
ABSTRACT

ARUNKUMAR, NITHYA. Designer Optical Control of Two-body Interactions in Ultracold
Gases. (Under the direction of John Thomas.)

Optical control of interactions in ultracold gases can achieve new quantum phases,

model exotic condensed matter systems, and even emulate the physics of black holes.

However, optical techniques to control interactions have suffered from atom loss due to

spontaneous scattering and are therefore severely restricted in their applicability. This

thesis reports on experiments that demonstrate optical control of two-body scattering in

ultracold 6Li atoms using a new two-optical field method, where atom loss is suppressed by

destructive quantum interference. Interactions are measured by employing radio-frequency

spectroscopy. The experiments illustrate that our two-field optical method achieves the

same level of tunability as the conventional method of magnetically tuning two-body

interactions, potentially creating new fields of research. The two-body scattering length

is controlled by tuning the laser frequency by only a few MHz, thereby not altering the

intensity-dependent potential experienced by the atoms. Exploiting the tunability of interac-

tions achieved using the two-field optical technique, this thesis also reports on experiments

to demonstrate “designer" spatial control of interactions in an ultracold gas. Interaction

profiles are imprinted on the atom cloud and controlled by tuning the frequency of the

lasers. Furthermore, the two-field method is used as an optical vernier to investigate and

study the momentum dependence of narrow Feshbach resonances with high precision. All

the experimental data presented in this thesis are in excellent agreement with the theoreti-

cal model, which includes the momentum dependence of the two-body interactions and

the spatial variation of the atom density.
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CHAPTER

1

INTRODUCTION

Tunable interactions in ultracold gases have led to important breakthroughs in atomic

physics over the past decade, including the realization of strongly interacting Fermi [O’H02;

KZ08; Blo08] to the observation of Efimov trimers [Kra06]. Typically, interactions are tuned

using a magnetic Feshbach resonance, where an external magnetic field tunes the energy

of a colliding atom pair to be degenerate with a molecular bound state. However, mag-

netic tuning of interactions lacks high-resolution spatial control, due to the size of the

magnetic coils used in ultracold experiments. Also, magnetic tuning cannot achieve fast

temporal control due to the high-inductance of the coils. Optical control of interactions

can achieve high-resolution in both space and time, but generally suffers from atom loss

due to spontaneous scattering.

In this dissertation, I report on experiments to control two-body interactions in ultracold
6Li atoms using a two-field optical method, where two optical beams ν1 and ν2 (Fig. 1.1a)

are employed to control interactions while suppressing atom loss by destructive quantum

interference. Further, I demonstrate that the two-field optical method achieves the same

tunability of two-body scattering length a12 as magnetic tuning, potentially opening a new

1



Figure 1.1 (a) The optical field arrangement for creating an interaction “sandwich." Both ν1 and
ν2 beams illuminate the central region of the atomic cloud. The ν1 and ν2 beams make the cen-
tral region of the atomic cloud resonantly interacting with suppressed spontaneous scattering.
The outer regions of the atomic cloud illuminated only by the ν1 beam are weakly interacting. (b)
Measured atom cloud image illustrating an “interaction" sandwich. Atom cloud is imaged after
transferring atoms from one hyperfine spin state to another, by applying a radio-frequency pulse.
Atom transfer is suppressed in regions of resonant interactions-central region of the atomic
cloud.
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(a) (b)

Figure 1.2 Comparison of (a) magnetically controlled and (b) two-field optically controlled scat-
tering length ā12, illustrating that the two-field optical method achieves the same level of tunabil-
ity in scattering length as magnetic tuning.

field of research, Fig. 1.2. Using this unprecedented level of tunability, I further demonstrate

spatial control of interactions in an ultracold gas by creating an interaction sandwich of

resonantly and weakly interacting regions in an atomic cloud. Fig. 1.1a shows the optical

field arrangement to create spatially varying interactions. Here, the ν1 beam illuminates the

entire atomic cloud and ν2 beam is confined to the central region of the atomic cloud. The

central region of the atomic cloud illuminated by both the ν1 and ν2 beam are resonantly

interacting, while the wings of the atomic cloud illuminated only by the ν1 beam are weakly

interacting, as seen from measured atom cloud images in Fig. 1.1b. Also, different interaction

profiles can be imprinted on the atomic cloud by changing the frequency of the laser only

by a few MHz. This is the first demonstration of “designer" spatial control of interactions in

an ultracold gas, which has far-reaching applications such as emulating the physics of super

solid [Bau09a]. I will further report on experiments employing the two-field optical method

as an optical vernier to probe and study momentum-dependent interactions between

atoms with high precision, where the momentum of an incoming colliding atom pair

determines the interaction energy of the atoms.

For more than a decade, optically controlling interactions involved photoassociation

coupling a pair of unbound free atoms to a bound molecular state, thereby changing

the scattering cross-section of the colliding atom pair [The04]. However, this resulted in

atom loss due to spontaneous scattering, which reduced the lifetime of atoms to a few
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hundred microseconds. Pioneering work in 2009 by Rempe’s group at the Max Planck

Institute of Quantum Optics used a combination of optical fields and magnetic fields to

control collisional interactions [Bau09a]. Here, the magnetic field tunes the energy of the

free atom pair near a Feshbach resonance and the optical field tunes the energy of the

nearby molecular bound state. When the energy of the free atom pair (magnetic tuning) is

degenerate with the energy of the molecular bound state (optical tuning), the scattering

cross-section diverges, resulting in strong interactions. Although this technique improved

the lifetime of the atoms to 1 ms, there was always a trade-off between achieving longer

lifetime and increasing the tunability of interactions. In other words, long lifetimes imply

small tuning ranges, which is inadequate for most applications. In 2012, our group proposed

new two-field optical methods [WT12a; WT12b], based on quantum interference to suppress

atom loss. Here, two optical fields, as opposed to the single optical field [Bau09a], are used

to control collisional interactions.

The underlying principle of the two-field method is that there are two pathways coupling

an atom in the ground state to an excited state. The two pathways can destructively interfere,

leaving the atom in the ground state. Here, the two optical fields will create a “dark" state,

where the atoms can reside, without being effectively coupled to the excited state, thereby

suppressing atom loss. A related technique was demonstrated by Harris in 1984 at Stanford

University and is well known as electromagnetically induced transparency (EIT) [Har97]

for suppressed absorption. Our two-field method is a marriage between the single-field

method pioneered by Rempe [Bau09a] and the EIT technique developed by Harris [Har97]

to optically control collisional interactions in ultracold gases. Hence, the two-field method

is also referred to as the closed-channel EIT method.

Optical control of interactions in ultracold gases has wide applications, from creating

novel quantum phases to emulating the physics of strongly interacting systems such as the

neutron matter. Optical techniques can achieve high-resolution spatial control of interac-

tions in an ultracold gas, which can be utilized to study controllable soliton emission [RV05],

exotic quantum phases [Den08], long-living Bloch oscillations of matter waves [Sal08], the

physics of Hawking radiation from black holes [Bal08]. Optical control of interactions can

also provide fast temporal control, which can be used for rapid modulation of interac-

tions to study “driven" quantum systems such as a “Bosenova" [Cla17] - an exploding

fireworks of Bose gas when the interactions are rapidly modulated (ms) resembling the

collapse and bounce of a supernova. Fast temporal control is also critical in investigating
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non-equilibrium thermodynamics in Fermi gases. Based on the demonstration of a new

two-field optical method from our group, it has been predicted that our method can be

used for momentum-selective control of interactions, leading to the realization of synthetic

Fulde-Ferrel superfluids [He18]. Further, the two-field optical method also can be used to

control the effective range with minimum loss, which is critical in emulating the physics of

neutron matter.

I will begin this chapter by presenting a brief overview on magnetically tunable interac-

tions in ultracold gases, followed by a historical perspective on the different kinds of optical

methods that have been developed to control interactions in ultracold gases.

1.1 Magnetic Feshbach Resonance

Feshbach resonance occurs when the energy of a pair of colliding atoms is degenerate with a

bound state in a closed channel. At the Feshbach resonance, the scattering length diverges

and the scattering cross-section becomes maximum. This leads to strong interactions

between the colliding atoms, which can be exploited to emulate the physics of other strongly

interacting systems in the universe such as neutron stars and quark-gluon plasma. Typically,

magnetic fields are used to tune the energy of the colliding atom pair relative to the energy

of the molecular bound state. This has led to the widely used terminology in the ultracold

physics community, magnetic Feshbach resonances (MFR). In this section, I will discuss

the importance of magnetic Feshbach resonances in achieving tunable interactions in

ultracold gases.

Fig. 1.3 illustrates a magnetic Feshbach resonance. The colliding atoms predominantly

reside in the energetically accessible open channel. The molecular bound state |g1〉, which

is not energetically accessible to the atoms is called the closed channel. In our laboratory,
6Li fermions are used to study ultracold atomic collisions. At ultracold temperatures, the

predominant collisions arise from low energy s-wave scattering. A two-component mixture

of atoms with different total atomic spins, represented by black arrows on the atoms (red

balls) in Fig. 1.3, is needed for an s-wave collision to happen between two 6Li fermionic

atoms. Hence, the two lowest hyperfine states |1〉 and |2〉 in 6Li are used to study atomic

collisions (Refer to Chapter 2 for a detailed treatment of the hyperfine states in 6Li). For the

|1〉− |2〉mixture, the open channel is the spin triplet state |T , k 〉 and the closed channel is

the spin singlet state |g1〉. Here T represents the total electronic spin of the atom pair and k

5



(a)

(b)

(c)

(d)

Figure 1.3 Magnetically tuning interactions near a Feshbach resonance. The hyperfine coupling
between the triplet continuum |T , k 〉 (open channel) and the singlet bound state |g1〉 cause mag-
netic Feshbach resonance. The open channel |T , k 〉 is magnetically tunable due to its non zero
magnetic moment. (a) At B = 0, the triplet continuum |T , k 〉 is higher in energy than the molec-
ular bound state |g1〉. (b) At B < Br e s , the triplet continuum |T , k 〉 is above the molecular bound
state |g1〉. This is the BEC regime of the resonance. (c) At B = Br e s , the triplet continuum |T , k 〉 is
degenerate with the molecular bound state |g1〉 and leads to the Feshbach resonance. (d) At B >
Br e s , the triplet continuum |T , k 〉 is below the molecular bound state |g1〉. This is the BCS regime
of the resonance.
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represents the relative momentum between them. In the open channel triplet continuum

|T , k 〉 state, the electronic spin of both the atoms is downward and therefore has a net

magnetic moment −2µB , where µB = ħh ×1.4 MHz/G is the Bohr magneton. Hence, in the

presence of an external magnetic field B , the triplet continuum |T , k 〉moves downward

and its energy is proportional to −2µB B . For the singlet state |g1〉, the electronic spins of

both the atoms are opposite and have a zero net magnetic moment. Therefore, the pure

singlet state |g1〉 is not magnetically tunable.

Applying an external magnetic field Br e s , the energy of the triplet continuum |T , k 〉
is tuned to be degenerate with the singlet molecular bound state |g1〉, causing a Fesh-

bach resonance, Fig. 1.3c. Many important works have been done in the ultracold physics

community [Zwi05; Sch07; Zwi06; Ste08; Joc03; Reg03] and in our group [O’H02; Kin04;

Kin05; Cao11]where the strong interactions created by a magnetic Feshbach resonance

was exploited to realize strongly interacting Bose and Fermi gases.

831 832 833 834
-10000

-5000

0

5000

10000

B (G)

a
B
(a
b
g
)

Figure 1.4 Zero energy scattering length a as a function of magnetic field B in units of back-
ground scattering length ab g for the broad Feshbach resonance at 832.2 G with width∆B = 300 G.
The background scattering length ab g for the broad Feshbach resonance in 6Li is -1450 a0.

When the applied external magnetic field B < Br e s , Fig. 1.3c, the energy of the triplet

continuum |T , k 〉 is slightly above the energy of the molecular bound state |g1〉. Here, the

scattering length is positive and the interactions between the atoms are repulsive. This
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leads to the formation of weakly-bound molecules, namely, Feshbach molecules. Here,

two 6Li fermionic atoms can form a Bosonic 6Li-6Li molecule, which under low enough

temperatures can undergo a phase transition to form a Bose-Einstein condensate (BEC).

This regime is called the BEC side of the resonance and has been widely utilized to realize

ultracold molecules by a number of methods, namely, 1) performing an adiabatic sweep of

the magnetic field from above the resonance to below the resonance to create ultracold 40K

molecules [Reg03], 2) exploiting three-body recombination on the BEC side of the resonance

to realize cold 6Li molecules [Joc03], and 3) modulating the magnetic field slightly above the

BEC regime to create ultracold 85Rb molecules [Tho05]. More recently, Feshbach resonances

have been exploited to realize extremely stable long-lived ultracold molecules of 23Na40K in

their ground state [Wu12].

When the applied external magnetic field B > Br e s , Fig. 1.3d, the energy of the triplet

continuum |T , k 〉 is below the energy of the molecular bound state |g1〉. Here, the scattering

length is negative and the interactions between the atoms are attractive. The behavior of

the colliding atoms at low enough temperatures in the presence of a Fermi sea mimics the

behavior of Cooper pairs in superconductors. Therefore, BCS (Bardeen-Cooper-Schrieffer)

theory is required to explain the physics of atomic collisions and hence this regime is called

BCS side of the resonance. The tuning of interactions from the BEC side to the BCS side of

the resonance is famously known as the BEC-BCS crossover (Fig. 1.4) and has been critical

in many important studies in ultracold atomic physics.

1.2 Limitations of the Magnetic Feshbach Resonance

In the last section, the advantages of magnetic Feshbach resonance (MFR) in achieving

tunable interactions in ultracold gases was discussed. Although using external magnetic

fields to control interactions has been effective in studying and emulating quantum phe-

nomenon over the last couple of decades, MFR’S suffer from certain shortcomings that

severely limits their applicability. One of the main limitations in using external magnetic

fields to control interactions is the lack of high-resolution spatial control. This is primarily

due to the size of the coil that is employed to generate the magnetic fields. For example,

in our laboratory, our electromagnets have a diameter of 6 inches (152×103µm) which

generates a uniform magnetic field on the atoms. However, the atom cloud size is about 140

µm, which is 1000 times smaller than the size of the magnetic coils. Hence, it is impossible
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to achieve spatially selective control of interactions within an atom cloud.

Another limitation of using a magnetic field to control interactions is its slow tunability.

The coils used to generate magnetic fields have a high inductance, which severely limits

the rate of change of current through the coil. For example, the magnetic coils in our

laboratory have an inductance of 5 mH, which results in a time constant of 800 ms. In all

the experiments reported in this thesis, I wait 800 ms for the magnetic fields to stabilize. In

several other groups, single turn coils with low inductance in combination with a primary

coil have been used to demonstrate control of interactions in the time scale of 1 ms [Tho05;

Xu03; Hu14]. However, in order to study non-equilibrium thermodynamics, the interactions

should be controlled in a much faster timescale. For example, the natural time scale in a

Fermi gas is the Fermi time,τF , which is defined as the time taken by a fermion with velocity

vF to move a Debrogile wavelength λF . For a Fermi Energy, EF ≈ kB ×1µK, the Fermi time

is in the order of 10µs. To study the non-equilibrium thermodynamics of interacting Fermi

gases, the interactions need to be controlled on a time scale faster than the Fermi time,

such that the dynamics of the system prior to reaching equilibrium can be systematically

studied. Hence, experiments involving studies of non-equilibrium thermodynamics are

not readily performed using a magnetic Feshbach resonance.

It has been suggested for a long time that high-resolution spatial control and fast tem-

poral control can be achieved by using optical fields to control interactions. More recently,

based on the work from our group [Jag16a] on optically manipulating interactions near

Feshbach resonances, it was also suggested that momentum-selective control of interac-

tions using optical fields can be used to realize synthetic Fulde-Ferrel superfluids [He18]. In

past theoretical work from our group [WT12a; WT12b], it was proposed that optical control

of interactions can be further used to control the effective range in an atomic collision,

which is critical in the emulation the physics of neutron matter. Therefore, in order to

achieve high-resolution spatial and fast temporal control as well as momentum-selective

control of interactions and manipulation of effective range, the use of optical fields becomes

inevitable.

1.3 Controlling Interactions using Optical Fields

Optical fields can be easily manipulated to achieve high-resolution spatial control and fast

temporal control of interactions. The size of an optical beam can be controlled by carefully
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designing an optical system with lenses and opto-mechanical devices to make the size of the

beam comparable to the size of the atom cloud. Also, technological breakthroughs have led

to the development of digitally modulated mirror arrays, where a different spatial pattern

of the optical field can be imprinted on the atoms with resolutions better than a couple

of microns. Therefore, optical fields can easily be used to achieve high-resolution spatial

control of interactions. The optical fields can be switched on or off in tens of nanoseconds by

using an optical switch like acousto optical modulator (AOM). The AOM can also frequency

or amplitude modulate the optical beams at a frequency limited only by its switching time.

Hence optical fields can provide high resolution in both position and time.

Although optical control of interactions has been a primary candidate for overcoming

the shortcomings of magnetic Feshbach resonances (discussed in the previous section),

there have been only a handful of experiments in this field. Optical control techniques, in

general, suffer from spontaneous scattering resulting in atom loss. This happens as atoms

in an optical field are coupled to an excited state and decay due to spontaneous emission,

resulting in the heating of the atoms, which eventually escape from the trapping potential

used to cool them. The problem of overcoming spontaneous scattering and achieving

reasonable lifetime for the atoms resulted in limited progress until 2009 [Bau09a], where

a combination of optical fields and magnetic fields were used to control interactions. In

this section, I will present a general overview of the different types of optical methods, both

successful and unsuccessful in controlling interactions with reasonable lifetimes for the

atoms, in order to present the reader with a clear picture of the progress made over the

years that have made this thesis research a possibility.

1.3.1 Optical Feshbach Resonance (OFR)

The idea of optical Feshbach resonance was proposed theoretically in the late 1990’s [BJ97;

Fed96]. However, the first experimental demonstration of optical Feshbach resonance was

reported only in 2004 in a Bose condensate of 87Rb [The04]. Fig. 1.5 illustrates the concept of

optical Feshbach resonance. An optical field couples the incoming unbound atoms in the

open channel to a bound state of the excited vibrational level of the same open channel. The

transition frequency and the Rabi frequency of the optical beam are ν and Ω respectively.

In contrast to the magnetic Feshbach resonance where the unbound atoms in the

open channel are coupled to the bound state of the closed channel, the optical Feshbach

resonance couples the unbound atoms to the electronically excited bound state of the same
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Figure 1.5 Energy level scheme for optical Feshbach Resonance. Colliding atoms reside in the
triplet potential. The triplet continuum |T , k 〉 (open channel) is coupled with the triplet excited
bound state |e 〉 (open channel) through an optical beam of frequency ν and Rabi frequency Ω.

open channel. This method of optically coupling the colliding atoms to the excited bound

state of the open channel is called photoassociation. The optical Feshbach resonance

employs photoassociation resonance to tune interactions. M. Theis and coworkers [The04]

showed a change in the scattering length from 10 a0 to 190 a0, where a0 is the Bohr radius.

This corresponds to approximately ± 1 ab g , where ab g is the background scattering length

and is equal to 100.5 a0 for 87Rb. In order to be consistent across several different species of

ultracold atoms, I will give the scattering length in units of ab g .

Although tuning of scattering length was illustrated using OFR, the major disadvantage

of using optical field is the atom loss due to spontaneous scattering. When the unbound

atoms are pumped from the ground state to the excited bound state of the open channel,

they spontaneously decay to any of the allowed lower lying vibrational states. This leads to

atom loss, which is characterized by the two-body loss rate coefficient K2. The unit of K2 is

cm3/s. [The04] were able to achieve a K2 of 10−10 cm3/s. For a BEC with a typical density

of 1014 cm−3, this K2 corresponds to a lifetime of 100 µs. The lifetime of 100 µs limits the

timescale of the experiments utilizing OFR.
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Figure 1.6 Energy level scheme for two-field optical Feshbach Resonance. The triplet continuum
|T , k 〉 (open channel) is coupled with the triplet excited bound state |e 〉 (open channel) through
an optical beam of frequency ν1 and Rabi frequency Ω1. A second optical field with the frequency
ν2 and Rabi frequency Ω2 couples the vibrational state |g 〉 of the ground open channel to the
same excited bound state |e 〉 of the open channel.

1.3.2 Two-field Optical Feshbach Resonance

To further improve the lifetime of OFR experiments, M. Theis and coworkers [Tha05] im-

provised the OFR scheme by using two optical fields. This two-field technique utilizes

the principle of two-photon Raman coupling, Fig. 1.6. In this technique, a second optical

field couples the ground molecular vibrational state |g 〉 of the open channel to the excited

molecular vibrational state |e 〉 of the open channel. The frequency and the Rabi frequency

of the second optical beam are ν2 and Ω2, respectively. This method provides additional

flexibility in controlling the interactions by offering two additional control parameters, ν2

and Ω2. However, this scheme did not improve the overall tunability of interactions or the

lifetime of the atoms when compared to single field methods. In their published work, they

declared that there are no additional advantages of using two optical fields as opposed to a

single optical field, which is not particularly the case as we will see later in this chapter.

1.3.3 Optical Control of Magnetic Feshbach Resonance

A major breakthrough in the optical control field occurred when Bauer and coworkers

illustrated tuning of scattering length by manipulating the ground state of the closed

12



Figure 1.7 Energy level scheme for the optical control of magnetic Feshbach Resonance. The
incoming atoms are in the triplet continuum |T , k 〉 (open channel). The ground state |g1〉 and the
excited state |e 〉 are the bound vibrational levels of the singlet potential (closed channel). The
singlet ground state |g1〉 is coupled to the singlet excited state |e 〉 through an optical beam of
frequency ν1 and Rabi frequency Ω1.

channel near a Feshbach resonance in 87Rb [Bau09a]. Unlike the open channel technique

(optical Feshbach resonance) [The04; Tha05], this technique can only be realized near a

magnetic Feshbach resonance. The fundamental idea is to use a combination of both optical

and magnetic fields to control interactions. The external magnetic field acts as a coarse

control parameter to tune the open channel near the closed channel and an optical field

acts as a fine control parameter to tune the interactions. Hence this technique is denoted

as the optical control of a magnetic Feshbach resonance. In many papers, optical control

of a magnetic Feshbach resonance is sometimes loosely referred to as optical Feshbach

resonance, which is incorrect. As we will see in this section, the two techniques differ

considerably in the way they tune the interactions and should not be confused with one

another.

Fig. 1.7 shows the energy level scheme for the optical control of magnetic Feshbach

resonance technique using single optical field [Bau09a]. In addition to the triplet contin-

uum |T , k 〉 and the singlet bound state |g1〉, this technique also utilizes the excited bound

vibrational level |e 〉 of the closed channel (singlet state). An optical beam ν1, with Rabi

frequency Ω1 and detuning∆1, couples the singlet ground state |g1〉 to the singlet excited
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state |e 〉. Due to AC Stark effect, the optical beam ν1 shifts the ground state |g1〉 to |g ′

1〉. The

shift in the ground state |g1〉 is proportional to Ω2
1 /4∆1.

In this technique, the triplet continuum |T , k 〉 is tuned magnetically and brought near

but not degenerate with the singlet ground state |g1〉. Then, by manipulating the Rabi fre-

quency Ω1 or the frequency ν1, the singlet ground state |g1〉 can be made degenerate with

the triplet continuum |T , k 〉, thereby achieving strong interactions. Using this technique,

Bauer and coworkers [Bau09a]were able to demonstrate an order of magnitude improve-

ment in the lifetime of atoms for the same amount of tunability in scattering length as the

optical Feshbach resonance technique [The04]. This increase in the lifetime of atoms was

possible because the optical field manipulates the closed channel (singlet ground state),

whereas the atoms reside in the open channel (triplet continuum) which is far detuned.

Bauer and coworkers [Bau09b] further achieved an order of magnitude improvement in the

lifetime of the atoms by using large detuning∆1. Fu and coworkers [Fu13] reproduced the

same experiment in 40K and demonstrated the tunability of scattering length.

Even though this technique controls the two-body scattering length near a Feshbach

resonance, the lifetime of the atoms is limited by spontaneous scattering. Since the two-

body loss rate is proportional to Ω2
1 /4∆

2
1, they use large detuning∆1 to achieve an increase

in the lifetime of atoms. As the light shift of the ground state |g1〉 is proportional to Ω2
1 /4∆1,

using large detuning∆1 limits the tunability in scattering length. Also in the large detuning

regime, tuning scattering length by tuning the frequency ν1 produces a negligible effect.

Hence, this method requires to tune the Rabi frequency Ω1. Since the optical beam creates

an optical potential for the atoms in addition to the trap potential, changing the Rabi

frequency Ω1 modifies the net trapping potential, which can create undesired effects on

the atoms.

1.3.4 Optical Control of Magnetic Feshbach Resonance using a “Magic"

Wavelength

To minimize the effect of trapping potential due to the optical beam ν1, Clark and cowork-

ers [Cla15] tuned the optical beam ν1 between the D1 and D2 atomic transition lines of the

cesium atoms. When the optical beam ν1 is tuned between D1 and D2 lines, the atomic

polarizability due to D1 and D2 transitions cancel each other, thereby creating a negligible

trapping effect on the atoms. This wavelength is called as magic wavelength. Clark and

coworkers used the same technique as Bauer and coworkers [Bau09a]with a fixed detuning
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and achieved a tunability of only 0.2 ab g in scattering length with a lifetime of 0.63 s.

However, this technique has some fundamental limitations in its scope and applicability.

In the case of Cs atoms used by Clark and coworkers, the D1 and D2 transition lines are

separated by 16 THz. But for the atoms like 6Li, the D1 and D2 transition lines are separated

by 10 GHz. The optical beam tuned between D1 and D2 transition lines in 6Li, cause huge

atom loss due to spontaneous scattering. Hence this technique of tuning interaction with

a magic wavelength cannot be adapted to other species like 6Li and are therefore not

universally applicable.

Using this technique, Clark and coworkers also demonstrated temporal control of in-

teractions in the atomic cloud by modulating the intensity of the optical field. By creating

intensity variation of the optical beam within an atom cloud, they also demonstrated the

spatial variation of interactions in an atomic cloud. Clark and coworkers claim an obser-

vation of soliton "like" behavior in the atomic cloud and the collapse of a Bose-Einstein

condensate when local interactions are tuned from attractive to repulsive by changing the

magnetic field. However, there was no theoretical treatment to support their claim and it

was further clouded by the fact that the observed signature of soliton "like" behavior is very

similar to just atoms loss due to optical field.

In addition, they parametrized their tunability in terms of absolute value of the scattering

length. In the first important work on optical control of interactions published by Rempe’s

group in 2009 [Bau09a] and in all previously published work from our group [WT12a;

WT12b], tunability of scattering length was parametrized in terms of ab g and I will use the

same methodology in this thesis.

1.4 Two-field Optical Control of Magnetic Feshbach Reso-

nance

The major disadvantages of single field optical control of magnetic Feshbach resonance are

the limited tunability of the scattering length and the short lifetime of atoms. To overcome

these problems, our group proposed a two-field optical technique [WT12a; WT12b] using

electromagnetically induced transparency (EIT) to control interactions near a magnetic

Feshbach resonance, Fig. 1.8. EIT [Har97]was pioneered by Harris in the mid-eighties at

Stanford University, where he demonstrated two-optical fields coupled in a three-level

system can be used to achieve either constructive or destructive quantum interference
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Figure 1.8 Energy level scheme for the two-field optical control of magnetic Feshbach Resonance.
The incoming atoms are in the triplet continuum |T , k 〉 (open channel). The ground states |g1〉,
|g2〉 and the excited state |e 〉 are the bound vibrational levels of the singlet potential (closed chan-
nel). The singlet ground state |g1〉 is coupled to the singlet excited state |e 〉 through an optical
beam of frequency ν1 and Rabi frequency Ω1. A second optical field with the frequency ν1 and the
Rabi frequency Ω2 couples the singlet ground state |g2〉 to the same excited state |e 〉.

between the transition pathways. In the case of destructive quantum interference, EIT can

achieve loss suppression in the absorption spectra of the atoms by creating a transparency

window, which can be used to suppress atom loss [Fle05; Har97], realize slow-light [Hau99]

etc., In the case of constructive interference, EIT enhances the transition probability, which

can be exploited to realize inversionless lasers [Har97]. The basic idea of the two-field

control of magnetic Feshbach resonance is to use EIT in the closed-channel to suppress

atom loss and therefore the two-field method of controlling MFR is also referred to as

closed-channel EIT [Jag16a].

In the two-field method, Fig. 1.8, in addition to the ground state |g1〉 and the excited

state |e 〉, the two optical field technique requires a lower lying vibrational level |g2〉 of the

singlet ground potential. The optical beam ν1 (Rabi frequency Ω1) couples the ground state

|g1〉 to the excited state |e 〉 and the optical beam ν2 (Rabi frequency Ω2) couples the ground

state |g2〉 to the excited state |e 〉. The optical beams ν1 and ν2 shift the ground state |g1〉 and
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Figure 1.9 Why two-field method is better than single-field methods for optical control of a
magnetic Feshbach resonance - A simple illustration. (a) Zero energy scattering length a12 and
(b) two-body loss rate coefficient K2 as function of laser frequency ν1 for single-field (green) and
two-field (magenta) optical control of magnetic Feshbach resonance. The blue line in (a) is the
zero energy scattering length a12 in the absence of the optical fields. The low loss regions for
single-field and two-field methods are indicated by the green and magenta boxes, respectively.
The parameters used are T = 5 µK , B = 840 G, Ω1 = 1γe , and Ω2 = 2γe .
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manipulate the scattering interactions of the atoms. In addition, the presence of ν1 and

ν2 beams creates two different pathways for the atoms to reach the excited state resulting

in a destructive quantum interference. This results in suppression of atom loss and the

creation of a transparency window on the absorption spectra. Minimum loss occurs when

the frequency difference between the ν1 and ν2 beam equals the energy difference (in

frequency units) between the states |g1〉 and |g2〉 (see Chapter 2 for a detailed description).

The advantages of the two-field method over single field methods can be quantitatively

explained in a simple way using Fig. 1.9. Here I compare the two-body loss rate constant K2

Fig. 1.9b and scattering length tunability Fig. 1.9a as a function of frequency ν1 for both

two-field method (shown in magenta) and the single-field method (shown in green). The

blue line in Fig. 1.9a is the zero energy scattering length a12 in the absence of the optical

fields. The parameters used to generate Fig. 1.9 are T = 5 µK , B = 840 G, Ω1 = 1γe , and

Ω2 = 2γe . In the K2 plot, for the single-field method (shown in green) minimum loss occurs

for large detunings (Fig. 1.9b-green dotted box). Looking at the same region of detuning

in the scattering length plot a (Fig. 1.9a-green dotted box), we find that the tunability

in scattering length is limited. However, for the two-field method (shown in magenta),

minimum loss occurs when the detuning in zero (Fig. 1.9b-magenta dotted box). Looking

at the zero detuning regime in the scattering length plot (Fig. 1.9a-magenta dotted box), we

can see that the change in scattering length is maximum. Therefore, we can clearly see that

the two-field method creates a minimum loss regime, around which it offers maximum

tunability in scattering length. Also, from Fig. 1.9, we see that the tunability can be easily

achieved with MHz changes in frequency for the two-field method rather than several

hundreds of MHz frequency change that are required in the case of single-field methods.

Fig. 1.10a and Fig. 1.10b illustrates the ratio K2/a for both single-field and two-field

methods, respectively. For the single-field method Fig. 1.10a, a tunability of ∆a = 5ab g

(A→ B or A′→ B ′) results in a two-body loss rate constant of K2 = 27×10−11cm3/s. Also to

tune the scattering length A→ B or A′→ B ′, the frequency ν1 has to be changed from -100

MHz to -7.5 MHz or from +100 MHz to +3.5 MHz, respectively. Note that the scattering

length cannot be tuned from A (-100 MHz)→ A′(+100 MHz) as the gap between A and A′

involves maximum loss. For the two-field method Fig. 1.10b, for the same level of tunability

of∆a = 5 ab g (C →D ) results in a two-body loss rate constant of only K2 = 3.6×10−11cm3/s,

which is 7 times smaller than the single-field method. To modify the scattering length from

C →D , the frequency ν1 has to be changed only from -4.5 MHz to +4.5 MHz. Therefore,
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Figure 1.10 Quantitative illustration of the superiority of two-field method over single-field
methods for optically controlling a magnetic Feshbach resonance. Two-body loss rate constant
K2 Versus zero energy scattering length a12 for (a) single-field and (b) two-field optical control
of magnetic Feshbach resonance, using the same experimental parameters as in Fig. 1.9. For the
single-field method, a tunability of∆a = 5ab g (A→ B or A′→ B ′ ) results in a two-body loss rate
constant of K2 = 27× 10−11cm3/s. Note that the scattering length cannot be tuned from A (-100
MHz)→ A′(+100 MHz) as the gap between A and A′ involves maximum loss. For the two-field
method, for the same level of tunability of∆a = 5ab g (C → D ) results in a two-body loss rate
constant of only K2 = 3.6×10−11cm3/s, which is 7 times smaller than the single-field method.
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from the illustration in Fig. 1.10, it is clear that the two-field closed channel EIT method

is far superior than the single-field methods for optically controlling magnetic Feshbach

resonances.

1.5 Significance of My Thesis Work

In my Ph.D. research, I used the closed-channel EIT method described in the previous

section to demonstrate optical control of interactions and designer spatial control of inter-

actions in an ultracold gas of 6Li atoms. The tunability of interactions was demonstrated

by employing radio-frequency (RF) spectroscopy to measure mean-field induced spectral

shifts, from which the two-body scattering length was determined. Further, it was demon-

strated that our method achieves the same level of tunability as magnetically tuning the

interactions. This is the first demonstration where an optical technique has achieved the

same level of tunability as a magnetic control.

Spatial control of interactions was demonstrated by creating an interaction “sandwich"

of resonantly and weakly interaction regions within an atomic cloud. Further, by making

small frequency changes of the ν2 beam, different interaction profiles were imprinted

on the atomic cloud. This work presents the first all-optical manipulation of spatial in-

teraction profiles in an ultracold gas. I will briefly summarize my role in achieving the

above-mentioned results.

During my research, I was involved in building the entire optical system (Section 3.2)

for generating the ν1 and ν2 optical beams in the closed-channel EIT scheme (Fig. 1.8). The

optical system comprises three different lasers, namely, the reference laser, the ν1 laser, the

ν2 laser, and in addition, a Fabry-Perot cavity, an iodine saturation absorption spectroscopy

setup, and a wide range of electronics and servo systems. To generate the ν1 and ν2 optical

beams with a frequency stability of better than 30 kHz (1 part in a billion), three different

locking schemes were implemented separately and were combined to work in unison.

Previous experiments from our group used an optical system where primary importance

was given to the transition that involves the ν1 beam i.e., the |g1〉− |e 〉 transition. For my

experiments, the transition employing ν2 beam i.e., |g2〉 − |e 〉 transition had to be made

much stronger. This involves hunting for new transition frequencies by performing two-

photon laser spectroscopy. Due to the complicated nature of the laser locking scheme

and the newly found transition frequencies, which were several GHz away from the old
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transition frequencies, the entire setup was modified to accommodate the requirements of

the new experiments.

Investigating two-body interactions near the narrow Feshbach resonance with a width

of only 100 mG posed several challenges. Prior to my thesis research, the stability of our

magnetic field was approximate ± 30 mG (1 minute) with drifts approximately ± 100 mG

over 60 minutes. This made it impossible to pursue experiments near the narrow Feshbach

resonance. The source of instability was the noise present in the current supply that powers

the magnets. Hence, we bought a new power supply from Danfysik, which has a DC stability

of better than 1 mG over 60 minutes. However, due to poor engineering choices from the

manufacturer, the newly bought supply had a 60 Hz AC noise of approximately 100 mG.

As part of my Ph.D. research, I was built a servo system (Section 3.5) that reduced the

AC ripple to less than 10 mG. The stability of the magnetic field was carefully measured and

verified by performing radio-frequency (RF) spectroscopy. Also, after corresponding with the

engineers at Danfysik about the noise issue over a period of at least 2 years, which involved

sending them several measurements involving the current supply, I finally made them fix

the engineering flaw in the current supply. This project of stabilizing the magnet system

constituted a significant effort of my research and was critical in performing not only the

optical control experiments, but new experiments in our group, such as the measurement

of the zero-crossings in the scattering length which also requires exceptional magnetic field

stability.

In order to demonstrate optical control of interactions, it is necessary to establish a

method to measure the interactions. The interactions are measured in terms of the mean-

field induced frequency shifts arising from the two-body scattering length a12. In the case

of Bose gases, a12 can be measured by just taking the image of the atom cloud. However,

since I work with Fermi gases, measuring interactions was not that simple since the Fermi

energy dominates. One of the ways to measure interactions in Fermi gases is to perform RF

spectroscopy. Since optical control techniques generally induce atom loss, RF spectroscopy

should be done on a timescale of a few ms. However, the RF system in our lab, which includes

the RF antenna, the RF source, and the RF amplifier was extremely inefficient. Therefore,

an RF pulse for a duration of at least 100 ms was required to perform spectroscopy.

As part of my research, I investigated the inefficiencies of our RF system and modified

it for the needs of my experiment. First, the amplifier was upgraded from 3 W to 100 W.

However, I did not see a corresponding improvement in the RF power transferred to the
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atoms. On further investigation, it became clear that the issue was due to the RF antenna

in the system that was built with poor impedance matching properties. Although the best

solution would have been to replace the antenna present inside the vacuum chamber, due

to the complications involved it breaking the vacuum, I was advised to work externally to

fix this issue. A considerable amount of time during my research was spent on matching

the impedance between the amplifier and the antenna by building impedance matching

networks and choosing transmission lines of appropriate length. Finally, I was able to

perform RF experiments (shown in Chapter 4 and Chapter 5) at 1.2 ms, which was a factor

of 100 improvement over our older RF system.

1.6 Dissertation Organization

I will conclude this chapter by briefly summarizing the content in the forthcoming chapters.

In this thesis, I will present both the experimental results for optical control of two-body

scattering and a complete theoretical treatment to illustrate the excellent agreement of the

data with theory.

In Chapter 2, I will introduce the continuum-dressed state theoretical model for two-

field optical control of scattering interactions in ultracold gases. I use the continuum-

dressed state model predictions in Chapter 2 to compare the experimental data presented

in later chapters. The continuum-dressed state model provides a complete treatment of

two-body scattering by considering the momentum dependence in interactions, which

is neglected by prior theoretical models [Bau09a; WT12a; WT12b]. Using the continuum-

dressed state model, I will derive the momentum-dependent total phase shift for two-

body scattering interactions. The total phase shift includes both the magnetically induced

scattering phase shift and the optically induced scattering phase shift. From the total phase

shift, I will derive the two-body loss rate constant K2, and momentum-dependent s-wave

scattering length a12.

In Chapter 3, I will discuss the experimental apparatus and the methods used to produce

and image ultracold Fermi gas of 6Li atoms. I will also present the design and implementa-

tion of the optical system used to demonstrate control of interactions in an ultracold gas of
6Li atoms.

In Chapter 4, I will present results from my experiment that demonstrates control of

scattering interactions near a Feshbach resonance using the two-field optical method. I
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will show the experimental results demonstrating that the two-body scattering length can

be tuned by changing the magnetic field and two optical fields. In addition, I will also show

the results of the spatial control of interactions experiment, where the scattering length

is made to vary as a function of the axial position of the atomic cloud. The experimental

results are further compared to the theoretical prediction from the continuum-dressed

state model discussed in Chapter 2.

In Chapter 5, I will present an experimental study of optically-induced loss to precisely

probe the momentum-dependent interactions near a Feshbach resonance. I will demon-

strate that the two-field method can be used as an effective tool to probe and investigate

the momentum-dependent two-body interactions in an ultracold gas.

In Chapter 6, I will summarize the thesis and briefly present an overview of some future

experiments that can be done using the two-field optical method.
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CHAPTER

2

THEORY: OPTICAL CONTROL OF

SCATTERING INTERACTIONS IN

ULTRACOLD GASES

In this chapter, I will discuss the theory of optical control of interactions in ultracold gases.

A detailed treatment of the theory of magnetic Feshbach resonances and optical con-

trol of a magnetic Feshbach resonance has been reported in a previous thesis from our

group [Jag16b]. This involves the derivation of the optically induced phase shift and of the

momentum averaged two-body loss rate constant K2 using a continuum-dressed state

model. I will briefly summarize the main elements of the Feshbach theory and outline the

results of the continuum-dressed state model. In this chapter, I will use the continuum-

dressed state model to present a detailed treatment of optical control of interactions where

the molecular bound state (closed channel) is optically tuned relative to the triplet contin-

uum (open channel) by changing the frequency of applied optical fields.

I will begin by introducing the properties and the relevant atomic states of 6Li. In Sec-
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tion 2.2, I will discuss the Feshbach resonances in 6Li. In Section 2.2, I will discuss the

Feshbach resonances in 6Li. The energy level scheme for the optical control of the mag-

netic Feshbach resonance is presented in Section 2.3.1. In Section 2.3.2, I will review the

continuum-dressed state model and outline the results of the model, which involves the

evaluation of the optically induced phase shift and the momentum-averaged two-body

loss rate constant K2. In Section 2.4, I will use the continuum-dressed model to evaluate

the tuning of the molecular bound state from the optically induced phase shift. I will con-

clude this chapter by presenting the predictions of the continuum-dressed state model

that illustrates the versatility of our two-field method in creating designer spatial control of

interactions in ultracold gases.

Figure 2.1 Ground (lower) and first excited (upper) states of 6Li in the total orbital angular mo-
mentum L, total electronic angular momentum J= L+S, and total angular momentum F= J+ I
bases, where I is the nuclear spin. Illustration taken from Ref [Geh03].
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2.1 Properties of 6Li

6Li has 3 protons, 3 neutrons, and 3 electrons. Since it has a single unpaired valence electron

and a nuclear spin of I = 1, 6Li is a fermion. The electronic ground state of 6Li has a total

electronic spin angular momentum of S = 1/2 and total electronic orbital momentum

of L = 0. The total angular momentum quantum number F depends on nuclear, orbital

and electron spins. Hence, the total angular momentum F takes the values, F = 1/2 and

F = 3/2. The ground and excited states of 6Li are schematically indicated Fig. 2.1. The effect

of the spin-orbit interaction is shown in the middle column. The effect of electron-nucleus

interaction is shown in the right column. In this section, I will focus only on the ground

state of the 6Li atom.

In the absence of an external magnetic field, the F = 1/2 state is two-fold degenerate

corresponding to m f =±1/2 and the F = 3/2 state is four-fold degenerate corresponding

to m f =±3/2,±1/2. The application of a bias magnetic field breaks this degeneracy and

gives rise to six hyperfine states, conventionally labeled as |1〉, |2〉, |3〉, |4〉, |5〉, and |6〉 in the

order of increasing energy.

The interaction Hamiltonian of this system is

Hi n t =
ah f

ħh 2 S · I −
µB

ħh
(g J S+ g I I) ·B, (2.1)

where ah f /h = 152.137 MHz is the magnetic dipole constant and g J = - 2.002 is the total

electronic g-factor for the 6Li ground state, g I = 0.000448 is the total nuclear g-factor, µB is

the Bohr magneton, and B is the external magnetic field. By solving the energy eigenvalue

problem of Eq. 2.1, the six energy eigenvalue of the hyperfine states are plotted in Fig. 2.2. To

get a thorough understanding of the electronic structure of 6Li, the readers are encouraged

to refer to older thesis [Geh03; Kin06; Ell14] from our group.

In our laboratory, most of the experiments are done using a 50-50 mixture of the two

lowest hyperfine states of 6Li, namely, states |1〉 and |2〉. In the |ms mI 〉 basis, where ms

is the electronic spin projection quantum number and mI is the nuclear spin projection

quantum number, the two lowest hyperfine states are,

|1〉 = sinΘ+ |1/2 0〉+ cosΘ+ | −1/2 1〉 (2.2)

|2〉 = sinΘ− |1/2 −1〉+ cosΘ− | −1/2 0〉. (2.3)
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Figure 2.2 The hyperfine energy eigenvalues of the 6Li ground state as a function of magnetic
field. At nonzero magnetic field, there are six energy levels. The six eigenstates are labeled in
order of increasing energy as |1〉, |2〉, |3〉, |4〉, |5〉, and |6〉. The total angular momentum quantum
number (F = 1/2 and F = 3/2) for each of the states at zero magnetic field is labeled on the left.
Illustration taken from Ref [Kin06]

The coefficients in Eq. 2.2 and Eq. 2.3 are magnetic field dependent and is given by,

sinΘ± =
1

p

1+ (Z ±+R±)2/2
(2.4)

cosΘ± =
Æ

1− sin2Θ± (2.5)

Z ± =
µB B

ah f
(g J − g I ) ±

1

2
(2.6)

R± =
p

(Z ±)2+2 (2.7)

From Eq. 2.4 and Eq. 2.5, it is evident that at high magnetic fields, sinΘ± → 0 and
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cosΘ±→ 1. Hence, the atoms are predominantly in the spin triplet state at high magnetic

fields.

2.2 Feshbach Resonances in 6Li

(a)

(b)

Figure 2.3 Magnetic Feshbach resonance arises due to the hyperfine coupling between the scat-
tering continuum |T , k 〉 (open channel) and the molecular bound state |g1〉. The open channel
|T , k 〉 is magnetically tunable. (a) At B = 0, the triplet continuum |T , k 〉 is higher in energy than
the molecular bound state |g1〉. (b) At B = Br e s , the triplet continuum |T , k 〉 is degenerate with the
molecular bound state |g1〉.

Fig. 2.3 illustrates the magnetic Feshbach resonance. The colliding atoms reside in the

energetically open channel. In the Fig. 2.3, the combined energy of the colliding particles

is represented by the magenta dotted line. The atoms have sufficient energy to interact

via the open triplet channel |T , k 〉 represented by the magenta curve, but do not have

sufficient energy to interact via the singlet potential represented by the blue curve. Hence the

blue curve is an energetically forbidden, closed collision channel. However, the scattering
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process in the open channel can be greatly enhanced when the incoming open channel

|T , k 〉 is magnetically tuned to be degenerate with the bound state |g1〉 of the closed channel.

This method of inducing a collisional resonance by tuning the magnetic field is called a

magnetic Feshbach resonance. In the case of 6Li, the open channel is the spin triplet state.

Also, the open channel is a scattering state with a continuum of states with momentum

k . Hence, the open channel is labeled as |T , k 〉. The resonant closed channel state is the

highest lying vibrational state |ν= 38〉 of the singlet potential and it is labeled as |g1〉.
Near a Feshbach resonance, the general form for the zero energy s-wave scattering

length as a function of magnetic field B is given by [Chi10]

a = ab g − |ab g |
∆B

B −Br e s
, (2.8)

where ab g is the background scattering length,∆B is the width of the resonance, Br e s is the

resonance magnetic field, and B is the magnetic field. Eq. 2.8, shows that when B = Br e s ,

the scattering length a diverges.
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Figure 2.4 Zero energy scattering length a as a function of magnetic field B in units of back-
ground scattering length ab g for (a) the broad Feshbach resonance at 832.2 G with width
∆B = 300 G and (b) the narrow Feshbach resonance at 543.2 G with width∆B = 0.1G . The
background scattering length ab g for the broad and narrow Feshbach resonance in 6Li is -1450 a0

and 62 a0, respectively.

The lowest two hyperfine states |1〉 and |2〉 in 6Li have a broad Feshbach resonance at

832.2 G [Z1̈3]with width∆B = 300 G [Bar05] and a narrow Feshbach resonance at 543.2

G with width ∆B = 0.1 G [Haz12]. The background scattering lengths ab g in Eq. 2.8 for
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the broad and narrow Feshbach resonances are −1450a0 and 62a0, respectively, where

a0 is the Bohr radius. Fig. 2.4a and Fig. 2.4b shows the plot of zero momentum (k = 0)

scattering length for broad and narrow Feshbach resonance as a function of the magnetic

field, respectively. Next I will introduce the triplet and singlet states responsible for the

broad and the narrow Feshbach resonance in 6Li.

2.2.1 Feshbach States in 6Li

For s-wave collisions of atoms in a |1〉− |2〉mixture, the total magnetic quantum number

M = 0 is conserved in a bias magnetic field Bz . In the |S , ms ; I , mI 〉 basis, there are five states

for M = 0. Here S is the total electronic spin quantum number and I is the total nuclear spin

quantum number of the two-atom system. There are two singlet states with total M = 0,

|0,0;0,0〉 and |0,0;2,0〉which differ in the total nuclear spin I = 0, 2. The singlet states are

degenerate in the absence of hyperfine interactions. There are also three triplet states with

total M = 0, |1,−1; 1, 1〉, |1, 0; 1, 0〉, and |1, 1; 1,−1〉.
The triplet state |1, 1; 1,−1〉 tunes upward with magnetic field (ms =+1) and the triplet

state |1, 0; 1, 0〉does not tune with the magnetic field (ms = 0). The only triplet state that tunes

downward with increasing magnetic field is |1,−1;1,1〉 (ms = −1). A magnetic Feshbach

resonance occurs when the bias magnetic field tunes the total energy of a colliding atom

pair in the open triplet channel downward into resonance with a bound molecular state in

the energetically closed singlet channel. Hence,

|T 〉= |1,−1; 1, 1〉 (2.9)

is the triplet state |T 〉 responsible for the Feshbach resonance in 6Li with the Zeeman-

hyperfine energy

ET =−
aH F

2
− 2µB B (2.10)

where aH F = h ×152.1 MHz is the hyperfine coupling constant, µB = 1.4 MHz/G is the Bohr

magnetron, and B is the magnetic field. The superposition of two singlet states,

|g n
1 〉=

1

3
|0, 0; 0, 0〉+

2
p

2

3
|0, 0; 2, 0〉 (2.11)

is responsible for the narrow Feshbach resonance at 543.2 G [WT12a; WT12b]. The state
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|g n
1 〉 does not have first order hyperfine coupling with the triplet state |1,−1; 1, 1〉 but has a

second order coupling to |1,−1; 1, 1〉 through the triplet state |1, 0; 1, 0〉. The broad Feshbach

resonance at 832.2 G is due to the singlet state |g b
1 〉 that is orthogonal to |g n

1 〉 and is given by

|g b
1 〉=

2
p

2

3
|0, 0; 0, 0〉−

1

3
|0, 0; 2, 0〉. (2.12)

The singlet-triplet hyperfine coupling for the broad Feshbach resonance is VH F /ħh = 131.6

MHz. For the narrow Feshbach resonance, the singlet-triplet states have a weak second-

order hyperfine coupling of only VH F /ħh = 5.9 MHz arising from the |1,0;1,0〉 triplet state.

With this section, I will conclude the treatment of magnetic Feshbach resonances and move

forward in describing the theory of optically controlling interactions in ultracold gases.

2.3 Theory of Optically Controlling Interactions near a Mag-

netic Feshbach Resonance (MFR)

I will begin this section by introducing the basic level scheme for two-field optical control

of interactions in 6Li. I will then proceed to describe the continuum-dressed state model

reported in Ref [Jag16a] and outline the relevant results such as the evaluation of the optically

induced phase shift and the momentum-averaged two-body loss rate constant K2.

2.3.1 Energy Level Scheme for Two-field Optical Control of MFR in 6Li

The energy level scheme for the two-field optical control of magnetic Feshbach resonance

is shown in Fig. 2.5 [Jag16a]. The unbound incoming atoms are in the triplet |T , k 〉 state of

the ground triplet potential 3Σ+u . In a magnetic field B , the triplet continuum |T , k 〉 tunes

downward and the tuning rate is proportional to 2µB B , where µB is the Bohr magneton,

µB/h ' h × 1.4 MHz/G. The hyperfine coupling VH F between |T , k 〉 and |g1〉 produces a

Feshbach resonance.

To optically control the magnetic Feshbach resonance, two optical fields are used. The

optical field with Rabi frequency Ω1 and frequency ν1 couples the ground vibrational state

|g1〉 of the singlet potential 1Σ+g to the excited vibrational state |e 〉 of the singlet potential
1Σ+u . A second optical field with Rabi frequencyΩ2 and frequencyν2 couples another ground

vibrational state |g2〉 of the same singlet potential 1Σ+g to the excited vibrational state |e 〉.
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Figure 2.5 Basic level scheme for controlling interactions in 6Li. Optical fields ν1 (with Rabi fre-
quency Ω1 and detuning∆1) and ν2 ( with Rabi frequency Ω2 and and detuning∆2) couple the
ground molecular states |g1〉 and |g2〉 to the excited molecular state |e 〉 of the singlet potential.
The atoms are predominantly in the triplet state |T , k 〉which has an hyperfine coupling VH F to
state |g1〉 causing the Feshbach resonance. The triplet state moves downward with increasing
magnetic field B. For the optical control experiments in 6Li, |g1〉 = |v = 38〉, |g2〉 = |v = 37〉, and |e 〉
= |v ′ = 64〉.

Application of ν1 beam creates a light shift of state |g1〉 due to AC stark effect. When

the shifted |g1〉 state is degenerate with the triplet continuum |T , k 〉, it leads to atom loss.

Atom loss occurs due to photoassociation of atoms from the triplet continuum |T , k 〉 to

the excited singlet state |e 〉 due to the hyperfine coupling of |T , k 〉 to state |g1〉. Note that in

the absence of a Feshbach resonance, an optical transition from the incoming spin triplet

state |T , k 〉 to the excited spin singlet vibrational state |e 〉 is strictly forbidden. Therefore,

far from the Feshbach resonance, there is no atom loss. The ν2 beam suppresses atom loss

through destructive quantum interference. For our experiments with 6Li, |g1〉 and |g2〉 are

the v = 38 and v = 37 ground vibrational states and |e 〉 is the v ′ = 64 excited vibrational

state, which decays at a rate γe = 2π×11.8 MHz.
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2.3.2 Continuum-dressed State Model for Two-field Optical Control of

MFR

The continuum-dressed state model is explained in detail in the previous thesis [Jag16b].

In this section, I will briefly summarize the relevant results of this model. Fig. 2.6a and

Fig. 2.6b shows the level scheme for bare state and continuum-dressed-state treatment of

the Feshbach problem, respectively.

(a) (b)

Figure 2.6 Energy level schemes in (a) “bare-state" and (b) “continuum-dressed-state" basis.
|T , k 〉 is a bare continuum state in the triplet (open) channel. |g1〉, |g2〉, and |e 〉 are the bare molec-
ular states in the singlet (closed) channel. The hyperfine interaction VH F between the bare
molecular state |g1〉 and the continuum states |T , k 〉, creates the dressed bound state |E 〉 and
the dressed scattering state |Ek 〉. Illustration taken from Ref [Jag16a]

In the bare state description Fig. 2.6a, the bare states |g1〉 and |T , k 〉 have a hyperfine

coupling VH F and the states |g1〉, |g2〉 are optically coupled to state |e 〉. In the continuum-

dressed state model, the hyperfine coupling between the states |g1〉 and |T , k 〉 is treated first.

This results in the dressing of the bound state |g1〉 by the triplet continuum |T , k 〉, leading

to two dressed states, the dressed bound state |E 〉 and the dressed-continuum state |Ek 〉
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which are superposition of the states |g1〉 and |T , k 〉. Both the dressed bound state |E 〉 and

the dressed-continuum state |Ek 〉 contain singlet |g1〉 contributions. Hence the optical field

with frequency ν1 couples the dressed-bound state |E 〉 and the dressed-continuum state

|Ek 〉 to the singlet excited state |e 〉, Fig. 2.6b.

I will begin by summarizing the derivation of the optically induced phase shift using the

continuum-dressed state model. The unperturbed Hamiltonian of the four-level system

without the optical beams in the continuum-dressed state basis can be written as,

H0 = E |E 〉〈E |+Eg2
|g2〉〈g2|+Ee |e 〉〈e |+

∑

a l l k ′

Ek ′ |Ek ′〉〈Ek ′ |, (2.13)

where |Ek ′〉 is an atom pair dressed continuum scattering state, |E 〉 is the dressed bound

state due to the coupling of the bare bound singlet Feshbach state |g1〉with the bare triplet

continuum scattering states |T , k ′〉, |g2〉 is a lower lying bound singlet state that has no

coupling to |T , k ′〉 , and |e 〉 is the singlet excited state.

The optical fields are treated as the perturbation. The interaction Hamiltonian in the

rotating wave approximation is

H ′
o p t =−

ħhΩ1

2
e −iω1t |e 〉〈g1| −

ħhΩ2

2
e −iω2t |e 〉〈g2| + h .c ., (2.14)

where Ω1 andω1 are the Rabi and angular frequencies of the optical field that couples |g1〉
to |e 〉, and Ω2 andω2 are the Rabi and angular frequencies of the optical field that couples

|g2〉 to |e 〉, respectively.

When H ′
o p t = 0, |Ek 〉 is the input scattering Feshbach resonance state. When H ′

o p t 6= 0,

the time-dependent scattering state is given by,

|ψEk
(t )〉= cE (t ) |E 〉+ c2(t ) |g2〉 + ce (t )|e 〉 + c (k , t ) |Ek 〉+

∑

k ′ 6=k

c (k ′, t ) |Ek ′〉, (2.15)

where c (k , t ) is the amplitude for the input Feshbach resonance scattering state |Ek 〉.
|ψEk

(t )〉 satisfies the time-dependent Schrödinger equation,

(Ho +H ′
o p t ) |ψEk

(t )〉= iħh ∂t |ψEk
(t )〉. (2.16)

Solving for the coefficients in Eq. 2.15, by taking the projections with |E 〉, |g2〉, |Ek ′〉, and |e 〉
on Eq. 2.16 gives,
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iħh ċE = 〈E | (Ho +H ′
o p t ) |ψEk

(t )〉= E cE + 〈E |H ′
o p t |ψEk

(t )〉,

iħh ċE = E cE −
ħh Ω∗1

2
e iω1t 〈E |g1〉 ce . (2.17)

iħh ċ2 = Eg2
c2−
ħh Ω∗2

2
e iω2t 〈E |g1〉 ce , (2.18)

iħh ċ (k ′) = Ek ′ c (k
′)−
ħh Ω∗1

2
e iω1t 〈Ek ′ |g1〉 ce , (2.19)

iħh ċe = Ee ce −
ħh Ω1

2
e −iω1t

�

〈g1|E 〉 cE +
∑

all k ′

〈g1|Ek ′〉c (k ′)

�

−
ħh Ω2

2
e −iω2t c2 − i

ħhγe

2
ce . (2.20)

In Eq. 2.20 to account for the radiative decay of the excited state to the ground vibrational

manifold, a decay term −γe ce /2 is added. To eliminate the time-dependent phase factors

from Eq. 2.17 to Eq. 2.20, taking the input state to be |Ek 〉 and for all k ′ yields,

c (k ′, t ) = b (k ′)e (−i Ek t /ħh )

ce = be e [−i (ω1+Ek /ħh )t ]

cE = bE e (−i Ek t /ħh )

c2 = b2 e [i (ω2−ω1−Ek /ħh )t ]. (2.21)

Substituting Eq. 2.21 in Eq. 2.17 - Eq. 2.20 gives,

iħh ḃ (k ′) = (Ek ′ −Ek )b (k
′)−
ħh Ω∗1

2
〈Ek ′ |g1〉be . (2.22)

iħh ḃe = (Ee −Ek −ħhω1)be − i
ħhγe

2
be −
ħh Ω2

2
b2

−
ħh Ω1

2

�

〈g1|E 〉bE +
∑

all k ′

〈g1|Ek ′〉b (k ′)

�

. (2.23)

iħh ḃE = (E −Ek )bE −
ħh Ω∗1

2
〈E |g1〉be (2.24)

iħh ḃ2 = [Eg2
−Ek −ħh (ω1−ω2)]b2−

ħh Ω∗2
2

be (2.25)
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Assuming that the Rabi frequencies are not large compared to the optical detunings

and the excited state decay rate is negligible, the excited state is adiabatically eliminated by

using ḃe = 0 in Eq. 2.23. Solving for be , bE , b2 in terms of input state amplitude b (k ) yields

be =
ħhΩ1

2

〈g1|Ek 〉|
D (E , Ek )

b (k ), (2.26)

bE =

�

�

�

�

ħhΩ1

2

�

�

�

�

2 〈E |g1〉〈g1|Ek 〉
(E −Ek )D (E , Ek )

b (k ), (2.27)

b (k ′ 6= k ) =

�

�

�

�

ħhΩ1

2

�

�

�

�

2 〈Ek ′ |g1〉〈g1|Ek 〉
(Ek ′ −Ek )D (E , Ek )

b (k ), (2.28)

ḃ (k ) =
iħh |Ω1|2

4

|〈g1|Ek 〉|2

D (E , Ek )
b (k ), (2.29)

where the energy denominator D (E , Ek ) is given by

D (E , Ek ) = Ee −Ek −ħhω1− iħh
γe

2
−
�

�

�

�

ħhΩ1

2

�

�

�

�

2
¨

|〈g1|E 〉|2

E −Ek
+
∑

k ′ 6=k

|〈g1|Ek ′〉|2

Ek ′ −Ek

«

−
�

�

�

�

ħhΩ2

2

�

�

�

�

2
1

Eg2
−Ek −ħh (ω1−ω2)

. (2.30)

Note that the energy denominator D (E , Ek ) has the overlap integral 〈g1|E 〉 of the bound

state |g1〉 with the dressed bound state |E 〉 and the overlap integral 〈g1|Ek 〉 of the bound

state |g1〉with the dressed continuum state |Ek 〉. Although D (E , Ek ) in Eq. 2.30 looks overly

complicated, it can be simplified by making the proper substitutions.

The first stage of simplifying D (E , Ek ) in Eq. 2.30 involves defining the appropriate

detunings and replacing the energy terms in D (E , Ek ) in terms of optical detunings. For the

level scheme shown in Fig. 2.6b, the single photon detuning∆e (k ) for the |T 〉−|e 〉 transition

is defined to be,

∆e (k )≡ω1−
Ee −Ek

ħh
, (2.31)
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and the two-photon detuning for the |g2〉− |T 〉− |e 〉 transition as

δ(k )≡ω2−ω1−
Ek −Eg2

ħh
, (2.32)

where the energy Ek and ET is given by

Ek = ET +
ħh 2k 2

m
and ET =−

aH F

2
−2µB B . (2.33)

Redefining Eq. 2.30 in terms of∆e (k ) and δ(k ) in Eq. 2.31 and Eq. 2.32 gives

D (E , Ek )
ħh

=−∆e (k )−
Ω2

2

4δ(k )
−
Ω2

1

4

ħh
2µB∆B

(ĨEk
− ĨE )− i

γe

2
, (2.34)

where the overlap integrals ĨE and ĨEk
is written as

ĨE ≡ 2µB∆B
|〈g1|E 〉|2

Ek −E
, (2.35)

ĨEk
≡ 2µB∆B

∑

k ′ 6=k

|〈g1|Ek ′〉|2

Ek ′ −Ek
. (2.36)

The second stage of simplifying the energy denominator involves the evaluation of the

term ĨEk
− ĨE using the complete form of the states |E 〉 and |Ek ′〉. However, this term has to

be evaluated separately for the broad and the narrow Feshbach resonance. For the broad

Feshbach resonance, this term yields [Jag16b]

SB (∆̃0, x )≡ ĨEk
− ĨE =

∆̃0+ (1+ ∆̃0)x 2

∆̃2
0+ (1+ ∆̃0)2 x 2

(2.37)

and for the narrow Feshbach resonance,

SN (∆̃0, x )≡ ĨEk
− ĨE =

1

∆̃0−εx 2
(2.38)

where, ∆̃0 = (B − Br e s )/∆B . Using Eq. 2.37 and Eq. 2.38 in Eq. 2.34, the final simplified

expressions of the energy denominator are obtained. For the broad Feshbach resonance,
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DB (E , Ek )
ħh

=−∆e (k )−
Ω2

2

4δ(k )
−
Ω2

1

4

ħh
2µB∆B

�

∆̃0+ (1+ ∆̃0)x 2

∆̃2
0+ (1+ ∆̃0)2 x 2

�

− i
γe

2
, (2.39)

and for the narrow Feshbach resonance,

DN (E , Ek )
ħh

=−∆e (k )−
Ω2

2

4δ(k )
−
Ω2

1

4

ħh
2µB∆B

�

1

∆̃0−εx 2

�

− i
γe

2
. (2.40)

For convenience, I will further define the single (Eq. 2.31)and two-photon (Eq. 2.32)

detunings in terms of laser detuning∆1 for the |g1〉− |e 〉 transition and laser detuning∆2

for the |g2〉− |e 〉 transition as

∆e (k ) =∆1−
2µB (B −Br e f )

ħh
+
ħhk 2

m
(2.41)

δ(k ) =∆2−∆1+
2µB (B −Br e f )

ħh
−
ħhk 2

m
(2.42)

where the laser detuning∆1 and∆2 are given by

∆1 ≡ω1−
Ee −Eg1

ħh
(2.43)

∆2 ≡ω2−
Ee −Eg2

ħh
(2.44)

2.3.3 Scattering State Wave Function

I will now proceed to evaluate the scattering state wave function from which the optically

induced phase shift can be determined. At r →∞, only the triplet part of the wave function

contributes to the scattering state i.e. for the bound states, 〈r |e 〉= 0 , 〈r |g2〉= 0, and 〈r |E 〉= 0

as r →∞. Taking the projection of |r 〉 on Eq. 2.15 and writing the state in terms of bk and

bk ′ ,
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〈r →∞|ΨEk
〉=ΨEk

(r →∞) = b (k ) 〈r →∞|Ek 〉+
∑

k ′ 6=k

b (k ′) 〈r →∞|Ek ′〉. (2.45)

The asymptotic form of the dressed continuum state wave function for box normaliza-

tion as r →∞ is given by,

〈r →∞|Ek ′〉 =
1
p

V

[sin[k ′r +∆(k ′)]]
k ′r

, (2.46)

where the factor 1/
p

V is needed for box normalization, and∆(k ′) is the phase shift induced

due to the Feshbach resonance.∆(k ′) is written as the sum of the resonant part of the phase

shift ∆̃(k ′) and the background part of the phase shift δb g (k ′).

∆(k ′) = ∆̃(k ′) +δb g (k
′). (2.47)

Substituting Eq. 2.28 and Eq. 2.46 in Eq. 2.45 yield,

ΨEk
(r →∞) =

b (k )

k r
p

V

�

sin[k r +∆(k )]

+
∑

k ′ 6=k

ħh 2|Ω2
1|

4

〈Ek ′ |g1〉 |〈g1|Ek 〉
(Ek ′ −Ek )D (E , Ek )

k

k ′
sin[k ′r +∆(k )]

�

. (2.48)

Evaluating the summation in the second term as the principal part of a complex integral

gives,

ΨEk
(r →∞) =

b (k )

k r
p

V

�

sin[k r +∆(k )]+
Ω2

1

4

2π2mk |〈g1|Ẽk 〉|2

D (E , Ek )
cos[k r +∆(k )]

�

, (2.49)

where D (E , Ek ) for the broad and the narrow Feshbach resonance is given in Eq. 2.39 and

Eq. 2.40, respectively.

2.3.4 Evaluation of the Optically Induced Phase Shiftφ

From the scattering state wave function, I now evaluate the optically induced phase shift. To

satisfy the condition for box-normalization of the input state, the output triplet scattering
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state, Eq. 2.49, must have the form

ΨEk
(r →∞) =

1
p

V

[sin(k r +∆(k ) +φ(k )]
k r

, (2.50)

where∆(k ) is phase shift induced by the magnetic Feshbach resonance,φ(k ) is the light-

induced phase shift, and the total phase shift δ(k )≡∆(k ) +φ(k ).
Expanding Eq. 2.50,

ΨEk
(r →∞) =

1
p

V k r
[sin(k r +∆(k ))cos(φ(k ))+ cos(k r +∆(k ))sin(φ(k ))]

(2.51)

Comparing Eq. 2.51 with Eq. 2.49,

k cot[φ(k )] =
D (E , Ek )

Ω2
1

4 2π2m |〈g1|Ẽk 〉|2
(2.52)

Using x = k |ab g | in the above equation purely for the purpose of convenience in evaluating

the momentum integrals later gives,

x cot[φ(k )] =
D (E , Ek )|ab g |

Ω2
1

4 2π2m |〈g1|Ẽk 〉|2
(2.53)

Here

|〈g1|Ẽk 〉|2 =
ε|ab g |3

2π2

1

[∆̃0−ε x 2]2+ x 2 [1+ ∆̃0−ε x 2]2
, (2.54)

=
ε|ab g |3

2π2
L (∆̃0, x ),
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where

L (∆̃0, x ) =
1

[∆̃0−ε x 2]2+ x 2 [1+ ∆̃0−ε x 2]2
. (2.55)

∆̃0 =
B −B∞
∆B

,

ε =
Eb g

2µB∆B
,

Eb g =
ħh 2

ma 2
b g

. (2.56)

Substituting Eq. 2.39 and Eq. 2.54 in Eq. 2.53, the optically induced phase shiftφB (x ) for

the broad Feshbach resonance is

x cot[φB (x )] = −
∆̃e (x ) +

Ω̃2
2

4 δ̃(x )
+ Ω̃

2
1

4
ħhγe

2µB ∆B

�

∆̃0+(1+∆̃0)x 2

∆̃2
0+(1+∆̃0)2 x 2

�

+ i
2

Ω̃2
1

4
ħhγe

2µB∆B L (∆̃0, x )
, (2.57)

and substituting Eq. 2.40 and Eq. 2.54 in Eq. 2.53, the optically induced phase shiftφN (x )

for the narrow Feshbach resonance is

x cot[φN (x )] = −
∆̃e (x ) +

Ω̃2
2

4 δ̃(x )
+ Ω̃

2
1

4
ħhγe

2µB ∆B

�

1
∆̃0−εx 2

�

+ i
2

Ω̃2
1

4
ħhγe

2µB∆B L (∆̃0, x )
. (2.58)

In Eq. 2.57 and Eq. 2.58, the dimensionless frequencies are defined as

δ̃(x ) =
δ(x )
γe

; ∆̃e (x ) =
∆e (x )
γe

; Ω̃2 =
Ω2

γe
; Ω̃1 =

Ω1

γe
.

Eq. 2.57 and Eq. 2.58 gives the optically induced change in the scattering phase shifts for

broad and narrow Feshbach resonance in terms of experimental parameters. Using Eq. 2.57

and Eq. 2.58, the optically controlled two-body loss rates and the zero-energy scattering

lengths can be calculated.

2.3.5 Evaluation of the Total Phase Shift δ

The next step is to evaluate the total phase shift δ. The total phase shift δ is the sum of the

Feshbach resonance phase shift∆without the optical fields and the light induced phase
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shiftφ,

δ(k )≡∆(k ) +φ(k ). (2.59)

From Eq. 2.59 and cotδ= cosδ
sinδ ,

k cotδ=
k cot∆k cotφ−k 2

k cot∆+k cotφ
(2.60)

Using x = k |ab g | in the above equation,

x cotδ=
x cot∆ x cotφ− x 2

x cot∆+ x cotφ
, (2.61)

where the phase shift ∆ induced by the magnetic Feshbach resonance can be written

as [Jag16b]

x cot∆=
∆̃0−εx 2

1+ ∆̃0−εx 2
. (2.62)

The phase shiftφ is given by Eq. 2.57 or Eq. 2.58.

2.3.6 Two-body Loss Rate Constant K2 and Scattering Length a

In two-body scattering, the relative momentum-dependent two-body scattering amplitude

is given by

f (k ) =
1

2i k
(e 2iδ−1) =

1

k cotδ(k )− i k
. (2.63)

where δ(k ) is the total phase shift evaluated in Eq. 2.61. In this section, I will evaluate

the two-body scattering length and the loss rate constant from the two-body scattering

amplitude f (k ).

In a scattering problem between two particles with density na and nb , the optically

induced loss is defined by the two-body loss rate constant K2,

ṅa =− (K2nb )na (2.64)
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The two-body loss rate K2 can be expressed as

K2(k ) = vr e l σi ne l a s t i c =
ħhk

µ
σi ne l a s t i c , (2.65)

where vr e l is the relative velocity between the two particles, µ is the reduced mass, and

σi ne l a s t i c is the inelastic cross section.

In order to determine K2 in Eq. 2.65, the inelastic cross-section σi ne l a s t i c has to be

evaluated. I will now proceed to evaluate the inelastic cross-section σi ne l a s t i c using the

elasticσe l a s t i c cross-section and the totalσt o t a l cross-section. The elastic cross section

σe l a s t i c is given by,

σe l a s t i c = 4π| f (k )|2. (2.66)

From the optical theorem, the total cross sectionσt o t is given by

σt o t a l =
4π

k
I m ( f (k )). (2.67)

Using Eq. 2.66 and Eq. 2.67, rewriting the inelastic cross section

σi ne l a s t i c = σt o t a l −σe l a s t i c

σi ne l a s t i c =
4π

k
I m ( f (k ))−4π| f (k )|2. (2.68)

It is convenient to define

k cotδ(k )≡ q ′(k ) + i q ′′(k ) (2.69)

and evaluating q ′(k ) and q ′′(k ) from Eq. 2.61. Substituting Eq. 2.69 in Eq. 2.63,

f (k ) =
1

q ′(k )− i [k −q ′′(k )]
. (2.70)

Using Eq. 2.70 in Eq. 2.71 yields

σi ne l a s t i c =−
4π

k

q ′′(k )
[q ′(k )]2+ [x −q ′′(k )]2

. (2.71)
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Substituting Eq. 2.71 in Eq. 2.65 with µ=m/2, gives

K2(k ) = −
8πħh

m

q ′′(k )
[q ′(k )]2+ [k −q ′′(k )]2

. (2.72)

Eq. 2.72 is the momentum-dependent two-body loss rate constant K2. The relative mo-

mentum averaged two-body loss rate constant is determined by assuming a Boltzmann

distribution for relative momentum between atoms. Therefore, the relative momentum

averaged two-body loss rate constant K2 is given by

K2(k ) =

∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 K2(k ) (2.73)

where (ħhk0)2 = 2µkB T =mkB T .

The momentum-dependent two-body scattering length is the negative of the real part

of the scattering amplitude given in Eq. 2.63.

a (k ) =−R e ( f (k )) (2.74)

Using Eq. 2.70, the real part of the scattering amplitude is written as

Re[ f (k )] =
q ′(k )

[q ′(k )]2+ [q ′′(k )−k ]2
. (2.75)

Substituting, Eq. 2.75 in Eq. 2.74 yields,

a (k ) =−
q ′(k )

[q ′(k )]2+ [q ′′(k )−k ]2
(2.76)

Eq. 2.76 gives the relative momentum-dependent scattering length in terms of the real and

imaginary part of k cotδ(k ) for the total phase shiftδ(k ). Assuming a Boltzmann distribution

for relative momentum of atoms, the momentum-averaged two-body scattering length

a (k ) is then

a (k ) =

∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 a (k ), (2.77)

where (ħhk0)2 = 2µkB T =mkB T .
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Using the effective range expansion, the optical and magnetic parts of the scattering

length can be extracted from the optically induced phase shift in Eq. 2.58 and the magneti-

cally induced phase shift in Eq. 2.62. Writing the effective range expansion for the optically

induced phase shift gives,

x cotφ(x ) =−
1

ao p t
+

k 2 ro p t

2
(2.78)

where ao p t is the optical part of the scattering length and ro p t is the optical part of the

effective range. Comparing Eq. 2.78 with Eq. 2.52 yields

ao p t = |ab g |
Ω2

1
4 2π2m |〈g1|Ẽk 〉|2

D (E , Ek )
. (2.79)

Similarly, writing the effective range expansion for the phase shift induced by the magnetic

Feshbach resonance in Eq. 2.58 and extracting the scattering length aF for the magnetic

Feshbach resonance gives the expected result,

aF = ab g

1+ ∆̃0

∆̃0

= ab g

�

1−
∆B

B −Br e s

�

. (2.80)

2.4 Optical Tuning of Ground State |g1〉

In the last section, the continuum-dressed model was used to calculate the optically induced

phase shift in the scattering wave function of the atoms near a magnetic Feshbach resonance

and in the presence of optical fields. One of the main advantages of this model is that it

allows us to determine the rate at which the ground state |g1〉 tunes as a function of the

optical control parameters such as the Rabi frequency and the frequency of the optical

beams. The tuning rate of |g1〉 can be extracted from the energy denominator derived in

Eq. 2.39 and Eq. 2.40 for the case of broad and narrow Feshbach resonances, respectively.

Since all the experiments reported in this thesis involved working near the narrow Feshbach

resonance, I will predict the tuning of ground state |g1〉near the narrow Feshbach resonance.

Alternatively, the energy of state |g1〉 in a simple three-level Λ EIT system can be de-

termined by solving the dressed state problem in the atom-field basis. In this section, I

will demonstrate that the tuning rate determined by finding the eigenvalues of the energy

denominator predicted by the continuum-dressed state model yields the same result as

solving a three-level Λ EIT system using the dressed state treatment. I will further demon-
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strate a exceptional control over the energy of the bound state |g1〉 by illustrating the tuning

of |g1〉 for various optical parameters. I will begin this section by finding the real part of the

energy denominator for the zero momentum case k = 0.

2.4.1 Tuning Rate of |g1〉: Continuum-dressed State Model

For the zero-momentum k = 0 case, the energy denominator evaluated for the broad

resonance in Eq. 2.39 and the narrow resonance in Eq. 2.40 yield the same result. The real

part of Eq. 2.39 and Eq. 2.40 for k = 0 both yield,

D (E , Ek )
ħh

=−∆e −
Ω2

2

4δ
−
Ω2

1

4

ħh
2µB∆B

�

1

∆̃0

�

. (2.81)

Substituting ∆̃0 = (B −Br e s )/∆B =∆0/∆B in Eq. 2.81 gives,

D (E , Ek )
ħh

=−∆e −
Ω2

2

4δ
−
Ω2

1

4

ħh
2µB∆0

. (2.82)

Rewriting the single-photon detuning∆e and the two-photon detuning δ in terms of the

laser detunings∆1,∆2 in Eq. 2.43 and Eq. 2.44, and magnetic field detuning∆0 yield,

D (E , Ek )
ħh

=− (∆1−∆0)−
Ω2

2

4 (∆2−∆1+∆0)
−
Ω2

1

4

ħh
2µB∆0

. (2.83)

Rewriting Eq. 2.83 and equating to zero yields,

∆0

�

(∆1−∆0)(∆2−∆1+∆0) +
Ω2

2

4

�

−
Ω2

1

4

ħh
2µB

(∆2−∆1+∆0) = 0. (2.84)

Next I will determine the tuning rate of state |g1〉with energy Eg1
. The energy of the triplet

state ET tunable with respect to Eg1
can be defined in terms of the magnetic detuning∆0 as

ħh∆≡ ET −Eg1
=−ħh∆0 (2.85)

Replacing∆0 with −∆ in Eq. 2.84 yields,

−∆
�

(∆1+∆)(∆2−∆1−∆) +
Ω2

2

4

�

−
Ω2

1

4

ħh
2µB

(∆2−∆1−∆) = 0. (2.86)
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The tuning rate of all three dressed states can be evaluated by solving Eq. 2.86 for∆. In the

next section, I will demonstrate that solving for the eigenenergies of a Three-level Λ EIT

system yield the same result.

2.4.2 Tuning Rate of |g1〉: Dressed State Treatment of a Three-levelΛEIT

system

Figure 2.7 Three-level Λ EIT system. Optical fieldsω1 (with Rabi frequency Ω1) andω2 ( with Rabi
frequency Ω2) couple the ground molecular states |g1〉 and |g2〉 to the excited molecular state |e 〉
of the singlet potential.

In the atom-field basis, the eigenstates are represented by also including the photon

number n1 and n2 in the ν1 and ν2 optical beams, respectively. Hence, the states |g1〉, |g2〉,
and |e 〉 are replaced by atom-field product states.

For the two-photon transition illustrated in Fig. 2.7, n1 photons in state |g1〉 and n2

photons in state |g2〉 are present initially. The initial state is |n1, n2, g1〉. The two-photon

process can be summarized in two-steps,

i) The |g1〉− |e 〉 transition resulting in the loss of one photon in the ν1 beam. Therefore,

|n1, n2, g1〉 → |n1−1, n2, e 〉. (2.87)

ii) The |g2〉 − |e 〉 transition results in the gain of one photon in the ν2 beam from the ν1
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beam. Therefore,

|n1−1, n2, e 〉 → |n1−1, n2+1, g2〉. (2.88)

The Hamiltonian of the system with no interactions is,

~H0 = n̂1ħhω1+ n̂2ħhω2+ |e 〉〈e |Ee + |g1〉〈g1|Eg1
+ |g2〉〈g2|Eg2

(2.89)

where Eg1
, Eg2

, and Ee are the energy of the states |g1〉, |g2〉, and |e 〉, respectively. The interac-

tion Hamiltonian Hi n t in the presence of optical fields in the rotating-wave approximation

is written as,

~H ′
i n t =−

1

2
µe g1

�

|e 〉〈g1|a1+ |g1〉〈e |a+1
�

ε10 −
1

2
µe g2

�

|e 〉〈g2|a2+ |g2〉〈e |a+2
�

ε20 (2.90)

where µe g1
and µe g2

are the dipole moment operators, a and a+ are the annihilation and

creation operators, and ε10 and ε20 are the single photon fields. From the properties of

creation and annihilation operators, we know

〈n1−1|a1|n1〉=
p

n1 ≈
p

n̄1 (2.91)

〈n1|a+1 |n1−1〉=pn1 ≈
p

n̄1 (2.92)

where I assume a coherent state ∆n1
n̄1
= 1p

n̄1
<< 1. Using Eq. 2.91 and Eq. 2.92 and from the

definition of Rabi frequency,

− µe g1
ε10 ≈

ħhΩ1
p

n̄1

(2.93)

− µe g2
ε20 ≈

ħhΩ2
p

n̄2

(2.94)

where Ω1 and Ω2 are the Rabi frequencies for the |g1〉− |e 〉 and |g2〉− |e 〉 transitions, respec-

tively.

Using Eq. 2.93 and Eq. 2.94 in Eq. 2.90 yields,

~H ′
i n t ≈

ħh Ω1

2
p

n̄1

�

|e 〉〈g1|a1+ |g1〉〈e |a+1
�

+
ħh Ω2

2
p

n̄2

�

|e 〉〈g2|a2+ |g2〉〈e |a+2
�

(2.95)

I now proceed to rewrite the energies of the states |n1 − 1, n2+ 1, g2〉 and |n1 − 1, n2, e 〉 by
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defining the energy E 0
1 of state |n1, n2, g1〉 as zero. Therefore, For |n1, n2, g1〉,

E 0
1 ≡ 0 ≡ n1ħhω1+n2ħhω2+ħhωg1

. (2.96)

For state |n1−1, n2, e 〉,
E 0

2 =−ħhω1+ħh (ωe −ωg1
)≡−ħh∆1, (2.97)

where

∆1 ≡ω1−ωe g1
, (2.98)

is the single photon detuning. For state |n1−1, n2+1, g2〉,

E3 =−ħhω1+ ħhω2+ħh (ωg2
−ωg1

) (2.99)

Adding and subtractingωe in Eq. 2.99 yields,

E3 = ħh
�

ω2−ω1+ωe +ωg2
−ωe −ωg1

�

(2.100)

Rewriting the above equation gives,

E3 = ħh
��

ω2− (ωe −ωg2
)
�

−
�

ω1− (ωe −ωg1

��

(2.101)

Defining the single-photon detunings∆1 for the the |g1〉− |e 〉 transition and∆2 for the the

|g2〉− |e 〉 transition as

∆2 ≡ω2− (ωe −ωg2
) (2.102)

∆1 ≡ω1− (ωe −ωg1
) (2.103)

Then E3 is rewritten in terms of optical detunings,

E3 ≡ ħh [∆2−∆1] (2.104)

The two-photon detuning is defined as

δ21 =∆1−∆2 (2.105)

where δ21 = 0 defines the optical field arrangement when the frequency difference be-

tween the ν1 and ν2 beam is equal to the energy difference between the |g1〉 and |g2〉 states.
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Rewriting Eq. 2.104 in terms of the two-photon detuning in Eq. 2.105 yields

E3 ≡−ħhδ21 (2.106)

Using equation Eq. 2.96, Eq. 2.97, and Eq. 2.106, the Hamiltonian of the system in the

matrix form is written as

H = ħh







0 Ω1/2 0

Ω1/2 −∆1 Ω2/2

0 Ω2/2 ∆2−∆1






(2.107)

In order to solve for the eigenvalues of the Hamiltonian in Eq. 2.107, the Schrödinger

equation is written as

H







α

β

γ






= ħhε







α

β

γ






(2.108)

where ε is the energy eigenvalue and α, β , γ are the eigenvectors. Solving Eq. 2.108 for the

eigenvalue gives,

det

�

�

�

�

�

�

�

−ε Ω1/2 0

Ω1/2 −∆1−ε Ω2/2

0 Ω2/2 ∆2−∆1−ε

�

�

�

�

�

�

�

= 0 (2.109)

Solving the determinant in Eq. 2.109 yields,

ε

�

�

∆1+ε
� �

∆2−∆1−ε
�

+
Ω2

2

4

�

+
Ω2

2

4

�

∆2−∆1−ε
�

= 0. (2.110)

As expected, Eq. 2.110 is a cubic equation in ε and gives three solutions which represent the

eigenvalue of the three dressed states in our Λ EIT system. Eq. 2.110 is the same equation

as Eq. 2.86 with∆ replaced by ε, thereby illustrating that both the dressed state treatment

of a simple Λ EIT system and the energy denominator derived from the optically controlled

scattering state in the continuum-dressed state model yield the same results for the tuning

rate of |g1〉.
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Figure 2.8 Eigenvalues of the energy denominator as a function of frequency ν2. Here B = 0 refers
to the magnetic field at which the narrow Feshbach resonance occurs and ν2 ≡ 0 represents the
two-photon detuning δ= 0. The Rabi frequencies Ω1 = 0.5 γe , Ω2 = 2.0 γe and the detuning∆1 =
18.85 MHz.
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Figure 2.9 (a) Tuning of the ground state |g1〉 as a function of the frequency ν2. (b) Theoretical
prediction (red dots) of the ground state position is fitted to a line y = m x + c (blue line) to
calculate the tuning rate. Here B = 0 refers to the magnetic field at which the narrow Feshbach
resonance occurs and ν2 ≡ 0 represents the two-photon detuning δ= 0. The Rabi frequencies and
the detuning are Ω1 = 0.5 γe , Ω2 = 2.0 γe and∆1 = 18.85 MHz.
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2.4.3 Tuning Rate of |g1〉: Predictions of the Continuum-dressed State

Model

In this section, I will use the continuum-dressed state model to illustrate the tuning of the

state |g1〉 for different optical parameters. Optical control of interactions near a magnetic

Feshbach resonance is achieved by tuning the ground state |g1〉 using optical fields and

making the ground state |g1〉 degenerate with the triplet continuum |T , k 〉 in the bare basis

picture. In our optical technique, the presence of both the optical beams contributes to the

tuning the ground state |g1〉.
The tuning of state |g1〉 is determined by solving Eq. 2.84 for∆0, yielding three solutions.

Each of these solutions is dependent on the magnetic field B and the frequency ν2 of the

EIT beam. Since all the experiments reported in this thesis involves the tuning of |g1〉 by

varying ν2, all plots shown in this section are generated with ν2 as the tuning parameter.

Fig. 2.8 shows the the three solutions as a function of frequency ν2. The y-axis represents

the position of the three states with respect to the narrow Feshbach resonance. Here B = 0

refers to the magnetic field at which the narrow Feshbach resonance occurs. The optical

parameters used to generate this plot are Rabi frequencies Ω1 = 0.5 γe , Ω2 = 2.0 γe and the

detuning∆1 = 18.85 MHz. Here ν2 ≡ 0 represents the two-photon detuning δ= 0.

Of the three states shown in Fig. 2.8, the state that has maximum |g1〉 contribution is

shown in red. It is the only relevant state since the experiments are done very close to the

narrow Feshbach resonance. Fig. 2.9a shows the expanded view of the red curve to illustrate

the tuning of the ground state |g1〉 as a function of the frequency ν2. To determine the

tuning rate of the ground state |g1〉 near the two-photon detuning, the red curve is fit to a

line, y =m x + c (blue line) and shown in Fig. 2.9b. For the optical parameters used, the

tuning rate is calculated to be 21.7 mG/MHz.

2.4.4 Tuning of Ground State |g1〉 for Different Rabi Frequencies Ω2

In this section, I will illustrate the tuning of the ground state |g1〉 for different Rabi fre-

quencies Ω2. Fig. 2.10a shows the position of ground state |g1〉with respect to the narrow

Feshbach resonance at 543.27 G as a function of the frequency ν2 for different Rabi frequen-

cies Ω2. The optical parameters used to generate the plots are Rabi frequency Ω1 = 1 γe and

the detuning∆1 = 18.85 MHz. Since the Rabi frequency Ω1 is held constant, away from the

two-photon resonance (ν2 = -100 MHz), the ground state |g1〉 is at the same position for
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Figure 2.10 (a) Ground state |g1〉 tuning versus frequency ν2 for a fixed Ω1 = 0.5γe and Ω2 = 1 γe

(blue), Ω2 = 2 γe (magenta), Ω2 = 3 γe (green);∆1 = 18.85 MHz. (b) Expanded plot of Fig. 2.10a.
Here B = 0 refers to the magnetic field at which the narrow Feshbach resonance occurs and ν2 ≡ 0
represents the two-photon detuning δ= 0.

all three Ω2 values. As the frequency ν2 is changed, the tuning rate of the ground state |g1〉
varies for different values of Ω2. This is due to the fact that the ratio of Ω1/Ω2 is different for

a fixed Ω1. But at the two-photon resonance ν2 = 0, the ground state |g1〉 goes back to its

original position (543.27 G) for all values of Ω2. This is illustrated clearly in the Fig. 2.10b,

which is the expanded view of Fig. 2.10a.

2.4.5 Tuning of Ground State |g1〉 for Different Rabi Frequencies Ω1

Fig. 2.11a shows |g1〉 state tuning for different Rabi frequencies Ω1 as a function of the

frequency ν2. Here B= 0 G represents the narrow Feshbach resonance at 543.27 G. The Rabi
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Figure 2.11 (a) Ground state |g1〉 tuning versus frequency ν2 for a fixed Ω2 and Ω1 = 0.5 γe (blue),
Ω1 = 1 γe (magenta), Ω1 = 1.5 γe (green). Here Ω2 = 2 γe and∆1 = 18.85 MHz. (b) Expanded plot
of Fig. 2.11a. Here B = 0 refers to the magnetic field at which the narrow Feshbach resonance
occurs and ν2 ≡ 0 represents the two-photon detuning δ= 0.

frequency Ω2 = 2 γe and the detuning∆1 = 18.85 MHz are used to compute the plot. The ν1

optical beam shifts the ground state |g1〉 and this shift is dependent on the Rabi frequency

Ω1. Hence the ground state |g1〉 is at different initial positions (near ν2 = - 100 MHz) for

different Ω1. But at two-photon resonance, ν2 = 0, the ground state goes back to its original

position for all values of Ω1 and is shown in Fig. 2.11b.
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Figure 2.12 (a) Ground state |g1〉 tuning versus frequency ν2 for a fixed Ω1/Ω2 ratio with Ω1 =
0.5 γe , Ω2 = 2 γe (blue), Ω1 = 1 γe , Ω2 = 4 γe (magenta), Ω1 = 2 γe , Ω2 = 8 γe (green);∆1 = 18.85
MHz. (b) Expanded plot of Fig. 2.12a. Here B = 0 refers to the magnetic field at which the narrow
Feshbach resonance occurs and ν2 ≡ 0 represents the two-photon detuning δ= 0.

2.4.6 Tuning of Ground State |g1〉 for Different Ratio of Rabi Frequencies

Ω1 / Ω2

Fig. 2.12a displays the plot of ground state tuning as a function of the frequency ν2. To

generate this plot, both Ω1 and Ω2 is varied, but the ratio of Rabi frequencies Ω1 and Ω2 is

held constant. The detuning∆1 = 18.87 MHz is used to produce this plot. Fig. 2.12b is an

enlarged representation of Fig. 2.12a.

Near the two-photon resonance, the tuning rate of the ground state is same for all

combination of Ω1 and Ω2. This is further examined by fitting the slope of all three curves

to a line, y =m x + c (yellow line) and is shown in Fig. 2.13. For the optical parameters

employed, a tuning rate of 21.7 mG/MHz is obtained for all three curves.
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Figure 2.13 Theoretical prediction (dots) of the ground state position is fitted to a line y =m x + c
(yellow line) to calculate the tuning rate for (a) Ω1 = 0.5 γe , Ω2 = 2 γe (blue), (b) Ω1 = 1 γe , Ω2 = 4
γe (magenta), (c) Ω1 = 2 γe , Ω2 = 8 γe (green). Here B = 0 refers to the magnetic field at which the
narrow Feshbach resonance occurs and ν2 ≡ 0 represents the two-photon detuning δ = 0. The
detuning∆1 = 18.85 MHz.
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CHAPTER

3

EXPERIMENTAL METHODS

In this chapter, I will discuss the experimental setup used to create an ultracold gas of 6Li

atoms and the optical system used to control two-atom interactions. The process of creating

an ultracold gas has been well documented in the previous thesis from our group [O’H00;

Geh03; Kin06] and has gone through minor modifications recently [Ell14]. Hence in this

chapter, the cooling and trapping techniques will only be discussed briefly in Section 3.1.

The main focus of this chapter will be on the newly developed optical system used to con-

trol the interactions in ultracold atoms by electromagnetically induced transparency (EIT).

The optical system involves three diode lasers, a reference laser that acts as a frequency

reference and two lasers that generate the probe and pump beam for the EIT experiments.

All three lasers are frequency stabilized using a variety of frequency stabilizing techniques,

which will be discussed in Section 3.2. The measurement and calibration of the frequencies

ν1, ν2 and the Rabi frequencies Ω1, Ω2 of the optical beams will be described in Section 3.3.

A stable magnetic field is critical in order to optically control interactions near the narrow

Feshbach resonance (width ∆B = 0.1 G) of 6Li. In Section 3.5, I will discuss the path to

achieving magnetic field stabilization to better than 10 mG. The primary trapping poten-
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tial for our ultracold gas is provided by a far-off resonant CO2 beam. Therefore, physical

parameters of our ultracold gas such as the temperature and density can only be measured

by a thorough characterization of the optical trap. This involves measuring the oscillation

frequencies of weakly interacting atoms in the trap through a process called parametric

resonance, which will be discussed in the final section of this chapter.

3.1 Preparation of Cold Atom Samples

In this section, I will describe the experimental methods used to create an ultracold gas of
6Li atoms. Cooling and trapping of atoms is achieved in several stages by making use of a

magneto-optical trap (MOT) and a far-off resonance trap (FORT). Both of these traps are

discussed briefly in this section and a detailed description can be found here [Kin06].

3.1.1 Magneto-Optical Trap (MOT)

Figure 3.1 Magneto-optical trap (MOT). Six optical beams in three directions (two counter-
propagating beams for each direction ) and magnetic fields trap the atoms at its center, cooling
the atoms to a temperature of approximately 140 µK.

A magneto-optical trap (MOT) works on the principle of optical molasses. A red detuned
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optical beam is shined on the atoms in a direction opposite to the direction in which the

atom is traveling. When an atom absorbs a photon moving towards it, the momentum

of the photon is transferred to the atoms. This results in a momentum kick for the atom

in a direction opposite to its initial motion. When the atom re-emits the photon through

spontaneous emission, the momentum kick for the atom is in a random direction. After

multiple absorptions and emission cycles, the atom gets a net momentum kick opposite to

its initial direction of motion thereby slowing the atom.

A pair of counter-propagating beams will, therefore, slow the atom in one dimension.

Hence by using six counter-propagating beams, two for each direction, atoms can be

trapped in all three dimensions. In our lab, a dye laser resonant with the D2 transition of
6Li is used to generate the “red" MOT beams in order to initially trap the atoms in all three

directions. As the atoms slow down in velocity space, they slowly random walk due to lack

of spatial confinement. This random walk can be eliminated by using inhomogeneous

magnetic fields to generate a spatially dependent Zeeman shift of the hyperfine levels. This

ensures that the atoms experience a restoring force back to the center of the trap.

At the end of this cooling phase, we have typically three million atoms at approximately

140 µk. The next phase of cooling involves a far-off resonance trap, where temperatures as

low as 10 nK are achieved.

3.1.2 Far Off Resonance Trap (FORT)

In this stage of cooling, a CO2 laser at 10.6 µm is used to create a far-off resonance trap.

Since the frequency of the CO2 laser is far away from the D2 line of lithium transition, it

creates an optical dipole force on the atoms. The optical dipole force is proportional to

the intensity of the CO2 laser. The CO2 beam is focused to a beam size of 60 µm to achieve

an intensity of 2×106 W/cm2. After initially cooling the atoms using MOT, the atoms are

loaded into the FORT. The atoms are attracted to the high intensity region and confined to

the shape of CO2 potential, with stronger confinement in the radial direction and weaker

confinement in the axial direction.

Once the atoms are loaded into the FORT, further cooling is achieved using a two-stage

evaporative process, namely, free evaporation and forced evaporation. In the free evapora-

tion cooling stage, a high bias magnetic field is applied, so that the collisional rate of the

atoms increases drastically and wait for approximately 10 s. As the atoms collide with each

other, the hotter atoms remove energy from the colder atoms and escape from the optical
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Figure 3.2 Schematic for trapping and imaging cold atoms. The CO2 laser beam is focused to a
beam size of 60 µm and traps the atoms at its focus. The high field coils generate magnetic fields
to tune the interactions between cold atoms. The imaging beam path for the high resolution
imaging setup is also shown.

trap, thereby leaving behind the colder atoms. The efficiency of the free evaporation de-

pends on the rate of collisions. Therefore, a magnetic field where the scattering cross-section

of the atom is maximum is chosen. For experiments near the broad Feshbach resonance

(Br e s = 832.2 G) in 6Li, the resonance magnetic field of the broad Feshbach resonance at

832.2 G is used. For experiments near the narrow Feshbach resonance (Br e s = 543.28 G), the

atoms are cooled at 300 G where the background scattering length is about 300 a0, where

a0 is the Bohr radius. Cooling at the resonance magnetic field of the narrow Feshbach

resonance is avoided due to excessive atom loss because of three-body collisions [Haz12].

This process is allowed to take place for 5 sec and results in 4.5 to 5 ×105 atoms per spin

state at 150 µk.

The next stage in evaporative cooling is the forced evaporation stage, where the trap
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depth is reduced adiabatically by changing the intensity of the CO2 beam at the same high

bias magnetic field. Since the collisional rate of the atoms is maximum at the high bias

magnetic field, the hotter atom escapes when the trap depth is reduced leading to the

coldest atoms remaining in the trap. The final temperature of the atoms depends on the

lowering time and the lowest value of the CO2 laser beam intensity. Our system is capable of

achieving around 100,000 atoms per spin state at 0.1 µk. The optical trap is then reraised to

the final trap depth based on the atom density required of our experiments. This completes

the cooling and trapping stages of our experiment and we are left with an ultracold gas of
6Li atoms that can be studied extensively.

Following the preparation of an ultracold gas, experiments are performed to optically

control the two-body interactions of the atoms. The final stage of the experimental cycle

involves imaging the atomic cloud through absorption imaging.

3.1.3 Imaging the Atomic Cloud

Fig. 3.2 shows the imaging setup including the paths of CO2 and imaging beams used in

our lab. The imaging beam is much larger (2.54 cm) than the size of the atomic cloud (200

µm).In absorption imaging, atoms absorb the photons in the imaging beam and cast a

shadow of the atom cloud on the CCD camera. The images are taken with (signal shot)

and without (reference shot) the atom cloud under the same experimental conditions. The

signal and the reference images are subtracted from each other to produce the false color

2D column density image shown in Fig. 3.2. From the false color image, atom number and

the cloud widths are extracted.

3.2 Development of Optical Control System

In this section, I will explain in detail the optical system for controlling interactions in

ultracold atoms using EIT. The basic level scheme for EIT control of interactions is shown

in Fig. 3.3.

Optical fields ν1 and ν2, with Rabi frequencies Ω1 and Ω2, couple the ground molecular

states of the singlet potential, |g1〉 and |g2〉, to the excited state |e 〉. The triplet continuum

|T , k 〉 is coupled to state |g1〉with a second order hyperfine coupling constant VH F , which

causes the narrow Feshbach resonance at Br e s = 543.27 G where the width ∆B = 0.1

G [Haz12]. The narrow Feshbach resonance is an energy-dependent resonance, where the
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Figure 3.3 Basic level scheme for controlling interactions in 6Li. Optical fields ν1 (with Rabi fre-
quency Ω1 and detuning∆1) and ν2 ( with Rabi frequency Ω2 and and detuning∆2) couple the
ground molecular states |g1〉 and |g2〉 to the excited molecular state |e 〉 of the singlet potential.
The atoms are predominantly in the spin triplet state |T , k 〉which has an hyperfine coupling VH F

to state |g1〉 causing the Feshbach resonance. The triplet state moves downward with increasing
magnetic field B . For our optical control experiments in 6Li, |g1〉 = |ν = 38〉, |g2〉 = |ν = 37〉, and
|e 〉= |ν′ = 64〉 are chosen.

resonance position can be tuned energetically by changing the temperature of the ultracold

gas. The two lowest hyperfine states |1〉 and |2〉 also have a broad Feshbach resonance at

Br e s = 832.2 G with width∆B = 300 G [Z1̈3].

All the experiments reported in this thesis are primarily done near the narrow Feshbach

resonance near 543.2 G. The atoms are predominantly in the spin triplet state |T , k 〉, which

tunes downward with magnetic field B as −2µB B , where µB is the Bohr magneton. The

states used in our experiments are,

|g1〉 = |ν= 38〉 (3.1)

|g2〉 = |ν= 37〉 (3.2)

|e 〉 = |ν ′ = 64〉 (3.3)
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While designing an optical system for the level scheme shown in Fig. 3.3, several im-

portant considerations should be taken into account. For certain experiments, the optical

fields should be tuned between the broad and the narrow Feshbach resonance which is

separated by 300 G. This involves tuning the frequency of the lasers by approximately 1 GHz.

Therefore a wide tunability of about 1 GHz is required. The frequency difference between

states |g1〉 and |g2〉 is 57 GHz. Therefore, a large frequency offset between the ν1 and ν2

optical fields is needed. Also, since the experiments involve electromagnetically induced

transparency, which uses the principle of quantum interference to suppress atom loss, the

stability of the lasers is critical to maintaining coherence. Therefore, the relative frequency

difference between the lasers is stabilized to better than 10 kHz. The optical system was

therefore designed to achieve the following,

(i) Wide frequency tunability of ν1 beam

(ii) Large frequency offset between ν1 and ν2

(iii) Good frequency stability between ν1 and ν2

A schematic design of our two-field optical system is shown in Fig. 3.4. The reference

laser is locked to a Fabry-Perot cavity using a Pound-Drever-Hall (PDH) locking scheme.

The PDH lock provides a high bandwidth error signal that can stabilize fast jitter in the lasers.

The PDH scheme will be explained in detail later. A part of the beam from the reference laser

is then sent into an iodine gas cell in a saturation absorption setup (explained below), which

generates an error signal as it becomes resonant with one of the several iodine molecular

resonances. As the cavity can drift due to thermal and mechanical fluctuations, the cavity

is locked to the iodine error signal. This makes the reference laser-cavity-Iodine system

the ultimate frequency reference for our experiments. The optical field ν1 is generated by

locking the ν1 laser to the reference laser using a frequency offset lock (explained below).

As frequency offset lock provides wide tunability, it satisfies one of the primary require-

ments of having a widely tunable ν1 field. The cavity has several resonances with width 7

MHz, which are separated by its free spectral range (1.5 GHz). The beam from the ν2 laser

is sent into the other open port of the cavity and is locked to the nearest cavity resonance

that lies 57 GHz above the ν1 laser. Therefore, a large frequency offset along with wide

tunability and good stability is achieved, which are the fundamental requirements of our

optical system to pursue our optical control experiments.
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Figure 3.4 A simple schematic of the two-field optical control system

3.2.1 Pound Drever Hall (PDH) Lock

The Pound Drever Hall (PDH) locking technique is used to lock our reference and ν2 laser

to the cavity. Fig. 3.5 shows the setup for the PDH lock implemented in our system for the

reference laser. Since the ν2 laser has an identical setup, it is not shown in Fig. 3.5.

The electro-optic modulator (EOM) (Thorlabs EO-PM-R-30-C1) phase modulates the

frequency of the optical field from the reference laser at 30 MHz. This phase modulation

generates two sidebands at ±30 MHz, in addition to the carrier(reference) frequencyωc .

The carrier frequencyωc along with both sidebandsωc + 30 andωc - 30 are then sent to the

Fabry Perot (FP) cavity through a half wave plate (HWP) and a polarizing beam splitter (PBS).

The reflected beam from the cavity is incident on an amplified photo-detector (Thorlabs

PDA10A) which has a bandwidth of 150 MHz. The sideband frequencies ±30 MHz of the

reference beam are greater than the line-width (7 MHz) of the cavity. Withωc near a cavity

resonance, the sidebands are reflected from the front surface of the cavity without any

significant phase shift while the carrier frequency can be partially reflected or transmitted.

The beat between the reflected carrier frequency with each of its sidebands is detected by

the photo-detector. When the carrier frequency is near the cavity resonance, the incident
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Figure 3.5 Pound Drever Hall locking set up for the reference laser

and reflected components of the carrier frequency have no phase shift. Hence the beats

between the carrier and the upper sideband (+30 MHz) and the lower sideband (-30 MHz)

are 180 degrees out of phase with respect to each other, thereby canceling each other with

no signal at the photo-diode.

If the carrier frequency deviates from the cavity resonance, the reflected carrier beam

suffers a phase shift with respect to the incident beam. Therefore, the beat between the

carrier and the upper sideband (+30 MHz) and the beat between the carrier and the lower

sideband (-30 MHz) are no longer 180 degrees out of phase with each other to provide

perfect signal cancellation at the detector. This generates a non-zero beat signal (30 MHz)

at the detector. In order to generate the error signal, the beat signal is mixed with the local

oscillator to yield a DC signal. An arbitrary waveform generator (Textronics AFG3052C) is

used as a local oscillator to provide a sinusoidal modulation signal to both the EOM and the

mixer (Minicircuits ZAD-1-1-+). The error signal is then passed through a low pass filter (1.9

MHz) to remove all higher harmonics. The error signal is then fed into a high bandwidth

(10 MHz) digital servo system (Toptica Digilock), which generates the correction signal for

stabilizing the frequency of the reference laser.

Any residual amplitude modulation from the EOM creates an additional DC component

in the error signal. This can be avoided if the polarization axis of the EOM matches with

the optical beam. Hence a Glan Thompson polarizer (Thorlabs GTH5M-B) is used before

the EOM for polarization matching.
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Figure 3.6 Error signal generated by the Pound Drever Hall lock.

3.2.2 Frequency Offset Lock

In our optical setup, the ν1 laser is locked to the reference laser by a frequency offset lock. As

explained earlier in this section, the ν1 beam needs to have wide tunability. The frequency

offset lock method is chosen as it provides wide tunability and large capture range [Sch99].

Figure 3.7 Schematic of frequency offset lock for the ν1 laser

Fig. 3.7 shows the setup for the frequency offset lock. The optical beams from the ν1 and

reference lasers are fiber coupled into a high bandwidth photo-detector (EOT ET-4000AF).

A high bandwidth (9 GHz) detector is used as the optical transition for |ν= 38〉 to |ν ′ = 64〉
state is 3 GHz away from the molecular resonance of the Iodine. The beat signal generated
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by the photo-detector is observed on the spectrum analyzer after passing through a splitter

(Mini-Circuits ZFRSC-42-S+). The other part of the beat signal is amplified by an amplifier

(ZJL-4HG+). The amplified signal is then mixed with the local oscillator. The output of the

mixer (ZX05-30W-S+) is passed through the low pass filter (BLP-150+) and amplified (ZKL-

2+) again. The amplified signal is now split into two using a power splitter (ZFRSC-2050+).

(a) (b)

Figure 3.8 (a) Error signal of frequency offset lock (b) Beat signal between reference laser and ν1

laser

One part of the signal goes to the phase detector directly while the other part is sent

through a delay line (4 m) before reaching phase detector (ZRPD-1+). The delay line is

introduced to create a phase shift in the signal reaching the mixer. Any frequency drift of

the ν1 laser changes the phase shift between the direct signal and the signal through the

delay line. The output of the mixer is sent through a low pass filter (BLP-1.9+) in order to

remove higher harmonics and the error signal is generated. The error signal is then sent

into a high bandwidth servo system (10 MHz) to stabilize the frequency of the ν1 laser.

Fig. 3.8a shows the error signal generated from the frequency offset lock as a function of

beat frequency between the ν1 and reference laser. The envelope on the peaks is due to the

limited bandwidth of the phase detector. The zero crossings are spaced by c /L ≈ 75 MHz,

where c and L are the velocity of light and the length of the delay line, respectively. The

ν1 laser is locked to one of the several zero crossings. This locking point can be tuned by

changing the frequency of the RF generator up to 1 GHz, thus providing wide tunability. In
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addition, it also provides broad capture range (c /2L ≈ 37 MHz). After locking the ν1 laser to

one of the zero crossings of the error signal, the beat signal(shown in Fig. 3.8b) between the

ν1 and reference laser is measured using a spectrum analyzer (Fig. 3.8b) at a measurement

bandwidth of 3 kHz and a sweep time of 1 second. Since the span range in Fig. 3.8b is 300

kHz (Each horizontal box = 30 kHz), we can conclude that the lock stability between ν1 and

reference laser is less than 30 kHz.

3.2.3 Saturation Absorption Spectroscopy

Figure 3.9 Schematic of saturation absorption spectroscopy setup

In the previous section, we saw how the reference and ν2 lasers are locked to the cavity.

But the cavity itself can drift due to mechanical and thermal vibrations. Hence the cavity

needs to be locked to a stable reference source. In our optical setup, the cavity is locked to

one of the iodine peaks. The saturation absorption spectroscopy setup shown in Fig. 3.9 is

used to generate error signal shown in Fig. 3.10.

A 30 mW beam from the reference laser is sent through a 90/10 beam splitter plate. 90%

of the power is transmitted (pump beam) through the beam splitter and rest of the power

is reflected from the front and back surface of the beam splitter. The two reflected (probe)
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beams are then passed through an iodine cell and collected on a balanced photo-detector

(Thorlabs PDB210A). The pump beam is double passed through an AOM, which increases

the frequency by +236 MHz. The AOM also modulates the frequency of the pump beam.

An Agilent 33210A function generator provides the modulation signal to the AOM with a

Vp p of 3 Volts (9 MHz) at 33 kHz. The pump beam is then aligned to counter propagate and

overlap with one of the probe beams.

Figure 3.10 Error Signal from the saturation absorption spectra

Both of the probe beams A and B interact with the iodine molecules. The absorption

spectra of probe beam A is Doppler broadened, whereas for probe beam B it is Doppler-

free due to the overlap of a strong counter-propagating pump beam that interacts with

the same velocity group. This burns a hole in the Doppler broadened absorption spectra

and facilitates the observation of narrow molecular transitions in iodine molecules. Both

the probe beams are incident on a balanced detector which subtracts the signals. The

photo-detector’s output along with the modulation signal to the AOM are sent to the lock-in

amplifier. The lock-in amplifier generates a discriminator error signal shown in Fig. 3.10.

The cavity is locked to one of the zero crossings by a home built servo.
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Figure 3.11 Schematic of two-field optical control system.
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Having discussed the different parts of our optical control setup, the full schematic is

shown in Fig. 3.11. In summary,ν2 and reference lasers are locked to the cavity and the cavity

is locked to an iodine peak. The ν1 laser is locked to the reference laser. The reference laser

beam is split into three parts; one part goes to the cavity for PDH lock, another part goes

to the beat signal for frequency offset lock and another part to the saturation absorption

spectroscopy for the cavity lock. Also, a part of the ν2 laser beam is sent to the cavity and

the rest is sent to the main chamber. Similarly, the ν1 laser beam is sent to generate the

beat signal for the frequency offset lock and to the main chamber.

Figure 3.12 Beat Signal between ν1 and ν2 Lasers

After locking all three lasers and the cavity, the beat signal between ν1 and ν2 laser was

measured and is shown in Fig. 3.12. The measurement settings used are 3 kHz measurement

bandwidth, 1 second sweep time and 500 kHz span range. The beat shown in Fig. 3.12 is an

average of 100 scans swept for 1 second each. Fig. 3.12 illustrates that the overall frequency

stability between the ν1 and ν2 laser is less than 50 kHz.

As shown in Fig. 3.11, the optical beams are sent to the experiment after passing through

the diffraction grating (Opti Grate BPF-677). The diode lasers (Toptica TA pro), which

generates ν1 and ν2 optical beams, has a tapered amplifier with a wide spectral bandwidth.

The tapered amplifier in addition to amplifying the ν1 and ν2 frequency also amplifies

the atomic transition frequency (670.9 nm). Hence when the optical beams illuminate

the atoms, there is an additional loss due to the resonant atomic transition. This loss is
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eliminated by incorporating the diffraction grating in our optical setup. The bandwidth of

the diffraction grating is approximately 0.1 nm and hence it acts as a wavelength filter.

3.3 Measurement of Optical Frequencies and Rabi Frequen-

cies

In this section, I will discuss the frequency measurement for our optical transitions. I will

also discuss the calibration of Rabi frequencies Ω1 and Ω2 of the ν1 and ν2 beams.

3.3.1 Measurement of ν1 Beam Frequency
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Figure 3.13 Atom loss spectra as a function of single photon detuning at B = 840 G, without the
ν2 beam. Blue Dots: Measured atom fraction. Solid Red line: Fit to continuum-dressed state
model.

In this section, the method used to find the optical frequency for the |g1〉 to |e 〉 transition

will be discussed. As shown in Fig. 3.3, |ν= 38〉 is used for the ground molecular state |g1〉
and |ν′ = 64〉 for the excited molecular state |e 〉. For 6Li, near the broad resonance, the

triplet state |T , k 〉 is mixed with the ground molecular state |g1〉 due to strong hyperfine
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coupling. Hence, when the ν1 beam is resonant with the |T , k 〉− |e 〉 transition, atom loss

occurs.

To measure the transition frequency, evaporative cooling is performed at 832 G with a

50-50 mixture of atoms in state |1〉 and |2〉. The magnetic field is then swept to 840 G and

allowed to stabilize for 3 seconds. The ν1 beam is then turned on for 5 ms. After the ν1 beam

is turned off, atoms in state |1〉 are imaged immediately. The remaining atom fraction from

the image is plotted as a function of single photon detuning,∆1 and shown in Fig. 3.13. The

frequency at which the peak loss occurs is the resonant frequency for |ν= 38〉 to |ν′ = 64〉 at

840 G and is measured to be,

ν1 (38→ 64) = 444.1401 ±0.0002 THz. (3.4)

3.3.2 Measurement of ν2 beam frequency
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Figure 3.14 Atom loss spectra as a function of single photon detuning at B = 840 G, and∆2 = 0.
Blue Dots: Measured atom fraction. Solid Red line: Fit to continuum-dressed state model

The ν2 beam couples the state |ν= 37〉 to |ν′ = 64〉. When the ν1 beam is on, atoms in

triplet state |T 〉 are excited to the singlet excited state |e 〉. This results in atom loss. But when

both ν1 and ν2 beams are on, the transition probability amplitudes destructively interfere
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with each other. Due to the destructive quantum interference, absorption is inhibited and a

transparency window in the absorption spectrum is created. If the ν2 beam is on resonance,

the transparency window will be at the center of the atom loss peak.

To measure the transition frequency, a 50-50 mixture of atoms in state |1〉 and |2〉 are

evaporatively cooled at 832 G. The magnetic field is then swept to 840 G and allowed to

stabilize for 3 seconds. The ν2 beam is first turned on for 100 ms, to collect all the atoms

in the additional attractive potential created by the ν2 beam due to its high intensity. The

ν1 beam is then turned on for 5 ms. After the ν1 beam is turned off, atoms are imaged

immediately. The atom fraction from the image is plotted as a function of single photon

detuning,∆1 (by changing ν1 and holding ν2 constant) is shown in Fig. 3.14. The resonant

ν2 frequency is measured to be,

ν2 (37→ 64) = 444.1965 ±0.0002 THz. (3.5)

3.3.3 Calibration of Rabi Frequency Ω1 of ν1 beam

As explained in Chapter 2, near the narrow resonance, the ν1 beamΩ1 can shift the position

of ground state |g1〉. The light shift Σ of the state |g1〉 is proportional to −Ω2
1/4∆1. The Rabi

frequency Ω1 is proportional to the intensity I of the ν1 beam,

Ω1 = 2π× c1 (MHz) ×
p

I (3.6)

where c1 is the proportionality constant and depends on the transition strength. The inten-

sity I,

I =
2 P

πω2
0

(3.7)

where P andω0 are the power and the beam waist of the ν1 beam. The beam waist of the ν1

beam is 750 µm. The Rabi frequency Ω1 can be calibrated by measuring the light shift of

the ground state |g1〉 for different intensity of the ν1 beam.

The experimental sequence for calibratingΩ1 is as follows. Atoms are cooled at 300 G and

the magnetic field is swept to the field of interest B . The ν1 beam with an intensity I is then

applied for 5 ms. The atoms are imaged immediately after theν1 beam is turned off. Fig. 3.15

shows atom loss as a function of magnetic field B . The narrow peak in Fig. 3.15 corresponds

to the position of ground state |g1〉. The intensities of the ν1 beam used to generate Fig. 3.15

(a),(b) and (c) are 7.35 mW/mm2, 13.58 mW/mm2, 24.9 mW/mm2 respectively. The solid
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Figure 3.15 Atom loss spectra as a function of magnetic field when∆1 = 18.84 MHz, in the ab-
sence of ν2 beam. The ν1 laser intensities used to generate (a), (b) and (c) are 7.35 mW/mm2,
13.58 mW/mm2, 24.9 mW/mm2 respectively. Blue Dots: Measured atom fraction. Solid Red line:
Fit to continuum-dressed state model.
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Figure 3.16 Intensity of ν1 laser versus calculated Rabi frequency in the units of γe . Blue dots:
Measured Rabi frequency from Fig. 3.15. Solid Magenta Line: Fit to Eq. 3.6.

red lines in Fig. 3.15 are the results of the continuum-dressed state model explained in

Chapter 2. From the model, the Rabi frequencies are determined for the applied intensities

and is plotted in Fig. 3.16 (blue dots). The measured Rabi frequencies Fig. 3.16 (blue dots)

are then fitted with Eq. 3.6, Fig. 3.16 (magenta line). From the fit, we get

c1 = 4.4 MHz. (3.8)

The Rabi frequency Ω1 can also estimated from the predicted electric dipole transition

matrix element. For the v = 38→ v ′ = 64 transition, the predicted oscillator strength is

fe g = 0.025 [Rob95]. The corresponding Rabi frequency is

Ω1 = 2π×4.77 MHz
p

I , (3.9)

where I is the intensity of the optical beam given in mW/mm2. Comparing Eq. 3.9 with

Eq. 3.6, we get

c1 = 4.77 MHz, (3.10)

which is in good agreement with the measured value of 4.4 MHz.
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3.3.4 Calibration of Rabi Frequency Ω2 of the ν2 beam
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Figure 3.17 Atom loss spectra as a function of single photon detuning,∆1, at B = 840 G, when∆2

= 0. The ν2 laser intensities used to generate (a), (b), (c) and (d) are 0 mW/mm2, 102 mW/mm2,
183 mW/mm2, 509 mW/mm2 respectively. Blue Dots: Measured atom fraction. Solid red line: Fit
to continuum-dressed state model.

When the ν1 beam is on resonance with the |T , k 〉-|e 〉 transition, atom loss occurs.

But when both the ν1 beam and ν2 beams are at resonance, a transparency window in

absorption is created due to quantum interference. The width of the transparency window

is dependent on the Rabi frequency Ω2 of ν2 beam. Ω2 is written as,

Ω2 = 2π× c2 (MHz) ×
p

I (3.11)
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where c2 is the proportionality constant which depends on the transition strength , and I is

the intensity of the beam.

Atoms are cooled at 840 G and the ν2 beam is applied for 100 ms. The ν1 beam is then

turned on for 5 ms and the atom fraction is measured as a function of two-photon detuning

δ, by changing the ν1 beam frequency ν1 and holding the ν2 beam frequency ν2 constant.

Fig. 3.17 shows the atom fraction as a function of two-photon detuning δ for different

values of Intensity I of the ν2 beam. The solid red lines are the results of the continuum-

dressed state model explained in Chapter2, from which the measured Rabi frequencies are

determined. The intensities of ν2 beam used in Fig. 3.17 (a), (b), (c) and (d) are 0 mW/mm2,

102 mW/mm2, 183 mW/mm2, 509 mW/mm2, respectively. Fig. 3.18 (blue dots) shows the

measured Rabi frequencies Ω2 (blue dots) as a function of laser intensity I . The measured

Rabi frequencies Fig. 3.16 (blue dots) are then fitted with equation 3.6, Fig. 3.16 (magenta

line). From the fit, we get

c2 = 1.26 MHz. (3.12)
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Figure 3.18 Intensity of ν2 laser versus Rabi frequency in units of γe . Blue dots: Measured Rabi
frequency from Fig. 3.17. Solid Magenta Line: Fit to Eq. 3.11.

For the v = 37→ v ′ = 68 transition, the predicted oscillator strength is fe g = 1.98×
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10−3 [Rob95]. The corresponding Rabi frequency is

Ω2 = 2π×1.34 (MHz)
p

I , (3.13)

Comparing Eq. 3.13 with Eq. 3.11, we get

c2 = 1.34 MHz, (3.14)

which is in good agreement with the measured value of 1.26 MHz.

3.4 Calibration of the Radio-Frequency (RF) Antenna

Figure 3.19 Electronics setup for the radio frequency antenna

In all our experiments, Atoms are created in the lowest two hyperfine states, |1〉 and |2〉.
The energy difference between the hyperfine levels is in the radio frequency range. Hence

by applying an RF signal to the antenna present inside the vacuum chamber, the atom

population in the hyperfine states of 6Li can be manipulated.

The RF antenna is primarly used for the following purposes,

(i) to create a 50-50 mixture of atoms in the two lowest hyperfine states |1〉 and |2〉

(ii) to perform RF spectroscopy by making transitions between the hyperfine states |1〉,
|2〉, and |3〉.

79



(a)

(b)

Figure 3.20 Rabi oscillation of the states |1〉 and |2〉. (a) and (b) atom fraction in state |1〉 and |2〉
respectively.
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Fig. 3.19 shows the electronics setup used in our RF experiments. In order to create an equal

spin mixture of states |1〉 and |2〉, a noisy sine wave of frequency 7.5 MHz at 8 G is applied

by an Agilent 33210A signal generator for 1 second.

In order to perform RF spectroscopy, a Keysight N9310A RF generator generates the RF

signal for atom transfer between two hyperfine states. The signals from both the Agilent and

Keysight generators are sent to an RF switch (Mini-Circuits ZX80-DR230-S+ SPDT), which

selects the output based on the experiment. The output of the switch is then amplified by

an RF amplifier (RSR HY3020E) and the amplified signal is sent to the antenna inside the

vacuum chamber.

Figure 3.21 Rabi Frequency of the antenna as a function of the amplitude of RF signal

The calibration of the RF antenna involves the determination of the RF amplitude

corresponding to the Rabi frequency Ω12 for the transition from the hyperfine state |1〉 to

the hyperfine state |2〉. To calibrate the RF antenna, Atoms are cooled in the lowest hyperfine

state |1〉 and an RF pulse is applied to transfer atoms from state |1〉 to |2〉. The atom in both

states |1〉 and |2〉 are then imaged. Fig. 3.20 (red dots) shows the atom fraction remaining

in |1〉 (Fig. 3.20 a) and the atoms arriving in |2〉 (Fig. 3.20 b) as function of time for an RF

amplitude of 31.6 W. The blue curve is a fit to an exponentially decaying sinusoidal function,

A0+ (A sin (2π f t )e −αt ), where f is the Rabi frequency of the RF transition. From the fit, we
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determine the Rabi frequency Ω12 = 350 Hz. Fig. 3.21 shows the measured Rabi frequency

Ω12 as a function of RF power applied to the antenna and illustrates that the antenna will be

in the saturation region if the RF power exceeds 40 W. This happens due to the RF amplifier

saturating after it reaches its maximum output power of 100 W. Hence all our experiments

are done with an RF amplitude of 31.6 W (350 Hz).

3.5 Stabilization of the Bias Magnetic Field

Optical control of a narrow Feshbach resonance requires a stable bias magnetic field. In

this section, I will explain the significance of a stable magnetic field and its implementation

in our system. 6Li has a narrow Feshbach resonance at 543.27 G of width∆B = 100 mG. In

order to explore the narrow Feshbach resonance, a magnetic field stability of at least 10 mG

is essential.

3.5.1 Achieving a Stable Magnetic Field

Figure 3.22 Schematic of magnetic field stabilization using a home built servo.

In our lab, Agilent 6651A power supply was initially used as the current supply for the

high magnetic field coils. The current from the power supply goes to the coil through a
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current sensor (LEM IT 200-S UltraStab), which measures the current through the coil. This

power supply is unstable and induces a drift of 200 mG in 30 minutes, which is inadequate

to investigate narrow Feshbach resonances. When we first began this project, we were

left only with the choice of building a servo system to minimize the drift and thereby

stabilize the magnetic field. After discussing with other research groups pursuing cold atom

experiments, our power supply was upgraded to a Danfysik system 9100 power supply. This

power supply was rated for a current drift of ± 10 ppm, which corresponds to a magnetic

field drift of 5 mG at 500 G. However, the power supply suffered from a 60 Hz ripple with an

amplitude of 100 mG (Red curve in Fig. 3.24a).

A servo controller was built to suppress the 60 Hz ripple, AC part of the current, as the

drift of the DC part of the current was within the quoted range. Fig. 3.22 shows a simplistic

representation of the setup to suppress the AC ripple. I0 is the total current with the 60 Hz

ripple from the power supply. I1 and I2 are the current that goes through the power supply

and the field effect transistor (FET), respectively. The gate-source voltage (Vg s ) of the FET

is controlled by the output of the home build servo ( Fig. 3.23). The current from the power

supply measured by the hall probe is converted into a voltage and provided as the input to

the servo. The circuit diagram of the servo is shown in Fig. 3.23. The input voltage to the

servo is first AC coupled by passing through a capacitor (10 µF). The AC coupled voltage is

then inverted and amplified in three stages by using op-amp circuits. In the last stage of

amplification, a DC voltage adjustable by a 10 k potentiometer, is added to the amplified

AC voltage. This DC voltage is chosen based on the Ohmic region of the FET (IRF510PBF)

used.

The Ohmic region is linear with respect to the gate-source voltage Vg s for constant

drain-source voltage Vd s , i.e. the resistance of the FET can be modified by changing the

Vg s . Hence by controlling the Vg s , the ripple from I0 can be diverted into the FET network

as I2. Since the Hall probe is actively measuring I1, the servo generates corresponding Vg s

to minimize the ripple in I1. The maximum value of I2 is set by a series resistor R (20 Ω)

parallel to the power supply.
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Figure 3.23 Schematic of home built servo for magnetic field stabilization.
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Figure 3.24 Output of the power supply in mG measured by the Hall probe. (a) Magnetic field
measurement with (Blue) and without servo (Red). The power supply output when it is switched
off is shown in green. (b) Expanded plot of magnetic field measurement with servo.

After implementing the servo into the magnetic coil system, the 100 mG ripple (Fig. 3.24a)

was reduced to 10 mG and the repeatability of the applied current for the different cycles

was within ±10 mG. The red and blue curves in Fig. 3.24a shows the AC part of the output

of the power supply in mG with and without the home built servo, respectively. The green

curve in Fig. 3.24a is the output when the power supply is switched off. The amplitudes

of the blue and green curves are comparable as shown in Fig. 3.24a, and is limited only by

the noise level in the measuring device. Fig. 3.24b is an expanded view of the blue curve

(output with servo) in Fig. 3.24a, illustrating a suppressed 60 Hz ripple with an amplitude
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of 10 mG. The servo controls the AC part of the current, however, there was a slow drift of

the DC current (10 mG/s) due to the heating of FET network. But this effect is negligible as

the duration required for a stable magnetic field in a typical experimental sequence is few

milliseconds.

Figure 3.25 Schematic of magnetic field stabilization using a set of by-pass capacitors.

I also tried another simple technique (shown in Fig. 3.25) to remove the 60 Hz ripple

in which a set of bypass capacitors connected in parallel to the coils were added. Since

the noise is at low frequency, the value of the bypass capacitor has to be higher. For 60 Hz,

250 mF capacitors were used. This technique also suppressed the 60 Hz noise to the level

limited by our measuring device. Fig. 3.26 shows the output of the power supply in mG for

different values of capacitors. Fig. 3.26 further illustrates that the ripple from the power

supply is suppressed as the capacitance is increased. When the capacitance reaches 250

mF, the amplitude of the ripple current is comparable to the noise level of the power supply

when it is turned off.

The disadvantage of this technique is that the capacitors connected in parallel to the

coil, increase the total time constant of the system thereby taking longer time for the

current to reach its required value. This was not a significant problem since achieving a
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Figure 3.26 Magnetic field measurement by Hall probe for different values of by-pass capacitors.

stable magnetic field requires a wait time of 3 seconds after evaporative cooling. Now with

capacitors in parallel, the wait time has to be increased to 4 seconds.

Also, after corresponding with the engineers at Danfysik about the AC ripple for two

years, I finally made them fix the engineering flaw in the current supply. One of the terminals

behind the power supply was not connected to the common ground causing the ground

loop issue. The problem is solved by soldering the terminal to the ground through a 1 kΩ

resistor.

3.5.2 Testing the Stability of Magnetic Field - RF spectroscopy

As shown in Fig. 3.24b, the noise level in the magnetic field measured by the Hall probe is

10 mG. It is not possible to conclude the stability of magnetic field from this measurement.

Hence it is necessary to measure the fluctuation in the magnetic field directly by measuring

its effect on the atoms. The radio frequency spectroscopy was used to test the stability of the

magnetic field. As mentioned in the Section 3.4, the energy difference between hyperfine

levels are in the radio frequency range. Hence applying an RF pulse can transfer atoms

between states |1〉 and |2〉. Since the hyperfine energy levels are magnetic field dependent,

any deviation from the calculated width of the RF transition is due to the fluctuation in the

magnetic field.

Atoms are cooled at 300 G and the magnetic field is ramped to 528 G, zero crossing for
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(a) (b)

(c) (d)

Figure 3.27 Radio frequency spectra to measure the magnetic field stability. The green curves in
(a) and (c) are fit of the atom fraction (red dots) in state |1〉 and |2〉with Eq. 3.15, respectively. (b)
and (d) Lorenztian fit (blue curve) to the atom fraction (red dots) in state |1〉 and |2〉, respectively.

|1〉 - |2〉mixture. At 528 G, an imaging optical pulse is applied to remove the atoms in state

|2〉. With atoms only in state |1〉, the magnetic field is ramped to 531 G. At 531.189 G, an RF

pulse is applied for the |1〉 - |2〉 transition for 70 ms with an amplitude of 7.1 Hz and image

the atoms remaining in state |1〉 and the atoms remaining in state |2〉 as a function of RF

frequency. The resulting RF spectra are shown in Fig. 3.27. The red dots in Fig. 3.27 (a),(b)

and (c),(d) shows the atom fraction in state |1〉 and state |2〉, respectively.

The RF transter function [Sho90] for |1〉 - |2〉 transition is given by,

P (t ) =
Ω2

R F

(Ω2
R F +∆2)

sin





√

√

√
Ω2

R F +∆
2

Ω2
R F

πt

2



 (3.15)
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where ΩR F ,∆, and t are the Rabi frequency, detuning and the time duration of the RF pulse.

The green line in the Fig. 3.27 (a) and (c) is a fit of the data (red dots) with the RF transfer

function given in equation 3.15. For t = 70 ms and∆ = 0, the Rabi frequency ΩR F = 7.5 Hz.

The Rabi frequency from the fit is in good agreement with the applied RF amplitude, 7.1 Hz.

The blue line in the Fig. 3.27 (b) and (d) is the Lorenzian function L (γ, F0) fit to the

data(red dots) given by,

L (γ, F0) = A0+A1

�

γ2

γ2+ (F − F0)2

�

(3.16)

where γ and F0 are the width and the resonant frequency of RF transition. After fitting

the Lorentzian function L (γ, F0) to the data we get, F0 = 75.617343 MHz and γ = 10 Hz. At

531.189 G, 10 Hz corresponds to 3 mG. Hence, the measured RF spectra illustrate that the

magnetic field stability of our system is better than 3 mG.

3.6 Measuring the Trap Frequencies

Figure 3.28 Radial width of the atom cloud as a function of modulation frequency νm . The largest
radial width corresponds to twice the trap frequencies in the two radial direction.

The parametric resonance is used to measure the axial and radial oscillation frequencies

89



of the far-off resonance trap. In this method, the CO2 trap is sinusoidally modulated by a

small amplitude. This perturbation adds extra energy to the atoms in the trap and increases

the mean square width of the atom cloud. The cloud width is largest when the modulation

frequency νm is equal to twice the trap frequency.

To perform this experiment, atoms are prepared at the two lowest hyperfine state |1〉
and |2〉. After cooling the atoms at 300 G, the optical trap is re-raised to 5% trap depth. A

sinusoidal modulation with an amplitude of 25 mV is then applied for 100 ms. The magnetic

field is then ramped to 528 G and the atom cloud is imaged. The modulation amplitude and

the duration is chosen such that the change in the width of atom cloud is approximately

10% - 15%. Fig. 3.28 shows the radial widths (magenta dots) measured from the atom cloud

as the function of the modulation frequency νm . The radial widths (magenta dots) are then

fitted with a Lorentzian function (solid line in Fig. 3.28)

L (γ1, F1,γ2, F2) = A0+A1

�

γ2
1

γ2
1+ (F − F1)2

�

+A2

�

γ2
2

γ2
2+ (F − F2)2

�

, (3.17)

where γ1, F1 and γ2, F2 are the widths and the frequencies of the two radial directions. The

trap frequencies from the fit are given by,

Figure 3.29 Radial width of the atom cloud as a function of modulation frequency νm . The largest
radial width corresponds to twice the trap frequency in the axial direction.
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ωx = 2 π× (777 ±9.5)Hz (3.18)

ωy = 2 π× (960 ±4.32)Hz (3.19)

Fig. 3.29 shows the plot of the radial width of the cloud when the CO2 trap is modulated for

500 ms with the amplitude of 50 mV. The magenta dots in Fig. 3.29 are the measured radial

widths from the atom cloud as a function of modulation frequency νm . The Lorentzian

function (solid line in Fig. 3.29)

L (γ3, F3) = A0+A1

�

γ2
3

γ2
3+ (F − F3)2

�

, (3.20)

where γ3, F3 are the width and the resonant frequency, is then fitted to the data (magenta

dots). The axial frequency from the fit is

ωz = 2 π× (30.6 ±0.5)Hz (3.21)
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CHAPTER

4

EXPERIMENTS ON OPTICAL CONTROL

OF INTERACTIONS IN ULTRACOLD

GASES

In this chapter, I will discuss experiments that demonstrate control of scattering interactions

near a Feshbach resonance using electromagnetically induced transparency (EIT). Optical

control of interactions is illustrated by determining the scattering length from the measured

mean-field induced frequency shifts in the radio frequency (RF) spectra. This chapter begins

with a brief review of the underlying physics in optically tuning the bound states of 6Li

near a magnetic Feshbach resonance. In Section 4.2, measurement of mean-field energy

shifts using RF spectroscopy will be discussed. Section 4.3 involves a detailed derivation

of the line shapes for the RF transitions to measure mean-field shifts. The experimental

results demonstrating the control of scattering length by changing the magnetic field

(Section 4.4) and optical field (Section 4.5) will be presented. In addition to tuning the

scattering length using optical fields, the spatial control of interactions in ultracold gases is
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also demonstrated, where the scattering length is made to vary as a function of the axial

position in the atomic cloud. Exploiting this spatial control, an interaction “sandwich" is

achieved, where the center of the cloud is resonantly interacting and the wings of the cloud

are weakly interacting. Section 4.6 involves the experimental results demonstrating spatial

control of interactions in 6Li gas.

4.1 Optical Control of the Scattering Length using EIT

Figure 4.1 Energy level scheme for magnetic Feshbach Resonance. Colliding atoms reside in the
triplet potential. The triplet continuum |T , k 〉 is tuned magnetically. The triplet continuum |T , k 〉
and singlet vibrational state |g1〉 has a hyperfine coupling VH F . When the triplet continuum |T , k 〉
is degenerate with the singlet ground state |g1〉, Feshbach resonance occurs.

In this section, I will give a brief overview of the underlying physics for optically tuning

the Feshbach bound state |g1〉 near a magnetic Feshbach resonance. A detailed discussion

of this topic is presented in Chapter 2. Fig. 4.1 shows the energy level scheme for a magnetic

Feshbach resonance. The atoms are cooled in the two lowest hyperfine states of 6Li. Near a

narrow Feshbach at 543.2 G, the atoms are predominantly in the triplet continuum |T , k 〉.
The singlet states are energetically not accessible to the atoms. The triplet continuum has a

non-zero magnetic moment and can be magnetically tuned at the rate of∝−2µB B . The

singlet vibrational state |g1〉 has a zero magnetic moment and cannot be magnetically tuned.

When the triplet continuum |T , k 〉 is magnetically tuned to be energetically degenerate

with the singlet vibrational state |g1〉, a Feshbach resonance occurs due to a hyperfine cou-

pling VH F between |T , k 〉 and |g1〉. At the Feshbach resonance, the scattering cross section

maximizes and the two-body scattering length diverges (a →∞). Above the Feshbach
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resonance, the scattering length is negative (a < 0) and the interactions are attractive. Below

the Feshbach resonance, the scattering length is positive (a > 0) and the interactions are

repulsive. Thus, by magnetically tuning the triplet continuum |T , k 〉 with respect to the

energy of the singlet ground state |g1〉, the scattering length can be manipulated.

Figure 4.2 Basic level scheme for controlling interactions in 6Li. Optical fields ν1 (with Rabi fre-
quency Ω1 and detuning∆1) and ν2 ( with Rabi frequency Ω2 and and detuning∆2) couple the
ground molecular states |g1〉 and |g2〉 to the excited molecular state |e 〉 of the singlet potential.
The atoms are predominantly in the triplet state |T , k 〉which has an hyperfine coupling VH F to
state |g1〉 causing the Feshbach resonance. The triplet state moves downward with increasing
magnetic field B. For the optical control experiments in 6Li, |g1〉 = |v = 38〉, |g2〉 = |v = 37〉, and |e 〉
= |v ′ = 64〉.

Although the singlet state |g1〉 cannot be magnetically tuned, it can be optically tuned by

inducing a light shift. In the experiments, two optical fields ν1 and ν2 are used to optically

tune the singlet bound state |g1〉. Fig. 4.2 shows the energy level scheme for two-field optical

technique. Theν1 beam with Rabi frequencyΩ1 and detuning∆1, couples the ground singlet

molecular state |g1〉 to the excited molecular state |e 〉. The ν2 beam with Rabi frequency Ω2

and detuning∆2, couples the ground singlet molecular state |g2〉 to the excited molecular
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state |e 〉. The presence of a single optical field ν1 shifts the singlet ground state |g1〉 due to

the AC stark shift. This light shift is dependent on the square of the Rabi frequency Ω1 and

detuning∆1. When a second optical field ν2 is applied in addition to ν1, the position of the

state |g1〉 can be tuned by changing the frequency or intensity of either of the optical fields. In

all the experiments reported in this thesis, the light shift of state |g1〉 is controlled by varying

the frequency of the ν2 optical field and holding constant all other control parameters, such

as the Rabi frequencies,Ω1 andΩ2, the magnetic field B , and the frequency of the ν1 optical

field.

(a) (b)

Figure 4.3 Tuning of the ground state |g1〉. The dotted line shows the position of unshifted ground
state |g1〉. The ν1 and ν2 beams couple the ground molecular states |g1〉 and |g2〉 to the excited
molecular state |e 〉 of the singlet potential. The triplet state |T , k 〉 is magnetically tuned near the
narrow Feshbach resonance. (a) Single optical field ν1 shifts the ground state |g1〉 to |g ′1〉. (b) Two
optical fields ν1 and ν2 tunes the ground state |g1〉 to |g ′′1 〉.

Fig. 4.3a shows the AC stark shift of the ground state |g1〉 by a single optical field ν1.

Fig. 4.3b shows the tuning of the ground state |g1〉 by two optical fields ν1 and ν2. The dotted

line in Fig. 4.3 shows the position of unshifted ground state |g1〉. The triplet state |T , k 〉 is

magnetically tuned near the unshifted position of the bound state |g1〉 (dotted line). In

Fig. 4.3a, |g ′1〉 shows the position of shifted ground state due to the single optical field. In

Fig. 4.3b, |g ′′1 〉 shows the position of shifted ground state due to two optical fields. Optical
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control is achieved by tuning the light shifted state |g ′′1 〉 near the triplet continuum |T , k 〉,
thereby controlling the interactions.

From Chapter 2, the two-photon detuning δ in Hz is given by

δ= (ν2−ν1)−
�Eg2

h
−

ET

h

�

, (4.1)

where ν2 and ν1 are the frequencies of ν2 and ν1 optical beams, Eg2
is the energy of the |g2〉

state, and ET is the energy of the triplet continuum |T , k 〉. The two-photon detuning

δ= 0, (4.2)

happens when the difference in frequency between the two optical beams is equal to

the energy difference between the |g2〉 state and the triplet state |T , k 〉. This condition is

particularly interesting. When δ= 0, the energy of the |g1〉 state is returned to its original

unshifted position- the position when no optical fields are applied. When δ < 0, the energy

of the |g1〉 state is below the original unshifted position and when δ > 0, the energy of the

|g1〉 state is above the original unshifted position. In all the experiments reported in this

thesis, the two-photon detuning is varied by holding the frequency ν1 constant and varying

the frequency ν2. All plots in the following sections, where the two-photon detuning δ is

varied, implies a change in frequency ν2 of the optical beam.

The ground state |g1〉 can be optically tuned around its original unshifted position by

varying the two-photon detuning δ. The tuning rate of the ground state |g1〉 is dependent

on the Rabi frequencies Ω1, Ω2 and two-photon detuning δ. Near the unshifted position,

the tuning rate is given by

Tuning Rate of |g1〉 ≈
Ω2

2

Ω2
1

δ. (4.3)

4.2 Mean-Field Shift Measurement using RF Spectroscopy

In order to demonstrate two-field optical control of interaction in cold atoms, we need

to establish a method to measure the interactions between atoms. In this section, I will

explain in detail the RF spectroscopy technique used to measure the interaction strength.

In the experiments, the three lowest hyperfine states |1〉, |2〉 and |3〉 of 6Li near 543 G are

used to demonstrate this technique. Atoms are initially prepared only in state |3〉. Fig. 4.4a
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(a) (b)

Figure 4.4 Mean-field shift measurement using RF spectroscopy. The states |1〉, |2〉 and |3〉 are the
three lowest hyperfine states of 6Li. RF transfer from the state |3〉 to the state |2〉 (a) without atoms
present in state |1〉 and (b) with atoms present in state |1〉. The atoms in state |1〉 creates a mean-
field interaction induced energy shift (dotted levels) of states |2〉 and |3〉 due to the |1〉− |2〉 narrow
Feshbach resonance near 543.2 G and |1〉− |3〉 broad Feshbach resonance near 690 G, respectively.

shows the hyperfine levels with atoms in state |3〉. The atoms in state |3〉 are transferred

to state |2〉 by applying a resonant RF π pulse. The required frequency of the RF pulse

is dependent on the hyperfine splitting of the states |2〉 and |3〉 at the applied magnetic

field [Zha13].

When atoms are prepared in the states |1〉 and |3〉 (Fig. 4.4b), they interact with each due

to the |1〉 - |3〉 Feshbach resonance at 690 G with a width of 120 G [Bar05]. The interaction

between states |1〉 and |3〉 causes a mean-field shift of their hyperfine energy levels, which is

proportional to the scattering length and the density of atoms in state |1〉. The |1〉− |3〉 two-

body scattering length near 543 G due to the Feshbach resonance at 690 G is a13 ≈−267 a0

[Haz12]. Since their interaction is very weak and attractive near 543 G, the state |3〉 is shifted

downward in proportional to n1a13, where n1 is the averaged density of atoms in state |1〉.
Similarly near the narrow Feshbach resonance at 543 G, states |1〉 and |2〉 interact with

each other causing a shift in their hyperfine levels. The background scattering length for

the states |1〉 and |2〉 is ab g = 62a0. Hence the state |2〉 is shifted upwards away from the

resonance. When the magnetic field is tuned near narrow Feshbach resonance, the shift in

state |2〉 changes as a function of its scattering length. By measuring the RF spectra and

extracting its peak transition frequency, the shift in state |2〉 is measured. The two-body

scattering length for the |1〉 − |2〉mixture is then determined from the measured shift in

state |2〉.
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4.3 Calculation of Line Shape for Mean-field Shifted RF Spec-

tra

In the previous section, I described briefly the mean-field shift measurement using RF spec-

troscopy. Prior to showing the experimental results, I would like to discuss the theoretical

calculation for the line shape of mean-field shifted RF spectra. In all the experiments, the ν1

optical beam has a 1/e intensity radius w1 = 530µm, much larger than the 1/e cloud radii

of the atomic cloud,σz = 135µm (axial) andσr = 7µm (radial). The 1/e intensity radius of

the ν2 beam is w2 = 175µm, comparable to axial size of the atomic cloud. This results in a

spatially dependent mean-field shift, which should be taken into account in calculating

the line shapes for the mean-field shifted RF spectra.

I begin with the case of atoms in pure state |3〉, ie., without the presence of atoms in

state |1〉 and state |2〉. The transition probability [Sho90] for an RF transfer of atoms from

pure state |3〉 to |2〉 is given by

P (νR F ) =
Ω2

R F sin2
�

πτ
Æ

Ω2
R F +ν

2
R F

�

Ω2
R F +ν

2
R F

, (4.4)

where ΩR F is the Rabi frequency of the transition in Hz and νR F is the frequency of the

transition and τ is the duration of the radio frequency pulse. As mentioned in the previous

section, the presence of atoms in state |1〉 cause a mean-field shift in the hyperfine energy

levels of state |2〉 and |3〉. Hence the transition probability from state |3〉 to |2〉 in the presence

of atoms in |1〉 should include a shift∆ν in frequency and can be expressed as

P (νR F ) =
Ω2

R F sin2
�

πτ
Æ

Ω2
R F + [νR F −∆ν]2

�

Ω2
R F + [νR F −∆ν]2

. (4.5)

The shift∆ν is given by

∆ν=
2ħh
m

n̄3D (r) [a13−〈a12〉pr e l
], (4.6)

where a13 is the two-body scattering length for the |1〉 − |3〉 mixture, and 〈a12〉pr e l
is the

two-body momentum averaged scattering length for the |1〉− |2〉mixture and n̄3D (r) is the

average 3D density of atoms in |1〉.
In Section 2.3.6, I have discussed in detail the calculation of momentum averaged

scattering length 〈a12〉pr e l
. I will summarize the results below. By assuming a classical Boltz-
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mann distribution for the relative momentum p between atoms in states |1〉 and |2〉, the

momentum averaged scattering length can be expressed as,

〈a12〉pr e l
=

∫ ∞

0

d p
4πp2

π3/2p 3
0

e −p2/p 2
0 Re[ f (p)] (4.7)

where f (p) is the |1〉− |2〉 forward scattering amplitude derived in Eq. 2.70, p0 =
p

2mkB T ,

T is the temperature of the gas, and m is the mass of 6Li atoms. In the presence of the

optical beams, the |1〉−|2〉 forward scattering amplitude is also dependent on axial position

z and can be expressed as f (z , p).

Previous methods [Haz12] of determining the mean-field shifted RF line shape involved

using Eq. 4.7 and Eq. 4.6 in Eq. 4.5, where the scattering length is already momentum

averaged. However, for the experiments reported in this thesis, the RF line shape determined

from Eq. 4.5 using the momentum averaged scattering length 〈a12〉pr e l
in Eq. 4.7 disagreed

with the experimental results. Therefore, a new approach to determine the RF line shape

was required.

In the new model, the atoms in state |2〉 is considered to be immersed in a bath of per-

turbing atoms in state |1〉with 3D density n3D (r) and normalized momentum distribution

W (pp ). For the non-degenerate regime, the momentum distribution of perturbers W (pp )

in state |1〉 and the momentum distribution of atoms W (pa ) in state |2〉 can be expressed as,

W (p′) =
1

π3/2p 3
0

e −p′2/p 2
0 . (4.8)

where p′ = pp for the perturbers and p′ = pa for the active atoms.

Instead of calculating the transition probability of atoms using the relative momentum-

averaged scattering length, a two-step approach is used to calculate the final transition

probability.

(i) The transition probability of atoms with momentum pa in a bath of perturbers with

momentum distribution W (pp ) is initially calculated by using the perturber-momentum

averaged scattering length.

(ii) The transition probability obtained in step (i) is then integrated over the atom’s momen-

tum distribution W (pa ) to evaluate the final transition probability.

In order to evaluate the transition probability of atoms with momentum pa (step (i) -

listed above), the pa dependent scattering length of the atoms a12(pa ) in a bath of perturbers
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should be first evaluated. Therefore, the |1〉− |2〉 forward scattering amplitude f (p) is first

averaged over the momentum distribution of perturbers W (pp ). Furthermore, in the optical

control experiments reported here, the size of the ν2 beam is comparable to the axial size (z -

direction) of the atomic cloud (see Section 4.5), which creates spatially varying interactions.

Therefore, in the presence of optical beams, the |1〉− |2〉 forward scattering amplitude f (p)

is dependent on the position z due to the spatially varying Rabi frequencyΩ2(z ), and hence

denoted as f (z , p).

The optically controlled perturber averaged two-body scattering length a o p t
12 (pa , z ) for

the |1〉− |2〉mixture is given by

a o p t
12 (pa , z ) =

∫

d 3pp W (pp )Re[ f (z , p)]. (4.9)

Here, the relative momentum p= (pa −pp )/2. Note that a o p t
12 (pa , z ) also depends on Ω1, Ω2,

ν1, ν2, and the magnetic field B . A simplified notation of the |1〉− |2〉 perturber averaged

scattering length a o p t
12 (pa , z ) is used in this section to avoid confusion. In the absence of the

optical fields, the |1〉− |2〉 scattering length a12 depends only on B and becomes,

a12(pa ) =

∫

d 3pp W (pp ) Re[ f (p)]. (4.10)

After changing the integration variable from pp to p using the relationship pp = pa − 2p,

Eq. 4.9 becomes

a o p t
12 (pa , z ) =−

8

π3/2p 3
0

∫

d 3p e −(p
2
a+4p2−4pa ·p)/p 2

0 Re[ f (z , p)] (4.11)

Using d 3p= p 2 d p dΩp in Eq. 4.11 yields

a o p t
12 (pa , z ) =−

8

π3/2p 3
0

e −p2
a /p

2
0

∫ ∞

0

d p p 2 e −4p 2/p 2
0 Re[ f (z , p)] IΩ (4.12)

where IΩ is the integration over the perturber solid angle dΩp and is given by

IΩ = 2π

∫ π

0

dθ sinθ e 4pa p cosθ/p 2
0

=
πp 2

0

pa p
sinh

�

4pa p

p 2
0

�

(4.13)
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Substituting Eq. 4.13 in Eq. 4.12 gives

a o p t
12 (pa , z ) =−

8

pa p0
p
π

∫ ∞

0

d p p e

�

− 4p 2+p 2
a

p 2
0

�

sinh

�

4pa p

p 2
0

�

R e { f (z , p )}. (4.14)

We see from the above equation that a o p t
12 (pa , z ) depends on pa = |pa | and z . The density

dependent frequency shift in Hz for atoms with momentum pa is then written as

∆ν (pa , r) =
2ħh
m

n3D (r) [a13−a o p t
12 (pa , z )], (4.15)

where n3D (r) is the 3D density of perturbers with momentum pp, a13 is the two-body scatter-

ing length for the |1〉−|3〉mixture, and m is the mass of the atom. The transition probability

of atoms with momentum pa from state |3〉 to |2〉 in the presence of atoms in state |1〉 is

written as

P (pa , r,νR F ) =
Ω2

R F sin2
�

πτ
Æ

Ω2
R F + [νR F −∆ν(pa , r)]2

�

Ω2
R F + [νR F −∆ν(pa , r)]2

, (4.16)

whereΩR F is Rabi frequency of the transition in Hz andνR F is the frequency of the transition

and τ is the duration of the radio frequency pulse. The frequency shift∆ν (pa , r) in Hz is

given in Eq. 4.15.

Eq. 4.16 gives the individual transition probability of atoms with momentum pa . The

average transition probability of the atoms is then evaluated (step (ii) - listed above) by

integrating the individual transition probability (Eq. 4.16) over the momentum distribution

of atoms. The atom-momentum averaged transition probability P (r,νR F ) from state |3〉 to

|2〉 in the presence of atoms in state |1〉 is written as,

P (r,νR F ) =

∫

d 3pa W (pa )P (pa , r,νR F ). (4.17)

The one-dimensional z-dependent density of atoms transferred from state |3〉 to state

|2〉 is then determined from the pa -dependent transition probability, by integrating over

the radial spatial profile of the active atoms, which are initially in state |3〉,

n2(z ,νR F ) =

∫ ∞

0

2πρdρn3D (ρ, z )P (r,νR F ) (4.18)

Eq. 4.18 determines the spatial profile of the transferred atoms and is one of the most
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important results of the theoretical model. Particularly, for experiments demonstrating

designer spatial control of interactions (Section 4.6), the axial profile of the transferred

cloud from state |3〉 to state |2〉 is critical in understanding the experimental results. Eq. 4.18

provides a simple model for predicting the axial profiles of the transferred cloud and is

compared to the measurements in Fig. 4.12.

The radio-frequency spectrum is determined by the total number of atoms transferred

to state |2〉 by integrating the 1D density in Eq. 4.18,

N2(νR F ) =

∫ ∞

−∞
d z n2(z ,νR F ). (4.19)

The normalized fraction of the atoms remaining in state |3〉 is given by,

N3(νR F )/N0 = 1−N2(νR F )/N0, (4.20)

where N0 is the initial number of atoms in state |3〉. Eq. 4.20 is another important result of our

model, which is used to compare the measured RF line shapes in both optical (Section 4.5)

and magnetic control (Section 4.4) experiments.

I will conclude this section by calculating relative momentum averaged scattering length

ā12 (Eq. 4.7) with the new model. Here, the momentum averaged scattering length a o p t
12 (z )

is calculated by initially evaluating the perturber momentum averaged scattering length in

Eq. 4.9 and then integrating Eq. 4.9 over the momentum distribution of the active atoms,

W (pa ),

a o p t
12 (z ) =

∫

d 3pa W (pa ) a o p t
12 (pa , z ). (4.21)

where W (pa ) and a o p t
12 (pa , z ) is given in Eq. 4.8 and Eq. 4.9, respectively. Similarly, in the

absence of optical beams, the momentum averaged scattering length ā12 is given by

ā12 =

∫

d 3pa W (pa ) a12(pa ) (4.22)

where a12(pa ) is given in Eq. 4.10. I would like to particularly emphasize that the scattering

length determined using the atom-perturber momentum average (Eq. 4.21 and Eq. 4.22

) produces the same result as the scattering length determined by relative momentum

average, Eq. 4.7. However, the RF line shape evaluated using the atom-perturber momentum

averaged scattering length produces a markedly different and correct result than the RF
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line shape evaluated using the relative momentum averaged scattering length.

4.4 Magnetically Tuning the Interactions near the Narrow

Feshbach Resonance

In this section, I present first the experimental results demonstrating magnetic tuning

(no optical fields) of the scattering length near the narrow Feshbach resonance. I will also

discuss the experimental procedure for the measurement of mean-field frequency shifts in

the RF spectra and the determination of scattering length from the measured mean-field

frequency shifts.

A 50-50 mixture of 6Li atoms are prepared in the two lowest hyperfine states |1〉 and

|2〉. After evaporatively cooling the atoms at 300 G in a CO2 laser optical trap, the trap is

re-raised to 2% of the maximum trap depth. The magnetic field is then ramped to 528 G,

where the |1〉− |2〉mixture is non-interacting. An RF sweep then transfers atoms from state

|2〉 to state |3〉, resulting in a |1〉 − |3〉mixture. The trap depth is then raised to 5% of the

total trap depth and the magnetic field is ramped to the field of interest, near the narrow

Feshbach resonance (Br e s = 543.27 G) in 6Li. The magnetic field typically stabilizes after a

wait time of 3 seconds due to the inductance of the high-field coils. After achieving a stable

magnetic field, an RF pulse is applied for 1.2 ms to transfer the atoms from state |3〉 and

state |2〉. The remaining atoms in state |3〉 are imaged as a function of frequency, after a

time of flight of 200 µs. This yields the mean-field shifted RF spectra in Fig. 4.5 (orange).

To measure the unshifted RF spectra Fig. 4.5 (green), the above procedure is repeated

without atoms in state |1〉. Here, a resonant optical pulse is applied to kill atoms in state |1〉
and the residual atoms in state |2〉. The RF spectrum is then measured for the pure state

transition from |3〉 to |2〉, without atoms in state |1〉. The unshifted RF spectra is also used

to calibrate the magnetic field. In order to avoid measurement artifacts due to systematic

drifts in the magnetic fields, the RF spectra is measured by interweaving the experiment in

the presence (shifted RF spectra) and absence (unshifted RF spectra) of atoms in state |1〉.
Fig. 4.5 shows the measured RF spectra for different magnetic fields near the narrow

Feshbach resonance. The RF spectra with and without the atoms in state |1〉 are shown

as orange dots and green dots, respectively. The RF spectra without atoms in state |1〉 are

fitted with the Eq. 4.4 (green curves). Solid orange lines are the fit of shifted RF spectra with

Eq. 4.20, where a12 (pa ) in Eq. 4.10 depends only on the magnetic field B . The unshifted RF
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(d) (e)

Figure 4.5 Mean-field shift measurement for different magnetic fields near the magnetic Fesh-
bach resonance. The RF spectra with and without the atoms in state |1〉 are shown in orange dots
and green dots, respectively. Solid green lines are the fit of the unshifted RF spectra with Eq. 4.4.
Solid orange lines are the fit of the shifted RF spectra with Eq. 4.20, where a12 (pa ) in Eq. 4.10 de-
pends on the magnetic field B . The experimental parameters used to generate the solid orange
lines are compiled in the Table 4.1.

104



spectra is used to calibrate the magnetic field.

Fig. 4.5a and Fig. 4.5e represents the mean-field shift spectra where the |1〉−|2〉 scattering

length is minimum, almost equivalent to the background scattering length. For an atomic

density n̄ ≈ 1012 atoms/cm3, the shift is -120 Hz at the background. This mean-field induced

frequency shift is due to the interaction between the states |1〉− |3〉 and the states |1〉− |2〉
away from the resonance. The |1〉 - |3〉 Feshbach resonance is at 690 G and its scattering

length near 543 G is -267 a0. The background scattering length of the states |1〉 - |2〉 near

543 G is 62 a0. Hence the |1〉 - |3〉 scattering length dominates and the shift is negative

(background shift) for magnetic fields |B −Br e s |>>∆B (Fig. 4.5a and Fig. 4.5e).
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Figure 4.6 Measured mean-field shifts (red dots) as a function of magnetic field. Solid blue curve
is calculated from the shifted RF spectra predicted using Eq. 4.20.

The maximum negative shift of -189 Hz is observed at B −Br e s =−27 mG and shown

in Fig. 4.5b. The scattering length a12 is also maximum and positive at this magnetic field.

When the magnetic field is tuned to the resonance B − Br e s = 0 mG, the shift in the RF

spectra is -109 Hz. From Fig. 4.5c, we can also see that at B −Br e s = 0 mG, the amplitude

of the shifted RF spectra is suppressed and the line shape is broadened. This is due to the

large resonant interaction between the states |1〉− |2〉.
As the magnetic field is tuned above resonance, the RF spectra shift further to the right,

corresponding to positive frequency shifts. Fig. 4.5d shows a shift of +7 Hz at B −Br e s = 27
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mG. The scattering length a12 is maximum and negative at this magnetic field. When the

magnetic field is increased further, the RF spectra shifts back to the left (decreasing positive

values of frequency shifts) and reaches the background shift of -120 Hz as shown in Fig. 4.5e.

From Fig. 4.5, the mean-field induced shifts in the RF spectra for different magnetic

fields are extracted and plotted in Fig. 4.6 (red dots). The solid blue curve in Fig. 4.6 is

calculated from the shifted RF spectra predicted using Eq. 4.20. The predicted mean-field

shifts (solid blue curve in Fig. 4.6), is in good agreement with the measured mean-field

shifts (red dots).
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Figure 4.7 Momentum averaged scattering length ā12 as a function of magnetic field. The red
dots is determined by using n̄1 = 3.6×1011 cm−3 and the measured mean-field shifts (Fig. 4.6) in
Eq. 4.23. Solid green curve is the prediction of the continuum-dressed state model (Eq. 4.22).

From the measured frequency shifts, an average two-body scattering length ā12 for the

narrow Feshbach resonance can be determined. The average mean-field frequency shift is

defined by

∆νme a s =
2ħh
m

n̄1 (a13− ā12), (4.23)

where n̄1 is the average three-dimensional density of atoms in state |1〉. For the data shown
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in Fig. 4.6, the background two-body scattering length far from the resonance is

a13 ≈ −267 a0 (4.24)

a12 = ab g = 62 a0 (4.25)

and the background mean-field frequency shift is,

∆νme a s =−120 Hz (4.26)

Using Eq. 4.26 - Eq. 4.25 in Eq. 4.23, yields n̄1 = 3.6×1011 cm−3. Applying n̄1 as the fixed

fit parameter in Eq. 4.23 for all the mean-field shifts in Fig. 4.6, the momentum averaged

two-body scattering length ā12 (red dots) is determined and shown in Fig. 4.7. The solid

green curve in Fig. 4.7 is the momentum averaged scattering length calculated from Eq. 4.22.

The predicted mean-field shifts shown in Fig. 4.6 (solid blue curve) and the momentum

averaged scattering length shown in Fig. 4.7 (solid green curve) are generated using same

parameters given in Table 4.1.

Fig. 4.7 shows that the tuning range of the two-body scattering length is between +5 ab g

(BEC side of resonance) and −5ab g (BCS side). The tunability is primarily limited by the

energy-dependence of the scattering length near the narrow Feshbach resonance, i.e.,

the large effective range. The scattering length plot shown in Fig. 4.7 is comparable to the

results reported previously [Haz12]. Hence extracting scattering lengths from the mean-field

shifted RF spectra provides a reliable technique to measure two-body scattering lengths

near a narrow Feshbach resonance in ultra-cold Fermi gases.

4.5 EIT Optical Control of Interactions near the Narrow Fes-

hbach Resonance

In the previous section, I discussed the use of RF spectroscopy to measure mean-field

shifts and to determine the scattering length from the measured mean-field shifts near

the narrow Feshbach resonance. Now that we have a reliable method to determine the

scattering length, optical control of scattering interactions can be demonstrated in an

ultra-cold Fermi gas by exploiting this method. In this section, the experimental results

demonstrating optical control of scattering interactions by measuring mean-field induced
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frequency shifts in RF spectra will be presented.

A 50-50 mixture of atoms in the states |1〉 and |2〉 are evaporatively cooled in a CO2 laser

trap at 300 G. The magnetic field is then ramped to 528 G, where the |1〉 − |2〉mixture is

non-interacting. At 2% of the maximum trap depth, an RF sweep transfers atoms from state

|2〉 to state |3〉, resulting in a |1〉−|3〉mixture. The trap depth is raised to 5% of the maximum

and the magnetic field is ramped to the field of interest.

To measure frequency shifts in the RF spectra arising from mean-field interactions, a

ν2 beam with Rabi frequency Ω2 = 2.1 γe is applied initially. The ν2 beam creates a non-

negligible confinement in the axial z direction of the cloud. The atoms reach equilibrium

in the combined potential created by the ν2 beam and the CO2 laser trap in 50 ms. The ν1

beam with Rabi frequency Ω1 = 0.5 γe and detuning∆1 = ν1−νe g1
= 19 MHz (Refer Fig. 4.2)

is then applied. Concurrently, an RFπ pulse is applied for 1.2 ms, which transfers the atoms

from state |3〉 to state |2〉. The atoms in state |3〉 are then imaged after a time of flight of

200 µs, yielding the frequency shifted RF spectra. The unshifted RF spectra is obtained by

removing the atoms in state |1〉 by a resonant imaging pulse and then performing the RF

spectroscopy for the bare |3〉 - |2〉 transition in the presence of optical beams ν1 and ν2.

Fig. 4.8 shows the measured RF spectra for different two-photon detuning δ (by varying

ν2 and holding ν1 constant ), at B = Br e s +0.010 G. The RF spectra with and without atoms

in state |1〉 are shown as magenta dots and purple dots, respectively. The unshifted RF

spectra without the atoms in state |1〉 are fitted with Eq. 4.4 (purple curve). Solid magenta

lines are the fit of shifted RF spectra with Eq. 4.20 using measured parameters.

The experimental parameters used to calculate the RF spectra in Fig. 4.8 are summarized

in the Table 4.1. The temperature T ≈ 1µK is used to fit all shifted RF spectra in Fig. 4.8

with Eq. 4.20. But the measured temperature from the cloud size and trap parameters is

T ≈ 1.4µK. This discrepancy might be due to the additional potential created by the ν2

beam thereby making the measurement of the combined CO2-ν2 optical trap parameters

particularly challenging.

Fig. 4.8a and Fig. 4.8e represent the mean-field interaction induced frequency shifts

in the RF spectra, where the |1〉 − |2〉 scattering length a12 is minimum and is approxi-

mately equivalent to the background scattering length ab g , i.e. a12 ≈ ab g = 62a0. For the

experimental conditions, the shift is -95 Hz at the background.

The maximum negative shift of -199 Hz, is observed at δ = - 0.525 MHz and is shown in

Fig. 4.8b. The scattering length a12 is maximum and positive at this frequency. Here, the
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Figure 4.8 Mean-field shift measurement for different two-photon detuning, δ, near a magnetic
Feshbach resonance. The RF spectra with and without the atoms in state |1〉 are shown in ma-
genta dots and purple dots respectively. Solid purple lines are the fit of unshifted RF spectra with
Eq. 4.4. Solid magenta lines are the fit of the shifted RF spectra with Eq. 4.20 using the experimen-
tal parameters listed in the Table 4.1.
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Table 4.1 Experimental parameters used to calculate mean-field shifted RF spectra in Fig. 4.8

Experimental Parameter Symbol Value

Rabi frequency of ν1 beam Ω1 0.5 ± 0.01 γe

Rabi frequency of ν2 beam Ω2 2.1 ± 0.1 γe

Detuning of ν1 beam ∆1 19 MHz
Temperature of the atomic cloud T ≈ 1 µk
Axial frequency of the
total (CO2 + ν2 beam) trap ωz 2π × (56 ± 0.5) Hz
Radial frequency of the CO2 trap ωx 2π × (777 ± 9.5) Hz
Radial frequency of the CO2 trap ωy 2π × (960 ± 4.32) Hz
Rabi frequency of RF pulse ΩR F 350 ± 2 Hz
|1〉-|3〉 scattering length near 543 G a13 - 267 a0

singlet ground state |g1〉 is below the triplet continuum |T , k 〉, BEC side (See Chapter 2 for

an explanation of the BEC-BCS crossover) and the interactions are repulsive. When δ is

increased further, the mean-field shift decreases. At δ = - 0.26 MHz, the singlet state |g1〉 is

almost tuned to be degenerate with the triplet state |T , k 〉 leading to resonant interactions

and the measured shift in the RF spectra is - 66 Hz, Fig. 4.8c.

As δ is increased further, the RF spectra shifts to the right. At δ = -0.105 MHz, Fig. 4.8d,

the observed mean-field shift is +7 Hz, where the scattering length is maximum and nega-

tive. Here, the singlet ground state |g1〉 is optically tuned to lie above the triplet continuum

|T , k 〉, BCS side and the interactions are attractive. When δ is increased further, the shifted

RF spectra moves back to the left and reaches the background shift of -95 Hz as shown in

Fig. 4.8e.

Fig. 4.9 (red dots) shows the measured frequency shifts of the RF spectra, as a function

of two-photon detuning δ, by varying frequency ν2 and holding the frequency ν1 constant.

The solid blue line is the predicted mean-field shift, which is obtained from Eq. 4.20 by

extracting the νR F corresponding to the maximum atom transfer from state |3〉 to |2〉. The

measured and the calculated mean-field shift are in excellent agreement.

The next step is to estimate the optically controlled momentum averaged scattering

length ā o p t
12 from the measured mean-field shift in Fig. 4.9. As in Eq. 4.23 the measured

frequency shifts∆νme a s can be expressed as
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Figure 4.9 Measured mean-field shifts (red dots) as a function of two-photon detuning δ, by
varying ν2 and holding ν1 constant. Blue curve: Predicted mean-field shift from Eq. 4.20.

∆νme a s =
2ħh
m

n̄1 (a13− ā o p t
12 ), (4.27)

where n̄1 is the average three dimensional density and is used as a fixed fit parameter for

all of the data. Substituting the background two-body scattering length (62 a0) and the

corresponding mean-field shift (- 95 MHz from Fig. 4.9) in Eq. 4.27, yields n̄1 = 1.5×1011 cm−3.

The momentum averaged scattering length ā o p t
12 (red dots) in Fig. 4.10 are then determined

from the measured mean-field shifts in Fig. 4.9 (red dots) by using n̄1 = 1.5×1011 cm−3 in

Eq. 4.27 for all data points.

To generate the green curve in Fig. 4.10, the optically controlled spatially dependent

two-body scattering length a o p t
12 (z ) is first calculated as a function of axial position z from

Eq. 4.21. Note that a o p t
12 generally depends on Ω1, Ω2, ν1, ν2, and the magnetic field B . The

size of the ν2 beam is comparable to the axial size of the atom cloud (z - axis) and hence

the Rabi frequency Ω2(z ) is z-dependent. This makes the scattering length a o p t
12 spatially

dependent. The optically controlled scattering length at the center of the cloud a o p t
12 (0)

(Eq. 4.21) is evaluated at z = 0 and is shown in Fig. 4.10 (green curve). The calculated optically

controlled two-body scattering length a o p t
12 (0) (green curve) is in excellent agreement with

the momentum averaged scattering length ā o p t
12 (red dots) determined from the measured

mean-field induced frequency shifts in RF spectra. The green curve in Fig. 4.10 and the
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Figure 4.10 Momentum averaged scattering length ā
o p t
12 as a function of two-photon detuning

δ, by varying ν2 and holding ν1 constant. The momentum averaged scattering length ā
o p t
12 (red

dots) are determined by using n̄1 = 1.5×1011 cm−3 in Eq. 4.27 for the measured mean-field shifts
from Fig. 4.9. Solid green curve is optically controlled scattering length at the center of the cloud
a

o p t
12 (0) (Eq. 4.21) predicted from the theoretical model.

predicted mean-field shift (blue curve) in Fig. 4.9 are evaluated using the same set of

parameters summarized in Table 4.1.

Fig. 4.10 illustrates that the EIT method of controlling interactions tunes the two-body

scattering length between+7 ab g (BEC side of resonance) and−5 ab g (BCS side) by changing

the two-photon detuning δ by just a few MHz, the same range as obtained by magnetic

tuning, Fig. 4.7. In both cases, the tunability is primarily limited by the energy-dependence

of the scattering length near the narrow Feshbach resonance, i.e., the large effective range.

For the time scale (1.2 ms) used in the optical control experiments, the atom loss due to

spontaneous scattering is negligible.

4.6 Spatial Control of Interactions

In the last section, I will discuss experiments demonstrating spatial control of the inter-

actions using the ν1 and ν2 optical fields. As discussed previously in this chapter, optical

fields ν1 and ν2 achieved the same range of tunability in scattering length as magnetic field
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tuning. This unprecedented level of optical tunability enables experiments that demon-

strate designer spatial control of interactions, where different interaction spatial profiles

can be imprinted on the atomic cloud by changing the frequency of the optical fields by

just a few MHz. Using this method, an interaction “sandwich" is created where the central

region of the atomic cloud is resonantly interacting and the wings of the cloud are weakly

interacting, Fig. 4.11.

Figure 4.11 The optical field arrangement for creating an interaction “sandwich." Both ν1 and ν2

beams illuminate the central region of the atomic cloud. The ν1 and ν2 beams make the central
region of the atomic cloud resonantly interacting with suppressed spontaneous scattering. The
outer regions of the atomic cloud illuminated only by the ν1 beam are weakly interacting.

Fig. 4.11 illustrates the optical field configuration for the spatial control of interaction

in an atomic cloud. The 1/e cloud radii are σz = 135µm (axial) and σr = 7µm (radial).

The 1/e intensity radius of the ν1 beam is w1 = 530µm. Hence the intensity of ν1 beam is

nearly uniform across the cloud. The 1/e intensity radius of the ν2 beam is w2 = 175µm.

Although the size of the ν2 beam is comparable to the axial sizeσz of the atom cloud, due

to the Gaussian shape of the optical beam, the Rabi frequency Ω2(z ) is z-dependent. Hence

the spatial dependence of Ω2(z ) enables spatial control of the two body scattering length

a o p t
12 (z ) and creates a sandwich of resonantly and weakly interacting regions.

As before the |1〉− |2〉mixture is evaporatively cooled at 300 G and the CO2 laser trap

is re raised to 2% of total trap depth. The magnetic field is adiabatically changed to 528 G,

where |1〉− |2〉mixture is non-interacting. At 528 G, atoms in state |2〉 is transferred to state

|3〉 by applying an RF sweep for 20 ms. The trap depth is raised to 5% of the maximum and

the magnetic field is ramped to the field of interest, B = Br e s +0.010 G. With the |1〉 − |3〉
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mixture, the magnetic field is allowed to stabilize for 3 seconds. After the magnetic field

is stabilized, the ν2 beam with Rabi frequency Ω2 = 2.1 γe is applied. The ν2 beam creates

a confinement in the axial z direction of the cloud. The atoms reach equilibrium in the

combined potential created by the ν2 beam and the CO2 laser trap for 50 ms. The ν1 beam

with Rabi frequency Ω1 = 0.5 γe and detuning∆1 = 19 MHz (Refer Fig. 4.2) is then applied.

After illuminating the atoms with the ν1 and ν2 beams, an RF π pulse (1.2 ms) that

transfers atoms from state |3〉 to |2〉 in the presence of atoms in state |1〉 is applied. The

atoms arriving in state |2〉 are imaged as a function of δ, by varying ν2 and holding ν1

constant. In this experiment, νR F is also held constant and chosen to be resonant when the

scattering length is small. From Fig. 4.9 and Fig. 4.10, we can see that the mean-field shift is

- 95 MHz at the background scattering length. Hence νR F is chosen to be - 95 MHz.

Fig. 4.12 illustrates spatial control of interactions, using the two-photon detuning δ

as a control parameter. The measured 2D absorption images are shown in Fig. 4.12a. The

corresponding 1D axial profiles are shown in Fig. 4.12c (blue). The transferred fraction of

atoms in state |2〉 depends on the spatially varying, optically controlled |1〉− |2〉 scattering

amplitude. Fig. 4.12d shows the two-body scattering length a o p t
12 (z ) used to generate the

predicted 1D spatial profiles (red curves in Fig. 4.12c) and the predicted 2D absorption

images in Fig. 4.12b.

Excellent quantitative agreement is obtained between the measured (blue) and the

calculated (red) 1D axial profiles, Fig. 4.12c. The asymmetry in the 1D profiles for δ=−0.64

MHz and δ=−0.54 MHz is due to the off-center position of the ν2 beam, which is taken

into account in generating the calculated 1D profiles.

A two-photon detuning δ=−0.64 MHz, creates an interaction “sandwich," where the

central region of the atomic cloud is resonantly interacting with a12 ≈ 12 ab g and is enclosed

by two weakly interacting regions with a12 ≈ 1ab g (Fig. 4.12d). This is evident from the

measured 2D profile in (Fig. 4.12a), where the transferred fraction of atoms in the central

region of the cloud is heavily suppressed due to the large frequency shift arising from

resonant interactions.

A small frequency change fromδ=−0.64 MHz toδ=−0.43 MHz, inverts the interaction

“sandwich" by making the central region more weakly interacting than the wings of the

atomic cloud as shown by the predicted spatially varying scattering length in (Fig. 4.12d).

This demonstrates that the sign of the interactions between the central and the outer regions

of the cloud can be inverted. For δ = −0.11 MHz, the interactions in the central region
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Figure 4.12 Designer spatial interaction patterns in an ultra-cold gas of 6Li atoms versus two-
photon detuning δ, by varying ν2 and holding ν1 constant. (a) Measured false color 2D absorp-
tion images of atoms arriving in state |2〉 from state |3〉 in the presence of atoms in state |1〉; (b)
Predicted 2D images using measured parameters in Eq. 4.18; (c) Normalized 1D axial profiles
n1D /n0, where n0 is the peak density with no atoms in state |1〉. Measured (blue) and calculated
(red) from Eq. 4.18; (d) Momentum averaged two-body scattering length a

o p t
12 (Eq. 4.21) used to

generate the predicted 2D and 1D spatial profiles in (b) and (c), respectively.
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become attractive with a12 ≈−5ab g and the interactions in the wings become repulsive

with a12 ≈ 10 ab g . As δ is tuned from below the two-photon resonance, δ=−3.26 MHz, to

above the two-photon resonance, δ =+0.75 MHz, the interactions in the central region

of the cloud change sign from repulsive to attractive. Hence, a tuning range of just 4 MHz

imprints widely diverse interaction “designs" on the atomic cloud.

In conclusion, the results shown in this chapter demonstrate optical tunability of scat-

tering interactions in an ultra-cold gas of 6Li atoms near an energy-dependent narrow

Feshbach resonance. EIT optical control of interactions achieves the same level of tunabil-

ity as magnetic control, which has never been demonstrated before. Further, EIT optical

control is also shown to achieve designer spatial control of interactions, where spatially

dependent interaction profiles were imprinted by small MHz frequency changes in the

optical fields. Although spatially varying interactions based on optical techniques have

been reported before, previous experiments either suffered from extremely short (10 µs)

lifetimes [Yam10] or limited optical tunability, 0.2 abg [Cla15]. Further, all-optical manipu-

lation of spatial interaction profiles has not been previously demonstrated. Of particular

significance is the first realization of an interaction “sandwich" with resonantly and weakly

interaction regions in an atomic cloud, demonstrating the versatility of the EIT method.
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CHAPTER

5

OPTICAL PROBING OF AN ENERGY

DEPENDANT NARROW FESHBACH

RESONANCE

In a magnetic Feshbach resonance, external magnetic fields are used to tune the total energy

of two colliding atoms in an energetically open channel into resonance with a bound dimer

state in a closed channel. However, for the case of a narrow Feshbach resonance, where

the width of the resonance∆B is comparable to the relative energy of the incoming atom

pair, the interactions are momentum-dependent [Ho12; Haz12] and the resonance can

be tuned energetically. This offers tremendous possibilities in realizing novel quantum

phases in ultracold gases such as stable transitionally invariant gapless superfluid states,

breached-pair superfluidity [For05] and synthetic FFLO (Fulde-Ferrell-Larkin-Ovchinnikov)

states [He18].

Further, the effective range re is inversely proportional to the width of the resonance

∆B . The narrow Feshbach resonance in 6Li near 543.27 G (width∆B = 0.1G ) is particularly
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interesting due the anomalously large effective range re ≈−7×104 a0, where a0 is the Bohr

radius. In contrast, for the broad Feshbach resonance in 6Li at 832 G (width∆B = 300G ),

the effective range re ≈ 1 a0. The large effective range of the narrow Feshbach resonance in
6Li, coupled with resonant interactions, can be exploited to study neutron matter at sub

nuclear densities in the regime k f re ¦ 1 (k f is the Fermi momentum), which is critical for

understanding the physics of neutron stars and supernova.

Although energy-dependent narrow Feshbach resonances with momentum dependent

interactions offer wide possibilities to explore new domains in atomic gases, there have

been only limited number of experimental studies. Further, in all previous studies, external

magnetic fields were used to tune the energy of the colliding atom pair (continuum) across

the bound molecular state to create narrow Feshbach molecules [Str03], measure two-body

interactions [Haz12], and to study three-body recombination loss [Li18]. Optical control of

interactions [Fed96; BJ97; Fat00; Eno08; The04; Yam10; Bau09a; Jag14; Cla15] provides a new

way of investigating a Feshbach resonance by tuning the closed channel molecular bound

state across the open channel continuum, but has been extremely limited in applicability

due to atom loss from spontaneous scattering.

In Chapter 4, optical control of interactions near the narrow Feshbach resonance in 6Li

was demonstrated using closed-channel electromagnetically induced transparency. In this

scheme, two optical fields are used to tune the closed channel molecular bound state near

a magnetic Feshbach resonance by changing the frequency of the optical fields [WT12a;

WT12b], with suppressed atom loss through destructive quantum interference. The closed-

channel EIT method also offers the possibility of creating synthetic FFLO states using

momentum-selective control of interactions [He18] and emulating the physics of neutron

matter by controlling the effective range, which requires a thorough understanding of opti-

cally controlled momentum-dependent interactions near a narrow Feshbach resonance.

In this chapter, I will discuss experiments to investigate momentum-dependent in-

teractions near the narrow Feshbach resonance in 6Li by using the closed-channel EIT

method as an optical vernier. The closed-channel EIT methods convert mG changes in

magnetic fields into MHz changes in frequency, thereby allowing high precision studies of

collisional interactions near a Feshbach resonance. I would like to emphasize that these

types of studies cannot be pursued by using single field optical techniques [Bau09a; Cla15]

and are only possible because of the closed-channel EIT method, as it compensates a a

single field momentum-dependent light shift with a two-field light shift.

118



As explained in Chapter 4, the molecular bound state is tuned by changing the frequency

of one laser. Two-photon atom loss spectra are measured at different magnetic fields both

on the atomic side (BCS) above and the molecular side (BEC) below the resonance. An

asymmetric spectral shift of the loss spectra is observed only on the BCS side of the reso-

nance, similar to the previously reported asymmetry in the three-body loss and two-body

scattering length near the narrow Feshbach resonance. The atom loss spectra exhibit a

rich structure, reflecting the presence of momentum-dependent interactions and are in

excellent agreement with our continuum-dressed state model (Chapter 2) in both shape

and magnitude. However a new shift in the two-field spectra is observed, which cannot be

explained by our theoretical model.

I will begin this chapter by presenting the calculation of optically induced atom loss from

the two-body loss constant K2 (derived in Chapter 2). In Section 5.2, measurement of atom

loss spectra at different magnetic fields both on the atomic side (BCS) and the molecular

side (BEC) of the resonance will be presented. The atom loss spectra are compared to the

theoretical prediction from Section 5.1. The asymmetric spectral shift of the loss spectra

observed on the atomic side of the resonance will be discussed in Section 5.3.

5.1 Calculation of Optically Induced Atom Loss from K2

In Chapter 2, I derived the two-body loss rate constant K2 using the continuum-dressed

state model. In this section, I will calculate the optically induced atom loss from the two-

body loss rate constant K2.

Let n↑ and n↓ be the density of spin up and spin down atoms in the two hyperfine levels,

respectively. The total loss rate Ṅ is

Ṅ =

∫

d 3~r (ṅ↑+ ṅ↓) (5.1)

The loss rate per unit volume can be expressed as

ṅ↑ = ṅ↓ =−n↓ vr e l σi ne l a s t i c n↑ (5.2)

where n↓ vr e l σi ne l a s t i c is the collision rate. The two-body loss rate constant K2(k ) from
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Eq. 2.65 is given by,

K2(k ) = vr e l σi ne l a s t i c . (5.3)

Substituting Eq. 5.2 and Eq. 5.3 in Eq. 5.1, yields

Ṅ =−2

∫

d 3~r K2(k )n↑n↓ (5.4)

Assuming a classical Boltzmann distribution of relative momentum k between atoms,

the relative momentum averaged two-body loss rate constant K2 is given by,

K2 =

∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 K2(k ) (5.5)

Substituting Eq. 5.5 in Eq. 5.4, gives

Ṅ = −2

∫

d 3~r n↑n↓

∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 K2(k )

= −
1

2

∫

d 3~r [n (~r )]2
∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 K2(k ) (5.6)

Rewriting Eq. 5.6 in terms of the average density n̄ gives,

Ṅ =
N

2
n̄

∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 K2(k ) (5.7)

where the average density n̄ is given by

n̄ ≡
1

N

∫

d 3~r [n (~r )]2. (5.8)

Assuming

Γ ≡
1

2

n̄

N

∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 K2(k ) (5.9)
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Substituting Eq. 5.9 in Eq. 5.7 yields,

Ṅ

N 2
=−Γ

Integrating both sides and solving for N (t ) gives,

∫ N

N0

d N

N 2
=−Γ

∫ t

0

d t

N (t )
N0

=
1

1+N0Γ t
, (5.10)

where N0 is the initial total atom number per spin state. Eq. 5.10 is used to predict the atom

loss when there is no spatial dependence in the optical parameters. In all experiments

reported here, the size of the ν2 beam is comparable to the axial size of the atom cloud,

resulting in a spatially dependent Rabi frequency Ω2(z ) of the ν2 beam. Therefore, Eq. 5.10

cannot be used to compare our experimental results and warrants a different method to

calculate the atom number, which I present here.

The 1D density of a thermal gas in an optical trap with axial frequencyωz , temperature

T , and atomic mass m is written as

n1D (z ) =
N0p
2π

√

√mω2
z

kB T
exp

�

−
mω2

z z 2

kB T

�

(5.11)

The modified 1D density in the presence of optical fields after time t is written using

Eq. 5.10 as

n1D (z , t ) =
n1D (z )

1+ 1
2 N0

n1D (z )
n1D (0)

p
2 n̄3D K 2(z ) t

, (5.12)

where n̄3D is the 3D density and K 2(z ) is the momentum averaged z-dependent two-body

loss rate constant and is given by

K2(z ) =

∫ ∞

0

4πk 2d k

(k0
p
π)3

e
− k 2

k 2
0 K2(k , z ) (5.13)

The total atom number N (t ) is calculated by integrating the 1D density n1D (z , t ) in Eq. 5.12
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over z ,

N (t ) =

∫ ∞

−∞
n1D (z , t )d z (5.14)

Eq. 5.14 is used to compare our experimental results presented in the next section.

5.2 Optically Induced Atom Loss near a Narrow Feshbach

Resonance

Figure 5.1 Energy level scheme for closed-channel electromagnetically induced transparency
(EIT). Optical fields ν1 (with Rabi frequency Ω1, detuning∆1) and ν2 (with Rabi frequency Ω2,
detuning∆2) couple the ground molecular singlet states |g1〉 and |g2〉with the excited singlet
state |e 〉 of the closed channel. Atoms reside in the open channel triplet continuum |T , k 〉, which
is hyperfine coupled to |g1〉 resulting in the narrow Feshbach resonance.

In this section, I will show the experimental measurements of optically induced atom
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loss and compare with the continuum-dressed state model derived in the last section.

The basic level scheme for the closed-channel EIT method is shown in Fig. 5.1. Optical

fields ν1 (Rabi frequency Ω1, detuning∆1) and ν2 (Rabi frequency Ω2, detuning∆2), couple

the ground molecular states of the singlet potential, |g1〉 and |g2〉, to the excited state |e 〉.
The state |g1〉 can be energetically tuned by varying the optical parameters such as the laser

frequencies, ν1 and ν2 and Rabi frequencies, Ω1 and Ω2. The bound state |g1〉 is coupled

to the triplet state |T , k 〉 through a second order hyperfine coupling VH F , which causes

the narrow Feshbach resonance. Atoms reside in the triplet continuum |T , k 〉which tunes

downward with magnetic field B , proportional to 2µB B , where µB is the Bohr magneton.

The initial magnetic field is chosen such that the triplet continuum is tuned near the

resonance magnetic field Br e s , where Br e s = 543.27 G for the narrow Feshbach resonance.

Near resonance, the optical detunings ∆1 and ∆2 are large compared to the magnetic

detunings 2µB
ħh (B −Br e s ), so that the two-photon detuning δ'∆2−∆1. The frequency of ν2

optical field is then varied to tune state |g1〉 close to |T , k 〉.
Fig. 5.2a shows the energy of the ground state |g1〉 as a function of δ, by varying ν2

and holding ν1 constant, plotted in units of magnetic field B − Br e s . As δ is varied from

negative to positive, the ground molecular state |g1〉 tunes from below to above its original

unshifted position by ' |Ω1|2
|Ω2|2 δ. The horizontal dashed line is the unshifted position of |g1〉,

when the two-photon resonance condition is satisfied. Fig. 5.2b shows a magnified view

of the tuning plot and a linear fit (blue dotted lines), illustrating that very close to the

unshifted position, the tuning of |g1〉 is linear. ForΩ1 = 0.5 γe andΩ2 = 2.2 γe , the tuning rate

is' 18 mG/MHz. Hence the two-photon detuning δ acts as an optical vernier to investigate

fine momentum-dependent features of the narrow Feshbach resonance.

The experimental procedure is as follows. A 50-50 mixture of the two lowest hyperfine

states of 6Li atoms |1〉 and |2〉 is confined in a CO2 laser trap. After evaporatively cooling the

atoms at 300 G, the magnetic field is ramped to 528 G. An RF sweep of 30 ms then transfers

the atoms from state |2〉 to |3〉. The magnetic field is then ramped to the field of interest,

where it is allowed to stabilize for 3 s. At the field of interest, theν2 beam with Rabi frequency

Ω2 = 2.2γe is applied. The ν2 beam creates an additional trapping potential on the atoms

and requires a wait time of 30 ms for the atoms to reach equilibrium in the combined

CO2 and ν2 trapping potential. After the atoms reached equilibrium, an RF π pulse (1.2

ms) transfers the atoms from |3〉 to |2〉. The ν1 beam with Rabi frequency Ω1 = 0.5γe and

detuning∆1 = 19 MHz is then applied for 5 ms. The atoms are imaged after a time of flight of
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Figure 5.2 (a) Energy of the ground state |g1〉 as a function of δ plotted in units of magnetic field
B −Br e s , where Br e s = 543.27G for the narrow Feshbach resonance. Horizontal dashed line is the
unshifted position of |g1〉, when the two-photon resonance condition δ=∆2−∆1 = 0 is satisfied.
(b) Expanded view of the tuning plot and a linear fit (blue dotted lines), illustrating that very close
to the unshifted position, the tuning of |g1〉 is linear. The energy of |g1〉 tunes linearly with δ near
the unshifted position, ' 18 mG/MHz for Ω1 = 0.5 γe and Ω2 = 2.2 γe .
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Figure 5.3 Two-photon atom loss spectra for B > Br e s . Atom number fraction (blue dots) as a
function of two-photon detuning δ, by varying ν2 and holding ν1 constant. Solid curves: Pre-
dictions from k -averaged (red) and k = 0 (green) theoretical model [Eq. 5.14].The experimental
parameters used are given in Table 5.1.
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Table 5.1 Experimental parameters used to measure two-photon atom loss spectra in Fig. 5.3 and
Fig. 5.4

Experimental Parameter Symbol Value

Rabi frequency of ν1 beam Ω1 0.5 ± 0.05 γe

Rabi frequency of ν2 beam Ω2 2.2 ± 0.2 γe

Detuning of ν1 beam ∆1 19 MHz
Temperature of the atomic cloud T 1.5 ± 0.2 µk
Axial frequency of the
total (CO2 + ν2 beam) trap ωz 2π × (56 ± 0.5) Hz
Radial frequency of the CO2 trap ωx 2π × (777 ± 9.5) Hz
Radial frequency of the CO2 trap ωy 2π × (960 ± 4.32) Hz

250µs, from which the remaining atom number is calculated. The experimental parameters

used are listed in Table 5.1.

Fig. 5.3 and Fig. 5.4 show the atom loss as a function of two-photon detuning δ (by

varyingν2 frequency and holdingν1 frequency constant), for different initial magnetic fields

B > Br e s (BCS side) and B < Br e s (BEC side), respectively. Atom loss occurs as atoms in the

triplet state |T , k 〉 are optically coupled to the singlet excited state |e 〉, through the hyperfine

coupling between |g1〉 and |T , k 〉. As the two-photon detuning δ is varied from negative

to positive, by changing ν2 and holding ν1 constant, the ground molecular state |g1〉 is

tuned from below to above its original unshifted position (see Fig. 5.2). When δ = 0, the

two-photon resonance condition is satisfied and state |g1〉 is tuned to its original unshifted

position (horizontal dotted line in Fig. 5.2), where atom loss is suppressed, resulting in

minimum loss in the spectra.

The maximum loss in the spectra occurs when state |g1〉 is tuned into resonance with

the triplet continuum |T , k 〉. When B > Br e s , |T , k 〉 is below the unshifted position of |g1〉,
hence maximum loss occurs for negative values of two-photon detuning δ. Similarly, when

B < Br e s , |T , k 〉 is above the unshifted position of |g1〉, hence maximum loss occurs for

positive values of two-photon detuning δ. Prior to applying the optical fields, the magnetic

field is tuned towards either the BCS side or BEC side of the Feshbach resonance. However,

the optical tuning (by changing the ν2 frequency) is always from the BEC side (left side of

maximum loss) to the BCS side (right side of maximum loss) for each chosen B field.
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Figure 5.4 Two-photon atom loss spectra for B < Br e s . Atom number fraction (blue dots) as a
function of two-photon detuning δ, by varying ν2 and holding ν1 constant. Solid curves: Predic-
tions from k -averaged (red) and k = 0 (green) theoretical model [Eq. 5.14]. The experimental
parameters used are given in Table 5.1.
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In order to understand the effects of momentum-dependent interactions on the spectra,

the atom loss spectra is compared with the predictions of the continuum-dressed state

theoretical model (Eq. 5.14) for both k -averaged (red solid line) and zero momentum k = 0

case (green solid line), Fig. 5.3 and Fig. 5.4. The momentum averaged model captures all the

fine features of the measured spectra and is in good agreement. For both B > Br e s (Fig. 5.3)

and B < Br e s (Fig. 5.4), maximum loss in the spectra occurs for two-photon detuning δ

greater than the prediction from the zero momentum k = 0 model (green curves in Fig. 5.3

and Fig. 5.4). This illustrates that maximum coupling between state |g1〉 and |T , k 〉 occurs

when state |g1〉 is optically tuned to be degenerate with the state |T , k0〉 and not with |T , 0〉,
such that all atoms with k > k0 and k < k0 can optimally couple to the molecular bound

state (See Fig. 5.5 for a simple illustration).

Figure 5.5 A simple illustration of momentum dependence in two-photon atom loss spectra. (a)
When B < Br e s , the threshold of the triplet continuum |T , k 〉 is above the unshifted position of
|g1〉. Hence, higher lying momentum states with k > 0 are not degenerate with the unshifted
state |g1〉. However, the light shifted state |g ′1〉 can be tuned to be degenerate with k > 0 states. (b)
When B > Br e s , the k > 0 states of the continuum are degenerate with the unshifted state |g1〉, for
small magnetic detunings B −Br e s .

In the absence of momentum-dependent interactions (broad Feshbach resonances),

maximum loss occurs when |g1〉 is tuned to be degenerate with the zero momentum state,

|T ,0〉. This phenomenon is observed in previously reported measurements of two-body

interactions, where for broad Feshbach resonances, the measured two-body scattering
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length agrees with the predicted zero momentum scattering length and diverges near the

resonance [RJ03]. However, for the narrow Feshbach resonance, the measured scattering

length goes to zero near the resonance, since interactions of opposite sign between atoms

of different momentum k states are thermally averaged over a Boltzmann distribution.

When B > Br e s (BCS), the effect of momentum-dependent interactions is clearly seen

on the additional loss peak observed to the right of the minimum loss point (two-photon

resonance), in agreement with the k-averaged theoretical model, Fig. 5.3a and Fig. 5.3b. The

additional loss peak is due to resonant coupling of the bound state near its unshifted posi-

tion with higher momentum k states. The spectral shapes are understood by considering the

energy of molecular bound state |g1〉 as a function of ν2. From the momentum-dependent

continuum-dressed state model [Eq. 2.40], maximum loss occurs when

∆1+
|Ω1|2

4
� 2µB
ħh (B −Br e s )− ħh k 2

m

� +
|Ω2|2

4δ
= 0. (5.15)

Note that Eq. 5.15 assumes for brevity that the frequencies corresponding to the magnetic

detuning 2µB
ħh (B −Br e s ) and kinetic energy ħhk 2/m , are small compared to the optical detun-

ings∆1 and∆2. The second term is a one-photon optical shift arising from the momentum

dependence of the triplet continuum. For the experimental conditions, where∆1 ≈ 19 MHz,

Ω1 ≈ 6 MHz, and |B −Br e s |< 0.1, the |Ω1|2 term always dominates the first term. Maximum

loss therefore occurs when the one-photon optical shift is canceled by the two-photon light

shift given by the third term, where Ω2 ' 24 MHz in our experiments. When B < Br e s (BEC

side), the |Ω1|2 term in Eq. 5.15 is negative for all k . Hence, the condition for maximum loss

given by Eq. 5.15 is satisfied only when the two-photon detuning δ is positive, Fig. 5.4.

However, when B > Br e s (BCS side), the |Ω1|2 term in Eq. 5.15 is positive for k < kr and

negative for k > kr , where kr is the momentum of the triplet continuum state |T , kr 〉 that is

degenerate with |g1〉 and satisfies the condition,

2µB

ħh
(B −Br e s )−

ħh k 2
r

m
= 0. (5.16)

This leads to two loss peaks, a primary maximum loss peak for δ < 0 (k < kr ), due to the

large atom population at lower k (Maxwell-Boltzmann distribution) and an additional loss

peak forδ > 0 (k > kr ), which is less populated, most apparent in Fig. 5.3a and Fig. 5.3b. The

momentum-dependent model captures the observed loss peak for δ > 0, while the k = 0
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model is completely flat. As the magnetic detuning B −Br e s is increased, Eq. 5.16 can no

longer be satisfied as the momentum kr is limited by the Maxwell-Boltzmann distribution

for finite temperature T . i.e., k < kr for all k . Therefore, the additional loss peak for δ > 0

disappears, as seen in Fig. 5.3c and Fig. 5.3d. Fig. 5.5b shows a simple illustration of this

effect for B > Br e s . The black dotted line is the light shifted ground state |g ′1〉 due the AC

stark effect.

When B < Br e s (BEC), Fig. 5.4, the unshifted molecular bound state |g1〉 cannot reso-

nantly couple with non-zero k states, i.e., Eq. 5.16 is never satisfied as the magnetic detuning

term B −Br e s is negative and k is always positive (Fig. 5.5a). Hence, there is no additional

loss peak near the two-photon resonance. However, the molecular bound state can be

optically tuned to be resonant with non-zero k states. This can be observed to the right of

the maximum loss peak in the spectra, where the atom loss occurs for the larger range of ν2

frequencies, due to the coupling of the bound state |g1〉with higher momentum non-zero

k states.

5.3 Observation of Spectral Shift in Two-photon Atom Loss

Spectra

Optical coupling of a continuum to the excited bound state results in an anomalous redshift

of the excited state. When the open channel continuum |T , k 〉 is optically coupled to the

closed channel excited state |e 〉 through a Feshbach resonance, the spectral shift depends

on the amount of mixing between the ground molecular state |g1〉 and the open channel

continuum |T , k 〉.
For experiments near the narrow Feshbach resonance reported in this chapter, when

the atom loss spectra are compared with the predictions of the theoretical model (Eq. 5.14),

a frequency shift of the two-photon atoms loss spectrum is observed, Fig. 5.6a. Hence an

overall frequency shift has to be introduced in the measured data to make it agree with the

theoretical model,Fig. 5.6b. Fig. 5.7 shows the magnetic field dependent frequency shift of

the atoms loss spectra for both B < Br e s and B > Br e s regimes. The observed spectral shifts

are magnetic field dependent and asymmetric in structure, with large variation of the shifts

for B > Br e s (BCS) compared to B < Br e s (BEC), where the shift is constant as illustrated in

Fig. 5.7.

The magnetic field independent shift may arise in part from a systematic error or from
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Figure 5.6 Atom number fraction (blue dots) as a function of two-photon detuning δ, by varying
ν2 and holding ν1 constant. (a) Spectral shift in the measured (blue dots) two-photon atom loss
spectra, resulting in a disagreement with the predictions from Eq. 5.14 (red solid line) (b) Atom
loss spectra after shifting the measured data (blue dots) to agree with the Eq. 5.14 (red solid line).
The shift introduced in the measured spectra to make it agree with the predictions is plotted in
Fig. 5.7 for various magnetic fields. The experimental parameters used are given in Table 5.1.
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Figure 5.7 Spectral shift of two-photon loss spectra (shown in Fig. 5.3 and Fig. 5.4) as a function
of magnetic field B near the narrow Feshbach resonance at Br e s = 543.27 G in 6Li. Horizontal
dashed line - background anomalous shift of 1.3 MHz due to the coupling of continuum to an
bound state. Vertical dashed line; B = Br e s .

an anomalous background redshift of the excited state [BJ99; Fed96], which would affect our

∆1 frequency calibration and hence the absolute value of the two-photon detuning δ. Such

an anomalous shift was observed in the photoassociation experiments in 7Li [Pro03; Ger01],

resulting in an overall spectral shift of the single-field atom loss spectra. An additional

intensity-dependent asymmetric shift also was observed near a Feshbach resonance in
7Li [Jun08; Mac08]. As noted above, the one-photon optical shift term∝|Ω1|2 in Eq. 5.15

arises from the Feshbach resonance induced optical coupling of the triplet continuum

to the excited state, and appears to explain the asymmetric shift observed in Ref. [Jun08],

Fig. 5.8. However, the frequency shifts observed in this experiment for the two-photon

detuning cannot be explained with our current theoretical model.

In summary, momentum-dependent interactions near a narrow Feshbach resonance

have been studied by optically tuning the closed channel molecular bound state near the

open channel continuum threshold using the two-field method as an optical vernier. The

momentum dependence of the two-body interactions strongly modifies the measured

two-photon atom-loss spectra, providing new insights on the dynamics of Feshbach cou-

pling in an energy-dependent Feshbach resonance. Further, the momentum-dependent

continuum-dressed state model is in good agreement with the measured spectra in shape
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Figure 5.8 Spectral shift of single-photon loss spectra as a function of magnetic field B near the
broad Feshbach resonance in 7Li from Ref. [Jun08]. Solid red curve is the fit of the data [Jun08]
with the |Ω1|2 term in Eq. 5.15 for T = 1 µk and Ω1 = 2.2 γe .

and magnitude. The observed asymmetric spectral shifts are the atom loss spectra near

the narrow Feshbach resonance is in disagreement with previously measured symmetric

spectral shifts near the broad Feshbach resonance in 7Li [Jun08]. Although our theoretical

model might account for the single photon spectral shifts observed near the broad Fesh-

bach resonance in [Jun08], it fails to address the two-photon spectral shifts observed near

the narrow resonance. A thorough understanding of this issue would require further theo-

retical and experimental investigation and can potentially offer new insights in two-body

scattering near an energy-dependent resonance.
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CHAPTER

6

CONCLUSION

In this chapter, I will briefly summarize the results presented in this thesis and further

provide an overview of future experiments that can be pursued using the closed-channel

EIT method.

This thesis presents the first work on using the two-field optical method, also referred

to as closed-channel EIT, to control and measure two-body scattering interactions in an

ultracold gas. All the experiments were done near the narrow Feshbach resonance in 6Li. The

two-body scattering length was controlled by changing the frequency of one laser by just a

few MHz, and the optical tunability was demonstrated by measuring mean-field induced

spectral shifts in radio-frequency spectra. The optical tunability of scattering length was

compared with magnetic tuning to illustrate that the two-field method achieves the same

level of tuning as magnetic tuning. This is a tremendous improvement over other optical

techniques, where the optical tuning is limited due to spontaneous scattering and is only

a small fraction of magnetic tuning. The two-field method overcomes this long-standing

issue by exploiting quantum interference to suppress spontaneous scattering and achieved

a tunability of 12 ab g , where ab g is the background scattering length. The tunability was
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only limited by the nature of the narrow Feshbach resonance, which was energy-dependent

(limited by temperature) and does not reflect a fundamental limitation of the two-field

optical method. Future experiments using the two-field optical method can be pursued

near medium width Feshbach resonances such as 40K or 87Rb, and the tunability can be

significantly increased, allowing for the realization of novel quantum phases and studies of

exotic quantum dynamics.

This thesis further demonstrated spatial “designer" control of interactions in an ultra-

cold gas by exploiting the unprecedented optical tunability achieved using the two-field

method. Although spatially varying interactions in an ultracold gas were demonstrated

before, either the experiments suffered from a limited lifetime of a few microseconds or

magnetic fields were used to change the spatial interaction profile of the atoms. The experi-

ments reported here are the first all-optical manipulation of spatial interaction profiles in an

ultracold gas. Spatial “designer" interactions was demonstrated by creating an interaction

“sandwich" of resonantly and weakly interacting regions. A few MHz change in the frequency

of the laser beams destroys the interaction “sandwich" by creating uniformly attractive or

repulsive interactions. This has far-reaching applications in the field of condensed matter

physics by creating “collisionally inhomogeneous" systems. Future experiments can be

done by constructing an interaction lattice with one of the optical beams, where alternative

regions of strong and weak interactions, or attractive and repulsive interactions can be

achieved. This method can also be used to create a “supersolid", an idea proposed by

Rempe [Bau09a], where the interactions of atoms on each lattice site can be engineered

with high precision.

Our two-field method can also be used to create momentum selective control of inter-

actions. Recently, theorists from Swinburne University proposed that the two-field method

can be used to create synthetic Fulde-Ferrel superfluids, by using two-counter propagat-

ing optical beams that interact differently with different velocity class of atoms due to

two-photon Doppler shift and therefore create momentum-dependent interactions [He18].

Momentum selective interactions can also be used to create other exotic quantum phases

such as breached pair superfluidity. As a first step, I used the two-field optical method

to study and investigate momentum-dependent interactions near the energy-dependent

narrow Feshbach resonance. Comparison of the measured data with our theory offered

new insights on the fundamental dynamics of the momentum-dependent two-body inter-

actions. I also observed asymmetrical spectral shifts in the data that cannot be explained
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by our existing theoretical model. Future experiments can be pursued to understand the

spectral shifts arising from momentum dependence, not only near the narrow Feshbach

resonance but also near the broad Feshbach resonance, which can offer additional insights

on two-body scattering.

Controlling the effective range in an ultracold gas has garnered significant interest

in both the atomic and nuclear physics community, as it provides a way to emulate the

physics of neutron matter [ASP05]. Our two-field method is predicted to manipulate the

effective range around the minimum loss region, providing a distinct advantage over other

single-field methods, which induces huge atom loss when employed to manipulate the

effective range. Future experiments can be pursued to control the effective range of either

the narrow Feshbach resonance, which has a large effective range, or the broad Feshbach

resonance, which has a small effective range, thereby taking us a step closer to improved

models of neutron matter.

Finally, the two-field optical method can provide fast temporal control of interactions,

which can be either used to modulate the scattering length or change it abruptly. For

example, the interactions can be abruptly switched off or on by changing the frequency of

the laser, and interesting quantum dynamics such as collective modes can be observed.

This can also be used to study non-equilibrium thermodynamics in ultracold gases, which

is a standalone field that has not been sufficiently explored. Using the two-field optical

method, interactions can be modulated by modulating the frequency of the laser beams to

investigate exotic phenomenon such as “Bosenova", a fireworks of atoms exploding from

an ultracold atomic cloud [Cla17], providing insights on the dynamics of core collapse in a

supernova.

136



BIBLIOGRAPHY

[ASP05] A. Schwenk, A. & Pethick, C. J. “Resonant Fermi Gases with a Large Effective
Range”. Phys. Rev. Lett. 95 (2005), p. 160401.

[Bal08] Balbinot, R. et al. “Nonlocal density correlations as a signature of Hawking
radiation from acoustic black holes”. Phys. Rev. A 78 (2 2008), p. 021603.

[Bar05] Bartenstein, M. et al. “Precise determination of 6Li cold collision parameters by
radio-frequency spectroscopy on weakly bound molecules”. Phys. Rev. Lett. 94
(2005), p. 103201.

[Bau09a] Bauer, D. M. et al. “Control of a magnetic Feshbach resonance with laser light”.
Nat. Phys. 5 (2009), p. 339.

[Bau09b] Bauer, D. M. et al. “Combination of a magnetic Feshbach resonance and an
optical bound-to-bound transition”. Phys. Rev. A 79 (6 2009), p. 062713.

[Blo08] Bloch, I. et al. “Many-body physics with ultracold gases”. Rev. Mod. Phys. 80
(2008), p. 885.

[BJ97] Bohn, J. & Julienne, P. “Prospects for influencing scattering lengths with far-off-
resonant light”. Phys. Rev. A 56 (1997), p. 1486.

[BJ99] Bohn, J. L. & Julienne, P. S. “Semianalytic theory of laser-assisted resonant cold
collisions”. Phys. Rev. A 60 (1 1999), pp. 414–425.

[Cao11] Cao, C. et al. “Universal quantum viscosity in a unitary Fermi gas”. Science 331
(2011), p. 58.

[Chi10] Chin, C. et al. “Feshbach Resonances in Ultracold Gases”. Rev. Mod. Phys 82
(2010), p. 1225.

[Cla15] Clark, L. W. et al. “Quantum Dynamics with Spatiotemporal Control of In-
teractions in a Stable Bose-Einstein Condensate”. Phys. Rev. Lett. 115 (2015),
p. 155301.

[Cla17] Clark, L. W. et al. “Collective emission of matter-wave jets from driven Bose-
Einstein condensates”. Nature 551 (2017), p. 356.

[Den08] Deng, X.-L. et al. “Quantum phases of interacting phonons in ion traps”. Phys.
Rev. A 77 (3 2008), p. 033403.

137



[Ell14] Elliott, E. “Quantum Transport and Scale Invariance in Expanding Fermi Gases”.
PhD thesis. Duke University, 2014.

[Eno08] Enomoto, K. et al. “Optical Feshbach resonance using the intercombination
transition”. Phys. Rev. Lett. 101 (2008), p. 203201.

[Fat00] Fatemi, F. et al. “Observation of optically induced Feshbach resonances in colli-
sions of cold atoms”. Phys. Rev. Lett. 85 (2000), p. 4462.

[Fed96] Fedichev, P. O. et al. “Influence of nearly resonant light on the scattering length
in low-temperature atomic gases”. Phys. Rev. Lett. 77 (1996), p. 2913.

[Fle05] Fleischhauer, M. et al. “Electromagnetically induced transparency: Optics in
coherent media”. Rev. Mod. Phys. 77 (2 2005), pp. 633–673.

[For05] Forbes, M. M. et al. “Stability Criteria for Breached-Pair Superfluidity”. Phys.
Rev. Lett. 94 (1 2005), p. 017001.

[Fu13] Fu, Z. et al. “Optical control of a magnetic Feshbach resonance in an ultracold
Fermi gas”. Phys. Rev. A 88 (4 2013), p. 041601.

[Geh03] Gehm, M. “Preparation of an Optically-Trapped Degenerate Fermi Gas of 6Li:
Finding the Route to Degeneracy”. PhD thesis. Duke University, 2003.

[Ger01] Gerton, J. M. et al. “Photoassociative frequency shift in a quantum degenerate
gas”. Phys. Rev. A 64 (5 2001), p. 053410.

[Har97] Harris, S. E. “Electromagnetically Induced Transparency”. Physics Today 50
(1997), p. 36.

[Hau99] Hau, L. V. et al. “Light speed reduction to 17 metres per second in an ultracold
atomic gas”. Nature 397 (1999), p. 594.

[Haz12] Hazlett, E. L. et al. “Realization of a Resonant Fermi Gas with a Large Effective
Range”. Phys. Rev. Lett. 108 (2012), p. 045304.

[He18] He, L. et al. “Realizing Fulde-Ferrell Superfluids via a Dark-State Control of
Feshbach Resonances”. Phys. Rev. Lett. 120 (4 2018), p. 045302.

[Ho12] Ho, T.-L. et al. “Alternative Route to Strong Interaction: Narrow Feshbach Reso-
nance”. Phys. Rev. Lett. 108 (2012), p. 250401.

[Hu14] Hu, M.-G. et al. “Avalanche-mechanism loss at an atom-molecule Efimov reso-
nance”. Phys. Rev. A 90 (1 2014), p. 013619.

138



[Jag14] Jag, M. et al. “Observation of a Strong Atom-Dimer Attraction in a Mass-Imbalanced
Fermi-Fermi Mixture”. Phys. Rev. Lett. 112 (7 2014), p. 075302.

[Jag16a] Jagannathan, A. et al. “Optical Control of Magnetic Feshbach Resonances by
Closed-Channel Electromagnetically Induced Transparency”. Phys. Rev. Lett.
116 (7 2016), p. 075301.

[Jag16b] Jagannathan, A. “Optical Control of Magnetic Feshbach Resonances by Closed-
Channel Electromagnetically Induced Transparency”. PhD thesis. Duke Univer-
sity, 2016.

[Joc03] Jochim, S. et al. “Bose-Einstein Condensation of Molecules”. Science 302 (2003),
p. 2101.

[Jun08] Junker, M. et al. “Photoassociation of a Bose-Einstein Condensate near a Fesh-
bach Resonance”. Phys. Rev. Lett. 101 (6 2008), p. 060406.

[KZ08] Ketterle, W. & Zwierlein, M. W. “Making, probing and understanding ultracold
Fermi gases”. Ed. by Inguscio, M. et al. Ultracold Fermi Gases, Proceedings of
the International School of Physics Enrico Fermi, Course CLXIV, Varenna. IOS
Press, Amsterdam, 2008.

[Kin04] Kinast, J. et al. “Evidence for Superfluidity in a Resonantly Interacting Fermi
Gas”. Phys. Rev. Lett. 92 (2004), p. 150402.

[Kin05] Kinast, J. et al. “Heat capacity of a strongly interacting Fermi gas”. Science 307
(2005), p. 1296.

[Kin06] Kinast, J. M. “Thermodynamics and Superfluidity of a Strongly Interacting Fermi
gas”. PhD thesis. Duke University, 2006.

[Kra06] Kraemer, T. et al. “Evidence for Efimov quantum states in an ultracold gas of
caesium atoms”. Nature 440 (2006), pp. 315 –318.

[Li18] Li, J. et al. “Three-Body Recombination near a Narrow Feshbach Resonance in
6Li”. Phys. Rev. Lett. 120 (19 2018), p. 193402.

[Mac08] Mackie, M. et al. “Cross-Molecular Coupling in Combined Photoassociation
and Feshbach Resonances”. Phys. Rev. Lett. 101 (4 2008), p. 040401.

[O’H02] O’Hara, K. M. et al. “Observation of a Strongly Interacting Degenerate Fermi
Gas of Atoms”. Science 298 (2002), p. 2179.

139



[O’H00] O’Hara, K. “Optical Trapping and Evaporative Cooling of Fermionic Atoms”.
PhD thesis. Duke University, 2000.

[Pro03] Prodan, I. D. et al. “Intensity Dependence of Photoassociation in a Quantum
Degenerate Atomic Gas”. Phys. Rev. Lett. 91 (8 2003), p. 080402.

[RJ03] Regal, C. A. & Jin, D. S. “Measurement of Positive and Negative Scattering Lengths
in a Fermi Gas of Atoms”. Phys. Rev. Lett. 90 (23 2003), p. 230404.

[Reg03] Regal, C. A. et al. “Creation of ultracold molecules from a Fermi gas of atoms”.
Nature 424 (2003), p. 47.

[Rob95] Robin Côté. “Ultra-Cold Collisions of Identical Atoms”. PhD thesis. M.I.T., 1995,
p. 418.

[RV05] Rodas-Verde, M. I. et al. “Controllable Soliton Emission from a Bose-Einstein
Condensate”. Phys. Rev. Lett. 95 (15 2005), p. 153903.

[Sal08] Salerno, M. et al. “Long-Living Bloch Oscillations of Matter Waves in Periodic
Potentials”. Phys. Rev. Lett. 101 (3 2008), p. 030405.

[Sch07] Schunck, C. H. et al. “Superfluid Expansion of a Rotating Fermi Gas”. Phys. Rev.
Lett. 98 (2007), p. 050404.

[Sch99] SchÃijnemann, U. et al. “Simple scheme for tunable frequency offset locking of
two lasers”. Review of Scientific Instruments 70.1 (1999), pp. 242–243.

[Sho90] Shore, B. W. The Theory of Coherent Atomic Excitation. Wiley-VCH, 1990.

[Ste08] Stewart, J. T. et al. “Using photoemission spectroscopy to probe a strongly inter-
acting Fermi gas”. Nature 454 (2008), pp. 744–747.

[Str03] Strecker, K. E. et al. “Conversion of an Atomic Fermi Gas to a Long-Lived Molec-
ular Bose Gas”. Phys. Rev. Lett. 91 (8 2003), p. 080406.

[Tha05] Thalhammer, G. et al. “Inducing an optical Feshbach resonance via stimulated
Raman coupling”. Phys. Rev. A 71 (2005), p. 033403.

[The04] Theis, M. et al. “Tuning the scattering length with an optically induced Feshbach
Resonance”. Phys. Rev. Lett. 93 (2004), p. 123001.

[Tho05] Thompson, S. T. et al. “Ultracold Molecule Production via a Resonant Oscillating
Magnetic Field”. Phys. Rev. Lett. 95 (19 2005), p. 190404.

140



[Wu12] Wu, C.-H. et al. “Ultracold Fermionic Feshbach Molecules of 23Na40K”. Phys.
Rev. Lett. 109 (8 2012), p. 085301.

[WT12a] Wu, H. & Thomas, J. E. “Optical Control of Feshbach Resonances in Fermi Gases
Using Molecular Dark States”. Phys. Rev. Lett. 108 (1 2012), p. 010401.

[WT12b] Wu, H. & Thomas, J. E. “Optical control of the scattering length and effective
range for magnetically tunable Feshbach resonances in ultracold gases”. Phys.
Rev. A 86 (6 2012), p. 063625.

[Xu03] Xu, K. et al. “Formation of Quantum-Degenerate Sodium Molecules”. Phys. Rev.
Lett. 91 (21 2003), p. 210402.

[Yam10] Yamazaki, R. et al. “Submicron spatial modulation of an interatomic interaction
in a Bose-Einstein condensate”. Phys. Rev. Lett. 105 (2010), p. 050405.

[Zha13] Zhang, Y. “Radio Frequency Spectroscopy Of a Quasi-Two-Dimensional Fermi
Gas”. PhD thesis. Duke University, 2013.

[Z1̈3] Zürn, G. et al. “Precise Characterization of 6Li Feshbach Resonances Using Trap-
Sideband-Resolved RF Spectroscopy of Weakly Bound Molecules”. Phys. Rev.
Lett. 110 (13 2013), p. 135301.

[Zwi06] Zwierlein, M. W. et al. “Fermionic superfluidity with imbalanced spin popula-
tions”. Science 311 (2006), p. 492.

[Zwi05] Zwierlein, M. et al. “Vortices and Superfluidity in a Strongly Interacting Fermi
Gas”. Nature 435 (2005), p. 1047.

141


	INTRODUCTION
	Magnetic Feshbach Resonance
	Limitations of the Magnetic Feshbach Resonance
	Controlling Interactions using Optical Fields
	Optical Feshbach Resonance (OFR)
	Two-field Optical Feshbach Resonance
	Optical Control of Magnetic Feshbach Resonance
	Optical Control of Magnetic Feshbach Resonance using a ``Magic" Wavelength

	Two-field Optical Control of Magnetic Feshbach Resonance
	Significance of My Thesis Work
	Dissertation Organization

	Theory: Optical Control of Scattering Interactions in Ultracold Gases
	Properties of 6Li
	Feshbach Resonances in 6Li
	Feshbach States in 6Li

	Theory of Optically Controlling Interactions near a Magnetic Feshbach Resonance (MFR)
	Energy Level Scheme for Two-field Optical Control of MFR in 6Li 
	Continuum-dressed State Model for Two-field Optical Control of MFR
	Scattering State Wave Function
	Evaluation of the Optically Induced Phase Shift 
	Evaluation of the Total Phase Shift 
	Two-body Loss Rate Constant K2 and Scattering Length a

	Optical Tuning of Ground State |g1"526930B 
	Tuning Rate of |g1"526930B : Continuum-dressed State Model
	Tuning Rate of |g1"526930B : Dressed State Treatment of a Three-level  EIT system
	Tuning Rate of |g1"526930B : Predictions of the Continuum-dressed State Model
	Tuning of Ground State |g1"526930B  for Different Rabi Frequencies 2
	Tuning of Ground State |g1"526930B  for Different Rabi Frequencies 1
	Tuning of Ground State |g1"526930B  for Different Ratio of Rabi Frequencies 1 / 2


	Experimental Methods
	Preparation of Cold Atom Samples
	Magneto-Optical Trap (MOT)
	Far Off Resonance Trap (FORT)
	Imaging the Atomic Cloud

	Development of Optical Control System
	Pound Drever Hall (PDH) Lock
	Frequency Offset Lock
	Saturation Absorption Spectroscopy 

	Measurement of Optical Frequencies and Rabi Frequencies
	Measurement of 1 Beam Frequency
	Measurement of 2 beam frequency
	Calibration of Rabi Frequency 1 of 1 beam
	Calibration of Rabi Frequency 2 of the 2 beam

	Calibration of the Radio-Frequency (RF) Antenna
	Stabilization of the Bias Magnetic Field
	Achieving a Stable Magnetic Field 
	Testing the Stability of Magnetic Field - RF spectroscopy

	Measuring the Trap Frequencies

	Experiments on Optical Control of Interactions in Ultracold Gases
	Optical Control of the Scattering Length using EIT
	Mean-Field Shift Measurement using RF Spectroscopy
	Calculation of Line Shape for Mean-field Shifted RF Spectra 
	Magnetically Tuning the Interactions near the Narrow Feshbach Resonance 
	EIT Optical Control of Interactions near the Narrow Feshbach Resonance
	Spatial Control of Interactions

	Optical Probing of an Energy Dependant Narrow Feshbach Resonance
	Calculation of Optically Induced Atom Loss from K2
	Optically Induced Atom Loss near a Narrow Feshbach Resonance
	Observation of Spectral Shift in Two-photon Atom Loss Spectra

	Conclusion
	Bibliography

