p ∂zδT , (4.76)

where we suppress the argument r. Note that the temperature T = T0+δT , with T0 the uniform

background temperature, so that ∂z T = ∂zδT .
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For fast relaxation, where J̇E ≪ JE /τκ, Eq. 4.76 gives

JE →−
5

2

kB

m
τκp ∂zδT ≡−κT ∂zδT . (4.77)

Here, we see that the static thermal conductivity is

κT =
5

2

kB

m
τκp . (4.78)

We findδQ̇κ using Eq. 4.37,δQκ ≡−(β/cV1
)∂z JE . Then, operating on Eq. 4.76 with−(β/cV1

)∂z ,

we have

δQ̇κ+
1

τκ
δQκ =

5

2

kB

m

p

n0cV1

∂ 2
z δT̃ , (4.79)

where δT̃ = n0β δT (see Eq. 4.31).

We note that the explicit coefficient 5/2 in Eq. 4.79 is dependent on the assumed Maxwell-

Boltzmann approximation for the phase space distribution f0, which was used to evaluate

Eq. 4.69. For fast relaxation, where δQ̇κ≪ 1
τκ
δQκ, Eq. 4.79 gives

δQκ→
5

2

kB

m

τκp

n0cV1

∂ 2
z δT̃ =

κT

n0cV1

∂ 2
z δT̃ . (4.80)

In this limit, Eq. 4.36 with Eq. 4.80 reproduces the Navier-Stokes form in [Wang et al. (2022)].

Eqs. 4.34, 4.63, 4.36 and 4.79 together constitute our hydrodynamic relaxation model. Dif-

ferent from the model used in [Wang et al. (2022)], where we assumed instantaneous local

relaxation, (i.e. τη = 0,τκ = 0), here we explicitly incorporate the finite relaxation times into our

model. Next chapter will cover the experimental results that justifies the new model [Li et al.

(2024)], where the measurements demonstrate that τη and τκ are small, but not negligible,

compared to the timescales for the oscillatory decay of the density perturbation.
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CHAPTER

5

DATA PROCESSING AND SIMULATION

With all the experimental and theoretical materials introduced, we are now ready to discuss

our experimental results and data analysis techniques we used to analyze the data.

5.1 Data processing

The experiment starts with taking background shots, which are images of the atom cloud

trapped inside the box potential without any perturbation. At the end of forced evaporation,

the box beams are slowly ramped up(takes about 500 ms) by two AOMs. After the box beam

reaches its maximum, we abruptly turn off the FORT, the atoms start to oscillate inside the

box, and eventually come to equilibrium. One thing worth discussing is the time scale for

extinguishing the CO2 laser trap. The proper procedure should be adiabatically ramped down

the CO2 laser power, so that the atoms can smoothly transfer to the box without any loss. In

reality, we usually load the atoms from a very shallow CO2 trap. Usually the final trap depth is

only 0.18% of the total CO2 power, the energy of the atoms is low enough so that they can not

escape from the box regardless of the switching procedure. This is not true when we release the

atoms from trap with higher depth, 0.5% for instance , the atoms are "hotter" and the cloud is

vertically compressed more strongly, so that sudden release from the FORT results huge loss of

atoms. Additionally, raising the CO2 laser trap depth compresses the cloud vertically, transverse
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to the axial direction, result in an axially longer cloud. Since we can not extend the box axially

further, more atoms will not be captured by the box potential.

The typical background image is shown in Figure 3.16, which also includes the normalized

density distribution along z-axis. From this we can calculate the static box potential U0(z ). In

order to improve the signal to noise ratio, we do not use the original background density profile

to do the calculation directly. Instead, we fit our normalized 1-D background density profile

with an analytic function first.

For the 1-D density profile, we always work with the normalized density distribution, where

we devide the over all density distribution by its peak value n0
1. We can then fit ñ0(z ) = n0(z )/n0

with an analytic function, which is a multiplication of tanh function and a polynomial,

h (z ) =
tanh[(z − z10)/w1]− tanh[(z − z20)/w2]

2

∑

n

an z n . (5.1)

The numerator on the right hand side, the difference between the two tanh functions,

produces a top-hat shape of nominal width z20− z10. w1 and w2 determine the slopes on each

side. The flat top is modulated by multiplying a polynomial. Figure 5.1 shows a typical fit

with a fifth order polynomial. The density offset outside of the box region comes from atoms

trapped outside the box. They are trapped by the repulsive box potential and the harmonic

trap generated by the bias magnetic field, which is attractive on z-axis.

Figure 5.1: Normalized 1D background density ñ0(z ) along the axial direction. Blue dots are
data, red solid curve is fitting with Eq. 5.1 up to n = 5.

1In actual analysis, we define n0 as the average density of the central 35 µm region
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With a smooth density profile obtained from the fit, we can derive the confining potential of

the box trap from the chemical potentialµ. The force arising from the confining potential along

z-axis can be extracted from the measured 1-D density profile n0(z ). The trapping potential is

easily found in the local density approximation from the local chemical potential, µ(z ), where

µ(z ) +U0(z ) =µG , with µG the global chemical potential. Then

U0(z ) =µG −µ(z ) =µG −εF [n0(z )] fµ[θ (z )] (5.2)

Here, fµ(θ ) is a dimensionless universal function of reduced temperature θ , which determines

µ in terms of local Fermi energy εF (n ). fµ(θ ) has been measured precisely in [Ku et al. (2012)].

The reduced temperature θ (z ) = T0/TF (n ) = θ0/[ñ0(z )]2/3. θ0 = T0/TF (n0) is determined from the

measured isothermal sound speed cT and ñ0(z ) = n0(z )/n0, here n0 is the central density. The

global chemical potential is thenµG = εF (n0) fµ(θ0), so that U0 = 0 at the region where n0(z ) = n0

by construction. We define Ũ0(z ) =U0(z )/εF (n0), then

Ũ0(z ) = fµ(θ0)− [ñ0(z )]
2/3 fµ(θ0/[ñ0(z )]

2/3). (5.3)

We obtain U0(z ) in units of εF (n0) as shown in Figure 5.2Typically, we have εF (n0) ≃ 0.18 µK,

the box depth U0 ≃ 0.75 µK.

After taking the background images, we add the perturbation beam and start to take density

relaxation data. The perturbation beam is adiabatically turned on and held at maximum for

around 30 ms so that the atoms can thermalize. The cloud exhibits this sinusoidal density

variation as shown in Figures. 3.22 and 3.23, as we have discussed before, this serves as our initial

condition. Therefore, the initial condition is directly measured without any approximation or

involvement of free fitting parameters.

In principle, one can start with this initial spatial density profile and simulate the whole

evolution process. However, we have found that the initial condition is easily affected by noise,

imaging imperfection and effect of the wall, especially the region close to the box wall where

the oscillation amplitude is small. In practice, we apply a band-pass noise filter to the data in

order to discard the noise and improve the performance of fitting. Figure. 5.3 shows the raw

data (red) and processed data (blue). We can see that the filtered data are smoother and in

good agreement with the fitting. Additionally, the filtering process help us choose the region of

interest (ROI) more precisely, where it contains exactly an integer number of spatial periods.

For a sinusoidal perturbation, the best way to analyze the evolution is to look at the Fourier

space. We perform a Fast Fourier Transform (FFT) and focus on the dominant Fourier compo-

nent that has the largest |δn (q )|, as shown in Figure. 5.4, since it contains most information. In

actual analysis, we found that the real part of δn (q ) contains the correct information we need,
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Figure 5.2: Typical box potential Ũ0(z ) in units of central Fermi energy ε(n0) claculated from
Eq. 5.3 for the density profile of Figure 5.1.

Figure 5.3: Spatial profile of raw data (red dot) and processed data (blue circle) with fitting.
The perturbation wavelength λ≈ 28µm.
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the imaginary part is negligible and just gives a small phase shift. By carefully choosing the ROI,

we can minimize this phase shift and make sure it does not contribute. The corresponding q is

in agreement with the perturbation wavelength we use.

Figure 5.4: FFT of the data in Figure. 5.3. Real part ofδn (q ) as a function of q/2π. The dominant
component has the largest amplitude and contains the most useful information.

The q value is found from the initial condition where the perturbation amplitude is maxi-

mum, and then fixed for all later time to make sure that the data analysis is consistent. Therefore

the data that we fit with our model is Re(δn (q , t )). From now on we use δn (q , t ) to denote

Re(δn (q , t )). We compare δn (q , t )with the predicted value δnp (q , t ) from our hydrodynamic

model. We use the standard Chi-square test to compare δn (q , t ) and δnp (q , t ) at each time,

χ2(q ) =
∑

ti

(〈δn (q , ti )〉−δnp (q , t ))2

σ2
δn (q ,ti )

(5.4)

Here δnp (q , ti ) is obtained from simulation at given time ti by fitting τη,τκ and cT in the

hydrodynamic model in chapter 4. Detail fitting method will be covered later in this chapter. In

one experiment cycle, we take 5 to 8 shots through the whole sequence of ti in random order.

〈δn (q , ti )〉 is the mean of all δn (q , ti ) at ti .σδn (q ,ti ) is the standard deviation from the mean at

each ti .
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5.2 Determining the central density

The central 3D-density n0 is used to find the central Fermi energy, corresponding Fermi Tem-

perature TF , and Fermi speed vF , which determines the reduced temperature θ ≡ T /TF from

the measured isothermal sound speed cT using the known equation of state [Ku et al. (2012)].

The reduced temperature then determines the thermodynamic properties of the sample.

In order to get n0, we take images of the trapped cloud along the x and y axes with two cam-

eras. In this way, we measure the two-dimensional column densities ñ (z , x ) =
∫∞
−∞d y n (x , y , z )

and ñ (z , y ) =
∫∞
−∞d x n (x , y , z ), for each spin state, where z denotes the long axis of the box

and x denotes the direction of the bias magnetic field. For our experiment, the typical box

dimensions are∆x = 52 µm,∆y = 50 µm, and∆z = 150 µm.

The curvature of the bias magnetic field produces a harmonic confining potential∝ z 2,

which causes a noticeable variation of the density over 150 µm as we discussed in chapter 3. In

contrast, the confining potential∝ y 2 produces a much smaller variation of the density over

50 µm along y direction. Further, the number of atoms trapped outside the box along x and y

is negligible. We note that the measured n (y ) is distorted on the right side. This is an artifact of

the imaging path for the vertical camera, which is collinear with the vertically projected beams

that form the sides of the box potential. We assume that the true shapes are nearly identical.

The one-dimensional density along axial direction that we use in analysis, is obtained by

integrating the measured 2D-column density over a limited central region along x , where the

density is slowly varying,

n (z ) =

∫ x2

x1

d x ñ (z , x ) (5.5)

To estimate the 3D density, we assume that n (x , y , z ) approximately factors, as it would in

a true 3D box potential,

n (x , y , z )≃ ñ (x , z )n (y ) (5.6)

We normalize
∫∞
−∞d y n (y ) = 1, so that

∫∞
−∞d y n (x , y , z ) = ñ (x , z ) as it should. The normalized

1D density n (y ), averaged near the center of the box y = yc , is essentially the inverse of the box

length L y along y, as it would for a true box potential. We determine

n (y ) =

∫ z2

z1
d z ñ (z , y )
∫∞
−∞d y
∫ z2

z1
ñ (z , y )

(5.7)

where ñ (z , y ) is the column density measured by the camera oriented along x direction. n (y )

satisfies
∫∞
−∞d y n (y ) = 1 for any choice of z1 and z2. We take z1 and z2 in the central region

of the cloud, where the density is nearly uniform, as used to measure the Fourier transform
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δn (q , t ).

Averaging the column density near the center, xc , zc , where the 2D density is nearly uniform,

we obtain the total central density n0 = 2ñ (xc , zc )n (yc ). For a single spin state, typical values

are n (yc ) = 0.0196/µm= 196/cm, i.e. L y = 51.0 µm, and ñ (xc , zc ) = 8.72× 108/cm2, which

yields n0/2= 1.71×1011/cm3. From n0 we find the Fermi speed vF . This in turn determines the

reduced temperature θ (cT /vF ), where cT =ωT /q is determined from the fit to δn (q , t ).

5.3 Hydrodynamic simulation

Our simulation starts with the hydrodynamic relaxation model we derived in chapter 4, namely

the four coupled differential equations,

δn̈ = c 2
T ∂

2
z (δn +δT̃ ) +δQη (5.8)

δQ̇η+
1

τη
δQη =

4

3

p

mn0
∂ 2

z δṅ (5.9)

δ ˙̃T = εLPδṅ +δQκ (5.10)

δQ̇κ+
1

τκ
δQκ =

5

2

kB

m

p

n0cV1

∂ 2
z δT̃ (5.11)

Eqs. 5.8 and 5.10 describe the changes in density δn (z , t ) and temperature δT (z , t ), Eqs. 5.9

and 5.11 describe the relaxation of viscous force and heat current.

One can directly integrate these four equations numerically, but that would be too time

consuming and inefficient. The best way to do the analysis, as we discussed before, is to look at

Fourier space. We perform a spatial Fourier transformation for the four equations and define

the time dependent Fourier components δn (q , t ) ≡ δn , δT̃ (q , t ) ≡ δT̃ , δQη(q , t ) ≡ δQη and

δQκ, we have

δn̈ =−ω2
T (δn +δT̃ ) +δQη (5.12)

δQ̇η =−
1

τη
δQη−Ω2

ηδṅ (5.13)

δ ˙̃T = εLPδṅ +δQκ (5.14)

δQ̇κ =−
1

τκ
δQκ−Ω2

κδT̃ (5.15)
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where

ωT ≡ cT q (5.16)

Ω2
η ≡

4

3

p

mn0
q 2 (5.17)

Ω2
κ ≡

5

2

kB

m

p

n0cV1

q 2 (5.18)

Because we are working with unitary Fermi gas, using Eq. 4.15 and taking εF (n ) =m v 2
F /2,

vF is the Fermi speed, we have

Ω2
η ≡

4

15
ω2

F fE (θ ), (5.19)

where we defineωF ≡ vF q . Similarly, we can write

Ω2
κ ≡

1

2

kB

cV1

ω2
F fE (θ ). (5.20)

In the short relaxation time limit, we see that δQη → −γηδṅ , with γη ≡ τηΩ2
η =

4η
3n0m q 2 and

δQκ→−γκδT̃ , with γκ ≡τκΩ2
κ =

κT
n0cV1

q 2, reproducing the results in [Wang et al. (2022)].

We limit the spatial region for Fourier transform to the region near the center of the box,

where the variation of background density is small, less than 15%. And we choose exact integer

number of spatial periods so that the imaginary part of Fourier transform is consistent and

negligible. After release from the initial condition, it only takes a few ms for the density variation

to decay completely. This rather short evolution time scale makes sure that the box potential

has negligible contribution to the time dependent density profile in the region of interest, so

that we can ignore it safely.

The four coupled differential equations can be easily solved to determine δn (q , t ) with

the initial conditions δn (q ,0) = A,δT̃ (q ,0) = 0,δQη = 0, and δQκ = 0. The data are fitted with

initial amplitude A, the isothermal sound frequencyωT , and relaxation times τη,τκ as free

parameters.

The data shown in Figures 5.5 and 5.6 are experiments done with four different perturbation

wavelengths. The blue dots are measured data with error bars. The corresponding color curve

are best fit with minimized χ2. We perform the simulation with MATLAB built-in solver ODE

45 to solve theses second-order differential equation numerically. As discussed before, we

vary A,ωT ,τη and τκ as the fitting parameters to run χ2 search for the global minimum. The

obtained isothermal sound frequencyωT = cT q determine the reduced temperature θ (cT /vF )

as we discussed in chapter four.
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Figure 5.5: Fourier component of the density perturbation δn (q , t )with q = 2π/λ, for wave-
length λ = 22.7 µm (upper) and λ = 27.8 µm (lower), at reduced temperatures θ ≃ 0.32 and
θ ≃ 0.30, respectively. Blue dots are data with errorbars. Red solid curves are fitting to the
kinetic relaxation model.
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Figure 5.6: Fourier component of the density perturbation δn (q , t )with q = 2π/λ, for wave-
length λ= 31.25 µm (upper) and λ= 40.0 µm (lower), at reduced temperatures θ ≃ 0.35 and
θ ≃ 0.42, respectively. Blue dots are data with errorbars. Red solid curves are fitting to the
kinetic relaxation model.
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5.4 Analytic solution

The fitting also give us the analytic solutions for all of the responses δn (q , t ),δT̃ (q , t ),δQη(q , t )

and δQκ(q , t ). For each response, we can obtain analytic solution that determines the contri-

butions of 4 different modes, as shown in Figure 5.7 for the density and temperature response.

Here, we use data at λ= 37.0 µm, θ = 0.37 as an example. Two fast modes (purple) arise pre-

dominately from relaxation of the viscous force and heat current to their Navier-Stokes forms

on time scales of τη and τκ. A zero-frequency thermally-diffusive mode (orange) decays at a

rate determined by τκ, which controls the effective frequency dependent thermal conductivity.

Finally, an oscillating first sound mode (blue) decays at a rate determined by τη and τκ, which

control the effective frequency dependent sound diffusivity.

For the density perturbation, the fast modes contribute only 1% at t = 0, and are multiplied

by a factor of 10 in Figure 5.7 to make them visible. The thermally diffusive mode contributes

≃ 35% to the density perturbation, while the first sound mode contributes ≃ 65%. For this

reason, the fit parameters, comprising the frequencyωT and the transport times τη and τκ ,

which determine the oscillation frequency and decay rates of the two dominant modes, are

nearly independent, simplifying the fit procedure.

Figure 5.7: Density and temperature response for T /TF ≃ 0.37 and λ≃ 37.0 µm showing the
mode content. First sound mode (blue), thermally diffusive mode (orange), fast relaxation
mode (purple). The fast relaxation modes are increased ×10 in the density response to make
them visible, ×1 in temperature response.

In contrast to the density response, the fast modes contribute significantly≃ 10% to the short

time response of the temperature perturbation, shown ×1 in Figure.. and more significantly

30% to the short time response of the viscous force and heat current, shown ×1 in Figure 5.8
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We display δQη in units ofω2
Fδn (q , 0) =ω2

F as seen in Eq. 5.8. Similarly, Eq. 5.10 shows that the

natural scale for δQκ is δṅ (q , t ). We display δQκ in units ofωFδn (q , 0) =ωF .
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Figure 5.8: Viscous force and heat current response for T /TF ≃ 0.37 and λ≃ 37.0 µm showing
mode content. First sound mode (blue), thermally diffusive mode (orange), fast relaxation
mode (purple).

Figure 5.9 shows the difference (red) between the fast relaxation approximation (blue) and

the kinetic theory relaxation model (orange). We see that the deviation from the fast relaxation

(long-wavelength) approximation is significant, emphasizing the need for the analysis based on

the relaxation model. With the new kinetic theory model, the finite relaxation time corrections

to the transport properties are included in the analysis, enabling determination of the static

transport properties, as discussed in chapter 6.

5.5 Stored energy

In this section, we estimate the change in the energy per particle W1 that arises from the energy

stored in the initial spatially periodic density profile. This stored energy is converted to kinetic

energy after the perturbation is extinguished and finally into heat. To show that the change in

the average energy per particle is negligible, we determine the stored energy W for the ideal

case of an adiabatic change of the density, δn , starting from a uniform density n0. As the total

number of atoms does not change during the compression, we must have

∫

d 3rδn (r) = 0, (5.21)
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Figure 5.9: Difference (red) between the fast relaxation approximation (blue ) and kinetic
theory model (orange) for the viscous force (left) and heat current (right) with T /TF ≃ 0.37 and
λ≃ 37.0 µm.

Now consider a small volume∆V of the cloud, containing a small number of atoms∆N =

n∆V . Changing the volume for fixed∆N , we have d∆N = d n∆V +nd∆V = 0. Taking n ≃ n0,

the density before perturbation is applied, we have

d∆V =−∆V
d n

n0
(5.22)

The work to change∆V by d∆V is just

d∆W =−p d∆V = (p0+δp )∆V
d n

n0
(5.23)

Then the net work to change the local density from n0 to n is

∆W =∆V

∫ n

n0

d n

n0
(p0+δp ) (5.24)

For the integration variable, we use the local change in density δn ≡ n −n0, d n = dδn .

Assuming an adiabatic change in pressure, p −p0 ≡δp =m c 2
S δn , with cS the adiabatic sound

speed and p0 the uniform background pressure, we have

∆W =∆V

∫ n0

0

dδn ′

n0
(p0+m c 2

S δn ′) =∆V

�

δn
p0

n0
+m c 2

S

(δn )2

2n0

�

(5.25)
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Replacing the local volume∆V by d 3r, we have for the total stored energy

W =

∫

d 3r

�

δn
p0

n0
+m c 2

S

(δn (r))2

2n0

�

≃
m c 2

S

2

∫

d 3r n0

�

δn (r)
n0

�2

(5.26)

In Eq. 5.26, since the background pressure p0 and density n0 are spatially uniform, Eq. 5.22

requires that the term linear in δn vanish. For simplicity,we ignore the spatial variation of

sound speed cS and background density n0 in the region of interest. Defining the stored energy

per particle W1 in terms of the mean square fractional density perturbation, we have finally,

W1 =
m c 2

S

2

�

�

δn (r)
n0

�2�

. (5.27)

The same result can be obtained by finding the rate of change of the total kinetic energy K

from the dissipationless equation of motion n0m∂t v = −∇δp , which yields ∂t (K +W ) = 0,

so that W is the effective potential energy. Note that for a unitary Fermi gas, m c 2
S = 10E1/9

from Eq. 4.18, where E1 is the energy per particle. Therefore for a sinusoidal perturbation with

a 20% amplitude,



[δn (r)/n0]2
�

≃ (0.2)2 ×



sin2(r)
�

= (0.2)2 × 1
2 , which gives W1 ≃ 0.01E1. W1 is

negligible.
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CHAPTER

6

EXPERIMENTAL RESULTS

In this chapter I present the experiment results of the relaxation time measurement and

corresponding transport coefficients [Li et al. (2024)]. In particular, the measured relaxation

times directly determine the universal density shift coefficients for the static shear viscosity

and thermal conductivity. The current experiment results are compared with results from a

previous experiment [Wang et al. (2022)]. In addition, I discuss the Drude model correction

for the previous experiment, which serves as a relatively crude way to estimate the deviation

of measured transport properties from their static values. The Drude corrected results for

previous experiment are compared with current results to show the consistency. Finally we

compare our results of sound diffusivity measurement with the results from MIT group [Patel

et al. (2020)].

6.1 Measured static transport properties

The two relxation times τη and τκ are determined from the fit. The static shear viscosity is

given in units of ħhn0 by

η=τηp =αηħhn0 (6.1)
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Eq 4.15 for p gives the dimensionless shear viscosity cofficient,

αη =
2π

5

τη

τF
fE (θ ) (6.2)

Here we define the Fermi time τF as the time for an atom to move a Fermi wavelength λF at

Fermi speed vF . With λF = 2πħh/(m vF ), and m v 2
F = 2εF , the Fermi time is

τF =
πħh
εF

(6.3)

Similarly, the static thermal conductivity is given in units of ħhn0kB/m by

κT =
5

2

kB

m
τκp =ακ

kB

m
ħhn0 (6.4)

where the dimensionless thermal conductivity coefficient is

ακ =π
τκ
τF

fE (θ ) (6.5)

In order to compare with the static transport properties, we parameterize αη as

αη =α3/2θ
3/2+α2η (6.6)

Here, the first term is high temperature limit, which is obtained from a virational calculation

[Bruun and Smith (2007)],α3/2 = 45π3/2/(64
p

2) = 2.76849≃ 2.77 andα2η is the universal density

shift coefficient, which is used as a fit parameter. Similarly, we parameterize ακ as

ακ =
15

4
(α3/2θ

3/2+α2κ) (6.7)

Here, the leading factor of 15/4 is chosen to yield the correct high temperature limit for the

ratio κT /η. In this limit, Eqs. 6.5 and 6.7 yield κT =
15
4

kB
m , where we have used τκ/τη = 3/2 in

the high temperature Boltzmann limit[Frank et al. (2020)]. One can show that it holds for any

isotropic collision cross section dσ/dΩ.

With Eqs. 6.6 and 6.7, the relaxation times are then parameterized by inverting Eqs. 6.2 and

6.5 as
τη

τF
=αη

5

2π

1

fE (θ )
(6.8)

and
τκ
τF
=ακ

1

π

1

fE (θ )
(6.9)
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Figures. 6.1 and 6.2 show the extracted relaxation time τη for shear viscosity and τκ for

thermal conductivity, in units of the Fermi time τF , as function of reduced temperature θ =

T /TF . The red dashed curves are predicted high-temperature limit, i.e. α2η = 0,α2κ = 0. The

measured relaxation times are on the order of one Fermi time τF , significantly deviating

from this high-T limit. The red solid curves are fitting with Eqs. 6.8 and 6.9 with α2η and α2κ

obtained from the static transport fits. From this we can see the density-shift coefficients α2η

and α2κ are sensitive to the finite relaxation times. For τη/τF , the fit to Eq. 6.8 gives the density-

shift coefficient α2η = 0.45(04); For τκ/τF , the fit to Eq. 6.9 gives the density-shift coefficient

α2κ = 0.22(03).

Figure 6.1: Relaxation time τη in units of Fermi time τF as a function of T /TF . Red solid curve
is fitting to Eq. 6.8 withα2η = 0.45, red dashed curve is the high temperature limit,whereα2η = 0.

One of the major advantages of current optical setup is that we can reliably project essen-

tially any wavelength of perturbation with the third DMD. Figures 6.3 and 6.4 shows τη/τF and

τκ/τF as a function of wavelengths for roughly the same T /TF ≃ 0.3. One can see for different

wavelengths, ranging from 22µm to 40µm, τη/τF and τκ/τF shows negligible λ-dependence

as expected.
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Figure 6.2: Relaxation time τκ in units of Fermi time τF as a function of T /TF . Red solid curve
is fitting to Eq. 6.9 withα2κ = 0.22, red dashed curve is the high temperature limit, whereα2κ = 0.

Figure 6.3: Relaxation time τη in units of Fermi time τF as a function of perturbation wave-
length λ.
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Figure 6.4: Relaxation time τκ in units of Fermi time τF as a function of perturbation wave-
length λ.

Due to experimental constraint, the highest reduced temperature we can reach without loss

of atoms in purpose is around θ ≃ 0.43. At this point, we got τκ/τη ≃ 1.2, deviating significantly

from the high-T limit (dashed curves), where τκ/τη = 3/2 [Frank et al. (2020)].

The measured τη is then used to determine the static shear viscosity and thermal conduc-

tivity with Eqs 6.1 and 6.4. Pressure p is determined by Eq 4.15. Figure 6.5 is the extracted

dimensionless shear viscosity (blue dots) plotted as a function of reduced temperature θ . The

red solid curve is fit with Eq. 6.6, where α3/2 =
45π3/2

64
p

2
≃ 2.77 [Bruun and Smith (2007); Braby

et al. (2010); Bluhm et al. (2017)]. The density shift coefficient is the only fit parameter here,

corresponding to the fitting for τη/τF , it also yields α2η = 0.45(04). The red dashed curve is the

high temperature limit, i.e. α2η = 0.

Similarly, the measuredτκ determines the static thermal conductivity with Eq. 6.4. Figure 6.6

is the extracted dimensionless thermal conductivity versus reduced temperature θ . The red

solid curve is fit with Eq. 6.7 with α2κ the only fitting parameter, yielding α2κ = 0.22(03), i.e., the

shift is 15/4×0.22 in units of n0ħhkB/m . The red-dashed curve is again the high temperature

limit, i.e., α2κ = 0.

The measured relaxation times τη and τκ determine the first sound diffusivity [Landau and
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Figure 6.5: Measured dimensionless shear viscosityαη (blue dots) versus reduced temperature
θ ≡ T /TF .

Figure 6.6: Measured dimensionless thermal conductivity ακ (blue dots) versus reduced tem-
perature θ ≡ T /TF .
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Lifshitz (2013)]D1 in units of ħh/m

D1

ħh/m
=

8π

15

τη

τF
fE (θ ) +

2π

3

τκ
τF
θ (6.10)

Figure 6.7 is the plot of D1 in units of ħh/m , as a function of θ . The red solid curve is the fit with

static shear viscosity and thermal conductivity, substitute Eqs. 6.8 and 6.9, we have

D1

ħh/m
=

4

3
αη+

5

2

θ

fE (θ )
ακ (6.11)

With our measured density shift coefficients, it becomes

D1

ħh/m
=

4

3
(2.77θ 3/2+0.45) +

5

2

θ

fE (θ )
(2.77θ 3/2+0.22) (6.12)

Figure 6.7: Measured first sound diffusivity D1 (blue dots) versus reduced temperature θ ≡
T /TF .

The extracted first sound diffusivity D1 can be used to compare with the MIT group’s sound

attenuation measurement at normal fluid regime. Figure 6.8 is the plot of our sound diffusiv-

ity data (blue) and the sound diffusivity data measured from sound attenuation by Martin

Zwierlein’s group (orange) [Patel et al. (2020)]. We see that the high temperature behavior
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obtained from Eq.6.11 using the fitted density shifted coefficients for the shear viscosity and

thermal conductivity, Eq.6.12, is in good agreement with the sound attenuation measurements.

However, the lower temperature measurements of sound diffusivity in [Patel et al. (2020)], still

in normal fluid regime, exhibit a nearly constant upward shift relative to our relaxation time

measurements.

Figure 6.8: Measured first sound diffusivity D1 (blue dots) from Eq. 6.10, in units of ħh/m
versus reduced temperature θ ≡ T /TF . Red solid curve is from Eq. 6.12. Red-dashed curve (high
temperature limit): fE (θ )→ 5θ/2, D1[ħh/m ] = 7/3× 2.77θ 3/2. Sound diffusivity data of [Patel
et al. (2020)] (orange dots). Error bars (blue dots) are statistical.

6.2 Comparison to Drude model

In this part, we estimate the static transport coefficients from our measured values at finite

frequencies by applying a simple Drude model correction. Here we compare our direct static
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transport properties measurements with the Drude model corrected results from previous

experiment to show some consistency. Before doing that, we need to point out that the Drude

model is not a rigorous way to correct the results. Because the Drude model is merely a crude

estimate for the second order hydrodynamic effects, and it has not been proved to be true for

the strongly interacting Fermi gas in normal fluid regime where the data are taken. Nevertheless,

it still provides certain insights of how breakdown of first order hydrodynamics could effect

the measured results, and also to estimate the extreme cases of possible corrections to the

hydrodynamic relaxation model. More importantly, by comparing our current results with the

Drude corrected results, we justify the necessity of explicitly incorporating the finite relaxation

times in our hydrodynamic model.

In our previous hydrodynamic relaxation model [Wang et al. (2022)], where the relaxation

times assumed to be negligible, we have

δn̈ = c 2
T ∂

2
z (δn +δT̃ ) +

4η

3n0m
∂ 2

z δṅ (6.13)

δ ˙̃T = εLPδṅ +
κT

n0cV
∂ 2

z δT̃ (6.14)

Fitting this model to the data in the Fourier space gave usη andκT measured at finite frequency

ω. In the Drude approximation [Braby et al. (2011); Enss (2012)], the shear viscosity measured

at finite frequency η(ω) is related to the static one η(0) by

η(ω) =
η(0)

1+ (ωτη)2
(6.15)

similarly, for thermal conductivity

κT (ω) =
κT (0)

1+ (ωτκ)2
(6.16)

To estimate the correction, we make the approximationω≃ωS , the adiabatic sound fre-

quency with spatial period λ, which equals (2π/λ)cS (θ ). The adiabatic sound speed cS is deter-

mined from Eq. 4.19, where fE (θ ) is the universal, dimensionless function for unitary Fermi gas

that can be determined with measured Equation of State (EoS) [Ku et al. (2012)], vF =
p

2εF /m

is the Fermi speed. Now, Eqs. 6.8 and 6.9 relate the relaxation time τη and τκ to the static shear
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viscosity and thermal conductivity αη(0) and ακ(0) 1, we find

ωSτη ≃ 5π

√

√

√ 2ħh 2

3mλ2εF (n )

αη(0)
p

fE (θ )
(6.17)

and

ωSτκ ≃ 2π

√

√

√ 2ħh 2

3mλ2εF (n )
ακ(0)
p

fE (θ )
(6.18)

Here, αη(0) and ακ(0) are static dimensionless shear viscosity and thermal conductivity for

a known θ , i.e.ω = 0. With Eqs. 6.15 and 6.16, the measured dimensionless shear viscosity

αη(ωS ) is related to αη(0) by

αη(0) = [1+ (ωSτη)
2] αη(ωS ) (6.19)

Similarly, for thermal conductivity

ακ(0) = [1+ (ωSτκ)
2] ακ(ωS ) (6.20)

Substitute Eqs. 6.17 and 6.18 into Eqs. 6.19 and 6.20, we can solve for the two static transport

coefficients, αη(0) and ακ(0) for a particular reduced temperature θ .

In Figures 6.9 and 6.10, we plot the previous measured dimensionless shear viscosityαη and

thermal conductivity ακ in [Wang et al. (2022)] (black triangles), together with the corrected

value by applying the Drude model (Purple triangles) and the current experiment’s data from

Figures. 6.5 and 6.6 (Blue circles). For the shear viscosity, Figure 6.9, we can see that in the

relatively low temperature regime, θ ≤ 0.35, there is no significant deviation between the new

data (blue circle) and previous measured values (black triangle). The correction from Drude

model is small, which is expected because at low temperature, the gas is colder and the density

is high, both the relaxation time τ and sound frequencyω decreasing, so that we are more in

the fast relaxation regime. Therefore the correction is not significant. As θ increases, we can

clearly see that the previous results from the fast relaxation model are lower than the results

from our new relaxation model, and the Drude model correction for the previous results is also

significantly larger. One can also see that the corrected values agree with our new data and the

fitting to the high temperature regime.

The difference between the new results and previous results are more obvious in the thermal

conductivity measurement shown in Figure 6.10. At θ ≤ 0.35, the new results (blue circles)

and the corrected value of previous results (purple triangles) agree very well, but for higher

temperature, the previous results obtained from fast relaxation deviate significantly from our

1The αη and ακ in Eqs. 6.8 and 6.9 are static shear viscosity and thermal conductivity, i.e. αη(0) and ακ(0).
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new results. Even the corrected value are downshifted relative to our new results and fits to the

high temperature regime.

Figure 6.9: Measured shear viscosity and results from previous experiment. Blue circles are
data from current experiment as in Figure 6.5. Black triangles are the measured shear viscosity
from previous experiment [Wang et al. (2022)], purple triangles are the corrected value for Black
triangle data by applying Drude model. Red dashed curve is αη = 2.77θ 3/2+0.45.

This crosscheck with the Drude model correction justifies the validity of our new kinetic

model and experimental results. We also found that the latest results for shear viscosity and

thermal conductivity are more self-consistent. The measured transport coefficients agree better

with the leading T 3/2 prediction, compare to previous experiment results. This is another proof

of properly counting the effects of finite relaxation times.
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Figure 6.10: Measured thermal conductivity and results from previous experiment. Blue
circles are data from current experiment as in Figure 6.6. Black triangles are the measured
thermal conductivity from previous experiment [Wang et al. (2022)], purple triangles are the
corrected value for Black triangle data by applying Drude model. Red dashed curve is ακ =
15
4 (2.77θ 3/2+0.22).
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CHAPTER

7

CONCLUSION

7.1 Summary

We have developed a new method to measure the universal density shift coefficients for static

shear viscosity and thermal conductivity of the unitary Fermi gas at normal fluid regime.

By implementing the third DMD to independently control the repulsive perturbation, the

experiments were performed with a better controlled and more precise procedure than the

former experiment [Wang et al. (2022)]. This new system allows us to explore any wavelength-

dependence of the measured transport properties.

On the theory side, we found that the previous fast relaxation model is inadequate to

measure the static transport properties. The assumption that the system instantly relaxes to

local thermal equilibrium ,i.e.τη =τκ = 0, is incorrect. The new experiment explicitly measured

the two relaxation times τη and τκ, for shear viscosityη and thermal conductivity κT . We found

that τη and τκ are indeed small, compare to the time scale for the density variation to decay,

which is several miliseconds, but definitely not negligible. The relaxation times are found to be

on the order of one Fermi timeτF of the system, which is about 100µs. We then developed a new

kinetic relaxation model to explicitly incorporate the two relaxation times in our hydrodynamic

linear response model.

The model uses four fitting parameters, the isothermal sound frequencyωT , the two relax-
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ation times τη and τκ and the initial amplitude of the dominant spatial Fourier component A

to fit the oscillatory decay of the density variation in TIME domain. The number of fit parame-

ters is the same as we used in the previous experiments. Instead, by replacing η and κT with

their corresponding relaxation times τη and τκ, we are able to properly include the effect of

finite relaxation times and extract the static shear viscosity and thermal conductivity in the

normal fluid regime. The results are then compared to the high-temperature prediction for

both transport properties. A consistent up-shift relative to the high-temperature prediction

is determined. These universal density shift coefficients were predicted many years ago but

have never been systematically measured. Our results provide the first measurements of these

universal density shift coefficients of shear viscosity and thermal conductivity for the unitary

Fermi gas at normal fluid regime.

We subsequently compared our results with the results of sound attenuation experiment

from MIT group [Patel et al. (2020)]. The measured first sound diffusivity D1 from both experi-

ment are shown in Figure 6.8. Both results have the same T /TF scaling. Our data ranges from

T /TF ≃ 0.25 to T /TF ≃ 0.45. The extrapolation of our data to higher temperature regime agrees

with the measured results of MIT group. But at low temperature regime, their results still have

a small up-shift relative to ours.

In addition, we applied a Drude model correction for previous experiment results [Wang et al.

(2022)], estimated the corresponding static shear viscosity and thermal conductivity. Although

the Drude model is just a relatively crude method to determine the second order hydrodynamic

effects, it nevertheless provides a way to crosscheck our latest measured results for the static

transport properties. The current results for shear viscosity are in agreement with the Durde

model correction for previous fast relaxation results, as shown in Figure 6.9. This suggests

that the fast relaxation model we used before indeed neglected important information hidden

in the finite relaxation time. On the other hand, the measured static thermal conductivities

exhibit a significant up-shift compare to the fast relaxation measurements, and are even larger

than the corrected value at high temperature regime, as shown in Figure 6.10.

Another way to look at this difference is shown in Figure 5.8, where we plot the two fast

relaxation modes explicitly. The fast modes only contribute 1% to the density relaxation, but

10% to the temperature relaxation, which tells us we should expect a larger correction for the

static thermal conductivity than the shear viscosity.

Our new time domain method has its advantage to directly extract the static transport

properties, compare to the traditional frequency domain method. In frequency domain, it is

hard to disentangle the contribution from different modes. Instead, our time domain method

focuses on the oscillatory decay of the dominant Fourier mode of the density perturbation,

watch how it diffuses as a function of time. We believe our time domain method is general, and
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it can be extended to study other quantum many-body systems.

7.2 Future direction

So far our experiments have all been carried out with spin-balanced unitary Fermi gas, it is

very natural to think about measuring the transport properties of a spin-imbalanced unitary

Fermi gas. Just before I finished this thesis, we have successfully implemented another function

generator to transfer atoms between different spin states, and we achieved a stable imbalanced

ratio. However, the atom number is not good because the spin imbalanced is achieved by

transfer one of the two spin states to a third spin state, which is expelled from the trap by a

resonant optical pulse. In order to get a high imbalance ratio, we need to transfer and expel

more atoms for the minority spin. Further, there is always significant loss during the loading

from CO2 trap to box trap. These are the technical problems we need to fix in the future.

Another topic of great interest is to look at the superfluid regime. The major difference

between a superfluid and a normal fluid is the emergence of second sound below the superfluid

transition temperature TC . Other groups, for example [Li et al. (2022); Yan et al. (2024)] , have

studied the second sound diffusivity and mapped out the thermograpy of the unitary Fermi

gas cross the superfluid transition. With our time domain method, we expect to see that

the exponentially decaying thermal mode evolves into an oscillating second sound mode as

we cross TC . However, to achieve the superfluid transition for the unitary Fermi gas, where

TC /TF ≃ 0.17, we need a much higher density in the box.

Our current experiment results clearly suggest a more rigorous calculation of the leading

universal density shifted coefficients are needed. Our measurements can serve as a benchmark

for future theoretical studies.
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APPENDIX

A

MIRROR CLOCKING PULSES

The DMD pixel is an electro-mechanical element in that there are two stable micromirror states

(+12o and -12o for most current DMDs) that are determined by geometry and electrostatics of

the pixel during operation.

Below each micromirror is a memory cell formed from dual CMOS memory elements. The

state of the two memory elements are not independent, but are always complimentary. If one

element is logical 1, then the other element is logical 0, and vice versa. The state of the pixel

memory cell plays a part in the mechanical position of the micromirror, however, loading

the memory cell does not automatically change the mechanical state of the micromirror [Lee

(2008)].

In order for the state of the CMOS memory to be transferred to the mechanical position

of the micromirror, the pixel must receive a "mirror clocking pulse" (formerly referred to as a

"reset"). This mirror clocking pulse momentarily releases the micromirror and then re-lands it

based on the state of the CMOS memory below. Therefore, it is important that the memory cell

is not overwritten during a mirror clocking pulse operation. This allows the memory of groups

of pixels to be pre-loaded and their mechanical position to be changed simultaneously with a

mirror clocking pulse [Lee (2008)].

In our daily experiment, we found that this "mirror clocking pulse" (MCP) caused some

serious problems. The two TI DLP6500 we use to create the horizontal box walls and perturba-
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tion beam, the MCP resulted a continuous ’glitch’ of projected pattern. Figure A.1 shows power

readout on the oscilloscope of the DMD pattern, it is measured by a photodiode. In our case

the pulse occurred every 105 µs.

Figure A.1: Power glitching due to MCP, the pulse occurred every 105 µs.

This pulsing does not cause much trouble for making the box, because the walls only contact

with a small portion of atoms near the edge. But the perturbation beam is different, it is directly

projected into the box. Therefore, the pulsing may cause unwanted heating or even loss of

considerable number of atoms.

After discussion with technicians from Texas Instruments (TI), the issue is resolved. The

solution is to set the exposure time to 105 µs, and only use external trigger for frame advance.

In addition, one must use the latest version of DLP GUI issued by TI. The latest version include

a feature of maintaining the frame, which is done by uncheck the "clear" box option. Together

with the first two steps, these ensure that we do not have this power glitching during the whole

experiment cycle.
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