
ABSTRACT

PEGAHAN, SAEED. Many-body Physics in a Weakly Interacting Fermi Gas. (Under the
direction of John Thomas).

This dissertation presents a rigorous study of a very weakly interacting degenerate cloud

of 6Li, confined in a spin-dependent harmonic potential. We measure complex, time-dependent

spin-density profiles, varying on length scales much smaller than the cloud size, and show that

a one-dimensional mean-field model, without additional simplifying approximations, quantita-

tively predicts the observed spatial fine structure. The measurements provide a precise quanti-

tative test of the underlying energy-space spin lattice model and energy-dependent long-range

couplings. We measure the magnetic fields where the scattering lengths vanish for three dif-

ferent hyperfine state mixtures to provide constraints on the collisional (Feshbach) resonance

parameters.

In addition to investigating the collective spin evolution of a many-body system, weakly

interacting Fermi gases offer a rich platform for investigating information spreading and spin

coherence in a large many-body quantum system. We show that inverse Abel-transformation of

the spin density profiles determines the collective spin vector as a function of energy, enabling

general energy-space resolved protocols. For an application, we measure out-of-time-order cor-

relation functions in different energy sectors to reveal the energy dependence of the many-body

coherence. The observation justifies the existence of the higher-order coherence and out-of-time

order correlation functions at the microscopic level hidden in macroscopic measurements.
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Chapter 1

Introduction

Degenerate Fermi gases are ideal systems for studying many-body phenomena that can some-

times be challenging, if not impossible, to access experimentally in solid-state systems. Through

controllable atomic interaction strength, atoms densities, and geometry of the trapped atomic

gas, ultracold Fermi gases not only provide an excellent choice to strongly interacting sys-

tems [O’Hara et al., 2002,Zwierlein et al., 2005] but also opportunities to study weakly interact-

ing many-body systems for quantum simulation and quantum information applications [Bloch,

2012,Du et al., 2009,Pegahan et al., 2019].

Weakly interacting degenerate Fermi gases offer a pristine testbed for simulating various

phenomena ranging from out-of-equilibrium spin-lattice dynamics [Eisert et al., 2015, Koller

et al., 2016] to spin segregation [Du et al., 2008, Lewandowski et al., 2002, Pegahan et al.,

2019] and information scrambling (spreading) in a large quantum gas containing 105 neutral

atoms [Gärttner et al., 2018,Gärttner et al., 2017,Landsman et al., 2019,Pegahan et al., 2020].

Before elaborating more on these concepts, I want to remind the reader about some of a cold

Fermi gas’s properties, which makes their system a rich candidate to probe weakly interacting

regimes. First, an ultra-cold Fermi gas is composed of fermions, which must have a total wave

function that is anti-symmetric. Second, due to the extremely low kinetic energy of the colliding

atoms in the ultracold gas, the dominant quantum scattering process is the s-wave, where the

orbital angular momentum is (l = 0), s-wave. Thus atoms with opposite spin can have the

s-wave interaction, which is not Paul blocked, as their spin-wave function is anti-symmetric.

Since we are working in a low energy limit, two atoms collisions can be simplified further

by the low energy limit assumption. In a sample of 6Li in our laboratory, the two-body s-wave

collision cross section is specified by a single parameter known as the scattering length. By

tuning a bias magnetic field in our laboratory, the s-wave scattering length of the colliding

atoms can be adjusted to nearly vanish with a = 0 where we can study a collisionless regimes.

If we consider scattering length to be a = 4.24 a0, the corresponding classical collision rate
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[Gehm et al., 2003] (without Pauli blocking) is,

γc =
N↓m6Li(ω

2
⊥ωx)4πa2

s

4π2kBTF
' 0.002. (1.1)

Thus, the single particle energy of the system at this scattering length is conserved. Since

s-wave scattering in Fermi gases is allowed only for antisymmetric spin states, two-component

clouds exhibit an effective exchange interaction. From first order perturbation theory, one can

model the interaction as an effective contact potential,

V (~r − ~r ′) =
4πh̄2a

m
δ(~r − ~r ′) (1.2)

where ~r and ~r ′ specify the location of the two atoms and m is the mass of the atom. Note that

for attractive interactions a < 0 whereas for repulsive interactions a > 0.

To show the ultracold atom properties more quantitatively, the range of the interatomic

potential between colliding 6Li atoms is roughly r0 ≈ 20 Bohr ≈ 1 nm, and the temperature of

the gas is on the order of 1 µK corresponding to a thermal de Broglie wavelength of approxi-

mately λT = 700 nm. The wavelength is significantly larger than the range of the potential, so

that if we quantize the angular momentum l of the gas via the relation lh̄ = r0p = r0(h/λT ),

then l is given by:

l =
2πr

λT
≈ 0.001 (1.3)

Thus, the only relevant value for l is zero for scattering processes of ultracold Fermi gases.

Weakly interacting two-component Fermi gases [Du et al., 2009], with tunable, nearly van-

ishing s-wave scattering lengths a [Pegahan et al., 2019], offer a pristine platform for exploring

the interplay between spin, motion, and statistics in many-body systems. As shown in Eq. 1.1,

the atomic collision rate ∝ |a|2 is negligible, so that single atom energies are conserved over

the evolution time scale set by the mean-field frequency ∝ |a|, see Ch. 3. In this system, the

conserved single-particle energies label the “sites” of an effective energy-space lattice. Through-

out this dissertation, we will denote lattice “sites” with Roman letters n, representing the trap

mode index, unless otherwise stated.

1.0.1 Lattice in an Energy Space

As I mentioned earlier, ultra-cold quantum gases provide a unique platform to simulate lattice

structure using counter-propagating beams [Köhl et al., 2005]. While optical lattices are perfect

candidates to study fundamental physics, their implementation in a many-body system impose

different challenges. For example, the optical lattice’s periodicity is limited by the wavelength

of the laser or the relative angle between the laser beams. In contrast to optical lattices in
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Figure 1.1: Harmonic cigar-shaped optical dipole trap in the presence of a magnetic field
gradient. Trapped atoms in the dipole trap oscillate with a frequency of 23 Hz along the cigar
x-axis and 27 times faster, with a frequency of 625 Hz, along the transverse directions y, z. In
the weakly interacting regime, the single atoms energies, Ei = (ni + 1/2)hνi, are conserved,
forming a 3-dimensional spin-lattice, Fig. 1.2 in an energy space.

real space, engineered energy-space lattice, with controlled energy landscapes and site-to-site

interactions, offer broad prospects for simulating quantum systems, without limiting to any

optical lattice geometry.

Weakly interacting spin states of 6Li Fermi gases, in the presence of magnetic field curvature,

shown in Fig. 1.1, offer an outstanding opportunity to investigate the emergence of an effective

spin-lattice in energy space. In this type of lattice, we are working in a collisionless regime, and

the energy of particles is conserved, as are the harmonic oscillator quantum numbers, shown

in Fig. 1.1. Thus, we can use the particles with an energy Ei, to label lattice site ith in the

energy space, providing a precise quantitative test of the underlying spin lattice model with

energy-dependent long-range, ∝ 1/
√
Ei − E′j couplings between different “sites”, Ch. 3. For

the degenerate Fermi gas that we work with as kBTF /hωx = nx ' 650, the average number of

atoms at each site is N/650 = 100.

The effect of this long-range coupling between atoms in energy space, which is a result of
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vibration motion of atoms in the harmonic trap with opposite spins, for the first time was

observed in spin-segregation of thermal (Boltzmann) gas of 6Li [Du et al., 2008]. However, the

initial implementation of the energy-dependent collective spin-rotation model [Du et al., 2009]

yielded only semiquantitative agreement with the observed spin-density profiles, which were

measured at high temperatures, suggesting that the model was incomplete.

The key idea in our approach, whose validity we investigate in detail in Ch. 3, is that

the single-particle motional states are not changed by interactions, but the long-range spin

interaction, shown with green arrows in Fig. 1.2, can influence the spin dynamics. As I mentioned

above, in this picture, the single-particle energies are suitable for exploring a wide variety of

spin-lattice models that are difficult to realize using optical lattice techniques. We use a mean-

field treatment to describe the collective spin dynamics due to long-range spin coupling, and

for that, we assume there is no coherence between spins with a different energy.

z
E

x
E y

E

Figure 1.2: Simulating a many-body system in an energy-space lattice. Each site in the energy
space experiences a local magnetic field that causes long-range spin exchange, illustrated by the
green arrows, between different sites.

In the weakly inteacting Fermi gas that we study, the magnetic field gradient effect on the

atoms is negligible for the tightly confined radial directions of the trap; therefore, by integrating

over the transverse spin interactions, we can transform the energy lattice from three dimensional

to a one-dimensional energy lattice, depicted in Fig 1.3. Further, using the one-dimensional

energy-space lattice, we can access energy-resolved measurements for collective spins and study

correlations between spin vectors in different energy-space sectors.
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Figure 1.3: 1-Dimensional energy Lattice. The green lines shows the long range interaction
between spins in the “lattice” site in energy space, where scale with 1/

√
ni − nj .

In the next section, I will discuss how these measurements motivate new cold atom ap-

proaches to measure information scrambling in spin-lattice systems.

1.1 Significance of the Current Work

This dissertation describes experimental observations of collective dynamics for trapped, weakly

interacting Fermi gases in of two hyperfine states. These observations provide a new paradigm

for studying the many-body physics in a large quantum system containing N∼ 105 atoms with

a tunable s-wave scattering, reversible Hamiltonian, and energy-resolved spin density mea-

surement. This dissertation aims to thoroughly investigate collective spin dynamics and their

application on spin-energy correlation and information scrambling through the following exper-

iments.

For the first experiment, we use quantum-degenerate clouds of 6Li, confined in a spin-

dependent harmonic potential. Using a one-dimensional mean-field model, we provide a pre-

cise quantitative test of the underlying energy-space spin lattice model and energy-dependent

long-range couplings in a system with N atoms. This study provides an essential benchmark

for collective quantum dynamics and correlated spin current. For the second experiment, we

exploit the weakly interacting Fermi gas to demonstrate a new protocol for the microscopic

measurement of information spreading and scrambling by transforming spatial spin-densities to

an energy-space lattice. The energy-resolved observations we made in the energy lattice, justi-

fies the existence of higher-order coherence and out-of-time order correlators at the microscopic

level hidden by the observation in macroscopic spin measurements.
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1.1.1 Spin-Energy Correlation in a Weakly Interacting Fermi Gases

Weakly interacting two-component Fermi gases, with tunable, nearly vanishing, s-wave scatter-

ing lengths a, offer a pristine platform for exploring the interplay between spin, motion, and

statistics in many-body systems [Koller et al., 2016, Pegahan et al., 2019]. In this dissertation

we initially employ quantum degenerate samples, with a negligible collision rate, to minimize

energy shifts of the scattering length that become significant at higher temperatures.

Because of the complexity of these phenomena, we need an approach that treats spin motion,

interactions, and quantum statistics on a common footing. Through a collective mean-field

model, described in Ch. 3, we explore long-range interacting systems, quantitatively describe

the spin-density evolution in the collisionless regime, and precisely test the underlying energy-

space spin-lattice model. In addition, we measure the magnetic fields where the scattering

lengths vanishes (as = 0) for three different hyperfine state mixtures to provide constraints on

the collisional (Feshbach) resonance parameters.

In general, in the mean-field collective model, the microscopic degrees of freedom in the

many-body system can be ignored, and a new macroscopic parameter such as mean-field fre-

quency emerges as the important degree of freedom for the system. The identification of this

parameter can be made through experimental measurements such as s-wave scattering without

knowing about the microscopic physics.

Figure 1.4: Spin-energy correlation produces spin segregation in a degenerate Fermi gas with
an s-wave scattering length of 5.2 bohr. The palettes are 50 × 950µm. Left to right: n1, n2,
n1 − n2, and n1 + n2 in units of (n1 + n2)max at t = 0 (upper) and t = 800 ms (lower) after
coherent excitation of a |1〉 − |2〉 superposition state. Note that n1 − n2 evolves in time while
n1 + n2 remains constant, due to single particle energy conservation.

Fig. 1.4 shows spin-density evolution on the time scales set by the mean-field frequency

ΩMF ' 2π × 1.0 Hz. The first row of Fig. 1.4, shows the spin-density evolution for a coherent

states of 6Li atoms. Due to forward s-wave scattering, atoms in |1〉 state moves inward in the

trap, and atoms at |2〉 state move outward. This behavior can be inverted simply by changing

the sign of the s-wave scattering length from positive to negative.
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Figure 1.5: Spin-density profiles for a degenerate (T/TF = 0.35) Fermi gas at t = 800 ms rela-
tive to coherent excitation. Data (blue dots) versus prediction (red curves) showing quantitative
agreement. Left to right: n1, n2, n1 − n2, n1 + n2 in units of the peak total density. Each solid
curve is the mean field model with a fixed scattering length of a = 3.04 bohr (B = 528.147 G)
and a fitted cloud size σFx ≡ σ = 329µm, obtained by fitting the total density n1 +n2 to a 1D
Thomas-Fermi profile, see Eq. 3.46.

Using a mean-field model of Ch. 3, we can capture the one-dimensional spin density profile

shown in Fig. 1.5. These profiles are integrated along the vertical (radial) direction of absorption

images that are captured at 800 ms after coherent excitation, for a degenerate |1〉 − |2〉 cloud

with a = 3.04 a0. Note when we subtracted the first two profiles, n1 − n2 evolves in time while

n1 + n2 remains constant. This justifies we are working in a collisionless regime and despite

small scale spatial structure observed in the spin density Sz(x), the sum of the spatial profiles

for the two spin densities remains thermal (Thomas-Fermi profile).

The spin-density measurements provide an essential benchmark for future work on collec-

tive spin evolution with designer energy landscapes in the weakly interacting regime. Moreover,

studying this regime paves the way for studies of beyond mean-field physics in weakly inter-

acting gases, measurement of spatially correlated spin fluctuations [Koller et al., 2016], and

measurement of correlated spin currents [Bender et al., 2019].

1.1.2 Energy-Resolved Information Scrambling

In addition to spin-energy correlation, weakly interacting Fermi gases offer a unique testbed for

investigating information spreading and spin coherence in a large many-body quantum system.

Here, I briefly discuss how we develop a general energy-resolved method, using an inverse able

transformation of spatial spin-density profiles S(x), for measuring spin density S(E) in an

energy-space lattice. For more in depth discussion, I refer a reader to Ch. 4.

The energy-dependent collective spin vector S(E), as shown in 1.6, is determined as the

inverse-Abel transform of the measured spatial profile of the spin density S(x). In using this

method, we assume that the measured axial spin density profiles nσ(x), with σ =↑z, ↓z, are
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given in the continuum limit by,

nσ(x) =

∫
dE |φE(x)|2 nσ(E), (1.4)

where
∫
dxnσ(x) =

∫
dE nσ(E) is the total number Nσ in each spin state σ. For our experimen-

tal parameters, where EF /hνx ' 650, the continuum approximation is justified. In addition to

the continuum approximation, an important feature of Eq. 1.4 is the assumption that there is

neglible coherence between single-atom energy states. This assumption is justified by the very

small transition matrix elements < 10−4 h̄ωx between three dimensional harmonic oscillator

states, which arise from short range interactions between two atoms. [Pegahan et al., 2020]

When trapped atoms interact, information stored on them gets distributed into many-body

degrees of freedom. In general, this process leads to correlations in the subsystems. In the case

of spin interactions, information stored (coherence) in the initial state, put in contact through

s-wave interactions, is distributed over and therefore stored in local degrees of freedom of the

system. As a result, if we were to look at only a local region (such as small energy regions), we

would conclude that the interactions have caused initial information to be lost.

Figure 1.6: Energy-resolved out-of-time-order correlation measurement. (a) “single-shot” spin
density profile Sz(x) (blue dots). The red dashed curve is shown to guide the eye; (b) An inverse-
Abel transform, see Ch. 4, of the spatial profile (blue dots) is used to extract the single-shot
energy-resolved spin density Sz(E) (red dots). The scattering length is measured at a = 4.24 a0.

Quantum information that spread between parts of a many-body system are intrinsically

linked to the system’s evolution towards thermal equilibrium in a process called thermalization.
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Measuring information scrambling is challenging, because of the need to resolve relevant infor-

mation from the the whole system that is present, without the measurement being corrupted.

By exploiting energy-resolved measurements of the collective spin S(E), we extract out-

of-time order correlation (OTOC) functions, Ch. 4, through a many-body pulse sequence on

spins and observe OTOC functions, F(φ), in energy-resolved sectors. Here, φ is a global rota-

tion (perturbation) which we apply to the many-body system of spins to diagnose information

scrambling in different energy partitions. The measurements of OTOC’s in a spin-dependent

harmonic trap, shown in the (right) Fig. 1.7, revealing complex energy-resolved OTOC struc-

tures that are hidden in measurements of the total collective spin vector, shown in the (left)

Fig. 1.7.

Figure 1.7: (Left) Total collective spin projection Sz versus rotation angle φ without energy
restriction. F (φ) = 1

2(N↑ − N↓)/(N↑ + N↓) (blue dots) for a scattering length a = 4.24 a0.
The red curve is the fit from Eq. 6.23 to extract coherence coefficient. (Right) Energy-resolved
collective spin projection Sz(E) versus rotation angle φ for spins of selected energies (left to
right) E/EF = 0, 0.15, 0.25, 0.5, 0.7. Here, F(φ) = 1

2 [n↑(E)− n↓(E)]/[n↑(E) + n↓(E)]. The top
row shows the data (blue dots) for a measured scattering length a = 4.24 a0.
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1.2 Weakly-Interacting Fermi Gases

An important motivation to study the dynamics of ultracold atomic gases is their capacity to

control interaction strength using Feshbach resonances and the possibility to study different

interacting regimes such as strongly interacting Fermi gases. These strongly interacting Fermi

gases have been extensively studied [O’Hara et al., 2002,Bloch, 2012,Zwierlein et al., 2005]. In

contrast, the weakly interacting Fermi gases, which offer the necessary foundation for under-

standing the complex spin dynamics, induced by the interplay between spin interactions and

motional effects, has received relatively little attention.

Despite the local character of the short range contact interactions in a weakly interacting

system, collective and long-ranged phenomena were observed, including robust spin spatial

separation of the spin densities [Du et al., 2008]. The use of AMO systems to better understand

long-ranged interacting physics can boost our knowledge of fundamental quantum sciences and

lead to important advances in exploring new regimes of magnetism and spintronics [Berger,

1996,Slonczewski et al., 1996].

When we decrease the s-wave scattering lengths for a Fermi cloud of 6Li to nearly vanishing

a = 0, drastic modifications of the single-particle dynamics [Du et al., 2009,Pegahan et al., 2019]

are observed, as shown in a false-color Fig. 1.4. In the field of spintronics, similar phenomena

give rise to spin transfer, where a spin current is used to excite or reverse a nanomagnet [Berger,

1996], a relevant concept for future magnetic memory applications.

In the case of spin-segregation, as the magnetic moments of two spin species are not identical,

the finite curvature of the bias magnetic field, depicted in Fig. 1.1, introduces slightly different

axial trapping frequencies between two spins, 14.7 mHz (the corresponding difference in the

transverse oscillation frequencies in the optical trap is negligible, due to the tight transverse

confinement). This small difference correlates the precession of an atomic spin in the horizontal

axial plane with the energy of the atom, giving rise to a spin-wave, as illustrated in Fig. 1.4.

By subtracting the two spin densities at different times, we can see a distinct pattern known

as spin segregation. However, when we add spin densities of two spins, the results are identical,

shown in the last column in Fig. 1.4. This suggests that a total spin density remains thermal with

the Thomas Fermi spatial distribution, shown in Fig. 1.8. The Fermi energy for a noninteracting

Fermi gas confined in a harmonic trap with N particles per spin state is,

EF = h̄(6Nω̄)1/3. (1.5)

The Fermi energy sets a characteristic energy scale which is of great importance when

discussing both interacting and noninteracting Fermi gases. To provide the reader with a sense

of energy, temperature and length scales of the experiment, we find a Fermi energy (Eq. 1.5) of
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kB×0.73µK and extract the corresponding Fermi radius( red fit in Fig. 1.8) for the x-direction

by σFx =
√

2kBTF /m/(2πνx) = 310µm. As shown in Fig. 1.8, we fit a total spin density

n↑z(x) + n↓z(x) with a finite temperature Thomas-Fermi profile which yields T/TF = 0.32 for

the degenerate sample.

Figure 1.8: Normalized axial column density. (Blue), Total axial spin density from the last
column of Fig. 1.4. (Red), Zero temperature Thomas-Fermi fit. (Black), finite temperature fit
with T/TF = 0.32. For this profile, σTF = 310 µm and TTF = 0.73 µK. In the degenerate
regime, there is roughly 100 atoms/µm.

The other advantages that weakly interacting Fermi gases provide is a rich platform for

investigating information spreading and spin coherence. In Ch 6, I demonstrate a protocol for

the study of information scrambling, employing an inverse Abel-transform to extract energy-

resolved out-of-time-order correlation functions and many-body coherence from the spatial pro-

files of the spin density.

1.2.1 Hamiltonian for a Weakly Interacting Two-Spin-1/2 System

In the investigation of many-body systems, the modeling of interparticle interactions is typically

one of the central problems. Despite the complicated internal structure of atoms, the descrip-

11



tion of interactions between them can be greatly simplified, as shown in Sec. 2.2. From the

conservation of total angular momentum, when two Fermi atoms with different spins collide,

their respective electronic spins, ~s1 and ~s2, will add to make a total electronic spin

~S = ~s1 + ~s2, (1.6)

which will have a value of either 0 or 1. For the singlet spin state, we have S = 0 and for the

triplet spin state S = 1. In Ch. 2, I will explain in detail how different symmetries of these two

electronic spin states cause their associated collisional potentials to respond differently when

the collision occurs in a static magnetic field

Since s-wave scattering for Fermi gases is allowed only for antisymmetric spin states, two-

component spins exhibit an effective exchange interaction, enabling simulations of a variety of

spin-lattice models [Piéchon et al., 2009, Natu and Mueller, 2009, Deutsch et al., 2010, Wall,

2020]. We know that the spin operator does commute with ~S 2, therefore[
~S 2, ~s1

]
=
[
~S 2, ~s2

]
= 0. (1.7)

~S 2 of ~s1 and ~s2 gives rise to a projection operator P̂ onto the singlet electron-spin subspace as

~S 2 = (~s1 + ~s2)2 = 3/4 + 3/4 + 2~s1 · ~s2. (1.8)

By rearranging Eq. 1.8, we have

1− ~S 2/2 = 1− 3/4− ~s1 · ~s2

P̂ ≡ 1− ~S 2/2 = (1/4− ~s1 · ~s2). (1.9)

This projection operator for a singlet spin state with S = 0, projects an interacting pair of spins

to P̂ → 1 and for a triplet state (S = 1) to P̂ → 0. Thus, P̂ projects any two interacting spins

to the triplet or the singlet subspaces, depending on their S.

As I mentioned earlier, in the low-energy limit, atomic interactions are well approximated

by the s-wave scattering contact interaction, with the scattering length depending on the spin

state of the colliding atoms. (Sec. 2.2.4). Thus, from Eq. 1.9, the effective exchange interaction

for antisymmetric (singlet) spin states can be written as

H ′ = 8πh̄2a
m P̂ δ(~r1 − ~r2) = 8πh̄2a

m (1/4− ~s1 · ~s2) δ(~r1 − ~r2). (1.10)

12



Figure 1.9: In a collision, two spins precess along the ~S, where S always remains constant.

Note that the Hamiltonian is rotationally symmetric. Heisenberg equations for ~si yields

~̇si =
i

h̄

8πh̄2a

m
[−~s1 · ~s2, (~s1)i]δ(~r1 − ~r2). (1.11)

The commutator relation on the right hand side can be written as

[~s1 · ~s2, s1i] = [s1js2j , s1i] = s2j [s1j , s1i]

= s2j i∈jik s1k

− i∈jkis2js1k = −i(~s2 × ~s1)i. (1.12)

From Eq. 1.12, the right hand side of the Eq. 1.11 yields

~̇s1 = −8πh̄a

m
δ(~r1 − ~r2)(~s2 × ~s1). (1.13)

similarly for ~s2, we have,

~̇s2 = −8πh̄a

m
δ(~r1 − ~r2)(~s1 × ~s2). (1.14)

As shown in Fig. 1.9, for ~S, from Eq. 1.13, 1.14, we have

~̇S = ~̇s1 + ~̇s2 = 0. (1.15)

Thus, the sum of two spins under the contact exchange interaction remains the same and ~s1

and ~s1 constantly rotate around ~S.

If we have N-spins that are interacting, we can generalize the exchange Interaction Hamil-

tonian to

as
2

N∑
i,j 6=i

gij ~si · ~sj . (1.16)

This is known as the Heisenberg Hamiltonian for interaction between many spins, where gij
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is the coupling interaction between spins and plays the role of the site-to-site coupling in a

lattice model and as is the s-wave scattering length. We will exploit this concept to describe

the spin-segregation effect, Ch. 5.

1.3 Dissertation Organization

In Ch. 2, I overview the basic concepts of atom cooling and optical cooling techniques, which

we apply for our experiments. I will start by talking about hyperfine and Zeeman interactions

for 6Li and will move to optical dipole traps. Then, I will present the method of obtaining

absorption images of trapped atoms, which determines the spin density in the non-interacting

Fermi gas. Finally, I will describe the lattice in energy space, which is created using a weakly

interacting Fermi gas.

In Ch. 3, the detailed description of the mean-field model and its application for the many-

body spin system is presented. I will show that for a coherently prepared cloud of 6Li hyperfine

states, there is a very good agreement between experimental spatial spin density profiles and

the model. Then, the energy dependence of the scattering length near the zero-crossing is

included to explain the observation of spin density profile in the nondegenerate regime at higher

temperatures.

In Ch. 4, first, the theory of out-of-time order correlation (OTOC) functions is described.

Then, I will show that by employing an inverse Abel-transform method, one can extract an

energy-dependent spin vector from the spatial profile of the spin density. The OTOC func-

tions and inverse-Able transform method provide the building blocks for the energy-resolved

measurements in Ch. 6

In Ch. 5, I will present experimental measurements of time-dependent spin-density pro-

files for coherently prepared two-state Fermi gases of 6Li. These measurements provide a pre-

cise quantitative test of the underlying energy-space spin-lattice model and energy-dependent

long-range couplings discussed in Ch. 3. I will show this system allows implementing precise

measurements of the zero crossings, where s-wave scattering length is zero, for 6Li atoms.

In Ch. 6, energy-resolved out-of-time-order correlation functions and many-body coherence

are extracted from the spatial profiles of the spin density using inverse Abel-transform method.

Then, a new protocol for measuring the information scrambling in a large many-body system is

implemented based on OTOC correlation functions in Ch. 3. From this energy-resolved study,

we reveal the coherence structure hidden in measurements of the total collective spin vector.

In Ch. 7, the summary of the dissertation and the outlook for the future work is provided.
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Chapter 2

Background

In this chapter, I will give a reader an overview on some of the basic concepts that apply to

atom and optical cooling techniques. In our laboratory, atom-atom interactions are tuned by

means of magneto optical traps (MOT), and atoms can be cooled through two stages. First,

atom cool to the Doppler limit, using the MOT. In the second stage, atoms evaporatively cooled

to nK, below the Doppler cooling limit, in optical dipole traps. Therefore, I will start by talking

about the single atom interactions for 6Li and will move to optical dipole traps. Then, I present

the main part of the apparatus that leads to absorption images of atoms.

2.1 6Li atomic structure

Since we implement experiments on 6Li atoms, first I will talk briefly about the electronic

structure of 6Li that is covered extensively in all previous thesis in our group. Therefore, I

suggest the reader to refer to older theses [Elliott, 2014, Ong, 2015], in our group to get a

detailed description. The alkali metal employed in our laboratories for atom cooling and trapping

experiments is an isotope of lithium, 6Li. An atom of 6Li is composed of 3 protons, 3 neutrons,

and 3 electrons, yielding an overall charge neutral. The valence electron makes the total atom

spin half integral so that neutral 6Li atom is fermion. The nuclear ground state has nuclear

spin I = 1, while the electronic ground state consists of 2 electrons in the 1s orbital and a

third, electron in the 2s orbital. The total angular momentum quantum number F arises from

the sum of nuclear, orbital, and electron spins. In the electronic ground state, (I = 1, L = 0,

and S = 1/2), angular momentum addition yields two possible values for the total angular

momentum, F = 3/2 and F = 1/2.
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Figure 2.1: Fine structure and hyperfine structure of 6Li. D2 transition, in red color, is the
transition that we use for trapping the atoms in the magneto optical trap.

2.1.1 Hyperfine States in Zero Magnetic Field

The fine structure of 6Li arises from the magnetic dipole interaction between the electronic

spin angular momentum, S , and the orbital angular momentum, L, resulting in a total angular

momentum of J = L + S. Because of this interaction, the transition from the ground state to

the excited state splits into the D1 and D2 lines indicated in Fig. 2.1, corresponding to the fine

structure transitions of 22S1/2 ↔ 22P1/2 and 22S1/2 ↔ 22P3/2 respectively.

Hyperfine splitting of the ground and excited states arises from the interaction between the

valence electron and the magnetic and quadrupole moments of the nonspherically symmetric

nucleus. The Hamiltonian of the hyperfine interaction includes both the nuclear magnetic dipole

and nuclear electric quadrupole interactions.

In the absence of an external magnetic field, the total angular momentum F = I + S is con-

served. The F = 1/2 manifold of the ground state is two-fold degenerate, with spin projections

mF = ±1/2, while the F = 3/2 manifold of the ground state is four-fold degenerate, with spin

projections mF = ±3/2, mF = ±1/2.
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Figure 2.2: Tuning of energy of the lowest six hyperfine states with an externally applied
magnetic field in Gauss unit. a0 is the Bohr radius.

2.1.2 Zeeman splitting in an external B field

In the presence of a strong magnetic field, the magnetic interaction energy can not be treated

as a perturbation on the electron-nucleus interaction in the most general cases. That means F

and mF are no longer good angular momentum quantum numbers.

The interaction between the electron and the nuclear magnetic moments as well as an

externally applied magnetic field, which breaks this degenracy, can be written as the following:

Hint =
ahf

h̄2 S · I − µB
h̄

(gJ S + gI I) ·B (2.1)

where ahf/h = 152.137 MHz is the magnetic hyperfine constant and gJ = −2.002 is the

total electronic g-factor for the 6Li ground state, gI = +0.000448 is the total nuclear g-factor,

µB is the bohr magneton, and B is the external magnetic field.

At the zero field position in Fig. 2.2, the total angular momentum quantum numbers F = 1/2

and F = 3/2 are good quantum numbers. When the magnetic field increases, the six energy

levels evolve into two groups because the hyperfine interaction is much smaller than the mag-

netic interaction when the magnetic field is large enough. Under this condition, the eigenstates

eventually are the product states |mS mI〉, where mS and mI are respectively the projections

of S and I onto the quantization axis. These six distinct eigenstates are conventionally labeled
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as |1〉, |2〉, |3〉, |4〉, |5〉, and |6〉 in the order of increasing energy. As the magnetic field increases,

the hyperfine energy shift for the three lowest states approximately is -1.4 MHz/G. The energy

differences between energy levels correspond to resonant radiofrequency transitions which we

use for the purposes of magnetic field calibration.

In the next section, I will talk about what mixture of states we experimentally prepare and

tunable interaction between atoms.

2.2 Atom-Atom Interaction in Ultracold Fermi Gases

In our laboratory, the initial stages of our experimental sequence are designed to produce a 50-

50 mixture of the |1〉, |2〉 hyperfine ground states. One may ask why are these states preferable

to other two-component mixture? There are several reasons. First, there are unitary resonances

(strongly interacting regime) in the |1〉, |2〉 mixture which occur at experimentally accessible

magnetic fields. These resonances which usually known as Feshbach resonance are depicted in

Fig. 2.6 [Bartenstein et al., 2005].

A second reason for studying the |1〉, |2〉 mixture is that it is an energetically stable combi-

nation of states and they are stable against collisional decay to a dark state. This mixture has

the lowest internal energy of any interacting mixture. The low-energy nature of the mixture is

important because many higher-energy mixtures have open inelastic collision channels whereby

an atom can change its internal state and release enough energy to eject one or more atoms

from the trap. Mixtures with open inelastic channels tend to destroy themselves.

Third, at zero-field, |1〉, |2〉 mixture consists of states that are in some sense mirror images

of one another; they differ only in the sign of their magnetic quantum number. This makes

the mixture particularly well-suited for studies of spin dependent potential and higher order

quantum coherence, those experiments will be discussed in Ch. 5, Ch. 6. Therefore, since the

|1〉, |2〉 mixture is stable against inelastic collisions, and possesses tunable s-wave interaction

at experimentally accessible magnetic fields, it is an excellent choice for researchers to study

two-component weakly interacting Fermi gases.

In order to study different interaction regimes, such as weakly and strongly interacting Fermi

gases, first we need to make ourselves more familiar with the concept of s-wave scattering and

Feshbach resonances in an ultracold 6Li gas.

2.2.1 s-wave Quantum Scattering

The quantum scattering of two particles is a central topic in nearly every quantum mechanics

textbook [Griffths, 2005, Zettili, 2009] and in previous dissertations from this group [Elliott,

2014]. Here, I will provide a brief introduction to s-wave quantum scattering, which provides a
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valuable experimental knob throughout this dissertation.

Neutral alkali atoms interact primarily via an electrostatic molecular potential V(r), which

only depends on the distance r between the particles. The result of the scattering event will be

observed in the far field, far past the range of an interatomic potential, so that the outgoing,

scattered wave can be approximated as a spherical wave.

Figure 2.3: An incoming plane wave scattering off a potential to an outgoing spherical wave.
This is the asymptotic form of the wave function expected from scattering theory, where the
amplitude of the outgoing wave is f(k, θ) which is referred to as the scattering amplitude.

Consider a wave of incident particle traveling in the +ẑ direction with momentum kh̄,

which encounters a scattering potential, producing an outgoing spherical wave Fig. 2.3. At

long distances from the center of the scattering center, the asymptotic single particle scattered

wavefunction will consist of an incident plane wave eikz plus an outgoing spherical wave due to

scattering from the potential:

ψk =
1√
V

(eikz +
f(k, θ)

r
eikr) (2.2)

In order to find the probability of the scattering in a given direction θ, we need to determine

the scattering amplitude f , which is a function of the incoming momentum and coordinate angles

between the incident direction and the scattered direction +ẑ of the particle. V is the volume
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in which the incident wave is normalized with.

From conservation of particle flux we have,

~Jtot = ~Jinc + ~Jscatt. (2.3)

In the limit of r →∞, the incident flux on the scattering potential is

~Jinc =
kh̄

µ

1

V
ẑ (2.4)

and the scattered flux, due to the forward interference that occurs in an arbitrary small angular

area of r2dΩ, is

~Jscatt =
|f(k, θ)|2

r2

kh̄

µ

1

V
r̂. (2.5)

From Eq. 2.4 and Eq. 2.5, we can conclude that radial flux, which is ∝ 1
r2

, through a small

area of r2dΩ is independent of unscattered flux, and the radial flux through a small area in the

differential solid angle r2dΩ is

Jscattdσ = |f |2dΩ. (2.6)

In the next section, we will obtain the differential cross-section, which is the ratio of the

scattered flux to the incident flux.

2.2.2 Collisional Cross Section

The form of the collision cross section, σc as the result of azimuthal symmetric V (r), is related

to f(k, θ) through the conservation of probability. When the ratio of the rate of probability

leaving the scattered area in the differential solid angle r2dΩ compared to rate of probability

incident in the plane perpendicular to the incoming plane wave, we have:

dσc
dΩ

= |f(k, θ)|2 (2.7)

This is the fundamental relation between the differential scattering cross section and the scat-

tering amplitude.

If we assume the scattering potential is a central potential, we can expand the scattered

wave functions in an orbital angular momentum basis |l〉 with the Legendre polynomials Pl(x),

f(θ, k) =
∞∑
l=0

(2l + 1)al(k)Pl(cos(θ)) (2.8)
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for the case of s-wave scattering where l = 0, we have

f(θ, k) =
∞∑
l=0

sl(k)Pl(cos(θ)) (2.9)

The coefficients of this expansions are known as the partial wave amplitudes, which are related

to the scattering phase shifts δl by, [Sakurai, 1994],

sl(k) =
e2iδl − 1

2ik

=
sin(δl)e

iδl

k
. (2.10)

In the case of an ultracold gas of 6Li atoms, the dominant quantum scattering process is

the s-wave (l = 0) due to the extremely low kinetic energy of the colliding atoms. To prove this

quantitatively, the range of the interatomic potential between colliding 6Li atoms is roughly r0 ≈
20 bohr ≈ 1 nm, and the temperature of the gas is on the order of 1 µK corresponding to the

thermal de Broglie wavelength of approximately λT = 700 nm. The wavelength is significantly

larger than the range of the potential, so that if we quantize the angular momentum l of the

gas via the relation lh̄ = r0p = r0(h/λT ), then l is given by:

l =
2πr

λT
≈ 0.001. (2.11)

Therefore, the only relevant value for l is zero for scattering processes of ultracold Fermi

gases.

The total scattering cross section of s-wave scattering is obtained by integrating Eq. 2.7

over the solid angle dΩ = sin θ dθdφ, we arrive at an expression for the s-wave collisional cross

section given by

σc =
4π

k2
sin2δ. (2.12)

2.2.3 The Scattering Length as

Using the partial wave analysis for a spherically symmetrical potential V (r), we can write the

s-wave radial Schrödinger equation in dimensionless units as{
d2

dr2
+ k2 − 2µ

m
V (r)

}
uk0(r) = 0. (2.13)

where r is the separation in bohr, k is the wave number in inverse bohr, m is the electron mass,

µ is the reduced mass of two 6Li atoms. The radial wavefunctions of Eq. 2.13, in the asymptotic
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limit, have the low energy form as

u(r) = Csin( kr + δ)

ψ(r) =
u(r)

r
. (2.14)

In the zero energy k → 0 limit of low energy interactions, collision strength between atoms is

characterized by a single parameter known as the s-wave scattering length.

This scattering length has a simple geometric interpretation, which is shown in Fig. 2.4. To

Figure 2.4: Determination of Scattering Length.

give a physical interpretation of the scattering length as pointed in [Sakurai, 1994], we assume

the center of the scattering potential is located at the origin of a spherical coordinate system,

Fig. 2.3. In the limit of k → 0, the scattering length is defined as the distance between the

origin and the crossing point of the asymptotic radial wavefunction on the r axis. Therefore,

the value of as represents how much the particle wavefunction is phase shifted by the scattering

potential shown in Fig. 2.4.

Larger as represents stronger interactions between the particles. The sign of the scattering

length indicates the overall effect of the potential. A positive as indicates that the scattering

wavefunction is pushed away from the origin by the scattering potential, which indicates that

the effective interaction is repulsive. On the contrary, a negative scattering length shows the
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scattering wavefunction is pulled closer to the origin, which represents an effective attractive

interaction. The total scattering cross section using Eq. 2.14 can also be written in term of the

scattering length as

k cot δ
k→0

= − 1

as
+
k2r

2

as ≡ − lim
k→0

tan δ

k

σc = 4πa2
s kas → 0. (2.15)

There are two limiting cases, the strongly interacting limit (kas � 1) and the weakly

interacting limit (kas � 1). In the weakly interacting limit as � 1/k ' λdB/2π which means

that the zero energy s-wave scattering length is much smaller than the De Broglie wavelength

of the relative momentum of the colliding atoms. Thus, the scattering cross section reduced to

σs ≈ 4πa2
s. However in the unitary limit the opposite is true and when a→ ±∞ the scattering

cross section becomes σc = 4π/k2. This is unitary limit and the scattering becomes independent

of the scattering length.

2.2.4 Tunable Interactions

Here I will describe collisions via Feshbach resonance and their role in cold atoms interactions. I

highly recommend you to read more thorough discussion of strongly interacting regimes through

previous theses of [Elliott, 2014].

Experimentally, Feshbach resonance is achieved by making use of a magnetically induced

collisional Feshbach resonance, which occurs for two atoms in a bias magnetic field. Colliding

atoms interact through two distinct attractive potentials in an atomic gas. Repulsive interactions

arising from a repulsive potential will not produce molecules, but the repulsive interactions from

an attractive molecular potential can led to molecules. The 6Li atoms in the different spin states

|1〉 and |2〉 in our laboratory, interact via either a singlet or triplet molecular potential. For s-

wave scattering in singlet potential, the valence electrons from two different atoms form a spin

singlet state with Stotal = s1 +s2 = 0. In contrast, the triplet potential is made by the electrons

combining to spin triplet state Stotal = s1 + s2 = 1.

As electrons are fermions, their overall electronic wave function must be antisymmetric, so

the triplet state must accompany a spatially antisymmetric two electron state, while the singlet

state requires a spatially symmetric two electron state. The spatially symmetric state allowed

by the singlet state concentrates the electrons towards the middle of the two atoms, attracting

the nuclei inward and helping to shield the repulsive forces between the nuclei, which creates

a potential well much deeper than the spatially antisymmetric spin state associated with the
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triplet state. Despite this, the triplet potential is able to interact with the singlet potential via

Figure 2.5: The two-channel model for a Feshbach resonance. Atoms, which are prepared in
the open channel, undergo a collision at low incident energy. In the course of the hypefine
interaction, the open channel is coupled to the closed channel. When the incident energy in the
open channel has the energy close to the bound state of the closed channel, Feshbach resonance
occurs.

tunable bias magnetic field.

In addition to electronic spin, an atom also has a small nuclear spin coupled to its electronic

spin through the hyperfine interaction, the associated energy of which is given by Vhf = ahf (~s.~i)

where i is the nuclear spin and ahf is the hyperfine coupling. If the total hyperfine interaction

between two colliding atoms is considered,

Vhf Total = Vhf1 + Vhf2 = ahf (s1 . i1 + s2 . i2)

=
ahf
2

[
(s1 + s2) . (i1 + i2) + (s1 − s2) . (i1 − i2)

]
. (2.16)

It is this coupling that allows a nearby bound state of the deeper singlet well to affect the

scattered free atoms, although they must enter and exit along the triplet channel as it is shown

in Fig. 2.5. The different symmetries of these two electronic spin states also cause their associated

collisional potentials to respond differently when the collision occurs in a static magnetic field.

The basis for colliding particle that we work with, includes the total spin as ~S = ~s1 + ~s2 and
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Figure 2.6: s-wave scattering length vs applied magnetic field for |1〉 and |2〉 mixture. The red
circle shows the location where scattering length is zero (zero-crossing).

total nuclear spins as ~I =~i1 +~i2. Thus the basis that we have in a static magnetic field is,

|S ms〉 |I mI〉 (2.17)

According to the ground energy eigenstate for 6Li atoms that we labeled as |1〉... |6〉, in

a magnetic field, a pair of atoms in the two lowest states, |1〉 =
∣∣−1

2 , 1
〉

and |2〉 =
∣∣−1

2 , 0
〉
,

is almost a pure triplet state with a small singlet admixture at these large magnetic fields.

The spins of the singlet state are anti-parallel and have a negligible dipole moment that is not

tunable with a magnetic field, while for triplet state, the spins are parallel and the energy of

the two atom state varies with magnetic field approximately as −2µB.

The triplet state is an open channel for interactions and the singlet state is a closed channel,

which is energetically inaccessible at long range. Therefore, by adjusting the magnetic field, the

energy of the open channel can be tuned such that it is in resonance with a bound singlet state

of higher lying closed channels. In other words, the energy of the two colliding atoms in the

triplet state can be degenerate with the energy bound molecular vibrational state in the singlet

molecular potential. Under this condition, the scattering length between the colliding atoms is

enhanced dramatically, which results in the Feshbach resonance, as shown in Fig. 2.6.

One of the dominant resonances between states |1〉 and |2〉 occurs at 832.2 G (broad). For

our experiment, we exploit the broad resonance to tune the interaction between the two colliding
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atoms. Near 832.2 G, the zero energy scattering length is approximated by,

a = abg

(
1− ∆B

B −B0

)
(2.18)

where abg = −1405 a0, B0 = 832.2G and ∆B = 300G. Fig. 2.6 shows how scattering length

a, changes near the resonance. The existence of Feshbach resonance means that not only we

can explore weakly-interacting mixtures for a → 0 (by magnetically-tuning the magnitude of

the scattering length), but that we can also change the sign of the interactions by simply

scanning a, from positive to negative or vice-versa. Thus, we have complete control not only

of whether the mixture is interacting or noninteracting, but also over the type and strength of

the interaction. Much of the exciting physics of fermionic gases depends on the details of the

scattering interactions—Working with Feshbach resonance in two-component mixtures means

we have the capability to easily explore all the possible regimes.

For most experiments presented in this dissertation on studying a weakly interacting Fermi

gas, we initially use an ultracold degenerate Fermi gas at the Feshbach resonance of 832.2 Gauss,

and tune the field downward, setting the bias magnetic field at 527 G, to study a noninteracting

Fermi gas. At this field scattering length is nearly vanishing (a = 0). We call this zero-crossing,

which refers to the point that scattering length in Fig. 2.6, crosses the x-axis.

2.3 Experimental Setup

Here, I summarize the cooling and trapping techniques used in the initial stages of atom prepara-

tion for experiments that will be discussed in Ch. 5 and Ch. 6. These techniques and equipment

have been covered in great detail in previous theses [Gehm, 2003,Kinast, 2006,Luo, 2008,Elliott,

2014], but I will describe them briefly in this chapter to provide background for the current

work.

2.3.1 Zeeman slower

We start by evaporating solid 6Li stored in an oven and directing the atomic beam in to a

vacuum chamber where a magnito-optical trap (MOT) and a CO2 laser optical dipole trap

are used to cool and trap the atoms. In the process of evaporating, solid 6Li is heated up to

about ' 400◦C and vaporized through a long beam collimating wick nozzle such a way that

the temperature from about 400◦C at the oven drops to 250◦C at the end of the nozzle. This

temperature gradient assures that any condensed 6Li is recycled back to the oven, which greatly

extending the lifetime of the oven.

As the thermal velocity of the atoms exiting the oven region is too high for them to be

captured by a magneto-optical trap, the atomic beam enters the Zeeman slower, Fig. 2.7 right,

26



Figure 2.7: 6Li oven on the left and Zeeman slower on the right.

where it is overlapped with a counterpropagating red-detuned laser beam in a spatially varying

magnetic field, which is used to produce a Zeeman shift. The magnitude of the magnetic field,

created by a series of electromagnetic coils, is set to spatially decrease velocity of atoms as they

move along the Zeeman slower. Atoms with large velocities are slowed by absorbing counter-

propagating photons that are brought into resonance by the Doppler effect and Zeeman shift

from the magnetic field. Both the Zeeman slower and the magneto-optical trap are based on

the radiation pressure force. Radiation pressure causes a force on the atom in the direction of

propagation of the incident light that I will explain in more depth in Sec. 2.4.1.

Finally, using a one dimensional radiation pressure in a Zeeman slower, we slow down the

atomic beam of vapor with thermal velocities of over 1000 m/s down to about 30 m/s.

After exiting the Zeeman slower, atoms are trapped and cooled by three retro reflected

orthogonal beams overlapping near the point of zero magnetic field gradient of a quadrupole

magnetic field which will be explained below. The mechanism for trapping and cooling in the

MOT relies on the momentum transfer from absorbed photons. The recoil momentum from

photons emitted from atoms in the MOT puts a lower bound, Doppler limit cooling, on the

temperatures that can be achieved in the MOT which is ∼ 140 µK. For further cooling, we

transfer atoms from the MOT to a dipole force trap, which does not rely on the momentum of

photons for trapping and cooling. Finally, we achieve much lower temperatures by evaporatively

cooling atoms held in the dipole trap.

2.4 Magneto-optical trap

Our apparatus uses two physical mechanisms of magneto optical trap for cooling and trapping

the atomic sample, and for future cooling, we create an optical dipole trap using a far off-
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resonance CO2 laser. A Coherent 899-21 dye laser pumped by a Verdi V-10 solid state laser

along with standard frequency stabilization techniques, generates laser beam with a wavelength,

near the D2 of Fig. 2.1, resonance near 670.9 nm with a linewidth '1 MHz to be used as the

trapping beams for the magneto-optical trap. We get approximately 800 mW of power from the

dye laser. The beam from the dye laser is processed further to generate all the beams necessary

for our cooling and trapping experiments, namely, the slower beam, the MOT (Magneto-optical

trap) beams and, the repumper beams, whose purpose is explained in detailed below.

In the following, I will explain in more detail the two stages of MOT and FORT that we

apply for in the atomic sample preparation for the experiment.

2.4.1 Velocity dependent radiation pressure

The first cooling mechanism uses the momentum of photons p = h̄k = h/λ to reduce the

velocity of the atoms. Imagine a laser beam with a laser frequency of νL = ν0 (1− va/c) tuned

below the atomic resonance where va is atom velocity. The frequency seen by an atom moving

towards the laser beam is Doppler shifted up, (see below); this will provide a net momentum

transfer in the opposite direction. In the rest frame of the atom, the photon frequency due to

Doppler effect is

ν ′L = νL (1 + va/c) ≈ ν0 − va/c+ va/c, (2.19)

where ν ′L is the frequency observed by the atom, ν0 is the photon frequency and c is the speed

Figure 2.8: The magneto-optical trap (MOT). Three orthogonal retro-reflected laser beams
along with the quadrupole magnetic field generated by two electromagnetic coils in an anti-
Helmholtz configuration trap.
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of light. When this condition is satisfied, the photon will be resonant with atoms moving in

the atom direction and will be absorbed by the atoms that go to an excited state. Through

spontaneous emission, atoms emit another photon with the same frequency in a random direc-

tion. However, due to conservation of momentum during the absorption and emission process,

a photon absorbed by an atom will transfer momentum to the atom in the direction that the

photon was traveling. We can reduce the velocity of atoms by applying radiation pressure force

on them. In one dimension, two overlapping counter propagating laser beams that have been

tuned below the atomic resonance will slow atoms moving in either direction. This velocity

dependent radiation pressure, also called optical molasses, is used to slow down atoms in three

dimensions, as shown in Fig. 2.8, by overlapping three orthogonal counterpropagating laser

beams pairs. In the next section, I will talk about spatial confinement in three directions.

2.4.2 Spatially dependent radiation pressure

A spatially varying magnetic field will create a spatially dependent energy shift that we use to

trap atoms. Between the two magnets the field is zero and its magnitude increases linearly in

all directions from this point. For simplicity, we consider atoms in a ground state with total

angular momentum F = 0, and atoms in the first excited state with total angular momentum

F = 1. A spherical quadrupole magnetic field splits the degeneracy of the hyperfine states to

mF = −1, 0,+1, resulting in a linear variation of the energy levels about the center of the

trap. The red-detuned laser beams used to create a velocity dependent radiation pressure are

cicrularly polarized to provide a spatially dependent radiation pressure to atoms in a spatially

varying magnetic field. Atoms in a region of positive magnetic field will have mF = −1 excited

state sublevel shifted down in energy and will absorb circularly polarized σ− photons. Atoms in

a negative magnetic field will have the mF = +1 excited sublevel downshifted and will absorb

σ+ polarized photons.

Consider a one dimensional case where atoms are free to move in a magnetic field that

increases linearly in the positive direction about a zero point. A beam propagating in the

positive direction with σ+ polarization is overlapped with a beam propagating in the negative

direction with σ− polarization. Atoms in regions of negative magnetic field absorb σ+ photons

and receive momentum kicks in the positive direction. Atoms in regions of positive magnetic

field absorb σ− photons and receive momentum kicks in the negative direction. The combined

result of the magnetic and optical fields creates a spatially dependent radiation pressure that

confines atoms near the zero point of the magnetic field. The spatially dependent radiation

pressure, in addition to the velocity dependent radiation pressure is used to trap and cool

atoms in three dimensions.

In the MOT, this photon absorption and emission are used to create velocity and spatially
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dependent radiation pressure shown in Fig. 2.8, near the 671 nm transition of 6Li with linewidth

of 5.9 MHz, which provides a source of cold atoms. The MOT, at full intensity, spatially confines

the atoms and cools them to ∼ 1 mK. At the end of the MOT cooling stage temperature is

reduced to doppler limit of 140 µK, with an average velocity of about 60 cm/s. Atoms are then

transfered to a far off-resonance optical dipole trap (FORT) before extinguishing the magnetic

field and the trapping beams for the MOT. The MOT beams are extinguished and a bias

magnetic field of∼ 8 G is applied to break the degeneracy of 2S1/2 (F = 1/2) ground state, shown

in Fig. 2.2, where the atoms are trapped. Then a frequncy modulated radio frequency pulse

with a central frequency correspond to the energy splitting between the lowest two hyperfine

states (states |1〉 and |2〉) is applied to obtained a balanced mixture of the lowest hyperfine

states |1〉 and |2〉.
The frequency of the MOT beams primarily corresponds to the F = 3/2 ground state in

Fig. 2.1 to the excited state transition. However, the atoms that exit the Zeeman slower region,

will populate both the F = 1/2 and F = 3/2 ground states. The F = 1/2 ground state is 228

MHz lower in energy than the F = 3/2 ground state. In order to cool the atoms that populate

both the ground states, we use an acoustooptical modulator (AOM) to generate an additional

optical beam, “repumper” beam, whose frequency corresponds to the F = 1/2 ground state to

the excited state transition. The MOT beam and the repumper beam are overlapped and their

powers are empirically chosen to be in the ratio of 3:1.

The MOT precooling is done in three phases. In the “loading” phase, both the MOT beam

and the repumper beam are detuned by about 30 MHz from resonance. The loading phase will

initially load the atoms exiting from the slower region into the MOT. The second phase is the

“cooling” phase, where both the MOT beams and the repumper beams are tuned to within 3

MHz of resonance. The final phase is the “optical pumping” phase, where the MOT beam is

tuned to resonance and the repumper is turned off. The optical pumping phase transfers all the

atoms in the F = 3/2 ground state to the F = 1/2 ground state.

At the end of the MOT precooling phase, we have about 300 million atoms in the F=1/2

ground state at a Doppler limited temperature of 140 µK. Fig. 2.9 shows fluorescence from the

atoms trapped in the MOT.

2.5 Optical Dipole Traps

When a neutral atom is placed in an electric field E, the interaction creates an induced dipole

moment d = αE in the atom, where α is the polarizability. Then the potential of the induced

dipole moment is given by

Vdip = −1

2
d · E. (2.20)
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Figure 2.9: Experimental setup for initial cooling of atoms by the Zeeman slower, slower beam,
precooling by the MOT beams, repumper beams, and MOT coils. MOT and repumper beams
are overlapped and are shown together in red. Inset shows Fluorescence from the atoms trapped
in the MOT.

where the factor of 1
2 accounts for the fact that the dipole moment is an induced, not a perma-

nent one. Atoms polarized in the electric field of a laser, detuned far from an atomic resonance,

will experience a force from the dipole interaction F = −∇Vdip, where the cycle-averaged po-

tential of the electric field is

Vdip = −1

2
αE2 =

−2π

c
α(ω) I(x, y, z), (2.21)

where c is the speed of light, α(ω) the polarizability of the sample, and I(x, y, z) the intensity

of the laser beam. The dipole polarizability of 6Li

α(ω) =
α0 ω

2
0

ω2
0 − ω2

, (2.22)

is determined by the frequency of the laser light ω, where α0 = 24.310−24 cm3 is the static

polarizability [Wiese et al., 1966] and ω0 is the resonant frequency. Atoms will be attracted to

regions of high laser intensity when the ω > ω0 or repelled when ω < ω0. The intensity I of the

laser beam in Eq. 2.21 is given by,

I =
I0

1 + (z/z0)2
e−2r2/w2

(2.23)
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Figure 2.10: Attractive potential created by a focused laser beam propagating in z direction.
Here V0 = 2παI0/c = 654 µK × kB.

for a beam travelling in z direction. Here I0 is the peak intensity, w = 50µm is the 1/e2 intensity

radius and z0 = πw2/λ = 741µm is the Rayleigh length of the focused beam with a wavelength

λ. Note that experimentally I0 = 2P/πw2 with P being the measured power of the gaussian

beam of 71 watt.

2.5.1 Far-Off-Resonance CO2 Laser

When the MOT beams are extinguished, the focused beam of a CO2 laser, with λCO2 =10.6 µm

and 140 Watt output power, produces an attractive far off resonance trap (FORT) for further

cooling of the atoms through evaporation. This beam is focused to a size of 50 µm 1/e2 radius,

creating a peak trap depth of about 50 µK. As I mentioned above, the laser is tuned far below

resonance, ω << ω0, to provide frictionless confinement while the most high energy atoms

escape from the trap. To aid in efficient evaporative cooling, a magnetic field is applied to tune

near the broad Feshbach resonance occurring at 832.2 Gauss ( [Zürn et al., 2013]) giving us

a unitary collision cross section 4π/k2 and strong interactions. Evaporation in the full power

FORT cools the atoms to a temperature of ∼ 50 µK.

Further cooling of the sample is done by forced evaporation. The CO2 beam power is lowered

with an acousto-optic modulator (AOM), a device that uses an RF signal (40 MHz and 32 MHz)

to generate acoustic waves in a material to diffract a laser beam, altering the intensity and

frequency of diffracted modes. An artificial waveform generator provides the control voltage V (t)

for the AOM, giving us full control over the trap depth U(t) as a function of time. Here the CO2
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Figure 2.11: Experimental setup for evaporative cooling of 6Li atoms in a CO2 optical dipole
trap and absorption imaging using a resonant beam. The high field coils generate the magnetic
field required for evaporative cooling at 832.2 G.

potential is gradually lowered over a few seconds to continue the evaporation process, finally

cooling the atoms between 10 and 100 nK. A lowering curve is programmed into a waveform

generator with user defined inputs including the lowering time and final trap depth. Lowering

the CO2 power over 9 seconds to a shallow final trap depth, Ufinal ≈ U0× 10−3 (U0 ≈ 650µK),

produces an atomic sample with temperatures as low as ∼ 10 nK. A typical absorption image

of an atomic sample after we release it from 0.2 % to 2 % trap at the end of forced evaporation

is shown in Fig 2.12.

Figure 2.12: Absorption image of an atomic cloud evaporative cooled at 832 G with a low trap
depth of 0.2 % and a final trap depth of 2 %. The direction of propagation of the CO2 optical
beam (axial) is labeled as z. The dipole trap provides strong confinement of the the atoms in
the radial direction.
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We use absorption imaging to extract the density profile of the cloud. This technique uses

a pulse of resonant light to image a shadow of the density distribution from the atomic cloud

on a CCD camera [Ong, 2015]. This imaging process destroys the atomic sample, as the probe

beam kicks the atoms out of trap and atomic sample with similar conditions will be created

again.

Bias field has a curvature, produces a magnetic potential – not negligible at low trap depth.

Atoms that are confined in a cigar shaped optical dipole trap at low trap depth, experience the

magnetic potential from the bias coils that is comparable with the potential from the optical

field. In Ch. 3 and Ch. 5, I exploit this bias field curvature to study spin dependent potential

effects on a many-body system.
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Chapter 3

Mean-Field Theory

In this chapter, I will explain the building blocks of mean-field model and an application to

describe the evolution of the many-body spin system, in the presence of magnetic field curvature,

and forward scattering interactions. I will show that for a coherent mixture of 6Li hyperfine

states, there is a remarkable agreement between experimental spatial spin density profiles and

the model. I will show that how to include the energy dependence of the scattering length near

the zero-crossing in the nondegenerate regime at higher temperatures.

3.1 Magnetic Field Curvature

We employ a mean-field model in energy representation to describe the time evolution for co-

herently prepared spins in the presence of magnetic field curvature. As shown in the previous

chapter for two atom mixtures of 6Li, a bias magnetic field tunes the s-wave scattering length

near the zero crossing, where the gas is very weakly interacting and the energy changing colli-

sion rate is negligible, 0.004 s−1 for scattering length of 4 a0. We begin with the single particle

Hamiltonian for a noninteracting Fermi gas with two spin states, a lower hyperfine state de-

noted ↑ and an upper hyperfine state denoted by ↓. For an atom at rest, these states differ in

energy by h̄ωHF , where ωHF is the hyperfine resonance frequency.

A spin-independent cigar-shaped optical trap confines the atom cloud weakly along the cigar

axis, denoted x, and tightly in the perpendicular ρ direction, so that ρ << |x|. Curvature in the

bias magnetic field produces a significant harmonic confining potential along the x-axis, while

for the ρ direction, the magnetic contribution to the confining potential is negligible compared

to that of the optical trap. The net optical and magnetic trapping potential along x is then

spin-dependent, with harmonic oscillation frequencies ωx↑ and ωx↓ that gives rise to an energy

dependent Zeeman-precession as shown in Fig. 3.2.
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Figure 3.1: Spin-dependent harmonic potentials. An rf pulse initially creates x-polarized spins
(in the rotating frame). For an rf transition between harmonic oscillator-spin states |n, ↑〉 and
|n, ↓〉, the resonance frequency ωHF (denoted by the red arrow) decreases with n, due to the
difference in the harmonic oscillator frequencies for the two spin states.

3.1.1 Spin-Energy Correlation

The non-interacting Hamiltonian for this system (in the frame rotating at the hyperfine reso-

nance frequency) is

Ĥ0 =
∑
n

|n〉〈n|
[
(n+ 1/2) h̄ωx↑| ↑〉〈↑ |+ (n+ 1/2) h̄ωx↓| ↓〉〈↓ |

]
. (3.1)

For later use, we define the dimensionless single particle spin operators,

sz =
| ↑〉〈↑ | − | ↓〉〈↓ |

2

sx =
| ↑〉〈↓ |+ | ↓〉〈↑ |

2

sy =
| ↑〉〈↓ | − | ↓〉〈↑ |

2i
, (3.2)

where [sx, sy] = sxsy−sysz = isz is the cylic permutations. A radio-frequency transition that we

apply to a mixture of two lowest states of two hyperfine states does not decrease the harmonic

oscillator quantum number as harmonic potentials are nearly identical. Hence, the resonance

frequency for a transition from the lower ↑ to the upper ↓ hyperfine state of an oscillating atom

in state |n〉 is ωres = ωHF + (n + 1
2) δωx with δωx ≡ ωx↓ − ωx↑. Working in a frame rotating

at the hyperfine resonance frequency ωHF and defining the energy E = (n+ 1
2) h̄ω̄x, where the

mean oscillation frequency, ω̄x ≡ (ωx↑ + ωx↓)/2, we can rewrite the Hamiltonian from Eq. 3.1
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in the energy space as

Ĥ0 =
∑
E

|E〉〈E|

[
E(| ↑〉〈↑ |+ | ↓〉〈↓ |) + h̄Ω(E)Sz

]
, (3.3)

where 〈E′|E〉 = δE′,E and the last term is proportional to Sz, with

Ω(E) ≡ −δωx
E

h̄ω̄x
. (3.4)

In the numerical implementation section of this chapter, we derive the resonance frequency

difference δωx in detail in Sec. 3.3, which arises from the curvature of the bias magnetic field

in the axial direction and the difference of the magnetic moments for the ↑ and ↓ states.

Figure 3.2: Spin segregation. The energy dependent Zeeman term, due to magnetic field cur-
vature, causes spin vector for atoms of different energies to fan out in x-y plane (left). When
coherently prepared atoms collide, due to forward s-wave scattering, the energy-dependent pre-
cession angle Ω(E) then leads to a correlation between the z component of the spin vector and
the energy. As explained in the introduction, the collisional interaction results in a rotation of
each atom’s spin vector about the total spin vector, which is conserved S = s↑ + s↓.

To treat the many-body problem for a very weakly interacting gas, where the single par-

ticle energies do not change during the evolution time, we define the field operator in energy
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representation as

ψ̂ ≡
∑

E,σ=↑,↓
âσ(E) |E〉|σ〉. (3.5)

With the anticommutation relations

{âσ(E), â†σ′(E
′)} = δσ,σ′δE,E′ , (3.6)

we have {ψ̂, ψ̂†} = 1̂, the product of the energy and spin identity operators. The many-body

Hamiltonian for the noninteracting atoms is then defined by Ĥ0 = (ψ̂†H0ψ̂), where the paren-

thesis (...) denotes inner products for the single particle energy and spin states. Then, we can

write the noninteracting Hamiltonian as

Ĥ0 =
∑
E′

E′[N̂↑(E
′) + N̂↓(E

′)] +
∑
E′

h̄Ω(E′) Ŝz(E
′). (3.7)

Here, the number operators are N̂↑(E) = a†↑(E)a↑(E) and N̂↓(E) = a†↓(E)a↓(E) and the di-

mensionless many-body spin operators are given (in the Schrödinger picture) by

Ŝz(E) = (ψ̂† |E〉 〈E| szψ̂) =
N̂↑(E)− N̂↓(E)

2
(3.8)

Ŝx(E) = (ψ̂† |E〉 〈E| sxψ̂) =
â†↑(E) â↓(E) + â†↓(E) â↑(E)

2

Ŝy(E) = (ψ̂† |E〉 〈E| syψ̂) =
â†↑(E) â↓(E)− â†↓(E) â↑(E)

2 i
.

and the corresponding field operators in position representation are

ψ̂(x) = (〈x|ψ̂) =
∑
E,σ

âσ(E)φE(x)|σ〉 ≡
∑
σ

ψ̂σ(x)|σ〉. (3.9)

Using the Eq. 3.9, we can write the Schrödinger picture operator for the z component of

the spin density as

Ŝz(x) = (ψ̂†(x)szψ̂(x)) (3.10)

=
1

2

∑
E,E′

φ∗E′(x)φE(x)
[
â†↑(E

′) â↑(E)− â†↓(E
′) â↓(E)

]
.

Note that the orthonormality of the φE(x) yields
∫
dxŜz(x) =

∑
E Ŝz(E) = Ŝz, the total z-

component of the spin operator. For our mean-field treatment, we assume initially that there

is no coherence between atoms with different energy, E′ 6= E, for a thermal average, i.e.,
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〈â†↑(E
′)â↑(E)〉 = 〈N̂↑(E)〉 δE′,E . Then the average z-component of the c-number spin density is

given by

Sz(x, t) ≡ 〈Ŝz(x, t)〉 =
∑
E

|φE(x)|2〈Ŝz(E, t)〉. (3.11)

Hence, we need only to determine Sz(E, t) to predict the measured Sz(x, t). In Ch. 4, I will show

that this relation corresponds to an integral Abel-transform that can be inverted and provide

us a useful method to study energy-resolved measurement of spins in the energy lattice.

Using the anticommutation relations of Eq. 3.6, it is easy to evaluate the elementary com-

mutators, [
â†
σ′
1
(E′1) âσ1(E1), â†σ′(E)

]
= â†

σ′
1
(E′1) δE1,E δσ1,σ′ (3.12)[

â†
σ′
1
(E′1) âσ1(E1), âσ(E)

]
= −âσ1(E1) δE1′,E δσ′

1,σ
,

which are formally identical to the results obtained for bosons. With Eq. 3.12, it is straightfor-

ward to show that the spin operators of Eq. 3.8 satisfy the usual cyclic commutation relations,

[Ŝi(E
′), Ŝj(E)] = i εijk Ŝk(E) δE′,E . (3.13)

With the non-interating Hamiltonian in Eq. 3.7, the Heisenberg operator equations for the

collisionless spin evolution are then

∂Ŝ(E, t)

∂t
=
i

h̄

[
Ĥ0, Ŝ(E, t)

]
= Ω(E, t)× Ŝ(E, t), (3.14)

where the Zeeman term as it is shown in Fig. 3.2, is along the z-axis

Ω(E) = êzΩ(E) (3.15)

and Ω(E) is given by Eq. 3.4. For sample preparation using radio frequency excitation, Eq. 3.15

is readily generalized to include a time dependent Rabi frequency rotation rate ΩR(t) êy that

allows us to create the coherent sample of atoms and an additional time dependent detuning

term ∆(t) êz, with ∆ = ω(t)−ωHF in the rotating frame. Thus, the energy-dependent precession

in the more general form can be written as,

Ω(E) = (Ω(E) + ∆)êz + ΩR êy (3.16)
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3.2 Interaction Hamiltonian

Next, we consider collisional s-wave scattering interactions, which are dominant at low temper-

ature regime. Short range scattering is modeled by a contact interaction between spin-up and

spin-down atoms with an s-wave scattering length aS ,

H ′(x1 − x2) =
4πh̄2aS
m

δ(x1 − x2) ≡ g δ(x1 − x2). (3.17)

For the many-body system the Hamiltonian operator yields,

Ĥ ′ =

∫
d3x1d

3x2

2

(
ψ̂†(x2)ψ̂†(x1)H ′(x1−x2)ψ̂(x1)ψ̂(x2)

)
= g

∫
d3x ψ̂†↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x), (3.18)

where the factor 1/2 avoids double counting and ψ̂2
↑,↓(x) = 0. For simplicity, we initially neglect

the dependence of aS on the relative kinetic energy of the colliding pair, which will be included

later.

3.2.1 Mean-field interaction

As mentioned earlier, the atoms are confined in a cigar-shaped cloud, where the x dimension is

large compared to the radial dimension ρ, so that the bias field curvature is negligible along the

ρ direction. Therefore, we treat the problem as one-dimensional by taking the field operators

to be of the form,

ψ̂σ(x) = φ(ρ) ψ̂σ(x), (3.19)

Carrying out the ρ integration in Eq. 3.18, we determine the effective one-dimensional interac-

tion Hamiltonian,

Ĥ ′ = g̃

∫
dx ψ̂†↑(x)ψ̂†↓(x)H ′ψ̂↓(x)ψ̂↑(x). (3.20)

where g̃ ≡ g n̄⊥ and

n̄⊥ =

∫
2πρdρ [n⊥(ρ)]2. (3.21)

Here, we have let |φ(ρ)|2 → n⊥(ρ), where
∫

2πρdρn⊥(ρ) = 1. Eq. 3.21 determines an effective

mean transverse density, n̄⊥, as a fraction per unit transverse area. Using Eq. 3.9, Hamiltonian
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operator of Eq. 3.20 takes the form

Ĥ ′ = g̃
∑

E1,E2,E′
1,E

′
2

∫
dxφ∗E′

1
(x)φ∗E′

2
(x)φE2(x)φE1(x)

× â†↑(E
′
1)â†↓(E

′
2)â↓(E2)â↑(E1). (3.22)

We simplify the interaction Hamiltonian by using a mean field approximation to evaluate

〈â†↑(E
′
1)â†↓(E

′
2)â↓(E2)â↑(E1)〉. (3.23)

where 〈...〉 denotes a thermal averaged operator products. To calculate the Eq. 3.23, we used

the Wick’s theorem, which expresses a product of fields as a sum of several terms, each term is

a product of contractions of pairs of fields and normal ordered products of remaining fields.

3.2.2 Wick’s theorem

For an arbitrary choice of operators as b1, b2, b3, b4, according to Wick’s theorem, we have,

〈b1 b2 b3 b4〉 = 〈b1 b2〉〈b3 b4〉 ∓ 〈b1 b3〉〈b2 b4〉+ 〈b1 b4〉〈b2 b3〉. (3.24)

Here the negative sign is for the case of Fermion particles and the positive sign is for Bosons.

Using Eq. 3.24, we can write the average of the field operator Eq. 3.22 as,

〈ψ†↑ ψ
†
↓ ψ↓ ψ↑〉 = 〈ψ†↑ ψ↑ ψ

†
↓ψ↓〉 ∓ 〈ψ

†
↑ ψ↓〉〈ψ

†
↓ ψ↑〉

+ 〈ψ†↑ ψ
†
↓〉〈ψ↓ ψ↑〉. (3.25)

The first term on the right side is the product of number operator and the second term is

responsible for interaction between the atoms of opposite spins, where causes spin segregation

as will be shown in Ch. 5. The last term produces the BCS-gap energy which we assume

vanishes for our weakly interacting system. If we apply the Wick’s theorem on the average of

field operators up to first order fluctuation, we obtain,

Ô′ ' 〈â†↑(E
′
1) â↑(E1)〉 â†↓(E

′
2) â↓(E2) + 〈 â†↓(E

′
2) â↓(E2)〉 â†↑(E

′
1) â↑(E1)

−〈 â†↑(E
′
1) â↓(E2)〉 â†↓(E

′
2) â↑(E1)− 〈â†↓(E

′
2) â↑(E1)〉 â†↑(E

′
1) â↓(E2). (3.26)

Further, we will require a thermal average of the Heisenberg equations of motion as well, i.e.,

〈[Ô′, Ŝi(E)]〉. This will vanish unless the energy arguments in the operator factors are the same.

41



Hence, the interaction Hamiltonain can be rewritten as,

Ĥ ′ = g̃
∑
Ẽ,E′

∫
dx |φE′(x)|2|φẼ(x)|2 ×

{
〈â†↑(E

′) â↑(E
′)〉 â†↓(Ẽ) â↓(Ẽ) + 〈â†↓(E

′) â↓(E
′)〉 â†↑(Ẽ) â↑(Ẽ)

−〈â†↑(E
′) â↓(E

′)〉 â†↓(Ẽ) â↑(Ẽ)− 〈â†↓(E
′) â↑(E

′)〉 â†↑(Ẽ) â↓(Ẽ)
}
. (3.27)

With the collective spin operators, Eq. 3.8, we rewrite Eq. 3.27 as

Ĥ ′ = 2 g̃
∑
Ẽ,E′

∫
dx |φE′(x)|2|φẼ(x)|2 ×

{1

4
N(E′) N̂(Ẽ)− S(E′) · Ŝ(Ẽ)

}
, (3.28)

where N̂(Ẽ) = N̂↑(Ẽ) + N̂↓(Ẽ) is the total number operator and Ŝ(Ẽ) is the total spin vector

operator for atoms of energy Ẽ. N(E′) is a c-number scalar and S(E′) is a c-number vector,

i.e., the corresponding thermal averaged Heisenberg operators for energy E′.

To evaluate the collisional contribution of the Heisenberg equations of motion, we require

[Ĥ ′, Ŝ(E)]. Here, [N̂(Ẽ), Ŝ(E)] = 0, and using Eq. 3.13, [S(E′) · Ŝ(Ẽ), Ŝ(E)] = −iS(E′) ×
Ŝ(Ẽ) δẼ,E . With Eq. 3.14, the Heisenberg equation

˙̂
S(E, t) = i

h̄

[
Ĥ0 + Ĥ ′, Ŝ(E, t)

]
for the spin

vector operator of energy E takes the simple form,

∂Ŝ(E, t)

∂t
= Ω(E, t)× Ŝ(E, t) +

∑
E′

g(E′, E) S(E′, t)× Ŝ(E, t), (3.29)

the result of this evolution was shown in Fig. 3.2. The second term describes the rotation of

the spin vector for atoms of energy E arising from collisions with atoms of energy E
′
. Here, the

coupling matrix g(E,E
′
) is proportional to the mean-field frequency and plays the role of the

site-to-site coupling in a lattice model. Below, you will see in details how g(E,E
′
) is related to

the mean-field frequency.

In Eq. 3.29,

g(E′, E) = −2 g n̄⊥
h̄

I(E′, E), (3.30)

where I(E′, E) is the probability densities for colliding atoms of energies E and E′,

I(E′, E) ≡
∫
dx |φE′(x)|2|φE(x)|2, (3.31)

with n̄⊥ given by Eq. 3.21, and g = 4πh̄2 aS/m.

For our experiments in the weakly interacting regime, where the energy E >> h̄ω̄x, |φE(x)|2
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can be evaluated by the WKB approximation,

|φE(x)|2 ' Θ[a(E)− |x|]
π
√
a2(E)− x2

, (3.32)

where a(E) =
√

2E/(mω̄2
x) is the classical turning point and Θ is a Heaviside function. Then,

the x-integral in Eq. 3.31 takes the form of

I(E′, E) =
1

π2amin

∫ 1

−1

du√[
E

Emin
− u2

] [
E′

Emin
− u2

] , (3.33)

where we have taken x = u amin. Here, amin =
√

2Emin/(mω̄2
x) determines the overlap region,

with Emin the minimum of E,E′. Using u = sin θ, and by considering separately the cases

Emin = E < E′ and Emin = E′ < E, we obtain,

I(E′, E) =
1

π2

√
mω̄2

x

2|E − E′|

∫ π/2

−π/2

dθ√
1 + Emin

|E−E′| cos2 θ
. (3.34)

The integral is readily evaluated, yielding a closed form EllipticK [Abramowitz et al., 1988] as,

g(E′, E) = −4 g n̄⊥
π2h̄

√
mω̄2

x

2|E − E′|
× EllipticK

[
− Emin
|E − E′|

]
(3.35)

where,

EllipticK(m) ≡

π
2∫

0

dθ

(1−mcos2(θ))
1
2

(3.36)

with m = −Emin/ |E − E′|, and E′ 6= E, since the sum in the last term of Eq. 3.29 vanishes for

E′ = E, i.e., we can take g(E′ = E,E) = 0 in Eq. 3.29. g(E′ = E,E) determines the effective

long-range character of the spin couplings as g(E′, E) ∝ 1/
√
E − E′, which is a consequence of

the separation of time scales for the fast harmonic oscillation of atoms and slow macroscopic

spin-density evolution [Koller et al., 2016,Pegahan et al., 2019].

Taking the thermal average of the evolution equations, we replace the vector operators

by the c-number vectors S(E, t) ≡ 〈Ŝ(E, t)〉. Since E >> h̄ω̄x, we evaluate Eq. 3.29 in the

continuum limit. We replace the sum
∑′

E ≡
∑′

n by
∫
dE′

h̄ω̄x
and define

S(E, t)

h̄ω̄x
≡ N

2
S̃(E, t), (3.37)
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Figure 3.3: Dependence of g(E′, E) to 1√
|E−E′|

multiplier and EllipticK function for E = EF
2 .

where N = N↑ +N↓ is the total number of atoms. Then,

∂S̃(E, t)

∂t
= Ω(E, t)× S̃(E, t) +

∫
dE′ g̃(E′, E) S̃(E′, t)× S̃(E, t), (3.38)

where g̃(E′, E) ≡ N
2 g(E′, E) has a dimension of s−1. Note that here, the factor N/2 in Eq. 3.37

is defined to be consistent with the spin operators of Eq. 3.8, i.e., with all atoms in the ground

hyperfine state with spin ↑, the total spin in the z-direction is N/2.

The integral term in Eq. 3.38 conserves the total spin vector
∫
dE S̃(E, t), since g̃(E,E′)

is symmetric under E′ ↔ E and the cross product is antisymmetric. In contrast, Ω(E) is an

energy dependent rotation rate that does not conserve the total spin S̃(E, t). However, without

radio frequency excitation, Ω(E) is along the z-axis and the z-component of the total spin∫
dE S̃z(E) is conserved. Since Eq. 3.38 describes a rotation of S̃(E, t), S̃(E, t) · S̃(E, t) = 0

and |S̃(E, t)| ≡ S(E) is conserved for each E.

As it will be shown in more detail in Ch. 5, we integrate Eq. 3.38 subject to the initial

condition that all atoms are in the upper hyperfine (spin-down) state. A radio frequency pulse

is then used to prepare a collective spin vector with components in the x − y plane. With

Eq. 3.37, the thermal averaged z-component of the initial collective spin operator, Eq. 3.8,

requires

S̃z(E, t = 0) = S(E) = P (E), (3.39)
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where P (E, T ) is the fraction of atoms with an axial energy E at temperature T and∫ ∞
0

dE P (E) = 1 (3.40)

in the continuum limit. In the high T imit that we normally work with,

P (E) =
1

Z
e
− E
kBT , (3.41)

where the partition function Z =
∫∞

0 dEe
− E
kBT = kBT . In the low temperature limit, T → 0,

we use the occupation number for a Fermi distribution in three dimensions and sum over

the energies in the two perpendicular directions to obtain the normalized axial (x) energy

distribution as

P (E) =
3

EF

(
1− E

EF

)2

Θ

(
1− E

EF

)
, (3.42)

where for N↑ = N , EF = (6N)1/3h̄ω̄, with ω̄ ≡ (ω2
⊥ω̄x)1/3.

The measured axial spin density profiles, shown in Ch 5, are given by the continuum limit

of Eq. 3.11,

S(x, t) =
N

2

∫
dE |φE(x)|2 S̃(E, t), (3.43)

where we neglect coherence between states of different energy and
∫
dxS(x, t) = N

2

∫
dE S̃(E, t).

Evaluation of Eq. 3.43 is simplified by rewriting the WKB wave functions of Eq. 3.32 in the

form,

|φE(x)|2 =
ω̄x
π

∫ ∞
0

dpx δ

(
E − p2

x

2m
− mω̄2

x

2
x2

)
(3.44)

so that the spin density is

S(x, t) =
N

2

ω̄x
π

∫ ∞
0

dpx S̃

(
p2
x

2m
+
mω̄2

x

2
x2, t

)
. (3.45)

The initial t = 0 spatial densities for the spin components are similarly determined. For

the degenerate gas, we approximate the energy distribution by the zero temperature limit in

Eq. 3.42, as discussed above. The corresponding spatial density for each spin component, just

after preparation, is then a normalized zero temperature Thomas-Fermi profile. Analogous to

Eq. 3.43, using the WKB approximation, and Eq. 3.42 it is easy to show that the initial density

45



profiles for each state are of the one dimensional Thomas-Fermi form,

n↑,↓(x, 0) = N↑,↓

∫
dE |φE(x)|2 P (E)

= N↑,↓
16

5π σFx

(
1− x2

σ2
Fx

)5/2

Θ

(
1− x2

σ2
Fx

)
, (3.46)

where σFx =
√

2EF /(mω̄2
x) is the Fermi radius and N↑ = N↓ = N/2 for a balanced mixture. As

the energy distribution for the atoms does not change in time, the spatial profile for the total

density n(x) is time independent, i.e., n↑(x, t) + n↓(x, t) = n↑(x, 0) + n↓(x, 0) = n(x), as shown

later in Fig. 5.3. For the non-degenerate gas, the Maxwell-Boltzmann energy distribution of

Eq. 3.41 yields the corresponding gaussian spatial profile.

3.2.3 Numerical Implementation

To determine S̃(E, t) from Eq. 3.38, we divide the energy range into discrete intervals ∆E,

taking E = (n − 1)∆E, with n an integer, 1 ≤ n ≤ nmax. Typically, nmax = 500. This

method determines the spin components i = x, y, z as column vectors in discrete energy space,

S̃ discr
i (n, t), where n labels the row rather than the harmonic oscillator state.

We take S̃(E, t) = S̃discr(n, t)/∆E in Eq. 3.38. With the replacement
∫
dE′/∆E =

∫
dn′ →∑

n′ , the discrete energy evolution equations are

∂S̃discr(n, t)

∂t
= Ω(n, t)× S̃discr(n, t)

∑
n′

g̃(n′, n) S̃discr(n′, t)× S̃ discr(n, t), (3.47)

where

g̃(n′, n) =
Ω̃√
|n− n′|

EllipticK

[
−nmin − 1

|n− n′|

]
. (3.48)

g̃(n′, n)’s behavior is shown in Fig. 3.3. Here, nmin is the minimum of n and n′ and

Ω̃ = −N
2

4 g n̄⊥
π2h̄

√
mω̄2

x

2∆E
, (3.49)

with g = 4πh̄2 aS/m.

We define ∆E differently for the high and low temperature limits. In the low temperature

limit, we take ∆E = sEF with E = (n− 1) s EF , and 0 ≤ E ≤ EF , we have s = 1/(nmax− 1).

In the high temperature limit, we choose ∆E = s kBT and take s such that exp[−s (nmax − 1)]

is negligible. For both cases, it is convenient to let ∆E = s 1
2mω̄

2
xσ

2
x. Then, for T = 0, σx =√

2EF /(mω̄2
x) ≡ σFx is the Fermi radius, which is measured in the experiments. For the

high temperature limit, σx =
√

2kBT/(mω̄2
x) is the measured gaussian (Boltzmann factor) 1/e
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radius. With ∆E = s 1
2mω̄

2
xσ

2
x, Eq. 3.49 yields

Ω̃ = − 1√
s

4h

π2

aS
m

n̄⊥N

σx
≡ − 1√

s
ΩMF , (3.50)

where we have defined the mean field frequency ΩMF , h = 2πh̄, and n̄⊥ given by Eq. 3.21. In

the low temperature limit, with n⊥(ρ) = 3(1 − ρ2/σ2
F⊥)/(πσ2

F⊥), we obtain n̄⊥ = 9
5πσ2

F⊥
. In

the high temperature limit, with n⊥(ρ) = exp[−ρ2/σ2
⊥]/(πσ2

⊥), we obtain n̄⊥ = 1
2πσ2

⊥
. Then the

mean field frequency in these two regimes are,

ΩMF =
9

20π

2h aS
m

nF0 T = 0

ΩMF =
1

π3/2

2h aS
m

n0 High T . (3.51)

Here nF0 = 8N/(π2σ2
F⊥σFx) is the 3D central density for a T = 0 Thomas-Fermi profile with

σF⊥ =
√

2EF /(mω2
⊥) and n0 = N/(π3/2σ2

⊥σx) is the 3D central density in the Boltzmann limit,

where σ⊥ =
√

2kBT/(mω2
⊥) .

Figure 3.4: Low-temperature z component spin-density profile of 1-2 mixture for t = 600 ms,
T/TF = 0.35, and a = 3.1 a0.

Using the measured experimental parameters of Ch. 5, we can easily calculate the mean
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field frequency of Eq. 3.51 and compare that with the energy dependent Zeeman precession of

Eq. 3.4. For the degenerate gas ΩMF = 1Hz with a = 5.2a0, for the thermal gas ΩMF = 0.5Hz,

and for the Zeeman precession rate is from 0Hz to 12Hz, which depends on the energy of spins

prepared along the x-axis on the Bloch sphere. The Zeeman detuning rate, Ωz, for the average

energy of degenerate atomic cloud, Ē = EF /4, is 3Hz. For the degenerate gas, the average of

the mean field frequency is < g(n, n′) >=< Ω̃√
s
EllipicK(n,n′)√

n−n′ >= 3.78 ΩMF , and for the Boltzman

gas < g(n, n′) >= 1.97 ΩMF .

With our choices of ∆E, the initial conditions are analogous to Eq. 3.39,

S̃ discr
z (n, t = 0) = P (n), (3.52)

where for the high temperature limit, P (n) = exp[−s(n − 1)]/Z, and for the T = 0 limit,

P (n) = 3s [1− s(n− 1)]2/Z, with Z =
∑nmax

n=1 P (n).

Figure 3.5: High-temperature spin-density profile for 1-2 mixture for t = 400 ms. T = 45.7 µK
and B = 527.466 G, and the zero-energy s-wave scattering in this regime is 0.90 Bohr.

Numerical evaluation of Eq. 3.47 yields the tables {n − 1, S̃ discr
i (n, t)} for 1 ≤ n ≤ nmax.

Note that n− 1 is used as the independent variable so that E = (n− 1)∆E = 0 for n = 1. The

energy-dependent S̃discr(n, t) is then converted to an interpolator function of (n− 1) = E/∆E

and we use Eq. 3.45 to find the spin density S(x, t).
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3.3 Spin-Dependence Harmonic Oscillation Frequency

Now that we explained thoroughly the method to evaluate the Eq. 3.47, here we will focus in

more details on the first term that gives rise to energy dependent spin precession.

Ω(n) = êz Ωz(n). (3.53)

As discussed above, Ωz(n) arises from the bias magnetic field curvature. Using E = (n−1)sEF

for the T = 0 limit (degenerate regime) and E = (n− 1)s kBT in the high temperature limit,

Ωz(n) ≡ Ωz (n− 1), (3.54)

where Ωz = −δωx sEF /(h̄ω̄x) for T = 0 and Ωz = −δωx s kBT/(h̄ω̄x) in the high temperature

limit.

As the magnetic moments of the two spins are not identical, the bias magnetic field in

the axial x direction, which arises from the curvature of ∆Bz = x2B′′z (0)/2, leads to a res-

onance frequency difference between two lowest hypefine spin states, δωx = ωx↓ − ωx↑. The

harmonic oscillation frequencies for the upper hyperfine state (↓) and lower hyperfine state (↑)
are determined by the sum of optical and magnetic spring constants,

ω2
x↓,↑ = ω2

opt + ω2
mag↓,↑ = ω2

opt +
1

m

∂2Bz
∂x2

∂E↓,↑
∂B

, (3.55)

where ωopt arises from the optical trap and ωmag from the bias field curvature. The last term

in the Eq. 3.55 is the result of,

1

2
mω2

mag↓,↑x
2 = ∆Bµ =

x2

2

∂2B

∂x2

∂E↑,↓
∂B

. (3.56)

For our experiments in 6Li, the hyperfine energies E↓,↑ are dominated by the Zeeman shift

of the (spin down) electron for each of the lowest three hyperfine states, while the much smaller

difference E↓−E↑ arises from the difference between the nuclear parts of the magnetic moment

and the difference in the hyperfine mixing. Then, with ω2
mag ≡ (ω2

mag↓ + ω2
mag↑)/2 and ω̄2

x ≡
ω2

opt + ω2
mag, we have

ωx↓,↑ =

√
ω2

opt + ω2
mag ±

ω2
mag↓ − ω2

mag↑
2

' ω̄x

(
1±

ω2
mag↓ − ω2

mag↑
4 ω̄2

x

)
(3.57)

and
δωx
ω̄x

=
ωx↓ − ωx↑

ω̄x
=
ω2

mag

ω̄2
x

ω2
mag↓ − ω2

mag↑
2ω2

mag

.
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Then,

δωx =
ω2

mag

ω̄x

(
∂E↓
∂B −

∂E↑
∂B

∂E↓
∂B +

∂E↑
∂B

)
'
ω2

mag

ω̄x

h̄ω′↓↑
gJµB

, (3.58)

where ω′↓↑ is the tuning rate of the transition, with ↓ the upper hyperfine state. Here, we have

assumed that the denominator of Eq. 3.58 is approximately twice the Zeeman tuning rate of a

spin-down electron, 2×gJµB/2 = −2π×2.8 MHz/G, as is the case for our experiments near the

zero crossings of 6Li. For our experiments, ω2
mag = (2π×20.5 Hz)2 B(G)/834. For the degenerate

gas, ω̄x = 2π × 23 Hz, ω⊥ = 2π × 625 Hz; for the high temperature gas, ω̄x = 2π × 174 Hz,

ω⊥ = 2π × 5.77 kHz.

For a mixture of the two lowest hyperfine states, as noted above, ↓ denotes the upper

hyperfine state, and ↑ denotes the lower hyperfine state. The hyperfine energies for the three

lowest states of 6Li, denoted 1, 2, 3 in order of increasing energy, yield the tuning rates which

appear in the numerator of Eq. 3.58: ω′21[527G] = 2π×3.61 kHz/G and ω′32[589G] = −2π×12.3

kHz/G, ω′31[568G] = −2π × 10.3 kHz/G. With ω̄x = 2π × 23 Hz, we obtain δωx = −2π × 14.9

mHz. For a 1− 2 mixture near 527 G, δωx = +2π × 56.7 mHz for a 2− 3 mixture near 589 G,

and δωx = +2π × 45.8 mHz for a 1− 3 mixture near 568 G. In Ch. 5 we use these parameters

to describe the spin density evolution for different mixture of atoms.

3.4 Energy Dependent Scattering Length

For experiments in the non-degenerate regime at higher temperatures, we find that the energy

dependence of the scattering length cannot be neglected. This energy dependence strongly

modifies the spin-density profiles for small scattering lengths, and produces a shift of the zero

crossing field. We include this dependence in g(E′, E) of Eq. 3.35 by replacing the energy-

independent s-wave scattering length as with an energy dependent scattering length a(E′, E).

The s-wave scattering length is given by the energy-dependent scattering amplitude f(k),

a[B, k] = f

(
−2µBB +

h̄2k2

2µ

)
, (3.59)

where h̄k is the relative momentum and µ = m/2 is the reduced mass. As explained in Ch. 2,

the applied bias magnetic field Bz ≡ B tunes the energy of a colliding pair in the triplet

channel downward, at a rate −2µBB, with µB the Bohr magneton. For our experiments in the

degenerate regime, where the relative kinetic energy term in Eq. 3.59 is negligible, we assume

that the scattering length varies linearly with applied magnetic field near the zero crossing field

B0,

a(B) = a′ (B −B0), (3.60)
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where the tuning rate of the scattering length a′ is given in units of a0/G, where a0 is the Bohr

radius. To include the relative kinetic energy Krel in Eq. 3.59, we can replace the magnetic field

B by an effective magnetic field,

Beff = 〈Bz〉 −
〈Krel〉
2µB

. (3.61)

Here, we include an additional average of the spatially varying bias field Bz over the position

of the center of mass (CM) of a colliding atom pair. The total CM energy is

ExCM =
~PCM

2

2(2m)
+

1

2
(2m)(ω̄2

xX
2 + ω̄2

⊥(Y 2
CM + Z2

CM )). (3.62)

Since here X >> ρ =
√
Y 2
CM + Z2

CM , we can rewrite the center of mass energy using the

Virial theorem for a harmonic trap, which holds for weakly interacting atoms. Thus, we obtain

2mω̄2
x 〈X2

CM〉 = 〈ExCM〉, where 2m is the total mass. In the following, I will show how to evaluate

〈Bz〉.

Figure 3.6: Orientation of the optical and magnetic potentials, objects not to scale. The atom
cloud, in red, forms a tri-axial ellipsoid at the focus of a CO2 laser beam. Due to the curvature
of the bias field, a spin-dependent potential forms for atoms with different magnetic moment.

As we see in Fig. 3.6, the bias field is cylindrically symmetric about the z axis, and oriented

perpendicular to the long x-axis of the trapped cloud, so that Bz = Bz0[1+b(z2− (x2 +y2)/2)],

where Bz0 is the bias field at the cloud center and bBz0 is the field curvature. For the cigar-

shaped clouds utilized in the experiments, the variation of Bz in the z and y directions is negli-
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gible compared to that in the x direction, so that Bz(x) = Bz0[1− b x2/2]. We determine bBz0

from the measured spring constant of the resulting harmonic confining potential, −µBBz(x),

where for 6Li, the magnetic moment, +µB, of the three lowest hyperfine states at high B field

is dominated by the electron spin down contribution, ms = −1/2. With µB bBz0 ≡ mω2
mag,

where ωmag is given above, the bias field, averaged over the center of mass position, is then

〈Bz〉 = Bz0 −mω2
mag 〈X2

CM〉/(2µB). Hence,

Beff = Bz0 −
ω2

mag

ω̄2
x

〈ExCM〉
4µB

−
〈Kx

rel〉
2µB

−
〈K⊥rel〉
2µB

. (3.63)

Here, we have separated the relative kinetic energy term of Eq. 3.61 into axial and transverse

parts.

Next, we need to evaluate the relative kinetic energy contributions in the above equation. For

the axial x-direction, we select the axial energies of the two colliding atoms E and E′ in g(E,E′),

Eq. 3.35. Hence, the total energy is E+E′ = ExCM +Exrel. For harmonic confinement, the kinetic

and potential energies are quadratic degrees of freedom, which requires ExCM = (E + E′)/2 for

any product state φE(x1)φE′(x2). We also have Exrel = (E+E′)/2, where Exrel = Kx
rel+µ ω̄

2
x x

2
rel/2

for harmonic confinement. To evaluate 〈Kx
rel〉, we note that for a collision to occur, the relative

position xrel of the two atoms must vanish for a contact interaction. Hence, Kx
rel = Exrel =

(E + E′)/2. For the transverse directions, we have defined a mean fractional spatial density

n̄⊥, by Eq. 3.21. Assuming that the corresponding relative momentum average for the two

transverse directions is determined by a Boltzmann distribution, 〈K⊥rel〉 ' kBT . Using these

results in Eq. 3.63, we obtain finally,

Beff = Bz0 −
〈K⊥rel〉
2µB

−

(
1 +

ω2
mag

2ω̄2
x

)
E + E′

4µB
, (3.64)

where we leave 〈K⊥rel〉 as an adjustable parameter, of order kBT . Replacing aS with a(E′, E) =

a′(Beff − B0) in g(E′, E) of Eq. 3.31 and in the results for g̃(n′, n) that follow from it, we

obtain a reasonable fit to the high temperature spin density profile shown in Fig. 5.14 with

〈K⊥rel〉 = 0.59 kBT . For T = 45.7µK, this corresponds to a shift of −0.2 G in Beff , consistent

with the upward shift of the applied field for which a12 = 0, as reported in Table. 5.1 of Ch. 5.

For the low temperature data, where the energy scale is < 1µK, the corresponding energy shift

is negligible.
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Chapter 4

Information Scrambling in a Weakly

interacting Fermi Gas

In this chapter, I will describe the theory of out-of-time order correlation (OTOC) functions in a

weakly interacting Fermi gas, which is confined in a spin-dependent harmonic trap. I will show

that by employing an inverse Abel-transform method, one can extract an energy-dependent

spin vector S(E) from the spatial profile of the spin density S(x), providing a new platform for

the study of information scrambling in large many-body systems.

4.1 Out-Of-Time-Order Correlation Function

Recently, it has been shown that measurements of certain out-of-time-order correlation (OTOC)

functions [Schleier-Smith, 2017, Marino and Rey, 2019, Swingle and Yao, 2017] can serve as

entanglement witnesses to quantify coherence and information scrambling in quantum many-

body systems [Gärttner et al., 2017,Gärttner et al., 2018].

In this dissertation, “scrambling” denotes the spread of quantum information over the many-

body degrees of freedom, which becomes inaccessible to local probes. OTOC measurements have

been performed by reversing the time evolution of the many-body state, which is achieved by

reversing the sign of the Hamiltonian. Such protocols were first implemented in nuclear magnetic

resonance experiments at high temperatures, where the initial state is described by a density

operator and high order quantum coherence has been observed [Baum et al., 1985].

New OTOC studies have been performed in trapped ion systems in a Penning trap containing

relatively small numbers of atoms, where the individual sites are nearly equivalent, and the

initial state is pure [Gärttner et al., 2017]. Related methods have been developed for systems

containing up to 100 atoms [Lewis-Swan et al., 2019], but the application to very large numbers

remains a challenge.
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OTOC measurements in trapped, weakly interacting Fermi gases offer new prospects for

understanding information spreading in large quantum systems containing N ' 105 atoms

with a tunable, reversible Hamiltonian [Du et al., 2009,Smale et al., 2019]. Here, I will explain

out-of-time-order correlation functions and their application to study higher order quantum

coherence and information scrambling in the many-body system of ultracold fermions.

For a pure initial state |ψ0〉, the utility of the OTOC can be simply understood as fol-

lowing [Schleier-Smith, 2017, Gärttner et al., 2017, Lewis-Swan et al., 2019]. Let Ŵ and V̂ be

two, generally time-dependent, operators. Then, consider the two states |ψ1〉 = Ŵ V̂ |ψ0〉 and

|ψ2〉 = V̂ Ŵ |ψ0〉, where the operators are applied in reverse order on the initial pure state. The

overlap between these two states is

F ≡ 〈ψ2|ψ1〉 = 〈ψ0|Ŵ †V̂ †Ŵ V̂ |ψ0〉, (4.1)

which is of the OTOC form.

Given two, quantum operators Ŵ and V̂ , one imagines comparing two processes: (i) apply

V, evolve forward in time, apply Ŵ , and evolve backward in time, (ii) Evolve the system forward

in time, apply Ŵ , evolve backward in time, and apply V̂ ; as shown in Fig. 4.1.

Figure 4.1: In the left diagram, the system first evolves forward in time, then, W operator
followed by backward in time evolution, and finally V operator is applied on the state. In the
right diagram, operator V is applied. Then, the system evolves forward in time followed by W
operator, and finally the system evolves backward in time. F is the out-of-time-order correlation
function, which quantifies the overlap between |ψ2〉 and |ψ1〉 [Schleier-Smith, 2017].
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What does this comparison tell us? Drawing on an analogy to classical chaos, one inter-

pretation is that comparing the two processes reveals the sensitivity of a measurement of V to

a perturbation W , a kick from an external field that happened some time in the past. If the

measurement is very sensitive to the perturbation, we have a quantum version of the classical

butterfly effect, in which a small initial perturbation eventually has a major effect. Taking the

analogy further, a quantum system in which information becomes scrambled can be viewed as

a quantum chaotic system, and the OTOC provides a measure of the scrambling [Swingle and

Yao, 2017,Schleier-Smith, 2017]. In the following, we will look more closely at Eq. 4.1.

Suppose that Ŵ and V̂ commute at time t = 0. Then from Eq. 4.1, F(0) = 1 only for the

unitary Ŵ and V̂ operators. Using 2Re{F} = F + F∗, we get

2Re{F} = 〈ψ0|Ŵ †V̂ †Ŵ V̂ |ψ0〉+ 〈ψ0|V̂ †Ŵ †V̂ Ŵ |ψ0〉, (4.2)

which can be written as

2Re{F} = 〈ψ0| [Ŵ †, V̂ †] [Ŵ , V̂ ] |ψ0〉+ 〈ψ0|V̂ †Ŵ †Ŵ V̂ |ψ0〉+ 〈ψ0|Ŵ †V̂ †V̂ Ŵ |ψ0〉

[Ŵ †, V̂ †] = −[Ŵ , V̂ ]. (4.3)

As shown in Fig 4.1, |ψ1〉 = Ŵ V̂ |ψ0〉 and |ψ2〉 = V̂ Ŵ |ψ0〉, where the subscription of Ŵ

operator is eliminated. By simplifying above commuting relations, it is straightforward to obtain

2Re{F} = 〈ψ0|V̂ †Ŵ †Ŵ V̂ |ψ0〉+ 〈ψ0|Ŵ †V̂ †V̂ Ŵ |ψ0〉 − 〈ψ0||[Ŵ , V̂ ]|2|ψ0〉. (4.4)

For the unitary Ŵ and V̂ , 〈ψ1 | ψ1〉 = 1 and 〈ψ2 | ψ2〉 = 1 for all t, thus we obtain an

important relation between OTOC function as

1

2
〈ψ0||[Ŵ , V̂ ]|2|ψ0〉 = 1−Re{F}. (4.5)

From Eq. 4.5, we see that if the operators Ŵ and V̂ do not commute for t > 0, then

Re{F(t)} < 1. Thus, a measurement of Re{F} determines how two initially commuting opera-

tors, Re{F(0)} = 1, fail to commute at a later time in a many-body system, providing a measure

of information scrambling [Gärttner et al., 2017,Lewis-Swan et al., 2019]. In Ch. 6, I will present

an experimental protocol in which Ŵ applies a controllable rotation to the total interacting

spin system in between the forward and time-reversed evolutions, using radio-frequency pulses.

The operator V̂ performs a measurement to diagnose the effects of the rotation on the spins of

energy Ei, i.e., at “site” i in energy space, as shown in Fig. 5.2.

As described in the previous chapter, the Hamiltonian for a weakly interacting Fermi gas,

confined in a cigar-shaped optical trap along the x-axis, takes the form of a spin “lattice” in
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energy space, Eq. 3.7, with

H(a) = −
∑
i

Ωi szi + a
∑
i,j 6=i

gij si · sj (4.6)

in units of s−1. Here, s(Ei) ≡ si is the dimensionless collective spin vector for atoms of energy

Ei, the energy of the ith axial harmonic oscillator state, which plays the role of the “site”

i. The site-to-site interaction is governed by the tunable s-wave scattering length a and by

gij ∝
∫
dx |φEi(x)|2 |φEj (x)|2, the overlap of the probability densities for colliding atoms of

energies Ei and Ej , which produces an effective long range interaction ∝ 1/
√
|Ei − Ej | [Pegahan

et al., 2019].

The effective Zeeman interaction is site-dependent, Ω(Ei) ≡ Ωi = Ω′ (Ei− Ē) + ∆, which is

identical to the Zeeman frequency of Ch. 3. Here, Ω′ (Ei − Ē) scales linearly with energy, and

arises from the curvature of the bias magnetic field, which produces a difference between the

harmonic oscillation frequencies of the ↑z and ↓z states in the net, weakly confining axial poten-

tial. ∆ is a global radio-frequency detuning, where ∆ = 0 corresponds to resonance for atoms

of mean energy Ē. As the bias field curvature has a negligible effect on the tight transverse, (y,

z), confining potential, the system is effectively one-dimensional.

In the following, I will talk about the OTOC function for the subset of spins in the energy-

space. This provides building blocks for the experimental study of information scrambling in

Ch. 6.

4.1.1 Extracting OTOC for Individual Spins in Energy-Space

Now that we are familiar with the OTOC measurement, I will apply Eq. 4.5 to a system of spins

in the energy space. In the many-body system of spins, we define Ŵ (t) shown in the Fig. 4.1,

as the following,

Ŵ (τ) = eiHτe−iφ Sxe−iHτ . (4.7)

This operator applies a rotation to the total interacting spin system in between the forward

and time-reversed evolutions. In Eq. 4.7, Sx =
∑N

j=1ŝxj is the x-component of the total spin

vector. For the operator V̂ , we choose V̂ = 2 ŝxi = σ̂xi, i.e., the x-Pauli matrix for the ith

spin. With this choice, V̂ † = V̂ and V̂ †V̂ = σ̂2
x = 1̂. Further, with an initial σx-eigenstate as

V̂ |ψ0〉 = |ψ0〉, OTOC for ith spin in energy lattice is

F i ≡ 2 〈ψ0|Ŵ †σ̂ixŴ σ̂ix|ψ0〉 = 〈ψ0|Ŵ †σ̂ixŴ |ψ0〉. (4.8)

F i here is a real quantity. The right hand side of this equation leads to a relation very

similar to Eq. 4.5. Therefore, OTOC for ith spin can be written as the square of commuting

56



operators at t > 0

F i = 1− 1

2
〈ψ0||[Ŵ , σ̂ix]|2|ψ0〉. (4.9)

In the next section, we will extend the results of Eq. 4.9 to a system with an ensemble of

spins at different energy. In Ch. 6, we will use these results to model the energy-resolved OTOC

functions.

4.1.2 Extracting OTOC for a Subset of Spins in Energy-Space

The system that we study, contains thousands of spins in different energy space partitions.

Therefore, if we consider a system with N-spins, for a subset of Ns spins with nearly the same

energy, the average OTOC can be written as

F̄(τ) ≡ 1

NS

NS∑
i=1

F̄ i(τ). (4.10)

The average of OTOC for the system of spins using Eq. 4.8 and σxi = 2six, will be

F̄(τ) =
2

NS

NS∑
i=1

〈ψ0|Ŵ †(τ)ŝixŴ (τ)|ψ0〉. (4.11)

For this system, if we want to find the commutator relation similar to Eq. 4.9, we can show

that Eq. 4.11 is

F̄ (τ) =
2

NS

NS∑
i=1

〈ψ0|Ŵ †(τ)ŝixŴ (τ)|ψ0〉

=
1

NS

NS∑
i=1

( 1− 4

2
〈ψ0||[Ŵ (τ), ŝix]|2|ψ0〉)

= 1− 2

NS

NS∑
i=1

〈ψ0||[Ŵ (τ), ŝix]|2|ψ0〉. (4.12)

by rearranging this relation, we can find spin-averaged mean-square commutator as

1

NS

NS∑
i=1

〈ψ0||[Ŵ , ŝix]|2|ψ0〉 =
1

2
− 1

NS

NS∑
i=1

〈ψ0|Ŵ †ŝixŴ |ψ0〉, (4.13)

which is similar to Eq. 4.5. Eq. 4.13 provides a valuable measure of information scrambling

in the subset of spins in the many-body system and can be extended to the whole system by
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considering all range of energies (up to EF in the degenerate regime). If the left hand side of

this relation is non-zero, we can conclude that for the subset of NS spins with the same energy,

scrambling has happened due to perturbation from Ŵ , coherence has spread throughout the

many-body system of spins.

Eq. 4.13 provides the OTOC for a many-body system of spins with nearly the same energy.

It is important to understand how to transform the collective spin density vector from the

spatial coordinate to energy space, using an inverse-Abel transform. In Ch. 3, we assumed that

there is no energy-space coherence i.e., for each spin state

nσ(x, φ) =
∑

E
|φE(x)|2nσ(E, φ). (4.14)

For a harmonic trap, the |φE(x)|2 are the harmonic states, and nσ(x, φ) in a continuous

limit, corresponds to an integral Abel-transform that can be inverted. Thus, we find the energy

dependent spin density nσ(E, φ) through an inverse able transform from Eq. 4.14. Measured

collective spatial spin vector will be shown in Ch. 5, and inverse-Abel transform of measured

spin density will be discussed for OTOC functions in Ch. 6.

4.2 Inverse Abel-Transform Method

To employ an inverse Abel-transform method as discussed above, we assume that the measured

axial spin density profiles are given in the continuum limit,

S(x, t) =

∫
dE |φE(x)|2 S(E, t), (4.15)

which is defined so that
∫
dxS(x, t) =

∫
dE S(E, t) is the total collective spin vector. As I men-

tioned earlier, an important feature of Eq. 4.15 is the assumption that there is no coherence

between states of different energy, which is justified in the energy-conserving regime of a very

weakly interacting Fermi gas. Physically, each atom remains on its respective energy “site,” Ei.

This assumption in Ch. 5 yields to predictions in very good agreement with the small scale

spatial structure observed in the spin density Sz(x) for single pulse experiments. In the contin-

uum limit, where the harmonic oscillator energy level spacing is small compared to the energy

scale, the harmonic oscillator wave functions can be evaluated in using a WKB approximation

similar to approximations in Ch. 3. In this case, the probability densities take the simple form,

|φE(x)|2 =
ω̄x
π

∫ ∞
0

dpx δ

(
E − p2

x

2m
− mω̄2

x

2
x2

)
. (4.16)

58



Figure 4.2: Testing the inverse Abel-transform method. Using a mean field model, spin density
“data” (a) for Sz(x, φ = π) are generated for the protocol of Fig. 1 of the main paper, with the
same x-spacing as the actual data. Inverse Abel-transformation (right) yields Sz(E, φ = π) (b),
which closely matches the input Sz(E, φ = π) (red curve) from the mean field model, which
was used to generate the model data for the spin density spatial profile.

Then with Eq. 4.15, the spin density is

S(x, t) =
ω̄x
π

∫ ∞
0

dpx S

(
p2
x

2m
+
mω̄2

x

2
x2, t

)
. (4.17)

This is an Abel-transform, i.e., the y-integral of a function of x2 + y2. Hence, an inverse Abel-

transform enables a determination of the energy-dependent collective spin component Sz(E, t)

from the measured spatial profile Sz(x, t). To extract Sz(E) from the data, the measured spatial

profile is first symmetrized by folding about x = 0 and then an inverse Abel-transform is

implemented without employing derivatives by using the method described in [Pretzier, 1991].

For this method, the unknown radial distribution is expanded in a series of cosine-functions,

the amplitudes of which are calculated by least-squares-fitting of the Abel-transformed series

to the measured data. In our analysis, we use up to 20 cosine terms.

To test the inversion method, we generate “data” using the mean field model for Sz(x, φ =

π), shown in Fig. 4.2, with the same x spacing as the real data, the single-shot spin density

profiles taken after the many-body spin protocol, shown in Fig. 4.3 ( details in Ch. 6). We

see that Sz(E) appears smooth compared to the single shot spin density Sz(x), which requires

averaging over several shots to obtain a smooth profile.

Inverting the “data” for Sz(x, φ = π), we find the result shown as the blue curve of

Fig. 4.2 (b). We start with a small number of cosine terms and increase the number until

the agreement with the exact mean-field input S(E, φ = π) (red curve) shows no further im-

provement. Using 20 cosine terms, we find that the Sz(E, φ = π) obtained from the spatial
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Figure 4.3: Energy-resolved out-of-time-order correlation measurement. (a) “single-shot” spin
density profile Sz(x) (blue dots). The red dashed curve is shown to guide the eye; (b) An inverse-
Abel transform of the spatial profile (blue dots) is used to extract the single-shot energy-resolved
spin density Sz(E) (red dots). The scattering length is measured at a = 4.24 a0.

profile by inversion (blue) is in close agreement with the exact input from the mean field model

(red curve) that was used to generate the spatial profile.

Next, we apply the Abel-transform method to find the energy-dependent spin component

Sz(E, φ) from the measured spin density Sz(x, φ), Fig. 4.4 (a). We check the consistency of the

Figure 4.4: Extracting the energy-dependent collective spin component Sz(E, φ = π) for a
single shot. (a) Measured single-shot spin density Sz(x, φ = π) for the protocol of Fig. 4.3 with
a = 4.24 a0 and φ = π. (b) Inverse Abel-transformation of (a) yields Sz(E, φ = π) (red dots).
(c) Sz(x, φ = π) (red curve) generated from the extracted Sz(E, φ = π) is consistent with the
input spin density data (blue dots).

extracted Sz(E, φ) by Abel-transformation, which generates Sz(x, φ = π) for comparison to the

input data Fig. 4.4(c).
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Figure 4.5: Comparison of the extracted energy-dependent collective spin component
Sz(E, φ = π) for a single shot with the mean field model. (a) Measured single-shot spin density
Sz(x, φ = π) with a = 4.24 a0 and φ = π. (b) Inverse Abel-transformation of (a) with 8 cosine
terms yields Sz(E, φ = π) (blue dots). The red curve is the Sz(E, φ = π) obtained with an
8-term inverse-Abel transform of Sz(x, φ = π). The black-dashed curve shows the Sz(E, φ = π)
that is obtained directly from the mean field model, i.e., without inverse-Abel transform of
the predicted spatial profile. Scattering length afit = 2.35 × 4.24 a0 and a global detuning
∆ = 2π × 0.27 rad/s.

Fig. 4.5, shows a comparison between the Sz(E, φ = π) curves extracted using an 8-term

inverse-Abel transform of the single shot data Sz(x, φ = π) and by an 8-term inverse-Abel

transform of the spatial profile predicted by the mean field model. We find that the predicted

and measured shapes are in good agreement. However, the mean field model requires a scattering

length that is 2.35 times the measured value, suggesting that a more complete treatment is

needed.

In Ch. 6, I will extract the out-of-order-correlation function from 4.13, and compare the

simulated model for the ensemble of spins with the experimental observation; I reveal a rich

coherence structure that is hidden in measurements of the total collective spin vector.
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Chapter 5

Measurement of Spin-Energy

Correlation in Fermi Gases

In this chapter, I will present experimental measurements of time-dependent spin-density pro-

files for coherently prepared two-state Fermi gases of 6Li, confined in a spin-dependent harmonic

potential. This measurements provide a precise quantitative test of the underlying energy-space

spin-lattice model and energy-dependent long-range couplings, discussed in Ch. 3. I will show

this system allows implementing the most precise measurements of the zero crossings for 6Li

atoms and the scattering length tuning with a magnetic field near the zero crossing.

5.1 Preparation of a Degenerate Fermi Gas

The evolution of the spin density in weakly interacting Fermi gases has been described by mean

field models employing phase-space representations [Piéchon et al., 2009, Du et al., 2008] and

energy representation [Du et al., 2009]. However, the initial implementation by control of the

energy-dependent collective spin-rotation model yielded only semi-quantitative agreement with

the observed spin-density profiles and the time-dependent amplitude, which were measured at

high temperatures, suggesting that the model was incomplete.

Using the collective spin-rotation model from Ch. 3, we show that our model, without ad-

ditional simplifying approximations, quantitatively predicts the observed spin-density profiles.

At high temperatures and small scattering lengths a < 1 Bohr, we observe additional features

in the spin-density profiles, which we will explain by including the energy dependence of the

scattering length in our model.

In the next section, I will explain the experimental sequence for preparing the degenerate

sample, and following that, I will show the measured spin density profiles versus the mean-field

model.
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5.1.1 Experimental Sequence

As described in Sec.2.5.1, once the atoms are loaded into the FORT, further cooling is achieved

using a two-stage evaporative process, namely, free evaporation and forced evaporation. In

the free evaporation cooling stage, a high bias magnetic field is applied, 832.2 G, so that the

atoms’ collision rate increases drastically. Experimentally, the evaporative cooling cycle takes

approximately 8 s, as shown in Fig. 5.1. Atoms inside the FORT are attracted to the high

intensity region. At the focus of the dipole trap the intensity is 2 × 106 W/cm2, with stronger

confinement in the radial direction and weaker confinement in the axial direction.

After the free evaporation process, the CO2 trap potential is lowered adiabatically (denoted

as the solid black curve in Fig. 5.1) to about 0.2% from its peak value at the same high bias

magnetic field. The optical trap is then reraised to 2% of the maximum CO2 power. The final

trap depth provides radial confinement. Even though atoms are tightly confined radially, they

can oscillate freely along the axial direction as the confinement is much weaker than a radial

direction. In the following, I will show how different confinement leads to two harmonic trapping

potentials in a weakly interacting regime.

Figure 5.1: Timing sequence for preparing a coherent atomic sample. The solid black curve
shows the variation of the potential depth of the CO2 laser beam. The bias magnetic field first
tunes from 832.2 G to the weakly interacting regime near 1200 G. After removing state |1〉 from
the trap, the magnetic field is ramped to 527 G, near the zero crossing of scattering length for
|1〉− |2〉 mixture. 2 ms radio frequency (RF) pulse is applied to create a coherent superposition
of |1〉 − |2〉. A 5 µs resonance optical pulse shines on an atomic cloud for detecting the atom
number in a different hyperfine state.
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At the end of the forced evaporation process, an atomic cloud comprising a 50-50 incoherent

mixture of the two lowest hyperfine states, denoted |1〉 and |2〉, are cooled to degeneracy with

T/TF = 0.35. As previously shown in [Du et al., 2008,Du et al., 2009,Pegahan et al., 2019] and

in Sec. 5.2, we need to prepare a coherent sample of atoms to study spin-dependent effects in

the presence of a magnetic field gradient, shown in Fig. 3.6.

Thus, we ramp the magnetic field from 832.2 G to the weakly interacting regime near

1200 G, shown in Fig. 2.6. In this field, the |1〉 spin component is eliminated by means of

a resonant optical pulse that we use for imaging |1〉 state. Now that we have only state |2〉
present in the trap, we can tune the magnetic field near 527 G. At this magnetic field, the

s-wave scattering length a is adjusted to nearly vanish. Finally, a 2 ms radio-frequency π/2

pulse, which is resonant with the transition from state |2〉 to |1〉, creates the coherent mixture

of these two states.

The coherent states in a |1〉 − |2〉 interact via s-wave contact interaction. Since the direct

collision between atoms are negligible, the long-range interaction play a crucial role in the spin

density dynamics, as shown in Fig. 5.2. At this regime, if we consider the s-wave scattering

length to be a = 4.24 a0, the corresponding collision rate yields,

γc =
N↓m6Li(ω

2
⊥ωx)4πa2

s

4π2kBTF
' 0.002. (5.1)

Since s-wave scattering in Fermi gases is allowed only for antisymmetric spin states, two-

component clouds exhibit an effective exchange interaction, enabling simulations of a variety

of spin-lattice models where that single atom energies are conserved [Piéchon et al., 2009,Natu

and Mueller, 2009, Deutsch et al., 2010, Wall, 2020] over the time scale set by the mean field

frequency ∝ |a| in Eq. 3.51, which can be in order of 1 sec or more.

Figure 5.2: 1-Dimensional energy lattice. The green lines shows the long range interaction
between spins in the “lattice” site in energy space, where scale with 1/

√
ni − nj .

64



Similarly, for studying the zero crossing for 2−3 mixture, the bias field ramped to 589G, close

to their corresponding zero crossing. Then, the superposition state is prepared by employing

an rf transition from state |2〉 to state |3〉 at 589 G.

To create |1〉 − |3〉 superposition state, we again prepare a single |2〉 spin component at

1200 G. The magnetic field is then ramped down to the value of interest around 568 G, near

the zero crossing of the |1〉 − |3〉 scattering length. Then, atoms are excited by a 2 ms radio-

frequency π/2 pulse, which is resonant with the transition from state |2〉 to state |1〉, creating

a balanced |1〉 − |2〉 superposition state. A 4 ms radio-frequency π pulse is applied, which is

resonant with the transition from state |2〉 to state |3〉, to create a balanced |1〉−|3〉 superposition

state.

After preparation of each coherent samples, we obtain degenerate cloud with a typical

total atom number of N = N↑ + N↓ ' 7.0 × 104 and an ideal gas Fermi temperature of

kBTF = h̄(6Nω̄xω
2
⊥)1/3 = kB × 0.70µK for our trap frequencies. To determine the temperature

T , the measured one dimensional total density versus x is fitted with a finite temperature

Thomas-Fermi profile for a noninteracting gas, Fig. 1.8, which is appropriate for our weakly

interacting gas. Using the calculated Thomas-Fermi radius σTF =
√

2 kBTF /(mω̄2
x) = 340µm,

we find T = 0.28TF .

Figure 5.3: Spin-energy correlation produces spin segregation in a degenerate Fermi gas with
the s-wave scattering length of 5.2 bohr. The palettes are 50 × 950µm. Left to right: n1, n2,
n1 − n2, and n1 + n2 in units of (n1 + n2)max at t = 0 (upper) and t = 800 ms (lower) after
coherent excitation of a |1〉 − |2〉 superposition state. Note that n1 − n2 evolves in time while
n1 + n2 remains constant, due to single particle energy conservation.

Due to the bias field curvature, we see the macroscopic spin evolution, Fig. 5.3, which lasts

for ∼ 2 s. The coherent time scale in our system, however, can surpass this time and reach near

5 s. The first row of Fig. 5.3, shows the coherent superposition of |1〉 − |2〉 states at t = 0. Due

to forward s-wave scattering, see Sec. 3.1.1, spins in |1〉 state moves inward in the trap, and

atoms at |2〉 state move outward. This behavior can be exchange simply by changing the sign

of the s-wave scattering length from positive to negative.
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By subtracting the two absorption images at different times, we can see a distinct pattern

known as spin segregation. However, when we add the absorption images of two spins, the results

are identical, shown in the last column in Fig. 5.3. This is proof that we are actually working

in the weakly interacting regimes, with a negligible single particle collision, and the summation

of two spins species leads to a degenerate Thomas Fermi cloud. One of the reasons that we

employ degenerate quantum samples is to minimize energy shifts of the scattering length that

become significant at higher temperatures. Moreover, degenerate Fermi gas allows for precise

comparison of mean field model with measured spin-density profiles, which vary from relatively

smooth for short time scales to exhibiting complex structure over short length scales.

In the following section, I will talk about the evolution of coherent spin states and will pro-

vide the quantitative agreement between the mean-field model and the measured spin density.

5.2 Spin Density Evolution as a Function of Time and Scatter-

ing Length

The subsequent evolution of the observed spin densities, Fig. 5.3, can be understood using a

Bloch vector picture [Du et al., 2009]. In a frame rotating about the z-axis at the resonant

hyperfine frequency, spin vectors for atoms in the nth axial harmonic oscillator state precess

about the z-axis, Fig. 3.2. First, as the magnetic moments of the two spin states are not iden-

tical, the finite curvature of the bias magnetic field, Bz(x), creates a significant spin-dependent

harmonic potential on the axial direction of the spin states, with negligible effects in the narrow

transverse directions, as shown in Fig. 3.6. Hence the axial oscillation frequencies for the two

spin states differ by δωx = ωx2 − ωx1 = −2π × 14.9 × 10−3 Hz. The small difference in the

axial frequencies leads to Ω(E) = −n(E) δωx, which is an energy-dependent Zeeman precession

about the z-axis, and n(E) ' E/h̄ω̄x, with ω̄x = (ωx2 + ωx1)/2 = 2π × 23.0 Hz. For typical

conditions of experiment, EF = 0.70µK, the detuning for the average x-energy, Ē = EF /4, is

Ω(Ē) ' −2π × 2.0 Hz. The Ω(E) causes the spin vectors for atoms of different energies to fan

out in the x− y plane, shown in Fig. 3.2.

Second, forward s-wave scattering, which is not Pauli-blocked in degenerate samples, occurs

between two atoms with different energies and corresponding spin vectors, producing a rotation

about the total spin vector [Du et al., 2009]. This s-wave scattering creates a mean field rotation

of the collective spin with an energy-dependent z-component, which maps collective spin vector

into a spatially varying spin density in the harmonic trap, as shown in Fig. 5.3. The evolution

occurs on a time scale set by the mean field frequency, ΩMF ' 2π × 1.0 Hz with a = 5 a0.

As we discussed in Ch. 3, for the degenerate gas, the average of the mean field frequency

from Eq. 3.48, is < g(n, n′) >=< Ω̃√
s
EllipicK(n,n′)√

n−n′ >= 3.78 ΩMF , and for the Boltzman gas
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< g(n, n′) >= 1.97 ΩMF . Thus, the average mean-field frequency in the degenerate gas is close to

4 s for a = 5 a0. The trap parameters for our experiments are: ω2
mag = (2π×20.5 Hz)2 B(G)/834;

ω̄x = 2π×23 Hz, ω⊥ = 2π×625 Hz, for the degenerate gas, and ω̄x = 2π×174 Hz, ω⊥ = 2π×5.77

kHz, for the high temperature gas. The calibration methods for extracting these parameters

are described in Sec. 5.5.

Using the above measured parameters for the mean-field model of Ch. 3, we can capture

the spin density profile shown in Fig. 5.4. These profiles are one dimensional spin densities

Figure 5.4: Spin-density profiles for a degenerate (T/TF = 0.28) Fermi gas at t = 800 ms rela-
tive to coherent excitation. Data (blue dots) versus prediction (red curves) showing quantitative
agreement. Left to right: n1, n2, n1 − n2, n1 + n2 in units of the peak total density. Each solid
curve is the mean field model with a fixed scattering length of a = 3.04 bohr (B = 528.147 G)
and a fitted cloud size σFx ≡ σ = 329µm, obtained by fitting the total density n1 +n2 to a 1D
Thomas-Fermi profile, Eq. 3.46.

integrated along the vertical (radial) direction of absorption images. These profile shown in

Fig. 5.3 are captured at 800 ms after coherent excitation, for a degenerate |1〉 − |2〉 cloud with

a = 3.04 a0. Note when we subtracted the first two profiles, n1−n2 evolves in time while n1 +n2

remains constant as shown in Fig. 5.5. This is due to single-particle energy conservation during

the collective spin evolution. This provides evidence of energy conservation.

Next section, I will talk about the relation between s-wave scattering and the bias magnetic

field. We use this relation to describe tunability and interaction strength between atoms as a

function of the Bias field.

5.2.1 s-wave Scattering Tuning with a Magnetic Field

The most precise measurements of the universal thermodynamic properties and the universal

hydrodynamic properties rely on the accurate location of the 6Li broad Feshbach resonance near

832.2 G, which is constrained by the zero crossings [Zürn et al., 2013, Ku et al., 2012, Elliott

et al., 2014]. Using the theory of spin-density evolution, I will show how to determine the zero

crossings and magnetic field tuning rates for the s-wave scattering lengths of the three lowest
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Figure 5.5: Single particle energy conservation. (a) Shows total spin density n1 + n2 at t=0.
(b) Demonstrates total spin density n1 + n2 at t = 800 ms. The solid red curve is from zero
temperature Thomas Fermi fit which provide evidence of degenerate regime.

hyperfine states of 6Li. These measurements provide new constraints on the 6Li2 molecular

potentials that determine the precise shapes of the Feshbach resonances [Bartenstein et al.,

2005], which have been widely used in studies of strongly interacting Fermi gases [O’Hara

et al., 2002].

We fit the mean field model to the spacial spin density profile of Fig. 5.8 in the following

way. First, we plot the dimensionless spin density (n1 − n2)/(n1 + n2) at the center (x = 0) as

a function of time, Fig. 5.6, for each value of the magnetic field. Second, we fit the model to

the data of Fig. 5.6 to find the scattering length that gives the best fits (red curves). The fits

to the spatial density profiles are then obtained by fixing the scattering length at each field to

the value obtained from Fig. 5.6 and adjusting the Thomas-Fermi radius by a few percent to

fit the measured profile at each time. The mean of the measured radii is found to be 322.0(1.5)

µm and magnetic field stability is better than 5 mG, limited by measurement precision. The

absolute value of the field is calibrated using radio frequency spectroscopy (see Sec. 5.5) of the

hyperfine transitions.

As a result of fits to central spin density, we can find the small-a region, where

a(B) = a′ (B −B0). (5.2)

In this region, the mean field model precisely fits the data. This region, shown in Fig. 5.7 enables

measurement of the tuning rate a′ (in bohr per gauss) of the scattering length near the zero

crossing field B0.

Here, we assume that the energy shift is negligible for the degenerate sample, in contrast to

the hot sample discussed below. Using the data in Fig. 5.6, the fitted |1〉− |2〉 scattering length
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Figure 5.6: Central spin density versus evolution time for various magnetic fields near the
zero crossing of the |1〉 − |2〉 scattering length. ∆n(0) = n1(0, t) − n2(0, t) is given in units
of n1(0) + n2(0). Solid curves show the mean-field model with the scattering length a as a fit
parameter. The fitted values of a are plotted in Fig. 5.7.

Figure 5.7: Fitted scattering length a versus measured magnetic field for a |1〉 − |2〉 mixture
(a0 = 1 bohr). Error bars denote one standard deviation, obtained for each χ2 fit of Fig. 5.6.

for each magnetic field is plotted in Fig. 5.7. The corresponding plot for |2〉 − |3〉 scattering

will be discussed in Sec. 5.3. The slopes of the linear fits to the data yield the tuning rates a′,

Table. 5.1.

Finally, Fig. 5.8 shows the difference of the transversely integrated spin densities n1(x, t)−
n2(x, t) ≡ 2Sz(x, t) at selected times t after excitation, for scattering lengths of larger magni-

tude, ' ±5 a0. For these fits, we keep the s-wave scattering constant and the only free parameter

was Thomas Fermi radius, which varies within 5%.

5.2.2 Fit to Spatial Spin Density Profiles at Different Times

As we showed in Eq. 3.29, a thermal average of the Heisenberg equations for the collective spin

vector S̃(E, t) yields,
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Figure 5.8: Spin-density profiles in a degenerate sample T/TF = 0.35 at selected times relative
to coherent excitation. ∆n(0) = n1(0, t)−n2(0, t) is given in units of n1(0)+n2(0). Solid curves:
Mean field model with the same scattering length for each time and a fitted cloud size within a
few percent of the measured average value, σ = 322.0(1.5)µm. Top three panels: B = 528.817
G, a = 5.17 a0. Bottom three panels: B = 525.478 G, a = −5.39 a0. Note that the spin density
inverts when the scattering length changes sign.

∂tS̃(E) = Ω(E)× S̃(E) +

∫
dE′g̃(E′,E) S̃(E′)× S̃(E), (5.3)

For the low temperature, degenerate gas, we find that Eq. 5.3 is in excellent quantitative

agreement with the spin-density profiles of Fig. 5.4 and captures very well the fine features of

the data shown in Fig. 5.8, as well as the time dependence of the spin-density profiles shown

in Fig. 5.9 for a fixed scattering length. The data are quite sensitive to the evolution time and

exhibit a complex structure, which is very well fit by the collective spin rotation model.

Fig. 5.9 shows the measurements and predictions for the time evolution of (n1−n2) between

t = 0 and 800 ms, relative to coherent excitation, for a fixed scattering length of a = 5.23 a0 at

B = 528.844 G. The fits to these figures correspond to the evolution of the central spin density

shown in Fig. 5.6, and the linear slope for the scattering length in Fig. 5.7. Here, (n1 − n2) is

given in units of the total central density n1(0)− n2(0).

For the high temperature sample, the total atom number is ∼ 4.5× 105, and the measured

gaussian 1/e radius is σx =
√

2kBT/(mω̄2
x) = 325µm, which determines T = 45.7µK. In this

regime, we observe a noticeable difference in spin density evolution. In the measurement of zero

crossing, I will explain it in more detail in Sec. 5.4.
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Figure 5.9: Spin density profiles (blue dots) for a degenerate sample T/TF = 0.28 versus
evolution time relative to coherent excitation. Each data profile is the average of 5 runs, taking
in random time order. Each solid red curve is the mean field model with a fixed scattering
length of a = 5.23 bohr (B = 528.844 G) and a fitted cloud size within a few percent of the
average value σ = 329µm.

Table 5.1: Zero-Crossing and s-wave Scattering Tuning Rate.

States T(µK) B0(G) B10(G) B20(G) a′(a0/G) a1′(a0/G) a2′(a0/G)

1-2 0.2 527.18(2) 534.15 527.32(25) 3.14(8) 4.12 3.49
1-2 45.7 527.42(1) - - - - -
2-3 0.2 588.68(1) 588.92 588.75 4.52 (23) 6.11 5.82
1-3 0.2 567.98(1) 568.13 568.02 - 13.87 13.29

5.3 Measurement of Zero-Crossings

By using the spin evolution, shown in Fig. 5.3, as a sensitive probe, we can measure the magnetic

field B0 at which the scattering length vanishes. The profiles of the individual spin components

remain unchanged at the zero crossing in the degenerate regime. Fig. 5.10 shows the change

in axial size for each spin profile between t = 0 and t = 800 ms, as a function of magnetic

field. In addition, we show the difference between the sizes of the state 1 and state 2 profiles at

t = 800 ms. Each method gives a field value B0 for the zero crossing. We report the mean in

Table 5.1. The corresponding uncertainties are estimated as one half of the difference between

the maximum and the minimum of B0. The zero crossing for a12, 527.18(2) G, is smaller than

the value 527.5(2) G obtained by the same method at high temperature [Du et al., 2008], and

is consistent with the calculated value 527.32(25), based on the most recent 6Li2 molecular

potentials determined from 1D dimer spectra [Zürn et al., 2013]. The zero crossings for a13,
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Figure 5.10: Measurement of the zero crossing field for a degenerate 6Li |1〉− |2〉 mixture. The
plots show the change in cloud size between t = 0 and t = 800 ms for state 1 (squares), state 2
(diamonds), and the difference in the cloud sizes of the two spin states at t = 800 ms (circles).
Solid lines are corresponding linear fits, crossing zero (dashed line) when a = 0. Error bars
denote the standard deviation of the mean of five runs.

567.98(01) G and for a23, 588.68(01), listed Table 5.1, are in reasonable agreement with the

values 568.07 G and 588.80 G estimated from the Feshbach resonance data of Ref. [Zürn et al.,

2013], which differ only slightly from Ref. [Bartenstein et al., 2005].

Figure 5.11: Tuning rate of the scattering length a of a |2〉 − |3〉 mixture versus measured
magnetic field (a0 = 1 bohr) Error bars denote one standard deviation, obtained for each χ2 fit
to the time dependent central amplitude for the given B.
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Table 5.1 compares that the tuning rates a′12 = 3.14 a0/G and a′23 = 4.52 a0/G, which we

obtain from the fitted scattering length versus magnetic field in the present work. Using the

profiles of Ref. [Bartenstein et al., 2005], we find a′12 = 4.12 a0/G and a′23 = 6.11 a0/G. These

slopes are 50% larger than those estimated in the present work, but the ratios, 4.52/3.14 = 1.44

and 6.11/4.12 = 1.48, are in good agreement. This suggests that the discrepancy may be

Figure 5.12: Measurement of the zero crossing field for a degenerate 6Li |2〉− |3〉 mixture. The
plots show the change in cloud size between t = 0 and t = 800 ms for state 3 (squares), state 2
(diamonds), and the difference in the cloud sizes of the two spin states at t = 800 ms (circles).
Solid lines are corresponding linear fits, crossing zero (dashed line) when a = 0. Error bars
denote the standard deviation of the mean of five runs.

explained by an overall scale factor in our estimate of the transverse averaged 3D density n3D

(see Eq. 3.21), which determines the scattering lengths from the mean field frequencies a ∝ ΩMF

to fit Fig. 5.6. However, using the Feshbach resonance parameters of Ref. [Zürn et al., 2013,Jul,

], we estimate the tuning rate a′12 = 3.51 a0/G, which only 11% larger than the tuning rate

obtained from our experiments, and a′23 = 5.82 a0/G, which is 29% larger.

As I mentioned earlier, we measured the zero crossing field of the scattering length for 6Li

for |2〉− |3〉, and |1〉− |3〉 mixtures and their corresponding tuning rate of the scattering length.

Fig. 5.11 shows the data that was used to obtain the tuning rate for the |2〉 − |3〉 mixture.

Figs. 5.12 and 5.13 similar to Figs. 5.10, show the data that was used to obtain the zero

crossings fields for the |2〉− |3〉, and |1〉− |3〉 mixtures. In Fig. 5.10, Fig. 5.12, and for Fig. 5.13

we take into account cloud size variations arising from small changes in the atom number. Each

data point represents an average of 5 experimental runs. For each run i, we extract the atom

number Ni and the axial cloud size σi for each spin component. The cloud sizes scale as N
1/6
i
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Figure 5.13: Measurement of the zero crossing field for a degenerate 6Li |1〉− |3〉 mixture. The
plots show the change in cloud size between t = 0 and t = 800 ms for state 3 (squares), state
1 (diamonds). Solid lines are corresponding linear fits, crossing zero (dashed line) when a = 0.
Error bars denote the standard deviation of the mean of five runs.

for zero temperature Thomas-Fermi profiles. Therefore, to correct for the varying atom number,

we calculate the reduced size σi/N
1/6
i for each run and use

〈
σi/N

1/6
i

〉〈
N

1/6
i

〉
as the effective

mean cloud size for each bias magnetic field.

5.4 Experimental Energy Dependent shift of Zero Crossings

As discussed in Sec. 3.4, we observe the energy dependent shift in the zero crossing, by preparing

a |1〉 − |2〉 superposition at a high temperature of T = 45.7µK. There, we measure a shift of

0.22 G relative to the degenerate sample. This yields an energy tuning rate of 4.7 mG/µK from

Eq. 3.64, confirming that the energy dependent shift is negligible for the degenerate samples,

compared to the precision of the magnetic field measurement. To directly illustrate the energy

dependence, we measure the spin density at 45.7µK for B = 527.466 G. We see that the high

temperature spin density profile crosses the zero axis four times Fig. 5.14, in contrast to the

low temperature data of Fig. 5.8, which only crosses twice. The modification of the spin-density

profile at high temperature is not likely to arise from the |1〉 − |2〉 p-wave resonance in 6Li,

which is located near 186.2(6) G and has a width of 0.5 G [Zhang et al., 2004].

To understand this profile and the energy shift, as explained in Ch. 3, we include the energy

dependence of the scattering length and of the average magnetic field, by replacing a in g̃(E′, E)

of Eq. 3.38 with a(E′, E) = a′[Beff(E′, E) − B0], with Beff(E′, E) the effective magnetic field.

Then, for small positive B − B0, atoms with small energies E,E′ have Beff − B0 > 0 and
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Figure 5.14: High temperature spin density profile of a |1〉 − |2〉 mixture for t = 400 ms.
T = 45.7µK and B = 527.466 G, where the zero-energy s-wave scattering length is 0.90 bohr.
Here σG = 323µm is the gaussian 1/e radius of the total density profile.

a positive scattering length, while atoms with high energies E,E′, have Beff − B0 < 0 and

a negative scattering length. These two contributions result in the extra crossings. The solid

red curve of Fig. 5.14 includes the average transverse kinetic energy, which shifts the effective

field from the applied value of 0.28 G = 527.466 G − 527.18 G above the zero crossing to

0.08 G = 0.28 G− 0.20 G above, where a = 0.25 a0 for atoms with E = E′ = 0.

5.4.1 Spin-Density Evolution at a High Scattering Length

Increasing the scattering length to a = −14.9 a0, we measure the amplitude of the spin density

at the cloud center for a degenerate sample as a function of time relative to coherent excitation,

Fig. 5.15. Although the collision rate ' 0.04 s−1 is still negligible, we observe decay of the

amplitude that is not predicted. We believe that the decay arises from the variation of the atom

density over several runs, which are averaged to determine each data point. The average of the

predictions (red curve) of Fig. 5.15 yields the observed decay, because the sensitivity to the

mean field frequency, and hence to the atom density variation, increases with increasing time,

resulting in a decreasing amplitude for the average.

The corresponding spatial profiles are shown in Fig. 5.16, where predicted curves, using

Eq. 3.64, are obtained for a fixed scattering length of −14.9 a0, and fitting the Fermi width,

within a few percent of the mean. For the larger scattering lengths, the data are sensitive to

the evolution time and exhibit a complex structure. The agreement of the experimental spin

density profiles with their mean-field model predictions is noticeable.
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Figure 5.15: Decay of the amplitude of the central spin density versus time for a = −14.9 a0.
The dashed curve shows the predicted amplitude for the average density. The red curve shows
the the average of the predictions based on the measured atom numbers and cloud widths for
each shot.

Figure 5.16: Spin density profiles versus time for a = −14.9 a0 versus predictions (red curves)
with the same scattering length for each time and a fitted cloud size within a few percent of
the measured average value, σ = 330.6µm.

As I mentioned earlier, to creating a coherent mixture of spins, we need a Radio-Frequency

transition frequency for the magnetic field of interest. I will talk about the bias magnetic field

calibration and other experimental techniques for measuring the experimental parameters in

the following section.

5.5 Magnetic field Calibration

Our experiments employ mixtures of the ground Zeeman-hyperfine states of 6Li, which are

denoted by |1〉 to |6〉 that was introduced in Ch. 2. As shown in Fig. 5.17, the differences

76



between Zeeman-hyperfine energy levels change in the range of magnetic fields that we employ

( 500 G to 1200 G). The energy differences between different states correspond to the resonance

frequencies of a radio frequency (RF) pulse for the corresponding atomic transition. Since there

is one to one correspondence between the magnetic field and the atomic transition frequency,

we can use this property to calibrate the magnetic field in the system. As shown in Fig. 5.17,

we set the radiofrequency detuning close to resonance at the field of interest, we initially find

the resonance frequency for the radiofrequency pulses, by observing the transfer of atoms from

state 2 to state 1 using a single 70 ms pulse. The observed linewidth is 8 Hz, half-width at half

maximum (HWHM) enabling an approximate determination of the ∆ = 0 frequency within

5 Hz/mG of the bias field stability.

Figure 5.17: Atomic transition frequencies of 6Li versus magnetic field for transition between
|1〉 and |2〉, and transition between |2〉 and |3〉.

In all of experiments in this dissertation, atoms are prepared initially in the lowest two hy-

perfine states, |1〉 and |2〉. The energy difference between the hyperfine levels is in the 76 MHz

radio frequency range. Thus, by applying an RF signal to the antenna present inside the vacuum

chamber, Fig. 5.19, the atom population in the hyperfine states of 6Li can be transferred. The

RF antenna is primarily used for the following purposes,

(i) to create a 50-50 mixture of atoms in the two lowest hyperfine states |1〉 and |2〉.
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(ii) to perform RF spectroscopy by making transitions between the hyperfine states |1〉, |2〉,
and |3〉.

Fig. 5.19 shows the electronics setup used in our RF experiments. In order to create a

balanced spin mixture of states |1〉 and |2〉, a noisy sine wave of frequency 9.4 MHz at 10

G is applied through an Agilent 33210A signal generator for 100 ms. In order to perform

RF-spectroscopy, a Keysight N9310A RF generator produces the RF signal for atom transfer

between two hyperfine states. The signals from both the Agilent and Keysight generators are

sent to an RF mixer (Mini-Circuits ZX80-DR230-S+ SPDT), which selects the input based on

the experiment. The output of the switch is then amplified by an RF amplifier (RSR HY3020E)

and the amplified signal is sent to the antenna inside the vacuum chamber.

Figure 5.18: Radiofrequency spectra to measure the magnetic field stability. The red curve in
the right figure is the fit from coherent excitation theory [Zhang, 2013], and blue error bars show
the fraction of atoms that leaves the state |2〉, due to on resonant frequency of RF transition.
The observed linewidth is 8 Hz half-width at half maximum, which is equivalent to 2 mG in
terms of the magnetic field.

For the high temperature gas, we calibrated the frequencies using a parametric resonance

technique in an optical dipole trap. For more information, I suggest the reader look at the

previous theses in our group [Elliott, 2014, Ong, 2015]. For the degenerate case, which has

been the main focus of this thesis, I created an attractive potential using an infrared beam

with λ = 1064 nm [Mudiyanselage, 2019]. By releasing the atoms from the infrared attractive
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Figure 5.19: Schematic of electronics setup for the radio frequency antenna and bias magnetic
field.

potential, to the CO2 dipole trap combined with the magnetic bowl trap, we can monitor

the axial size width change versus the time that the infrared potential is off. As shown in

the Fig. 5.20, the frequency along the x-axis for 2 % CO2 trap depth (axial frequency) is

23 Hz ± 0.25. The transverse frequency at this trap depth is 625 Hz is measured by the

parametric resonance method.

The geometry of our magnets (Fig. 3.6) allows for the measurement of single oscillation

frequency to describe the magnetic potential in all three directions. The large size of the magnet

coils relative to the atomic cloud creates a harmonic potential for the confined atoms. From

elementary magnetostatics, we can relate the oscillation frequency along the single direction

(axial) to the remaining two (radial) as following

ω2
mag = ω2

z mag = ω2
y mag =

1

2
ω2
x mag. (5.4)

For the magnetic bowl frequency, I used the attractive potential again in presence of the

CO2 dipole trap at B = 832.2 G. Assuming Umag is linear in applied B and quadratic in ωmag,
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Figure 5.20: Axial cloud size change in µm as a function of the released time from the infrared
potential. The oscillation frequency shown by the red curve is 23 Hz± 0.25 Hz.

we write ωmag at an arbitrary magnetic field as

ω mag = ω mag 832.2

√
B(G)

832.2
= 20.5× 2π

√
B(G)

832.2
(5.5)

For the weakly-interacting regime in 1-2 mixture, that we use in our system, the magnetic bowl

frequency is 16.3 Hz.

In summary, we have shown that a mean field collective spin rotation model, including the

full energy-dependent coupling matrix, quantitatively describes the spin density evolution in

the collisionless regime, precisely testing the underlying energy-space spin-lattice model. The

measurements provide an essential benchmark for future work on collective spin evolution with

designer energy landscapes in the weakly interacting regime.
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Chapter 6

Measurement of Energy-Resolved

Information Scrambling

In this chapter, I demonstrate a new protocol for measuring the information scrambling in a

large many-body system. Using the out-of-time-order correlation (OTOC) functions in Ch. 3, I

extract energy-resolved out-of-time-order correlation functions and many-body coherence from

the spatial profiles of the spin density using an inverse Abel-transform method. From this

study, we reveal a coherence structure that is hidden in measurements of the total collective

spin vector.

6.1 Experimental Many-body Spin Protocol

The experimental protocol that we apply for measuring OTOC functions, is shown in Fig. 6.1.

With this protocol, we define a rotation operator Ŵ and a measurement operator V̂ operator in

a large system, see Sec. 4.1. To remind the reader, Ŵ applies a rotation to the total interacting

spin system in between the forward and time-reversed evolutions. The operator V̂ performs a

measurement to diagnose the effects of the rotation on the spins of energy Ei, i.e., at “site” i

in energy space.

We employ a degenerate, weakly interacting cloud of 6Li with the total atom number of

N = 6.5× 104, in a bias magnetic field near 527.18 G ( zero-crossing of 1− 2 mixture), where

the s-wave scattering length a vanishes. The optical trap that we use for this experiment, has the

same oscillation frequency parameters as mentioned in Sec. 5.5. By fitting a finite temperature

Thomas-Fermi profile to the measured total spatial density, we find that T/TF = 0.32, where

the Fermi temperature for our trap parameters is TF = 0.70µK and the corresponding Thomas-

Fermi radius, which is calculated through h(6Nνxν
2
r )1/3 = 1

2mω
2
xσ

2
TF , yields σTF = 305µm.

By fitting a zero-temperature spatial profile to the measured total spatial density, we find
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an effective Thomas-Fermi radius, σ = 345µm, which is used in the mean field model of

Ch. 3, [Pegahan et al., 2019]. The scattering length is determined by measured tuning rate of

3.14 a0/G of Sec. 5.3 and the bias magnetic field, which is precisely measured by rf spectroscopy,

as explained in Sec. 5.5.

To implement the many-body echo protocol shown in Fig. 6.1, we prepare a z-polarized initial

state |1〉 ≡ |↑z〉 and |2〉 ≡ |↓z〉 in a cloud of 6Li with all atoms in the spin-down hyperfine state

|2〉. Similar to the previous chapter, we prepare fully polarized state from a 50-50 mixture of the

two lowest hyperfine states, denoted as |1〉 and |2〉, which is evaporatively cooled to degeneracy

near the |1〉 − |2〉 Feshbach resonance at 832.2 G. The magnetic field is then ramped to the

weakly interacting regime near 1200 G, and the |1〉 spin component is eliminated by means of a

resonant optical pulse. Then the bias magnetic field is ramped near 527.18 G, where the s-wave

scattering length vanishes. We start with the fully z-polarized state |↓z1↓z2 ... ↓zN 〉 ≡ |ψz0〉 in a

bias magnetic field B1 = 528.53 G, which selects an initial scattering length a1 ≡ a = 4.24 a0.

Figure 6.1: Energy-resolved out-of-time-order correlation measurement. The system is initially
prepared in a pure state, with the spins for atoms of energy E1, E2, ...EN polarized along the −z
axis. After the pulse sequence, we measure the spatial profiles of the |↑z〉 and |↓z〉, lowest two
hyperfine states 6Li, with 10 µs delay for each spin by an absorption imaging method; “single-
shot” spin density profile Sz(x) = n↓z(x) − n↑z(x). For this measurement, φ = π, a = 4.24 a0,
and σ = 345µm.

In the ideal case, where detuning ∆ = 0, we apply a 0.5 ms radio-frequency (π/2)y pulse

(defined to be about the y-axis), which is resonant with the | ↓z〉 → | ↑z〉 transition. Thus, at

the bias field B1, we produce an initial x-polarized N-atom state as

|ψ0〉 = e−i
π
2
Sy |ψz0〉 = |↑x1↑x2 ... ↑xN 〉. (6.1)

We discuss the effect of finite detuning in Sec. 6.3.1. After preparing the initial state, the
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system evolves for a time τ = 200 ms at the initial bias magnetic field B1 = 528.53 G. Then,

a resonant radio-frequency pulse (φ)x, shifted in phase (see Sec. 6.4) from the first pulse by

π/2, rotates the N-atom state about the x-axis by a chosen angle φ. Immediately following

this rotation, we reverse the sign of the Hamiltonian by applying a (π)y pulse and tuning the

bias magnetic field to a value B2 = 525.83 G, where the scattering length a2 = −a. After an

additional τ = 200 ms, the bias magnetic field is swept back to its original value B1 over 5 ms

and a final π/2 rotation about the negative y-axis is applied. The density profiles of both spin

components are then immediately measured for a single cloud, using two camera resonance

pulses separated by 10µs Fig. 6.1. This defines a single-shot measurement. Subtracting the

integrated consecutive shots yields the single-shot z-component of the collective spin vector

density Sz(x), which in the ideal case, corresponds to the x-component just prior to the final

(π/2)y pulse.

Magnetic field sweep from B1 to B2 is accomplished using a set of low inductance coils,

wound concentric with the primary bias field coils in Fig. 6.2.

Figure 6.2: Schematic of the phase shifter and secondary bias coil for a small change of magnetic
field.
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6.1.1 Reversing the Sign of the Hamiltonian

Here, I will explain how the sign of Hamiltonian in this system can be inverted by reversing the

sign of s-wave scattering length followed by a π pulse. The Hamiltonian for the system of spins

in the energy space is

H(± a) = −
∑
i

Ωziszi ± a
∑
i j 6=i

gij ~si.~sj . (6.2)

The final state of the N-atom system after the pulse sequence of Fig. 6.1(a) can be written as

|ψf 〉 = e−i
π
2
Sye−iH(−a)τe−iπSye−iφSxe−iH(+a)τe−i

π
2
Sy |ψz〉 , (6.3)

where Sx =
∑N

j,αj
sxj is the x-component of the total spin vector and |ψ0〉 the fully x-polarized

state. As shown above, with the last π
2 pulse, we rotate the total spin vector along the y-

direction. Next, from 1̂ = e−iπsyeiπsy , Eq. 6.3 leads to

|ψf 〉 = e−i
π
2
Sye−iπSyeiπSye−iH(−a)τe−iπSye−iφSxe−iH(+a)τ |ψ0〉

|ψf 〉 = Õ e−iφSxe−iH(+a)τ |ψ0〉

Õ = e−i
3π
2
SyeiπSye−iH(−a)τe−iπSy . (6.4)

Now that we have the new form of the final state, I will show what happens to the Hamil-

tonian with a revered s-wave scattering length and a rotation about the y-axis by an angle θ.

From Eq. 6.2, the second term on the right hand side commutes with e−iθSy since [Sy, ~si.~sj ] = 0.

Thus the Hamiltonian under a rotation about the y-axis will be

Ô = eiθSyH(−a)e−iθSy = −
∑
i

Ωzi e
iθSyszi e

−iθSy − gij ~si.~sj = szi(θ). (6.5)

We need to simplify the first term on the right hand side of Eq. 6.5. From the Heisenberg

equation of motion, we have

dÔ/dθ = ieiθSy [Sy, szi]e
−iθSy = −sxi(θ)

d2Ô/dθ2 = −ieiθSy [Sy, sxi]e−iθSy = −szi(θ). (6.6)

Therefore, we have the second-order differential equation as

d2Ô/dθ2 + Ô = 0, (6.7)
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with initial conditions of

Ô(0) = szi

dÔ/dθ(0) = −sxi. (6.8)

By solving Eq. 6.7, we have the following relation for spin operator under the rotation θ

szi(θ) = szi cos(θ)− sxi sin(θ). (6.9)

Now if θ = π, as the case for our protocol, sz i(θ) = −szi(θ). If we substitute Eq. 6.9 in Eq. 6.5,

eiπSyH(−a)e−iπSy = +
∑
i

Ωzi szi − gij ~si.~sj (6.10)

and therefore, the sign of Hamiltonian is inverted

eiπSyH(−a)e−iπSy = −H(+a) (6.11)

through applying a π pulse accompanied with changing the sign of the scattering length from

a = 4.24 a0 to a = −4.24 a0. We implement this fast change of scattering length (bias magnetic

field) through the secondary bias coil, shown in Fig. 6.2. As the result of Eq. 6.11, the final

state |ψf 〉 state in Eq. 6.4 can be simplified with

eiπ Sye−iH(−a) τe−iπ Sy = e+iH(+a) τ , (6.12)

which leads to

|ψf 〉 = e−i
3π
2
SyWφ(τ)|ψ0〉. (6.13)

Here the W -operator is defined by

Wφ(τ) = eiH(+a)τe−iφ Sxe−iH(+a)τ . (6.14)

This operator, similar to the general operator W in

1

2
〈ψ0||[W,V ]|2|ψ0〉 = 1−Re{F}, (6.15)

applies the rotation to the ensemble of spins in between forward and the backward time evo-

lution. In the experiments, we determine F by measuring the sum of z-components of the spin

for a selected group of atoms with the same energy. We define szαi as the z-component for a

single atom. Here αi comprises the 3-D vibrational quantum numbers (ni, ny, nz) of a single
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state, with ni + 1/2 = Ei/hνx specified for x-direction.

The measurement process, to diagnose the effect of the rotation, is done as the following.

After the pulse sequence, the spin densities n↑z(x) and n↓z(x) are measured for a single cloud

using two resonant absorption images, separated in time by 10µs. The measured z-component of

a single spin in state αi, shown in Fig. 4.3, is 〈ψf |szαi|ψf 〉 = 〈ψ0|W †φ(τ)sxαiWφ(τ)|ψ0〉 resulted

from Eq. 6.13 and Eq. 6.9,

ei
3π
2
Syszαi e

−i 3π
2
Sy = sxαi. (6.16)

Here sxi acts as the V operator in Eq. 6.15, see Ch. 4 for more detail. If we choose V = 2 ŝxαi =

σ̂xαi, i.e., the x-Pauli matrix for the single spin, commutes with Sx and hence with Wφ(0). With

this choice, V † = V and V †V = σ2
x = 1̂ as required from Eq. 6.15. Thus, we can conclude that

〈ψf |ŝzαi|ψf 〉 is of the same form as out-of-time-order correlation function. Furthermore, since

(V = σx)|ψ0〉 = |ψ0〉,

Fαi ≡ 2 〈ψ0|W †φ(τ)sxαiWφ(τ)|ψ0〉 = 2〈ψf |szαi|ψf 〉, (6.17)

where Fαi is OTOC function for a single spin in state αi. In Sec. 6.2, we will use Eq. 6.17

and Eq. 4.11 from Ch. 4, to compare the experimental OTOC for information scrambling with

theoretical predictions in the many-body system of spins.

6.2 Energy-Resolved OTOC Measurement

Experimentally, we measure Fαi with αi summed over a subset Ns spins with nearly the same

energy. This quantity determines the φ-dependent, energy-resolved, mean-square commutator

using 4.13 and 4.11 as,

1

Ns

Ns∑
αi=1

〈ψ0|[Ŵφ(τ), ŝxαi]|2|ψ0〉 =
1

2
− 1

Ns

Ns∑
i=1

〈ψf |ŝzαi|ψf 〉. (6.18)

Restricting the OTOC measurement to atoms with energies within ∆E of a chosen energy E,

the second term on the righthand side of Eq. 6.18, Sz(E) ∆E/[n(E) ∆E], will be

F(E, φ) ≡ 1

2

n↑z(E, φ)− n↓z(E, φ)

n↑z(E, φ) + n↓z(E, φ)
, (6.19)

where F(E, 0) = 1/2. n(E) = n↑z(E, φ) + n↓z(E, φ) in the denominator is independent of φ,

and comes from inverse-Abel transform of spin densities in x-space as

n(x, t) =
ω̄x
π

∫ ∞
0

dpx n

(
p2
x

2m
+
mω̄2

x

2
x2, t

)
. (6.20)
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Figure 6.3: Spin density profiles measured for a single shot with a = 4.24 a0 and φ = π (blue
dots) in units of the central density n(0). (a) n↑(x, φ = π); (b) n↓(x, φ = π); (c) Difference
of the density profiles Sz(x, φ = π) = 1

2 [n↑(x, φ = π) − n↓(x, φ = π)]/n(0); (d) Total density
n(x) = n↑(x, π) + n↓(x, π) in units of the central density n(0). Despite the complex spatial
structure in the individual spin density profiles, the total density remains thermal. The red
curves show the predictions of the mean field model of Ref. [Pegahan et al., 2019] using a
scattering length 2.35 times the measured value of 4.24 a0 and a global detuning of 0.27 Hz,
i.e., ∆ = 2π × 0.27 rad/s.

To illustrate these ideas, Fig. 6.3 shows the single-shot spin density profiles taken after

the full OTOC pulse sequence of Fig. 6.1 with a = 4.24 a0 and φ = π (blue dots). Despite

the complex structure observed in the spatial profiles for the individual spin densities (a) and

(b), which arises from spin coherence, the total density, shown on the right hand side, remains

in a thermal distribution. Similar to Ch. 5, the thermal distribution is consistent with the

assumption of no energy-space coherence between harmonic states with different energies.

We capture the spin-densities from absorption imaging method after each cycle of the pulse

sequence with a chosen rotation angle φ, to determine the spatial profiles n↑z(x, φ) and n↓z(x, φ)

of single clouds. In Sec. 6.4, I will explain in detail how we control the φ from 0 to 2π.

To reveal the corresponding profiles in energy space, as needed to measure F(E, φ), we again

assume that there is no energy-space coherence, i.e., the average z-component of the c-number

spin density is given by,

Sz(x) ≡ 〈Ŝz(x)〉 =
∑
E

|φE(x)|2〈Ŝz(E)〉. (6.21)

For a harmonic trap, the φE(x) are harmonic oscillator states, and the equation for Sz(E), in

a continuous limit, corresponds to an integral Abel-transform that can be inverted, as shown

in Eq. 6.20. This method is based on the principle of Fourier-analysis (the unknown function,
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such as Sz(E), is expanded in a series of cosine-functions) similar to Fourier series.

In the next sections, I will explain how to extract information about out-of-time order

correlation functions for a microscopic ensemble of spins with the same energy that summed

over all energies.

6.2.1 Measuring OTOC for Collective Spin Vectors in Energy-Space

We can extract information about the many-body coherence from Eq. 6.18, by writing the sum

on the right-hand side as

1

Ns

Ns∑
i=1

〈ψ0|Ŵ †φ(τ)ŝxiŴφ(τ)|ψ0〉 =
∑
m

eimφBm. (6.22)

Non-vanishing coefficientsBm correspond to coherence between states for which the x-component

Sx of the total angular momentum differs by m [Gärttner et al., 2018, Sup, ], as explained in

more detail in the next section. Since the right side of Eq. 6.22 is real, B−m = B∗m, we can

expand Eq. 6.19 for the measured, energy-selected average in the form of

F(E, φ) = B0 +
∑
m≥1

2|Bm| cos(mφ+ ϕm). (6.23)

In fitting the data with Eq. 6.23, we restrict the range of m to 4. We find that the fits are not

improved by further increase of m, consistent with the limited number of φ values measured in

the experiments.

Figure 6.4: Total collective spin projection Sz versus rotation angle φ without energy restric-
tion. (a) F (φ) = 1

2(N↑−N↓)/(N↑+N↓) (blue dots) for a scattering length a = 4.24 a0. The red
curve is the fit of Eq. 6.23, which determines the magnitudes of the coherence coefficients |Bm|
(b) and corresponding phases ϕm (c); (d) Fit (red curve) of the mean field model of Ref. [Pe-
gahan et al., 2019] to the data (blue dots), using a scattering length 2.63 times the measured
value and a global detuning ∆ = 0.
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Fig. 6.4(a) shows F (φ) = 2
N 〈ψ0|W †φ(τ)SxWφ(τ) |ψ0〉 for the total number of atoms, mea-

sured without energy resolution. In this case, Eq. 6.19 yields

F(E, φ)→ F (φ) ≡ 1

2
[N↑(φ)−N↓(φ)]/[N↑(φ) +N↓(φ)], (6.24)

with N↑ and N↓ the total atom numbers in each spin state. The data (blue dots) are an average

of 6 repetitions of the entire φ sequence, with a fixed scattering length a = 4.24 a0. Fig. 6.4(a)

(red curve) shows the fit of Eq. 6.23 to the measured F (φ), which determines the magnitude

(b) and phase (c) of the coherence coefficients B(m).

We can compare the φ-dependent data of Fig. 6.4 to the mean field model of Ch. 3, which

predicts the red curve shown in Fig. 6.4(d). For the mean field model, we take the global

detuning ∆ = 0. However, the model requires a scattering length that is 2.63 times larger

than the measured value to fit the observed φ dependence. If we keep the scattering length at

the measured values, the mean-field model, as shows in Fig. 6.5, can not capture the energy

φ-dependent data.

Figure 6.5: Total collective spin projection Sz versus rotation angle φ without energy restric-
tion. The red curve shows the fit of the mean-field model for the measured scattering length of
a = 4.24 a0.

The reason that the blue data points do not reach to the maximum value of 0.5 is that, the

RF-resonance frequency at the final magnetic field B1 = 528.53 G, see Sec. 6.1, detuned by few

Hz during the forward and backward time evolution. Thus, we transfer about 90 % atoms back

to their original state |1〉.
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6.2.2 Measuring OTOC functions for a Subset of Spins in Energy-Space

Using the same data as the previous section, we measure the energy-resolved OTOC F(E, φ),

as shown in Fig. 6.6, for an ensemble of spins with a same axial energy Ex. The top row of

Fig. 6.6 shows the φ dependence for several different energies E. The shapes of the profiles vary

significantly with axial energy, which is in EF unit, changing in symmetry and structure as the

energy is varied from E = 0 to E = 0.7EF . The red curves in the first row show the fit of

Eq. 6.23, which yields the magnitudes of the coherence coefficients |Bm| shown in the second

row and the corresponding phases ϕm shown in the third row. In the last row, we again compare

the data to the predictions of the mean field model of Ref. [Pegahan et al., 2019]. Using the

detuning as a free parameter, the mean field model is able to capture the complex φ-dependent

shapes of the data. However, to fit the observed φ dependence, the model requires a scattering

length aeff ≡ 2.63 a, i.e., 2.63 times larger than the measured value a = 4.24 a0.

6.3 Effect of the Detuning on the Mean-Field model

The ideal implementation of the protocol of Fig. 6.1, as described above, assumes a global

detuning ∆ = 0. In the actual experiments, the global detuning ∆ is near resonance at the

initial bias magnetic field B1, but changes by several kHz when, as shown in Fig. 6.2, the bias

magnetic field is tuned to B2 for 200 ms. This results in a large, but reproducible phase shift.

To compensate, we choose the time for the final π/2 pulse to be delayed by a time τf of several

ms after we begin the sweep of the magnetic field from B2 back toward its original value B1 as

the detuning becomes small ' 100 Hz, well within the pulse bandwidth, but nonzero.

This provides adequate time for the frequency detuning to return to a nonzero value well-

within the pulse bandwidth. In this final low frequency detuning region, we find that a delay of

τf = 10 ms produces a stable net phase shift of 180o (modulo 2π) and a maximum transfer of

atoms from the initially populated state 2 to the initially unpopulated state 1 for φ = 0, i.e.,

a −π/2 pulse about the y-axis as noted above. The negative sign is taken into account in the

data analysis.

To set the radiofrequency detuning close to resonance at the field B1, we initially find the

resonance frequency for the radiofrequency pulses, by observing the transfer of atoms from

state 2 to state 1 using a single 50 ms pulse. The observed linewidth is 8 Hz half width at

half maximum, enabling an approximate determination of the ∆ = 0 frequency within 1 Hz.

To keep the rf frequency nominally on resonance as data is collected, for each choice of φ, we

consistently check that the φ = 0 configuration produces maximum transfer of atoms from state

2 to state 1 at the end of the 400 ms total sequence. If not, the rf frequency is slightly changed

to compensate for magnetic field drift, which changes the resonance frequency by ' 3.6 Hz/mG.
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Figure 6.6: Energy-resolved collective spin projection Sz(E) versus rotation angle φ for spins
of selected energies (left to right) E/EF = 0, 0.15, 0.25, 0.5, 0.7. Here, F(φ) = 1

2 [n↑(E) −
n↓(E)]/[n↑(E) + n↓(E)]. The top row shows the data (blue dots) for a measured scattering
length a = 4.24 a0. The red curve is the fit of Eq. 6.23, which determines the magnitudes of the
coherence coefficients |Bm| (second row) and corresponding phases ϕm (third row); The bottom
row shows the predictions (red curves) of the mean field model of Ref. [Pegahan et al., 2019]
to the data (blue dots), using a scattering length 2.63 times the measured value and global
detunings, ordered in energy, of ∆(Hz) = 0, 0.8, 0.65, −0.8, and 0.15.

However, it is not possible to control the detuning at the Hz or sub-Hz level.
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6.3.1 Sensitivity of the Mean-Field Model to Detuning

For the data used in the measurements, we estimate the effective detuning from resonance for

single shots at several values of φ by fitting our mean field model, from Ch. 3, to the spatial

profiles, as shown in Fig. 6.7.

Fig. 6.8 shows the sensitivity of the fits to ∆ for φ = π. Fortunately, drifts in the radiofre-

Figure 6.7: Estimating the radiofrequency detuning from the measured single-shot spin density
profiles. Here, the spin density ∆n = n↑(x)− n↓(x) is given in units of the central density n(0)
and the measured scattering length is ameas = 4.24 a0. The single shot data (blue dots) are fit
with the mean field model [Pegahan et al., 2019] (red curves), using the detuning ∆ as a fit
parameter. (a) φ = 0.64π, afit = 2.35 ameas, ∆fit = 0× 2π rad/s; (b) φ = 1.18π, afit = 2.5 ameas,
∆ = 0.1 × 2π rad/s; (c) φ = 1.63π, a = 2.4 ameas, ∆ = 0.1 × 2π rad/s. Note that the model
requires a scattering length that is nominally 2.4 times the measured value to fit the data.

quency detuning ∆ are partially mitigated by the π pulse at the center of the protocol of

Fig. 6.1, which reverses the net accumulated phase at time τ for a fixed detuning. If the de-

tuning is stable over the 400 ms duration of the sequence, this accumulated phase is cancelled.

Further, we compensate for the phase shift arising from the magnetic field sweep between B1

and B2, as discussed above.

In the following, we discuss the effect of the remaining detuning on the determination of

the coherence coefficients from the φ-dependent spin density. To understand the effect of finite

global detuning ∆ on the coherence coefficients, consider the measurement of the z-projection

of a single spin szαi after the pulse sequence, where αi denotes an atom of axial energy Exi. As

shown in the Fig. 6.6, for the final state |ψf 〉, the OTOC protocol led to

Fαi(φ) ≡ 2〈ψf |szαi|ψf 〉 = 2 〈ψ0|W †φ(τ)sxαiWφ(τ)|ψ0〉. (6.25)
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Figure 6.8: Sensitivity of the mean field model to detuning ∆. The blue dots denote data for
φ = π and ameas = 4.24 a0. The mean field model is evaluated for φ = π and a12 = 2.4 ameas. The
detuning in the mean field model (red curves) is varied from 0.17 to 0.47 Hz. (a) ∆ = 0.17× 2π
rad/s; (b) ∆ = 0.27× 2π rad/s; (c) ∆ = 0.37× 2π rad/s; (d) ∆ = 0.47× 2π rad/s.

On the righthand side, |ψ0〉 is the fully x-polarized state, obtained after the first π/2 pulse

and W , defined by Eq. 6.14, is

Wφ(τ) = eiH(a)τe−iφ Sxe−iH(a)τ . (6.26)

To explicitly display the detuning dependence of measurement, we write the Zeeman term

in Eq. 6.2 as Ωzi → Ωzi + ∆. Thus, the Hamiltonian in Eq. 6.2 will be

H(a,∆) ≡ H(a, 0)−∆Sz, (6.27)

where Sz =
∑N

j,αj ŝzαj is the z-component of the total spin vector. Then, since [H(a, 0), Sz] = 0,

we have

Wφ(τ) = eiH(a,0)τ e−i∆τ Sze−iφ Sxei∆τ Sze−iH(a,0)τ = eiH(a,0)τe−iφ Sx′e−iH(a,0)τ . (6.28)

Here, the phase shift ∆τ is accumulated during the time τ between the first π/2 pulse and the

φ rotation in Fig. 6.1. We see that a nonzero detuning changes the axis for the φ rotation from

x to x′, with

Sx′ ≡ e−i∆τSzSxei∆τSz = Sx cos(∆τ) + Sy sin(∆τ). (6.29)

Note that the angle between the x′ and x axes for a typical single-shot with ∆ = 0.4 Hz and

τ = 0.2 s is ∆τ ' 0.5 rad.

For each detuning ∆, we can expand Eq. 6.28 for Wφ(τ) in a total angular momentum

eigenstate basis |J,M〉x′ , with Sx′ |J,M〉x′ = M |J,M〉x′ , where we suppress all other quantum

numbers that define the states, such as intermediate angular momenta. Then, Eq. 6.25, similar
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to Eq. 6.23, for a single spin in the state αi can be written as

Fαi(φ) = 2
∑
m

B(αi)
m eimφ, (6.30)

where the integer m = M ′ −M is the difference of the total angular momentum projections

along the x′ axis, and

B(αi)
m =

∑
J,J ′,M

x′〈JM |ρ̂(τ)|J ′M +m〉x′ x′〈J ′M +m|sxαi(τ)|JM〉x′ . (6.31)

Here, ρ̂(τ) = e−iH(a,0)τ |ψ0〉〈ψ0|eiH(a,0)τ is the density operator at time τ and

sxαi(τ) ≡ e−iH(a,0)τ sxαi e
iH(a,0)τ . (6.32)

For φ = 0, using the completeness of the total angular momentum states, we have 2
∑

mB
(αi)
m =

2 〈ψ0|sxαi |ψ0〉 = 1. Further, B
(0)
−m = B

(0)∗
m , as required for real Fαi(φ).

As shown in figure 6.5, without interactions, a = 0, the Hamiltonian reduces to an energy-

dependent rotation about the z−axis. In this regime, ŝxi is a rank one operator with m = 0,±1

only, corresponding to the φ-dependent projection of each spin along the x-axis. However, for

the interacting system, a 6= 0, collisions create coherence between spins with different energies,

and hence between states with |m| = |M ′ −M | > 1.

In the experiments, we measure the sum of Eq. 6.30 over atoms with an energy near E,

given by Eq. 6.22 and Eq. 6.23, which contain the coefficient

Bm =
1

Ns

Ns∑
αi=1

B(αi)
m . (6.33)

For an average of several shots with varying detunings, as utilized in the experiments to

measure the φ dependence of the spin density, the expansion coefficients B
(αi)
m of Eq. 6.31 are

simply averaged over a range of rotation axes x′. This axis averaging, and the sum over a small

range of spin energies near E in Eq. 6.33, will not change the general φ-dependent structure

of Fαi(φ), which enables measurements of the average coherence coefficients, as shown in the

Fig. 6.6 and Fig. 6.4.

In summary, energy-resolved measurements of OTOC’s in a spin-dependent harmonic trap

reveal a coherence structure that is hidden in measurements of the total collective spin vector.

Remarkably, the measured φ-dependent structure of the energy-dependent collective spin vector

is consistent with the predictions of the mean field model of Ch. 3, using the scattering length

and the detuning as free parameters. However, we find that the φ-dependence predicted using
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the measured scattering length is much too smooth as shown in Fig. 6.5. In contrast, using

the measured scattering length without adjustment, the same model is in close agreement

with the complex spatial structure of the spin density profiles Sz(x) observed in single pulse

experiments in Ch. 5, which are independent of the detuning. These results suggest that a

beyond mean field treatment is needed to correctly predict the observed OTOC measurements.

For the measurements presented here, the OTOC was measured as a function of rotation angle

φ at a fixed time τ = 200 ms. By performing the same measurements for fixed φ as a function

of τ , it will be possible in future work to study the dynamics of information scrambling by

mapping out the OTOC as a function of τ .

The new methods pave the way for microscopic measurements of time-dependent infor-

mation propagation via observing the build-up of correlations between two particle operators,

V = szαi szαj , which I will explain in more detail in Ch. 7.

6.4 Phase-Controlled Radio-Frequency Pulse Calibration

To apply controllable radio-frequency pulses, φx in the protocol of Fig. 6.1, we use a voltage-

controlled phase shifter (RVPT0117MBC as shown in Fig, 6.10), to implement phase shifted

RF pulse. This type of phase shifter provides wideband frequency ranging from 70− 100 MHz,

which matches the range of frequency that we employ for resonant rf transition on the lowest

two hyperfine states of 6Li. We calibrated the phase shifter through an RF-mixer circuit, as

shown in Fig. 6.9. We filter the higher-order frequency in the mixer’s output through a low pass

filter and monitor the dependence of applied voltages and phase shift as Fig. 6.10.

As the control voltage of phase shifter changes, 0 to 8 volts, we can extract phase of output

signal, 0 to 2π, shifted with respect to the original phase.

To test this calibration method experimentally, one can apply two consecutive π/2 pulses

only to spin |2〉 of the hyperfine states– in the absence of any spin mixture. If two pulses are

phase shifted by 90◦, V = 1.2 V as shown in Fig. 6.9, a balanced population of |2〉 and |1〉
should be observed after the second rf pulse. Otherwise, two consecutive π/2 pulses along the

same axes led to a π pulse.

After the calibration, we send a constant voltage of 1.2 V to the phase shifter for the

experimental protocol and produce a 90◦ phase shift, which is φx pulse for the protocol. We

hold the voltage applied to the phase shifter constant throughout the experimental cycles. To

cover the whole range of 2π rotation, we change the time duration of φx from 0, as 0 phase

shift, to 2.2 ms, as 2π.
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Figure 6.9: Schematic of a radio-frequency mixing circuit. Dashed line shows for what voltages
the output signal is shifted by 90◦.

Figure 6.10: (Left) Voltage control phase shifter (RVPT0117MBC) 70 − 100 MHz. (Right)
Dependence of phase applied voltage to the phase shifter.
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Chapter 7

Conclusion

7.1 Summary of the Dissertation

This dissertation primarily contains two experiments studying spatial spin density, n↑(x) and

n↓(x), in weakly interacting Fermi gases. First, I provided the detailed derivation of the mean-

field model to describe the time evolution of spin-density profiles for coherently prepared two-

state Fermi gas of 6Li, confined in a spin-dependent harmonic trap potential, in the collision-

less regime. I showed that a one-dimensional mean-field model, without additional simplifying

approximations, quantitatively predicts the measured spatial profile structure. These results

demonstrated that weakly interacting Fermi gas with conserved single-particle energies enables

a simulation of spin-lattice models in energy-space. Using the mean-field model, I determined

the zero crossings and magnetic field tuning rates for the s-wave scattering lengths of the three

lowest hyperfine states. At high temperatures and small scattering lengths a < 1 Bohr, I ex-

plained additional features in the spin-density profiles, as shown Fig. 5.14, which was explained

by including the energy dependence of the scattering length in our model.

For the second experiment, I demonstrated a general method for performing energy-resolved

measurements of a many-body system of trapped atoms in a harmonically trapped weakly-

interacting Fermi gas. As previous measurements in this system were limited to the spatial

profiles of the collective spin density, I could not observe a higher order spin coherence from the

total number of atoms. However, I showed that through an inverse Abel-transformation of the

spin density profiles, one can determine the collective energy-resolved spin coherence, enabling

general many-body echo protocols. The experimental protocol applies a global rotation, φ, to

the total interacting spin system in between forward and time-reversed evolution, and measures

certain out-of-time order correlation to diagnose the effect of the rotation on spins. I observed

quantum coherence and information scrambling through energy-resolved OTOC functions in

selected energy partitions. Through these observations, I measured multiple quantum coherence
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for selected energy partitions.

7.2 Outook

The spin-energy correlation measurements provide an essential benchmark for future work on

collective spin evolution with designer energy landscapes in the weakly interacting regime. The

experiment pave the way for studies of beyond mean-field physics, measurement of spatially

correlated spin fluctuations [Koller et al., 2016], and measurement of correlated spin currents

[Bender et al., 2019].

Figure 7.1: One dimensional energy-space lattice. Each energy sector demonstrates atoms in
the ith harmonic oscillator state. The range of the energy partitions varies from E = 0 to
E = EF . Each ensemble contains atoms with similar energy.

The ability to access the energy-resolved OTOCs will motivate new cold atom approaches to

simulate “out-of-equilibrium” dynamics in spin-lattice systems [Eisert et al., 2015], information

propagation by site-resolved measurements [Joshi et al., 2020], and “fast scrambling” [Bentsen

et al., 2019]. For example, the energy-resolved method presented in this dissertation enables

observation of time-dependent correlations between collective atoms in different energy-space

sectors, as shown in Fig. 7.1,

〈sziszj〉 − 〈szi〉 〈szj〉 . (7.1)

Eq. 7.1 is an extension of the demonstrated OTOC protocol of Ch. 6, to two-particle op-

erators sziszj . We plan to measure the correlation between atoms with different energies and

possibly measure time-dependent decay of out-of-time-order correlation function, which pro-

vides useful information about the effective loss of quantum information [Swingle, 2018], i.e.,

the scrambling time. We can extend our experiment to a two-dimensional pancake harmonic

oscillator potentials and study time-dependent growth of OTOC functions in the energy-lattice.
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der, T., Fuchs, J. N., Piéchon, F., Laloë, F., Reichel, J., and Rosenbusch, P. (2010). Spin

99



self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett.,

105:020401.

[Du et al., 2008] Du, X., Luo, L., Clancy, B., and Thomas, J. (2008). Observation of anomalous

spin segregation in a trapped fermi gas. Physical review letters, 101(15):150401.

[Du et al., 2009] Du, X., Zhang, Y., Petricka, J., and Thomas, J. (2009). Controlling spin

current in a trapped fermi gas. Physical review letters, 103(1):010401.

[Eisert et al., 2015] Eisert, J., Friesdorf, M., and Gogolin, C. (2015). Quantum many-body

systems out of equilibrium. Nature Physics, 11(2):124–130.

[Elliott et al., 2014] Elliott, E., Joseph, J. A., and Thomas, J. E. (2014). Anomalous minimum

in the shear viscosity of a Fermi gas. Phys. Rev. Lett., 113:020406.

[Elliott, 2014] Elliott, E. R. (2014). Quantum Transport and Scale Invariance inExpanding

Fermi Gases. PhD thesis, Duke.
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