ABSTRACT

BAIRD, LORIN RICHARDS. Linear Hydrodynamic Response in a Uniform Fermi Gas.
(Under the direction of John Thomas).

In this dissertation, we have developed a new probe for hydrodynamic response in
ultracold atomic gases, made possible by the use of digital micromirror technology. As a
first step, we directly measure the density response don of a unitary Fermi gas confined in
a box potential Uy(z) and subject to a spatially periodic optical potential 6U(z,t). We
create a hydrodynamic linear response model, and fit it to the data to extract transport
properties, namely the thermal conductivity xp. We use the previously measured shear
viscosity, and measured equation of state as inputs to our model.

The box trap Uy(z) and optical potential dU(z,t) are created with digital micromirror
devices (DMDs), giving us independent control over the wavelength A and frequency f
of 6U(z,t). This allows us to translate U (z,t) into the cloud at speeds ranging from
subsonic to supersonic.

We show that the time-dependent change of the density profile is sensitive to the
thermal conductivity kr, which controls the relaxation rate 7, of the temperature gra-
dients and hence the responses arising from adiabatic and isothermal compression. The
thermal conductivity extracted from the density response profiles is found to be kK =
1.14(17) x (15/4) (kg/m) hng, at a reduced temperature 6y = 0.50.

We compare our measurement of the thermal conductivity with variational calcula-
tions for a unitary gas in the high temperature 2-body Boltzmann limit. These calcu-
lations determine the ratio of the thermal conductivity kr to shear viscosity 7y to be
kr/no = (15/4) (kg/m). Using the measured shear viscosity 7y, we find that the ratio of

the thermal conductivity to the shear viscosity is (k7 /n9) = 0.93(14) x (15/4) (kg/m).
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Chapter 1

Introduction

This dissertation describes the measurement of hydrodynamic linear response in a unitary
Fermi gas. We utilize a sample of fermionic °Li in an optical box trap Up(z) that is
nearly uniform in density and covers a smaller region in phase space than a typical
harmonic trap. The uniform region is hydrodynamic and allows us observe and measure
transport properties. The thermal conductivity k7 is measured by moving a periodic
optical potential §U(z,t) through the sample with varying the wavelength A and speed v.
The decay rate 7, o< k7/\? of temperature gradients created by the periodic compression
changes the timescale that the temperature gradients are allowed to relax. The effects
from these relaxing temperature gradients are observed in the density response on which
is recorded as a function of this periodic optical potential’s speed v and wavelength .
We create a linear hydrodynamic model to extract the thermal conductivity s from this
density response.

Strongly interacting fermions play a central role in the structure of matter. Unitary
Fermi gases have connections to condensed matter, high energy physics, astrophysics,

nuclear physics, and string theory. Our tabletop system provides a clean, controllable



L4 | 0 50 100
Figure 1.1: (a) Pictorial representation of the experiment. (b) Typical density response.

way for quantitative comparison between experiment and many body theory. The unitary
Fermi gas shares universal behavior with other strongly interacting Fermi systems [1, 3,
13,22, 27] such as the strongly coupled electrons in high T superconductors, neutron
matter, and the quark-gluon plasma (QGP), a state of matter that existed moments
after the big bang.

This condition for this universal behavior arises from the two-body scattering process
of our quantum particles which we will briefly cover here. We will consider a two body
scattering process where our incoming particle with momentum p = hk can be described
by a plane wave e’*?. A scattering event from a spherically symmetric scattering potential
in the far field can be approximated as a spherical wave. The information from the
scattering event is contained in the scattering amplitude f(6,k), where 6 is the angle

between the incoming and outgoing wave in spherical coordinates. We can describe the

area where a two body scattering even occurs as the collision cross section o..



If we take the ratio of the probability of observing a scattered particle at the differen-

tial solid angle df? compared to the incident probability perpendicular to the incoming

k

wave e** we can obtain the equation

do,

e 0.0 (11)

The scattering amplitude in the far field is

f(0) :Z(Zl—i—l)al(k)Pl(COSG), (1.2)

=0

where P;(cos(f)) are Legendre polynomials. The coefficients for each polynomial are found

from the radial Schrédinger equation,

et —1 ;5,510 0
ar(k) = S = ¢ L T (1.3)

where [ is the angular momentum and §; is the phase shift in a scattered wave compared
to an unscattered wave. In our low temperature gas we have s-wave scattering retaining
only the [ = 0 term. Integrating equation 1.1 over the solid angle d{2 = sindf d¢ gives

us the collision cross sectional area

0. = - sin® 4. (1.4)



If the scattering potential is spherically symmetric, the collision cross section can be
described by a one dimensional length called the scattering length a,. If we solve the
radial Schrédinger equation d?u/dr? + 2pu,, /h*Eu = 0 in the far field, away from the

range of the potential we obtain

u(r) = A sin(kr +9). (1.5)

The linearized solution for low energy collisions crosses the r axis when

0:A<1+ &sm& (1.6)

tan &

If we solve equation 1.6 for r we obtain our scattering length

. tan o
a, = — lim )
5 k=0 k

(1.7)

Using trig. identities gives us our collision cross section in terms of the scattering length

4T, 41 tan?d 4ma?
=g =T _ s 1.8
Te = §2 oW k2 1+tan?0 1+ (kay)? (18)

For diverging scattering length our collision cross section is simply

_47T

== (1.9)

Oc

When the s-wave scattering length a, is much greater than the range R of the colli-
sional potential, both parameters vanish from the problem. The gas can be completely

characterized by the de Broglie wavelength Ay and the interparticle distance, or inverse



Fermi wavenumber 1/kp. A rescaling of the spatial coordinates will simply rescale the
Hamiltonian. Dimensional arguments then allow us to write all measurable quantities in
universal form in terms of Ay and 1/kp. This strongly interacting scale invariant system
is a unitary Fermi gas [22].

Working at unitarity, we have a parameter free comparison of our ultracold dilute
gas to different strongly interacting fermionic systems such as the QGP which is about
20 orders of magnitude higher in temperature. Neutron matter in neutron stars, which
is about 25 orders of magnitude more dense than our dilute gas, is naturally strongly
interacting because the neutron-neutron interactions have a large scattering length a, ~
—18.5 fm compared to the magnitude of the interaction range R ~ 1 fm. The unitary
condition is not naturally occurring in our dilute ultracold sample, and must be created
by operating near a magnetically tunable collisional resonance.

A magnetically tunable collisional resonance, called a Feshbach resonance, allows us
to change the scattering length between two fermionic particles by applying a magnetic
field. To understand how this Feshbach resonance works, we need to look at the two
particle collisions that occur in our gas. Our sample is made up of the two lowest energy
hyperfine ground states of 5Li. These two states can approach each other along two
different channels, a shallow triplet potential where the electronic spin states are parallel,
or a much deeper singlet potential where the spins are anti-parallel. When a magnetic field
is applied, the difference in magnetic moments shifts the energy of the triplet collisional
channel downward with respect to the singlet collisional channel. The triplet channel
is more energetically favorable and atoms will scatter along this potential. The singlet
potential, while energetically closed in a magnetic field, has bound states that are now
near the energy of the open channel. A Feshbach resonance occurs when the scattering

continuum of the open channel is tuned with a magnetic field near a bound state of



the closed channel. This equates to scattering from an attractive well with the scattered
wavefunction having a phase shift 6 which changes the scattering length as as seen in
equation 1.7. Near a Feshbach resonance, the scattering length as a function of magnetic

field, shown in Fig. 1.2, can be approximated as,

A
a = ap (1 — 5= Bo) , (1.10)

where a, = —1582(1)ag is the unmodified scattering length, A = —262.3(3) is the res-
onance width, B is the magnetic field, and B, = 832.18(8) is the resonant magnetic
field [33]. When the continuum energy is tuned to be degenerate to a bound state in the
closed channel, the scattering length diverges. We obtain our universal system by oper-

ating near a Feshbach resonance where the diverging scattering length is much greater

than the interaction range.

W
o

Scattering Length (103 Bohr)
8 © o o 8

&
S

600 700 800 900 1000 1100
Magnetic Field (Gauss)

Figure 1.2: Tuning the magnetic field below the Feshbach resonance results in a molec-
ular Bose Einstein condensate (BEC). Above the resonance is described by the Bardeen-
Cooper-Schrieffer theory of a Fermionic system. The crossover region where the scattering
length diverges is a unitary Fermi gas.



1.1 Thermodynamics and transport measurement in
the unitary Fermi gas

A great deal of work has gone into measuring the universal numbers that describe the
unitary gas and its thermodynamic properties. Dilute atomic gases held in equilibrium
have provided the thermodynamic properties over a wide range of temperatures using
fundamental thermodynamic relations [24,25]. We use the equation of state obtained
from these experiments as an input to our hydrodynamic model.

Transport measurements for coefficients such as the shear viscosity 7, bulk viscosity
¢, and thermal conductivity kp require dynamical experiments. Bulk viscosity in the
unitary limit is predicted to vanish in the normal phase [15,28]. Releasing a gas from an
anisotropic trap and observing the hydrodynamic expansion gives measurements of the
bulk viscosity consistent with 0 in the normal fluid regime [10]. Shear viscosity is also
determined by releasing the gas from an anisotropic trap and tracking the hydrodynamic
expansion as a function of the reduced temperature at the center of the cloud [19]. When
released from an anisotropic trap, the pressure gradients are much larger in the narrow
direction. As the gas expands, the aspect ratio will reach a maximum value at large time ¢
which is determined by the shear viscosity 1. An analysis [4] of the expansion data which
takes into account the non-hydrodynamic modes of the less dense edge of the cloud gives

the shear viscosity 7 in the normal fluid regime as a function of temperature and density

(kaT)3/2

2 [L+m(nA7) +...], (1.11)

n="To

where A\ = h/+/2mm kg T is the de Broglie wavelength and n is the total density for a

balanced two-component mixture. The first two terms in the expansion, 1y = 0.265(20)



and 7, = 0.060(20), fit the expansion data from temperatures just above the super-
fluid transition T to the high temperature limit where variational two-body Boltzmann
equation for a unitary Fermi gas gives 1y = 15/(32+/7) = 0.26446 [4]. The thermal con-
ductivity xr has a negligible effect on expansion experiments, because the clouds are in
thermal equilibrium.

Thermal conductivity is a coefficient that describes the ability of a substance to
conduct heat between areas of unequal temperature. In this equation, we can see the
relationship between the heat current Jr, thermal conductivity x7 and the temperature
T

Jr = —krp VT. (1.12)

In order to measure the thermal conductivity, we need a cloud of non-uniform tempera-

ture.

1.1.1 Primary results

My experiment, pictorially shown in Fig. 1.1, shows a repulsive periodic optical potential
which is moved through a uniform sample, creating spatially varying temperature profiles.
With control over the speed and wavelength of this potential, we can change the pressure
and temperature gradients, and vary the timescales over which these gradients are allowed
to relax. The density response dn has contributions from both the shear viscosity and
the thermal conductivity. With this shear viscosity known, and vanishing bulk viscosity
in the normal fluid regime, the only transport coefficient that remains is the thermal
conductivity.

The measured density response, observed as a function of A and v of the periodic

optical potential gives us regimes where the temperature gradients relax slowly or quickly.



When the decay rate for the temperature change 7, oc k7 /A\? is larger than the wave
frequency w of the periodic optical potential, v, >> w, the compression is isothermal.
When 7, << w, the temperature gradients relax slowly and the compression is adiabatic.
Our model has good sensitivity to measure the thermal conductivity when the periodic
potential is moved through the gas at subsonic speeds. Moving 0U(z, t) through the gas at
supersonic speed results in nonlinear effects such as the creating of weak shockwaves.The
thermal conductivity is impossible to extract with a linear hydrodynamic model when
the density response is nonlinear and sound waves are propagating adiabatically.
Variational calculations for a unitary gas in the 2-body Boltzmann high temperature

limit [5,6] determines the ratio of the thermal conductivity k7 to shear viscosity 1 to be

15 k
Fr _ _5_3. (1.13)
o 4 m

Comparing the experimental measurement of the thermal conductivity at 8y = 0.50 with

the high temperature ratio, we have

15 k
AT _0.03(14) x 22 58 (1.14)
Mo 4 m

where we have used the previously measured shear viscosity 1y = 1.23 hng [4,19].



Chapter 2

Experimental Setup

This chapter summarizes the cooling and trapping techniques used in the experiment and
the addition of micro-mirror technology used to create boxlike traps Uy(z) and project
moving periodic optical potentials dU(z, t), shown in Fig. 2.1. Some techniques and equip-
ment have been covered in great detail in previous theses [7,9, 12,18, 21], but will be
described briefly in this chapter to provide background for the current work.

Our apparatus uses two physical mechanisms for cooling and trapping the atomic
sample. The first mechanism slows and traps atoms through the repeated absorption and
emission of photons near the 671 nm transition of °Li. Photon absorption and emission
are used to create velocity and spatially dependent radiation pressure in the Zeeman
slower and magneto-optical trap or MOT, which provides a source of cold atoms.

The second cooling and trapping mechanism uses an electric dipole polarizability
interaction where the frequency of a focused electric field is far away the atomic resonance
to avoid optical scattering and heating. The electric dipole force, previously used only to
create a harmonic trap, is now also used to create the six sheet beams that make up the

box trap Up(z) and the perturbative optical potential 6U(z,t).
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Figure 2.1: Pictorial representation of the box trap Uy(z) shown on the right contains a
uniform sample (orange) with a perturbative optical potential §U(z,t) shown on the left.

We use absorption imaging to extract the density profile of the cloud. This technique
uses a pulse of resonant light to image a shadow of the density distribution from the
atomic cloud on a CCD camera. This imaging process destroys the atomic sample, and

another one must be created.

2.0.1 Velocity dependent radiation pressure

The first cooling mechanism uses the momentum of photons p = hk = h/\ to reduce
the velocity of the atoms. A photon absorbed by an atom will transfer momentum to
the atom in the direction that the photon was traveling. When an atom in an excited

state spontaneously emits a photon in a random direction, it will recoil in the opposite

11



direction. A laser beam tuned near resonance with an atomic transition will provide a net
momentum transfer in the direction of the laser propagation, while the net momentum
transfer from the spontaneous emission of photons will average to zero. Atoms moving

with a velocity v, in the direction of a laser will have a shifted resonance frequency

f=0-")5 (2.1)

from the Doppler effect, where f is the frequency observed by the atom, fy is the laser
frequency and c is the speed of light. An atom co-propagating along a laser beam, v, < 0,
that is tuned below resonance will absorb upshifted photons and decrease in velocity. An
atom propagating in the same direction as a laser beam tuned below resonance it will
not absorb any photons as the downshifted photons will not be in resonance with the
atomic transition. In one dimension, two overlapping co-propagating laser beams that
have been tuned below the atomic resonance will slow atoms moving in either direction.
This velocity dependent radiation pressure, also called optical molasses, is used to slow
down atoms in three dimensions by overlapping three orthogonal co-propagating laser
beams pairs. Atoms slowed by this velocity dependent radiation pressure will gradually

drift out of the laser beam path without spatial confinement.

2.0.2 Spatially dependent radiation pressure

A spatially varying magnetic field will create a spatially dependent energy shift that we
use to trap atoms. A magnetic field will energetically shift, or Zeeman shift, the mp + 1
excited state sublevels in SLi. The red-detuned laser beams used to create a velocity
dependent radiation pressure are cicrularly polarized to provide a spatially dependent

radiation pressure to atoms in a spatially varying magnetic field. Atoms in a region of
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positive magnetic field will have mp = —1 excited state sublevel shifted down in energy
and will absorb circularly polarized o_ photons. Atoms in negative magnetic field will
have the mpr = 1 excited sublevel downshifted and will absorb ¢, polarized photons.

Consider a one dimensional case where atoms are free to move in a magnetic field
that increases linearly in the positive direction about a zero point. A beam propagating
in the positive direction with o, polarization is overlapped with a beam propagating
in the negative direction with o_ polarization. Atoms in regions of negative magnetic
field absorb o, photons and receive momentum kicks in the positive direction. Atoms
in regions of positive magnetic field absorb o_ photons and receive momentum kicks in
the negative direction. The combined result of the magnetic and optical fields creates
a spatially dependent radiation pressure that confines atoms near the zero point of the
magnetic field.

The spatially dependent radiation pressure, in addition to the velocity dependent
radiation pressure is used to trap and cool atoms in three dimensions. One dimensional
radiation pressure is used in a Zeeman slower to slow an atomic beam of vapor with
thermal velocities of over 1000 m/s down to a few m/s over a distance of approximately

30 cm.

2.0.3 Zeeman slower

A constant flux of atoms is provided as a collimated atomic vapor traveling from the
source oven, heated to approximately 400° C, through a small hole at the end of a pipe.
The atomic beam enters the Zeeman slower where it is overlapped with a co-propagating
red-detuned laser in a spatially varying magnetic field used to produce a Zeeman shift.

The magnitude of the magnetic field, created by a series of electromagnetic coils, is set to
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spatially decrease as the atoms move along the Zeeman slower. Atoms with large velocities
are slowed by absorbing co-propagating photons that are brought into resonance by the
Doppler effect and Zeeman shift from the magnetic field. As the atoms moving down the
Zeeman slower are decelerated by the repeated absorption and emission of photons, the
magnetic field is spatially decreased to keep the atoms close to resonance with the laser

beam.

2.0.4 Magneto-optical trap

After exiting the Zeeman slower, atoms are trapped and cooled by three retro reflected or-
thogonal beams overlapping near the point of zero magnetic field gradient of a quadrupole
magnetic field. The combination of velocity and spatially dependent radiation pressure
used to cool and confine atoms, shown in Fig. 2.2, is called a magneto-optical trap or
MOT. The MOT at full intensity spatially confines the atoms and cools them to ~ 1 mK.

The mechanism for trapping and cooling in the MOT relies on the momentum transfer
from absorbed photons. The recoil momentum from photons emitted from atoms in the
MOT puts a lower bound on the temperatures that can be achieved in the MOT which
is ~ 150 puK when the intensity is lowered by a factor of ~ 100 and the frequency is
brought closer to resonance. The dipole force trapping mechanism, which doesn’t rely on
the momentum of photons for trapping and cooling, can achieve lower temperatures by

evaporatively cooling atoms held in a dipole trap.

2.0.5 Far off resonance dipole trapping

Atoms polarized in the electric field of a laser detuned far from an atomic resonance, will

experience a force from the dipole interaction with the electric field gradient F = —VV|
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Figure 2.2: The magneto-optical trap (MOT). Three orthogonal retro-reflected laser
beams along with the quadrupole magnetic field generated by two electromagnetic coils
in an anti-Helmholtz configuration trap and cools the atoms exiting the Zeeman slower.
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where the cycle-averaged potential of the electric field is

1 — =2

V:—§QE2 = Ja(w)](m,y,z), (2.2)
c

where c¢ is the speed of light, a(w) the polarizability of the sample, and I(z,y, z) the

intensity of the laser beam. The dipole polarizability of °Li

(7)) wg

2 _ 2
wh —w

(2.3)

is determined by the frequency of the laser light w, where ag = 24.3107%* cm is the static
polarizability [30] and wy is the resonant frequency. Atoms will be attracted to regions of
high laser intensity when the polarizability is positive or repelled when the polarizability

is negative.

2.0.6 FORT

When the MOT beams are extinguished, the focused beam of a COs laser, Aco, =10.6 pm,
produces an attractive far off resonance trap (FORT) for further cooling of the atoms
through evaporation. The laser is tuned far below resonance, w << wy, to provide fric-
tionless confinement while the most high energy atoms escape from the trap. To aid in
efficient evaporative cooling, a magnetic field is applied near a broad Feshbach resonance
occurring at 832.2 Gauss [33] giving us a diverging scattering length a, and strong in-
teractions. Evaporation in the full power FORT cools the atoms to a temperature of
~ 50 pK.

Further cooling of the sample is done by forced evaporation. The COy beam power

is lowered with an acousto-optic modulator (AOM), a device that uses an RF signal
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to generate acoustic waves in a material to diffract a laser beam, altering the intensity
and frequency of diffracted modes. An artificial waveform generator provides the control
voltage V (t) for the AOM, giving us full control over the trap depth U(t) as a function
of time. A lowering curve is programmed into the artificial waveform generator with user
defined inputs including the lowering time and final trap depth. Lowering the COy power
over 4 seconds with a shallow final trap depth, Ufina ~ Uy X 1073, produces an atomic
sample with temperatures as low as ~ 10 nK. Cooling the gas below the superfluid
critical temperature T will result in some portion of the gas becoming a superfluid. A
typical absorption image of an atomic sample at the end of forced evaporation is shown

in Fig 2.3.

Figure 2.3: Atomic sample in the approximately harmonic FORT after forced evapora-
tion.
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The instruments controlling the trap depth U(¢) of the attractive dipole trap need to
have low electronic noise in order to transfer the atoms from the FORT to the uniform
box trap at shallow trap depths. The control voltage provided V' (t) to the AOM by
the previous artificial waveform generators (Agilent 33250A) was electronically noisy
and needed to be integrated by external electronics to quiet the signal. Integrating the
control voltage signal resulted in a non-zero trap depth when the CO, laser beam was
extinguished during the transfer to the box trap. Extinguishing the beams when the trap
depth still has finite value results in an abrupt release of the atoms from a harmonic
trap to a box trap causing violent collisions with the box walls and unwanted collective
oscillations. To obtain a more responsive control voltage for the AOM at low trap depths,
we use artificial waveform generators (Keysight 33500B) with low electronic noise which
eliminates the need to integrate the signal. Lowering the shallow FORT to zero trap
depth over 10 ms before extinguishing the CO, beams now provides a gentle release into

the box trap without setting up collective oscillations.

2.1 Dynamical and spatial control of repulsive opti-
cal potentials

Digital light processing (DLP) technology is emerging as a versatile tool for creating
dynamically controlled optical potentials, creating disorder, and imprinting patterns in
dilute quantum gases [8,16,26]. Initially, we used a DLP chipset to improve on a previous
shockwave experiment [20]. The technology gave us control over the depth and width of
a separation between two fermionic atomic clouds in a harmonic potential. When the

optical potential creating the separation between the two clouds was extinguished, we
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would observe the collision and resulting shockwave in the gas. The DLP technology
proved to be a versatile tool in the shockwave experiments and we added a second chipset.
The new optical system used to project the images from two digital micromirror devices

(DMD) with blue-detuned laser beams is shown in Fig. 2.4.

Figure 2.4: The DMDs, control boards, and trigger boxes are mounted on custom ma-
chined mounts. This apparatus couples a blue-detuned Gaussian beam from a high power
fiber to a DMD. The spatially modulated beam from the DMD is demagnified and pro-
jected onto the atom sample to form the optical box potential Uy(z) and perturbation

U (z,t).

Most movie theaters across the world use digital light processing (DLP) for video pro-

jection. The technology is based on reflecting light from an array of microscopic mirrors
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where each individual mirror can be rapidly repositioned to ON or OFF corresponding to
a £12 degree tilt from the flat state. A 1920x 1080 resolution array has over two million
mirrors, each mirror corresponding to a pixel of an image. The illuminated surface of
the micromirror array can be magnified to form the images of a movie at the theater, or
demagnified onto the atom sample to create the images of a dynamical optical potential
Up(z) and dU(z,t). The surface of the digital micromirror device (DMD) acts like an
intensity mask on the Gaussian shaped blue-detuned beam with each mirror tilted to the
ON position directing part of the beam to the atoms and mirrors in the OFF position

directing part of the beam to a beam dump.

2.1.1 Optical box potential U(z)

The six sides of the optical box potential Uy(z) are created by a vertically propagating
green beam, Agreen, = 532 nm, and a horizontally propagating red beam, A,eq = 669 nm.
Using laser light with a higher frequency than the atomic transition, w > wy, gives a
negative dipole polarizability «, which results in a repulsive force on the atomic sample.

The green laser beam first passes through an AO for smoothly controlling the power.
The output of the AO is coupled into a high-power fiber to create a clean Gaussian
profile with good pointing stability at the DMD. At the output of the fiber, shown
schematically in Fig. 2.5, we use a combination of two prisms, called a total internal
reflection prism (TIR), to correctly angle the laser light onto the DMD and provide the
best power efficiency. The array of mirrors on the DMD behaves like a 2D diffraction
grating. [lluminating the array from the proper angle yields the most power into the
primary diffracted beam. The blue-detuned beam is then demagnified with a microscope

objective. This increases the intensity on the atoms compared to a 1:1 projection from
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Atomic sample

Dichroic beamsplitter

Figure 2.5: Red and green laser light is modulated by DMDs to form our repulsive
optical box potential Uy(z) and perturbative potential 6U(z,t). A blue-detuned repulsive
Gaussian beam exits a high power fiber and is coupled to the DMD with a total internal
reflection (TIR) prism. The image from the DMD is demagnified by a 10x microscope
objective. A telescope projects the demagnified image onto the atomic sample.

the DMD. The demagnified beam from the microscope is then reflected onto the atomic
sample with a dichroic beamsplitter and an approximately 1:1 telescope. The dichroic
allows the laser light for the optical potential Uy(z) to share the large windows of the
imaging beam path by reflecting the green laser light and allows the red imaging beam
to pass through the beamsplitter to the CCD camera. The horizontally propagating red
laser beam uses an optical system similar to the vertically propagating green beam shown
in Fig. 2.5.

The vertically propagating green beam modulated by the DMD creates four sides of
the uniform box trap Uy(z) and the perturbative optical potential dU(z,t). The spatially
shaped beam, shown in Fig. 2.6, made from the 532 nm laser light has a trap depth of

approximately 5 times the Fermi energy Fr = 0.16 pK.
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(a) (b)

Figure 2.6: (a) The vertically propagating beam, Ay ec,, = 532 nm, spatially modulated
by a DMD forms four walls of the optical box potential Uy(z). The effect of the Gaussian
profile on the projected intensity can be seen. (b) The optical box potential gives a
uniform sample, imaged from the vertical direction, with dimensions 129 x 84 x 58 um.

The horizontally propagating red beam, \,..q =699 nm, spatially modulated by a
second DMD creates the top and bottom of the optical box trap Uy(z), shown in Fig. 2.7.
Using a wavelength closer to the atomic resonance of °Li at A\ =671 nm gives dipole
polarizability that is approximately 60 times larger than for 532 nm laser light. This
allows us to have a much greater force on the atoms with much less laser power at the
DMD. Resonant light resulting from amplified spontaneous emission from our red diode
laser is eliminated with an Optigrate Bragg grating notch filter.

Gently releasing the atomic sample from the FORT into the optical box trap Uy(z)
gives a uniform sample where the peak density is only 10% more than the average density
ny = N/V = 2.6 x 10! atoms/cm® where N is the total atom number, and V is the
volume of the box, which has dimensions (129 x 84 x 58) um. The slow variation of the

density ng(z), shown in the horizontal and vertical directions in figures 2.6 and 2.7, is
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Figure 2.7: (a) The vertically propagating beam, \,.q = 669 nm 532 nm, spatially mod-
ulated by a DMD forms the top and bottom of the optical box potential Uy(z). (b) The
uniform atomic sample imaged from the horizontal direction.

due to the curvature of the bias magnetic field potential

1
y* + 5 MW g - (2.4)

1 1
_ 2 2 2
Unag = §m Wemag T~ + 5 M Wy mag

The spin states we trap are high field seeking and have a potential from the magnetic
dipole moment U,y = —p - B [21], where p is the magnetic dipole moment of an atom.
The magnetic dipole moment will align along the direction of the magnetic field ¢ which

is created by electromagnetic coils. Using V2 - B = 0 we have
2 2 ~ 2 _Umag ~

which gives us

w? 2 2 =0 (2.6)
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Because the atoms are high field seeking, the atoms will experience a repulsive force
along the direction of the electromagnet field coils bore y and an attractive force in the

Z and Z direction. The harmonic frequencies
=2w? (2.7)

are obtained from 2.6, where the cylindrical symmetry of the electromagnetic coil de-

mands that wzmag = wzmag. In our system, the measured frequency of the magnetic

potential iS W.meg = 27 X 22.7 Hz.

2.1.2 Perturbative potential dU(z, 1)

An optical perturbation U (z,t) with a depth of 6Ujy =~ 0.25FEF is created by modulating
the vertically propagating green laser beam that makes up four of the box walls, shown

in Fig. 2.8.

Figure 2.8: The DMD illuminated by green laser light forms four walls for the box
trap and creates the perturbative potential 0U(z,t). The walls Uy(z) remain stationary,
while the perturbative potential dU(z,t) moves through the uniform atomic sample with
velocity v.

24



The perturbative optical potential, programmed into the DMD [32],

U (z,t) = 06Uy [1 — € cos(qz — qut)] (vt — 2), (2.8)

has velocity v and ¢ = 27/ as programmable input parameters. A smooth step function
¢(vt — z) gives a vanishing perturbation inside the box at ¢ = 0 and provides a leading
edge for the periodic perturbation moving into the uniform density.

To create a dynamical optical potential, a series of images is loaded into the DLP
device memory which is triggered with digital pulses to advance through the images. Each
full period of the perturbative potential is made up of ten images. The wave frequency

of the spatially periodic perturbation

w=2rf=2mwv/\ (2.9)

is determined by the time between pulses At = (1/10)(1/f) triggering the image se-
quence, where A is the wavelength and v is the velocity. An absorption image is taken
when 0U(z,t) has traveled a fixed number of periods into the sample. For a wavelength
of A =19 um, the image is taken after four periods, when the leading edge is at 76 pum,
as shown in Fig. 2.8. The leading edge of the A = 30 pum perturbation is at 90 pum, after
three periods, when the image is taken. The density response dn is recorded over the
frequency range of 100 Hz to 1200 Hz for these two wavelengths.

In the experiment, we want to project sinusoidal periodic optical potentials from
the DMD onto the uniform sample, but each mirror can only set to a binary state of
ON or OFF. We create binary images that simulate smooth images using a halftoning

technique that varies the spacing of ON and OFF mirrors shown in Fig. 2.9. A 7.56 um
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mirror demagnified by a 10x microscope objective has an image size that is smaller than
the 2.9 pum airy radius, determined from the limited aperture of the vacuum chamber
windows which have a diameter D = 4 cm. The blurred binary image provides a smooth

sinusoidal perturbative potential.

Desired intensity Binary imag Blurred binary image

Figure 2.9: Binary images projected from the surface of the DMD are blurred through
the finite aperture of our imaging system.
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Chapter 3

Thermodynamic Preliminaries

The density response dn to a perturbing optical potential dU(z,t) with variable wave
frequency w = 27 v / A is a new probe for measuring transport properties. The measured
density response dn of a nearly uniform normal unitary Fermi gas to such a perturbation
is characterized by the density ng, temperature T, equation of state, and the transport
coefficients 7 and kp. To develop a hydrodynamic model for our experiment, we need a
mathematical description of the change in pressure 6 P, change in temperature 07", and
thermodynamic quantities such as the heat capacity. Fortunately, the equation of state
for the unitary Fermi gas was recently measured by a group at MIT [25] which greatly
aids in our analysis and allows us to determine the temperature of our gas in-situ from
the measured sound speed. In this chapter we will cover the thermodynamic preliminaries

needed to build a fluid dynamics description in the next chapter.
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3.1 Thermodynamic derivations

We begin with derivations of the relationships between the heat capacity per particle

29
aT

at constant volume cy = ( )V, the heat capacity per particle at constant pressure

cp = (g_g)p , and the expansivity § = % (g_¥

) »» Where the volume per particleis V' = 1/n.
Starting with d@Q = T'dS, where S is the entropy per particle, and the definition of

heat capacity, it follows that

08
Cy = T (a_T)V (31)
and
oS
Cp = T (a_T>P . (32)
We can use 3.1, 3.2, and
08 08
=== P — T .
5o (25 ar i () 09
to obtain
a8 oP
Cy = Cp —|— T (a_P)T (8_T) ” . (34)
We eliminate (%)T using the Maxwell relation — (g—g)T = (%) p Obtained from the

Gibbs free energy dG = —SdT + VdP and

G\ [0S
oPoT)  \0P),

0°G \ _ [(oV
oror) \oT ),
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Defining the thermal expansivity [,

1 /oV
— =] = 3.5
! ( 8T) =5 (3.5)
we have from the Maxwell relation,

oS

— | =-pV. 3.6
(57) = (3.

Now we can write (%)T (g—;)v in 3.4 in terms of # and the isothermal sound speed

& =L (95) . Taking dP = 0, we start with

oP oP
dP = (W>Td\/+ <6_T)VdT

(g_];)v - (g_xlj)T (g—;)P- (3.7)

Using the volume per particle V' = 1/n, we have

We rewrite (g_\]j):r to get

oP\ _(oPN On _ 1 (0P (3.9)
o), \on),ovV — VZ\on), '

Using this in 3.7 we have

), (0,60, (), ), o
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Substituting in 3.9 and 3.6 into 3.4 we obtain

cvch—52T(%§)T. (3.11)

3.1.1 Sound speed

One quantity that is easily measured is the speed of sound. The adiabatic sound speed
¢o can be determined from the fit of our hydrodynamic model to the time dependent
density profiles in our experiment.

The isothermal sound speed cr and adiabatic sound speed ¢y are given by

R
cT_m(&n § (3.12)
,_ 1 (0P
Co_m(an . (3.13)

We can use the sound speed to get the thermal expansivity 4 in terms of measurable

quantities. We begin with P(n,T), writing P(n,S) = P[n,T(n,S)] so that

(-, e

Taking dS(P,T) = 0, we can find (‘9—T)S from

mn

G EE, e

Using 3.6 and 3.1 in the equation above, it follows that

aT\ VBT (9P
CIRE=t) (310

30



Using 3.10 and 3.5 while noting n = % so that (g—;) = (Q)n, we have

(3. (%),

Using 3.16 and 3.17 in 3.14 gives us

BT, e

Using 3.11 in the equation above yields

oP oP Cp — Cy oP
- ) = (== — ] . 1
(871)5 (an)T+ cp <6n>5 (3.19)

Using 3.19 along with (%)T = mc2 from 3.12 and (88—1;)

¢ = mcp from 3.13 gives us the

relationship between the isothermal sound speed and the adiabatic sound speed
= —-ct. (3.20)

Substituting (%) = mc% into 3.11 and using 3.20 gives the thermal expansivity in

T

terms of measurable quantities

e i e 4 (3.21)

cv maAT

3.1.2 Change in pressure and temperature

Sweeping a repulsive periodic optical potential into a uniform gas changes the pressure
P(n,S) = P[n,T(n,S)] and the temperature 7'(S,n). We can use the results from the

previous section to write down the change in pressure 6P and temperature 07. The

31



change in pressure is

oP oP
oP (8n> 5n+<85) 08

P T
mcion + (gT) (Z—S> 0.9,

(3.22)

where 3.13 has been used. Using the heat capacity per particle at constant volume ¢y, =

T(0S/0T),, 3.12, 3.17, and 3.20 we obtain

T
§P=mcyén+mcy—néS.
cp

The change in temperature T'(n, s) is

oT oT
T —
o= () s (2)
Using 3.16 as (g_:)s = lﬂ— (8—P) and 3.1, we write 3.24 as

n cp

5T :—5S+mc05—;

3.1.3 Unitary Fermi gas thermodynamics

(3.23)

(3.24)

(3.25)

Thermodynamic quantities for a unitary Fermi gas can be determined as universal func-

tions of density n and the reduced temperature § = T'/Tr using the equation of state. In

2012 Ku et al. [25] measured the universal function fg(6) that completely determines the

equation of state for a unitary Fermi gas. In our experiments, the density is determined

from absorption images and the reduced temperature is determined by measuring the

adiabatic sound speed cy(#). The measured equation of state, density and temperature
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then allows us to calculate all thermodynamic quantities needed for our hydrodynamic
model.
The energy density e, chemical potential p, and entropy per particle S in a unitary

Fermi gas are given by

. gnep(n) F2(0) (3.26)
= cxn) £,(6) (3.27)
S =kg fs(0), (3.28)

where the local Fermi energy er(n) and Fermi temperature Tr are

h?
kB TF = eF(n) = % (371'271)2/3

, (3.29)

with n being the total density for a 50-50 mixture of two spin states.
If the density and temperature are known, any thermodynamic quantity such as the
heat capacity ¢y can be determined using the measured equation of state,

[0S\ . 0fs(0)
oy =T (G—T)V =722 Dk, (3.30)

or equivalently using dE =TdS — PdV

1 /0 3
Cy = ﬁ (8_;)71 = kp g fé(@), (3-31)

where S is the entropy per particle and the energy per particle is £ = ¢/n. The heat
capacity cy calculated from the equation of state is shown in Fig 3.1.

In a harmonically trapped unitary Fermi gas, the shape of the density profile with the
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Figure 3.1: The heat capacity per particle at constant volume Cy and heat capacity at
constant pressure Cp as a function of the reduced temperature 6 are determined by the
measured universal function fg(6).

equation of state gives the temperature. Parametric resonance characterizes the harmonic
potential and the virial theorem gives the total energy of the cloud. In a uniform box trap,
this technique is more difficult to implement. We instead measure the temperature from
the adiabatic speed of sound ¢((fy) extracted from density profiles in-situ. We compare
the in-situ measurement of ¢y with the speed of a density perturbation in a uniform
sample of equivalent density for a cross check.

The adiabatic sound speed is given by

1 [OP 1 (OP
2 = - —_ P
= <8n )s m (371 )9’ (3:32)

where we can see from 3.28 that constant S is equivalent to constant #. In a unitary

Fermi gas the pressure P and energy density e are related by P = (2/3)e [14, 29].
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Using 3.32, 3.26, and P = (2/5)nep(n) fr(f) we obtain

(3.33)

where €x(ng) = 3 mo is given by 3.29 for n = n,.

The measured sound speed ¢y combined with the measured universal function fz(6)
enables thermometry in our experiment. The temperature as a function of the sound

speed, shown in Fig 3.2, is a monotonic function of ¢q/vg for 6 > 0.25.

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Co/UF

Figure 3.2: In our experiments we find ¢y = 1.3 cm/s for our density ny = 2.6 x 10!
and Fermi velocity vp = 2.11 cm/s. The ratio ¢y/vr = 0.62 gives a reduced temperature
6 = 0.50 which we use to determine the heat capacity per particle at constant volume
¢, and heat capacity per particle at constant volume cp, as well as the shear viscosity 7
discussed later in chapter 4.
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Chapter 4

Transport in a normal unitary Fermi

gas

A unitary Fermi gas above the superfluid critical temperature T is a normal fluid with
only two transport parameters, the shear viscosity 1 and the thermal conductivity x7. In
normal fluid regime, a unitary Fermi gas has vanishing bulk viscosity ( as a consequence
of scale invariance [15,28]. Measurements of the transport properties can be compared
with variational calculations for a unitary gas in the 2-body Boltzmann limit. In the
high temperature limit, the predicted ratio [5,6] of the thermal conductivity to the shear
viscosity is

br _ 08B (4.1)

with the shear viscosity
15 (mkgT)>*?

n = NG 2 (4.2)

These relations are valid for a unitary Fermi gas in the Bolztmann limit, where kg is the

Boltzmann constant, 7" is temperature, and m is the atom mass.
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4.0.1 Shear Viscosity 7

The internal friction between parts of a fluid traveling with different velocities causes
a transfer of momentum from regions of high velocity to low velocity. The equations of
motion that describe the unitary Fermi gas as a viscous fluid include the force from the

viscous stress tensor [23]

82)1' E)vk 2 81;1)} (4 3)

9j (noi;) = 0, {77 (a—xk * o 3%,
The shear viscosity 77 in a unitary Fermi gas was previously measured in the normal fluid
regime [4,19]. The shear viscosity is extracted by observing the hydrodynamic expansion
of a uniform temperature cloud released from an anisotropic trap at a fixed time t.
The unequal pressure gradients of an anisotropic trap lead to internal friction from the
transverse flow during expansion after release. The expanding cloud aspect ratio of the
recorded at a fixed time t is determined by the shear viscosity. An analysis of this data
precisely determines the shear viscosity 7(6) in the normal fluid regime by modeling the
hydrodynamic flow near the cloud center and the non-hydrodynamic modes of the less
dense edges [4]. The effect of the thermal conductivity in the expanding cloud experiment
can be neglected as the clouds maintain uniform temperature due to the uniform scale
transformation that governs the expansion.
Our analysis of the hydrodynamic density response dn in a unitary Fermi gas to
determine the thermal conductivity benefits from the above recent work in determining
the shear viscosity from expanding clouds released from anisotropic traps [19]. In the

analysis, the shear viscosity 7 in the normal fluid regime as a function of temperature
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and density it taken to be an expansion in powers of the diluteness nA3.

mkg 3/2 5
ot 1) = BT 1y 03 4 (4.4

where Ay = h/+/27mm kg T is the thermal de Broglie wavelength and n is the total density.
The leading term o< 7 is a function of temperature only. 79 has been calculated using the
two-body Boltzmann equation for a unitary Fermi gas, no = 15/(32y/7) = 0.26446 [4].

This is in excellent agreement with the fits to the expansion data, 79 = 0.265(20), showing

that the analysis properly reproduces the high temperature limit. The first order of the

3.5

251

n/hn

0.2 0.4 0.6 0.8 1
)

Figure 4.1: The dimensionless shear viscosity n/hn from equation 4.5 shown in black
with 7 and m set to unity [4]. Shear viscosity calculated by Enss et al. [11] shown in red
for comparison.

expansion is a function of the density only with 7, = 0.060(20). Using only the first two

terms in the expansion, the dimensionless shear viscosity takes the form

3 2
h”_n - % 10 0%/ + (21)*/* oy = 2.77(21) 6372 + 0.25(8). (4.5)

«
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Equation 4.5 is shown in Fig. 4.1, is comparable to calculations from Enss et al. [11] and
Wlazowski et al. [31]. We use the shear viscosity determined from the expanding cloud
data [4,19] as an input to our hydrodynamic model, leaving the thermal conductivity rr

as the only transport property to be determined.

4.1 Hydrodynamic linear response for a normal fluid

We measure the density response dn of a uniform Fermi gas to a perturbing repulsive
optical potential 0U(z,t). As noted above, the response contains information about the
transport coefficients n and xr [32]. To extract the thermal conductivity £ in a unitary
Fermi gas, we have created a linear hydrodynamic response model for the dn response of

a uniform gas confined in a box potential Uy(z) perturbed by the periodic potential

SU(z,t) = 6Ug [1 — € cos(qz — qut)] ¢p(vt — z) e~ =207/ (4.6)

A smoothed step function ¢(vt — z) gives a vanishing perturbation inside the box at
t = 0 and provides a leading edge for the periodic perturbation moving into the uniform
density. The last term in 4.6 accounts for the gaussian profile of the beam illuminating
the DMD.

We begin the construction of our hydrodynamic model by requiring that the density

n(z,t) of the fluid satisfies the continuity equation

Orn+V(nv) =0. (4.7)
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The equations of motion for a viscous fluid are obtained writing the acceleration of a

particle moving in a fluid

dv  oOv Ovdr 0Ovdy 0vdz

— =4 — — ——. 4.
it ot Torat Toydat T os (48)
and equating the force per unit volume
dv
nmE:nm(atV—i—V-Vv) (4.9)

to the forces per unit volume arising from the pressure —V P, applied potential —nVU,
and the viscous stress tensor 0; (1 0;;).
We write our equations of motion as Euler’s equation in one dimension for a viscous
fluid
nm (0 + v,0,)v, = —0,P —nd,U + 0.(no.,.), (4.10)

and the continuity equation

ohn+0,(nv,) =0. (4.11)

The viscous stress tensor 7o;; in one dimension is

2 4
nazz:n(azvz+azvz_§azvz) :n§azvz- (412)
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A perturbative external potential dU(z,t) produces first order change in the density,

pressure, and velocity

n = ng(z) + on(z,t)
P=PF+P

v, =04 v,.
Substituting this into 4.10 and 4.11 gives us
4
(ng+on)m (0y + v, 0,)v, = —0.(Po+ 0P) — (ng+6n) 9, (Up+ 6U) + 0, n gaz v,, (4.13)

and

O (ng + on) + 0, [(ng + dn)v,] = 0. (4.14)

The force from the pressure and box potential cancel each other in equilibrium, as shown
in Fig. 4.2, which requires
—az Po — Ny az U() = 0. (415)

Using 4.15 and keeping only terms up to first order we write 4.13 and 4.14 as

—ng O, = L (&Z OP +ng0,0U +ond, Uy — 8Zn§(?zvz> (4.16)

m

and

0,0n = —0,ng v, & —ngy 0, Vs. (4.17)
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z[pum] z[pm]
(a) (b)

Figure 4.2: (a) Background density 79(z) (blue) fit with an analytic function (red). (b)
The box potential Uy(z)/ero is obtained by integrating 0,Uy(z). The gradient of the box
potential 0.Uy(z) is determined from the background density n(z).

Taking the derivative 0, of equation 4.16 and 0; of equation 4.17 we obtain

—0,0,ngv, = i(?z (0, 0P 4+ np 0, 6U + dn 0o, Uy — 8Zn§82 v,) (4.18)
m

and

Of on = —0; 0, ngy . (4.19)

Substituting equation 4.19 into equation 4.18, we have

1 4
O on = — 0, (8Z6P+n082(5U+6n8Z Up —@’f]gazvz) : (4.20)
m
We use
2 9, L
5P:mco5n+m6056—n55 (4.21)
P

from chapter 3, where S is the entropy per particle, and 9, v, = ;—3 0y on from 4.17 to
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eliminate the velocity field to obtain

T 4 1
O on—ch 02 on—ci Bng — 0265 — = 1 020,6n = — 0, (ng 0, 0U +dn 0. Uy). (4.22)
cp 3 ngm m

We treat the sound speed ¢y as a constant with respect to position in equation 4.22
because ¢q/vr should be independent of density in the unitary Fermi gas [17]. In Fig. 4.3

we show ¢g/vr as a function of density for a fixed temperature 6.

0.8

Co

VFo
04 —//

0.2

0 02 04 06 08 1

n/ng
Figure 4.3: The ratio of the sound speed to the Fermi velocity ¢y/vr as a function of den-
sity n/ng. We use co/vp = \/f(0)/3 from chapter three, where 0(n/ng) = 0y(n/ng) /3.

We show the nearly constant c¢o/vg for 6y = 1 in red, 6, = 0.5 in black, and 6y = 0.2 in
blue.

43



The evolution of S is determined by the heating rate per unit volume,

@ = T() (8t + v, 83) 08S.
no

The heating rate from conduction ¢ is obtained by substituting the heat current

JQ = —RT vT

into the thermal conduction equation

at€+VJQ:O

(4.23)

(4.24)

(4.25)

We neglect higher order heating terms in d;e arising from shear viscosity O(v?) to obtain

8¢ ~ ky 02 0T.

Substituting the temperature change

T, T) 6
0T =268 +me2p =222,
Cy cCp N

from chapter 3 with n = ng and T' = Tj, and equation 4.26 into 4.23 we obtain

965 — T g2 5g = KM

NoCy ngcp

B0 on,

where the v, 0,05 term from 4.23 is second order.
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It is convenient to use dimensionless variables

55 = ﬂToTL()(SS/(CP’I’L())
on = on/ng

no(z) = no(2)/no

5U(Z,t> = (SU(Z,t)/GFO

Uo(Z, t) = UO(Z, t)/EFO

in 4.22 and 4.28 to make numerical integration easier, where ng is the average density and
the Fermi energy epg = (1/2)mvz, = h? (37 no)** /2m. Working with dimensionless
variables, we have two coupled equations which describe the response of the density én

and entropy 05 to a perturbing potential 6U(z,t) in a box trap Up(z,t),

" 25 = T T Vg, (4.29)
No Cy No Cy Cp

0,08 —

and

. _ o 4 om . v} _ oo
255 2092 2cay 2 2 _ Uko
0; 0n — ¢ (07 6n+ 05 95) 3 0; 0, on 5 0. (no 0.0U + on 0, Uo) .| (4.30)

The ¢Z terms in equation 4.30 are from the change in pressure d P, the 7 term accounts
for the viscous damping of the density response 6n which is driven by the §U term. The

U, term is the force from the box potential, derived later in this chapter.
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Equations 4.29 and 4.30 are solved numerically with the initial conditions

5n =0,
on =0,
55 =0

4.2 Damping and decay rates

We can understand the damping in equation 4.29 and 4.30 as the irreversible processes
of thermal conduction and internal friction. Density perturbations created by moving
dU(z,t) through the uniform sample are damped at a rate set by the shear viscosity 7
and the thermal conductivity k. The decay rate of temperature gradients is obtained

by considering the energy flux resulting from thermal conduction in a static fluid
Ore+V-Jgy=0. (4.31)

The heat current

Jo = —ky VT (4.32)

results from the heat transfer from points of high temperature regions to low temperature.
The magnitude of the heat current is determined by the thermal conductivity sr.

We can write equation 4.31 as

(g_;)n (%:) Vg =0, (4.33)
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Substituting

(g—;)n =ncy (4.34)
into 4.33, we obtain
ncy (%—z) +V.-Jg=0. (4.35)
Substituting 4.32 into 4.35, we have
(%—f) - :TTV V2T = 0. (4.36)

Assuming we have a solution of the form

T(z,t) =Ty + A(t) cos(qz), (4.37)
we can solve
; FGTQ2
A(t) + A(t)| cos(qz) =0 (4.38)
ncy
to obtain
A(t) = Ao et (4.39)

This gives us the rate at which temperature gradients decay,

Yo = L 2. (4.40)

ncy

The decay rate v, can be seen in the equation that describes the change in entropy 4.29
as a result of a change in density dn, assuming a sinusoidal solution for the change in
entropy

65 (z,t) = 65y + A(t) cos(gz). (4.41)
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The frictional or viscous forces resulting from sheer stress 0, v, have a damping rate

4
T2 (4.42)

/ynzg’flom

that can be obtained from equation 4.30 by assuming a solution for the change in density
on(z,t) = éng + A(t) cos(qz). (4.43)

Damping form shear viscosity and thermal conductivity both contribute to sound

absorption. In the high frequency limit, co g >> ., the damping rate [23] is

4
=g {—LJF i (1—C—V>] (4.44)
3ngm  nocy cp

4.2.1 Force from the box potential

An atomic sample trapped in the optical box Uy(z) trap does not provide an infinite
medium. We need to account for the boundary conditions to properly model the density
response 0n(z,t). The force from the box potential F' = —0.Uy(z), shown in Fig. 4.4, is
obtained from the condition for equilibrium 0, Py = no0,Uy(z), where the gradient of the

pressure is

@ P() [NO(Z), To] = (g—i(j)T 8Z TL()(Z) (445)

We can write the isothermal sound speed from chapter 3 as

8P0 Cy
mc = (8_7%)T =m o 3, (4.46)
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Figure 4.4: Box force profile —9,U, in dimensionless variables.

and the adiabatic sound speed as

2er ful6)
m 3

2 _
Co =

(4.47)

where we have used v% = 2¢x /m. Substituting 4.47 and 4.46 into equation 4.45, we

obtain

2 cv 0;no(2)

82 Uo = —— €p fE(G) . n0<z) .

] (4.48)

Using dimensionless variables, 7i(2) = ng(2)/no and Uy(z,t) = Uy(z,t)/€ero, we have

0. Up(2) = —§ fe(9) zgggzﬂ B leo)af/é (4.49)

)

The thermodynamic quantities and measured equation of state,

3

€= nep(n) fe(0), (4.50)

from chapter 3, are universal functions only of the reduced temperature § = T'/Tr. The
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—2/3

reduced temperature 6 scales as n as seen in the equation for the local Fermi energy

h2
kgTp =ep(n) = % (37° n)2/3. (4.51)

In our sample,

0(2) = 0y [0 (2)] >3 (4.52)

is calculated from the density profile ny(z). The reduced temperature evaluated at the
mean central density, g = Ty / Tr(ng), is determined from the fitted adiabatic sound
speed c¢y. We avoid the divergence of # as 7y — 0 by adding an offset 79 x 10~* to the
density 7n0(2) in equation 4.52.

Equation 4.45 can also be used to determine the force from the box potential 0,Uy(z)
by evaluating (0P/0n)r from the pressure for a unitary gas. From chapter three, we have

the pressure for a unitary Fermi gas,

2 2 h?

P=c-nep(n) fold) = - —

- o (3m2)2/3 03 f(6). (4.53)

This directly gives us the force from the box potential for the unitary Fermi gas

0, 1p(z)

o (2)[1/5° (4.54)

0.Tn(z) = —2 | ful0) ~ 2 0.74(0)

from the density profile, using the known equation of state f(#), and the reduced tem-

perature 6(z) from equation 4.52.
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Chapter 5

Comparison of Model to Data

In this chapter we compare the hydrodynamic model to the data from the experiment.
We discuss the effect each fitting parameter has on the modeled density response. We
then measure the thermal conductivity k7 from the global fit of the model to the data.
Using a DMD gives us independent control over the wavelength A and frequency f of
the periodic optical potential 0U(z,t). This allows us to move the optical perturbation
through the uniform sample at speeds above and below the relaxation rate of temperature

gradients

Y
N = — g2, (5.1)
no Cy

where ¢ = 2m/A. When the density is driven at low frequencies relative to the decay
rate, w < 7, the density response dn is sensitive to the thermal conductivity kr. In
this regime, temperature gradients have time to decay and the compression is closer to
isothermal.

Independently choosing the wavelength and frequency of the periodic optical poten-

tial allows us to probe regimes where the data and model are sensitive to the thermal
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conductivity k7 and regimes where the thermal conductivity has a negligible effect on

the density response on.

5.1 Experimental data

We observe the density response using two different wavelengths for our periodic optical
potential 6U(z,t), A = 19 pm and A = 30 pm. The decay rate ~, for each wavelength
Ve o< q2, where ¢ = 2w /. To estimate the decay rate ., we use the thermal conductivity

calculated in the high temperature limit [5, 6]

15 k
wr =10 EB (5.2)

We calculate the decay rate v, using equation 5.1 for two different wavelengths using the
measured shear viscosity 79 = 1.23 hng [4,19] and heat capacity ¢y = 1.13 kp from the
measured equation of state [25], assuming a temperature of y = 0.5, which is comparable

to what we measure in our experiments.

Table 5.1: Damping rates.

Rate | A=19 ym | A =30 um

coq | 2m x 685 Hz | 27 x 433 Hz

Yy | 27 x 301 Hz | 2 x 121 Hz

Ve | 2m x 750 Hz | 27 x 300 Hz

We choose a range of frequencies to measure the density response above and below

the decay rate 7,. The frequency range of the A = 19 um optical potential is 100-1200
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Hz in steps of 100 Hz. The frequency range of the A = 30 um optical potential is 100-750
Hz in steps of 50Hz.

The optical potential §U(z,t) vanishes inside the box at ¢ = 0, and moves along the
z axis for a fixed number of periods. The leading edge of dU(z,t) is roughly centered
in the box trap when an absorption image is taken to obtain the column density. The
A = 19 pm perturbation moves four periods into the sample for each frequency f, resulting
in a leading edge at 76 um when the absorption image is taken, as shown in Fig. 5.1. The
A = 30 um perturbation moves only three periods into the sample, resulting in a leading
edge is at 90 pm when the absorption image is taken. Five absorption images are taken
for each frequency f to obtain an average column density. The background density nq(2)
is recorded for an unperturbed uniform sample U, = 0. The average background density
is ng = N/V = 2.6 x 10", The total atom number for both spin states is N = 1.69 x 10°
and V is the volume of the box trap Uy(z), with dimensions 129 x 84 x 58 pm. The
density response profiles,
57 An _ M’ (5.3)

no N

for the optical potential with wavelength A = 19 ym and A = 30 pm are sown in
Fig. 5.2 and 5.3 respectively.

Figures 5.2 and 5.3 show how the shape of the density response dn changes as the
perturbing potential is moved through at subsonic v < ¢y and supersonic v > ¢ speeds.
When the drive speed v is low, v/¢y < 0.5, sound waves propagate past the leading edge
of the perturbing optical potential U (z,t), resulting in a positive and nearly flat density
response on in the region between the leading edge of the perturbation and the box wall
at 129 pum. The leading edge of the density response increases in amplitude and narrows

as v approaches ¢y as the sound waves cannot propagate far past the edge of U (z,t).
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(a) 0U at the final time for A = 19 pm.
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(b) oU at the final time for A = 30 pm.

Figure 5.1: The periodic optical potential dU(z,t)/Ep plotted at time ¢; when the ab-
sorption image is taken. The form of 6U(z, t), as shown in equation 5.12, properly accounts
for the blurring through the imaging system and the gaussian profile of the beam illumi-
nating the DMD. (a) The 19 um wavelength perturbation has moved 4 spatial periods
into the uniform sample at time ¢t = t;. (b) The 30 pm wavelength perturbation has
moved 3 spatial periods into the uniform sample at time t = ¢;.
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0 50 100 0 50 100
z(pm) z(pm)
(b) 300 Hz, v/cy =0.45

0 50 100 0 50 100
z(pum) z(pm)
(d) 700 Hz, v/cy =1.02

0 50 100 0 50 100
() 2(um)
(e) 900 Hz, v/co =1.32 (f) 1100 Hz, v/co =1.61

Figure 5.2: A periodic optical potential with wavelength A\ = 19 um, velocity v = Af,
and magnitude 0Uy ~ 0.25EF is swept through a uniform sample which has an average
density ng = N/V = 2.6 x 10'! atoms/cm?, where N is the total atom number for both
spin states. The response of the density dn is recorded as a function of the periodic
potential frequency with a range f=100-1200 Hz in steps of 100 Hz.

%)



04 [ 04 L

0.2¢
An 0 :I‘.f::" .
0 g2t
047
‘ ‘ -0.6 ‘ ‘
0 50 100 0 50 100
+(um) +(um)

(b) 200 Hz, v/co =0.46

0 50 100 0 50 100
() ()
(¢) 300 Hz, v/cy =0.69 (d) 400 Hz, v/cy =0.92

0 50 100 0 50 100
z(pum) z(pm)
(e) 500 Hz, v/co =1.15 (f) 600 Hz, v/cy =1.38

Figure 5.3: A periodic optical potential with wavelength A\ = 30 um, velocity v = Af,
and magnitude 06Uy =~ 0.25FEF is swept through a uniform sample which has an average
density ng = N/V = 2.6 x 10! atoms/cm?, where N is the total atom number for both
spin states. The response of the density dn is recorded as a function of the periodic
potential frequency with a range f=100-750 Hz in steps of 50 Hz.
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The amplitude of the density response is largest when the speed of 6U(z,t) is nearly
resonant with the sound speed, v/cy = 1. In the supersonic regime, v/cy > 1, the am-
plitude of the density response falls as the perturbation travels faster than the speed of

sound.

5.2 Preparing the hydrodynamic model for numeri-
cal integration

We use the hydrodynamic model from chapter 4 to understand the features of the density
response on and to extract the thermal conductivity xr. To make the extraction of
transport parameters easier, we will slightly modify the form of the equations in chapter

4, which are repeated here,

~ 4 2 - N
0} 87 — ¢} (07 0 + 0255) - 928,50 = %az (fzoazwwﬁaz Uo>, (5.4)

ngm

and

T 265 = T LTV g2y (5.5)

No Cy Ng Cy Cp

0; 05 —

The measured shear viscosity [4,19] at temperature 6,

Mo = oo hung, (5-6)

is used as input to equation 5.4. Using 5.6, the factor (4/3)(ny/nom) in equation 5.4

becomes

4 Mo 4h
= = - a. 5.7
3 ngm 3ma0 (5:7)
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We use a fitting parameter C), in equation 5.5 to extract the thermal conductivity sr.
We insert the fitting parameter C, into our model by writing the thermal conductivity
in terms of the calculated ratio of the thermal conductivity to the shear viscosity in the

high temperature limit [5, 6],

15 k 15 k
HT:CRZEB’OO:ORZEBO(()ETL(). (58)

Using 5.8, the factor k7/(ngcy) in equation 5.5 becomes

15 kg h
oo, 2B, (5.9)
o Cy 4 cym

Using the substitutions 5.7 and 5.9, the hydrodynamic model takes the form

~ 4 2 - -
02 67 — c2 (92 67 + 92 65) — ggao 02, 671 = %az (fzoﬁz 8T + 61 0. U0> | (5.10)

and

) 15 ky : 15 kg h -
o652 psg oo ke cp ey

K
4 cy m 4 cy m cp

02 6. (5.11)

5.2.1 Periodic optical potential 6U(z,t)

The data are modeled by numerically integrating equations 5.10, and 5.11 with the per-

turbing optical potential

SU(z,t) = 6Uy [1 — ecos(qz — qut)] ¢p(vt — z) e~ =20/ (5.12)
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which is shown at ¢ = ¢; in Fig. 5.1. The gaussian profile of the beam illuminating the

DMD is accounted for with the gaussian function
e~ (z=20)*/0% (5.13)

The position z; and width o of the gaussian beam used to create the perturbing optical
potential are easily measured and are not used as fit parameters.

The envelope function

1 +tanh [z/04] 14 tanh[(vt — 2)/0y)

t—2z)= 5.14
St —2) LT : (5.1
is created with hyperbolic tangent functions. The time dependent factor

1 + tanh [(vt — 2)/0y) (5.15)

2

moves with [1 — ecos(gz — qut)] and provides a cutoff for the leading edge of the pertur-

bation. The time independent factor of the envelope function

1 + tanh [2/0y)
2

(5.16)

provides a cutoff for the perturbation dU(z,t) at the box potential wall located at z = 0.
The width of the envelope function edges o4 are set to 4 pm, to approximate the blurring

from the finite resolution of the imaging system.
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5.2.2 Fit parameter effects on the modeled density response

Global fits determine the fit parameters, €, ¢y, 0Uy and C,. Each fit parameter controls

unique spatial features in the density response dn.

0.5

—0_
no

-0.5E 1 1 1 1 1 1
0 20 40 60 80 100 120

z(pm)

Figure 5.4: Effect of the modulation depth € of equation 5.12 on the destiny response.
The perturbing optical potential has wavelength A = 19 pm and frequency f =400 Hz.
The optical perturbation parameter ¢ = 0.23 is shown in red, € X 2 shown in blue, and
€ X 0.5 shown in black.

Fig. 5.4 shows the effect of the perturbing potential parameter € in equation 5.12.
The depth of the periodic part of the perturbing potential € affects the density response
on in the region where the density response shows periodic modulation.

Fig. 5.5 shows the effect of the sound speed ¢y on the modeled density response dn. As
discussed in chapter 3, the fitted ¢q is used as an in situ thermometer to determine the
reduced temperature 6y = Ty /Tr. This temperature 0y(cq) determines the heat capacities
per particle ¢y and cp from the measured equation of state [25], and the measured shear

viscosity 7o [4,19] in equation 5.22.
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Figure 5.5: Effect of the adiabatic sound speed ¢y on the destiny response. The perturb-
ing optical potential has wavelength A = 19 pym and frequency f =400 Hz. The sound
speed ¢p = 1.3 cm/s is shown in red, ¢y = 1.6 cm/s shown in blue, and, ¢y = 1.0 cm/s
shown in black.

The fitted ¢ is checked by measuring the speed of a density perturbation in a uniform
trap, as shown in Fig. 5.6. We create the density perturbation with a 300 us pulse of
repulsive laser light at position z = 0 and time ¢ = 0. Tracking the position of the density
peak as a function of times gives a speed of v, = 1.4 cm/s, which is within 10% of the
fitted sound speed from the density response, ¢y = 1.3 cm/s.

Fig. 5.7 shows the effect of the thermal conductivity fitting parameter C, on the
density response for different w/v,. A larger value for the fitting parameter C, increases
the amplitude of the leading density response peak. When §U(z,t) moves through the
sample slowly enough to allow temperature gradients to relax, w << =,, the compression
is isothermal. Moving 0U(z,t) through the sample with frequency w >> =, results in

adiabatic compression.
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(b)
Figure 5.6: (a) Profiles of a density perturbation traveling through the uniform sample
at two different times: ¢ = 2000 ps in blue and ¢ = 4000 us in red. (b) Tracking the

position of the density peak as a function of times gives a speed of v, = 1.4 cm/s, which
is within 10% of the fitted sound speed from the density response, co = 1.3 cm/s.
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Figure 5.7: Effect of the thermal conductivity fitting parameter C, on the destiny re-
sponse. The perturbing optical potential has wavelength A = 19 um. The modeled density
response is shown for three frequencies f = 200 Hz, f = 400 Hz, and f = 700 Hz. As
the wave frequency w = 27 f of the perturbing potential approaches the decay rate ~,,
the sensitivity to the thermal conductivity vanishes. The thermal conductivity fitting
parameter C, = 1 is shown in red, C, = 2 shown in blue, and C, = 0.5 shown in black.

(a) w/vs = 0.26 (b) w/7y, = 0.52 (c) w/v, = 0.92
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5.2.3 Global fits

The thermal conductivity 7 is extracted by varying the parameters ¢y, 0Up, €, and C,
one at a time, across all frequencies and minimizing x? in the central region of the data
away from the less dense edges at the box potential walls. A global best fit is obtained
when varying the parameters no longer results in improvement. The uncertainty in C\ is

determined from the curvature of x? in the region of the minimum [2]

-1
o2 =9 0% x°
R 8 RT ’

(5.17)

where

(5.18)

=) [% (yi — y(%))ﬂ :

(2

The results of the global fits are shown in Fig. 5.8 and 5.9 with the fitted parameters
in the figure caption and the table 5.2. The hydrodynamic model reproduces the spatial

features of the density response dn for all frequencies in the subsonic regime, v < ¢g.

Table 5.2: Best Fit Parameters.

Parameter | A =19 ym | A = 30 um
Co 1.3 cm/s 1.3 cm/s
0(co) 0.50 0.50
€ 0.23 0.29
U/ Er 0.23 0.26
20 93 pum 93 pum
o 113 pm 113 pm
o 4 pm 4 pm

The fitted values of dUy/Er ~

0.25 are consistent with the calculated value of
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Figure 5.8: The hydrodynamic model is fit globally to the subsonic data for a periodic
optical potential with wavelength A = 19 um and velocity v = Af. Fit parameters are

0Up/Er = 0.23, ¢ = 0.23, and ¢y = 1.3 cm/s.

50 100
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(b) 200 Hz, v/co =0.29

50 100
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50 100
z(pm)
(f) 600 Hz, v/cy =0.88
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Figure 5.9: The hydrodynamic model is fit globally to the subsonic data for a periodic
optical potential with wavelength A = 30 um and velocity v = Af. Fit parameters are
Up/Er = 0.26, € = 0.29, and ¢y = 1.3 cm/s.
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0Uy/Er = 0.31 which is estimated from the measured intensity of the illuminating blue-
detuned beam. The fitted value of 60U, is used to account for variations in the beam
intensity and imperfect imaging. The perturbing potential parameter € for A = 19 pm is
smaller than the A = 30 pm wavelength because of the blurring from the finite resolution
~ 3.5 um of our imaging system. The fitted sound speed ¢y = 1.3 cm/s, determines the
temperature to be y(co) = 0.50. In chapter 3 we discussed how the measured sound
speed ¢y combined with the measured universal function fz(6) enables thermometry in
our experiment. The temperature as a function of the sound speed, shown in Fig 3.2, is

a monotonic function of ¢y /vp for 6 > 0.25.

5.2.4 Measurement of xr

The global fits to the data determine the fitting parameter in equation 5.8 to be
C. = 0.93(14). (5.19)

We defined the fitting parameter C; in equation 5.8 to provide an easy comparison with

the variational calculations in the high temperature limit [5, 6]

15 k
fr 0 FB. (5.20)
"o 4 m

The fitting parameter C); gives a straightforward comparison with the high temperature

ratio,
15 k
BT 0.93(14) x 2 7B, (5.21)
To 4 m
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The previously measured shear viscosity is given by equation 4.5 of chapter 4,
o = aoling = |2.77(21) 6022 +0.25(8)| hng (5.22)

yields ng = 1.23 hng at 8y = 0.50.
Using 19 = 1.23 hny in equation 5.21 yields the measured thermal conductivity from

our global fits,

1

The fitting parameters in table 5.2 are fit globally and are constant for all frequencies.
The hydrodynamic model loses sensitivity to the thermal conductivity as the periodic
potential is moved through the sample at speeds comparable to the decay rate of tem-
perature gradients 7,. The vanishing sensitivity to the thermal conductivity can be seen
in Fig. 5.7. For this reason, we determine C} from fits to the data below the decay rate
W< Y

For the optical potential with wavelength A = 19 um, where v, = 27 x 760 Hz, we
obtain reliable measurements of C} in the frequency range 200-600 Hz. For the optical
potential with wavelength A = 30 pym and decay rate v, = 27 x 305 Hz, we obtain
reliable measurements of C in the frequency range 150-300 Hz. The extracted thermal
conductivity kr is determined from the weighted arithmetic mean of the individually fit
Cy from both wavelengths.

When the perturbing optical potential is moved through the sample at supersonic
speed, v > ¢y, we observe a discrepancy with the model, as shown in Fig. 5.10. This
discrepancy may arise from the creation of weak shock waves which are not included in

our linear hydrodynamic model.
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0 50 100

Figure 5.10: The quality of the fits decreases as the speed of dU(z,t) surpasses the
adiabatic sound speed v > c¢y. The globally fit hydrodynamic model is plotted for a
A =19 pm optical perturbation at 900 Hz, v/co = 1.32.
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Chapter 6

Conclusion

We have created a novel technique for measuring transport properties from the density
response on of a uniform density atomic cloud driven by a perturbative optical potential
dU(z,t). Using DMDs to create the perturbing periodic optical potential U (z,t) gives
us independent control over the wavelength \ and frequency f of the driving potential.
This control allows us to probe the density response for both adiabatic and isothermal
compression. We measure the density response on to the perturbing optical potential
0U(z,t) as a function of wavelength and frequency, and fit the data with a hydrodynamic
linear response model. Excellent agreement between the data and our model validates
this treatment.

The model is sensitive to the thermal conductivity xr when 0U(z,t) moves through
the sample slowly enough to allow temperature gradients to relax, w << ~,. In this

regime, the measured thermal conductivity is

15 k
pr = L14(17) x — EB A no, (6.1)
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at a temperature 6y = 0.50.

The temperature 6, in our experiment was not further increased because the trapping
potential Uy(z,t) was too weak to confine higher temperatures. Future work may be done
to obtain a deeper trapping potential to measure the thermal conductivity at higher

temperatures.

6.1 Outlook

The addition of DMD technology to the apparatus enable us to create designer opti-
cal potentials. The ability to arbitrarily shape dynamic optical potentials opens up the
possibility for many exciting new experiments. Varying the shape of the driving optical
potential 0U(z,t) is easy to implement and could allow us to probe transport parameters
in a new way. Using a DMD, the damping and decay of sound can be studied by im-
printing a uniform density sample with multiple wavelength patterns and observing the
evolution of density perturbations.

Other possibilities for future work include trapping spin imbalanced mixtures in the
box trap Up(z), which changes the transport properties, and studying the breakdown of

fluid dynamics by changing the interaction strength to weakly interacting.
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Appendix A

Numerical integration and best fit

MATLAB code

The following MATLAB code is used simulate the density response to a periodic optical

potential

SU(z,t) = 6Uy [1 — ecos(qz — qut)] (vt — z) e =20 /7%, (A.1)

The program numerically integrates the two coupled equations,

- 4 2 - -
02 5 — 2 (0% 5 + 92 65) — g%aoﬁf&dﬁ: %az <ﬁ0826U+5ﬁ82 UO> |(A2)

and

: 15 kg h : 15 kg h -
at(ss—cﬁzf)—B—aoagaszcﬂﬁ—f‘—ao@ v

Cy m Cy m Cp

02 5. (A.3)

Global fits determine the fit parameters, €, ¢y, 60Uy and C,, by minimizing x? in the

central region of the data away from the less dense edges at the box potential walls.
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

A.1 Linear response code main function

%% beginning

% choose which program to run

modenumber = 0;

%case0 plot dn vs dn experimental
%casel C_\kappa fit

%case2 epsilon fit

%cased c0 fit

%case4d wavelength fit

Y%caseb
%caseb

Y%caseT

Adjust Starting point for \delta U
Multiplier to adjust parameters on the fly

Vary c¢_0 and mult at the same time for one frequency

% index correspoding to frequency for single frequency plot

freqindex = 6;

% multiplier set to 1

mult = 1;

% Dataset number

dataset

= 14;

% 14—>19 micron wavelength

% 10—>25 micron wavelength

% 8 —>30 micron wavelength
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26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

%% parameters for different datasets
switch dataset
case 14
filename = 'Z:\ Network Harddrives for Lab Computers)\
LAB1. DOCS\NCSU Data\2019.1.8\14pi8%\LorinAnalysis\

JohnsDatallong.mat "

% frequency range to globally fit data

freqrangeStart =1;

freqrange =7;

% C_\kappa

KappaT = 1;

% epsilon for perturbing potential \delta U

eps = .2251;

% sound speed in m/s

c0 = .013;

% multiplier for calculated \delta U0

% accounts for loss through optics and imperfect imaging
optics

dUmult = .7277%(1/2);

% adjust the starting point of \delta U(z,0)

dUoffset = —2;

% wavelength

lam = 18.667;

% number of spatial periods \delta U is moved into the
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45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

sample

NumPeriods = 4;

% atom number in the box trap (both spin states)

AtomNumber = 76199%2;

case 10

filename = 'Z:\ Network Harddrives for Lab Computers)\
LAB1 . DOCS\NCSU Data\2019.1.8\10pi8%\LorinAnalysis\
JohnsDatallong .mat’;

freqrangeStart=1;

freqrange = 4;

KappaT = 1;
eps = .3271;
c0 = .0142;

dUmult = .8275x%(1/2);

dUoffset = —1;

lam = 24.8182;

NumPeriods = 3;

AtomNumber = 84922x%2;

case &

filename = ’'Z:\ Network Harddrives for Lab Computers)\
LAB1 DOCS\NCSU Data\2019.1.8\8pi8%\LorinAnalysis\
JohnsDatallong.mat’;

freqrangeStart =1;

freqrange = 6;
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64

65

66

67

68

69

70

71

73

74

75

76

KappaT = 1;

eps = .2854;

cO0 = .013;

dUmult = .8414%(1/2);
dUoffset = 15;

lam = 30;

NumPeriods = 3;
AtomNumber = 84291x%2;

otherwise

disp(’'Invalid case’)

filename = "Invalid ’;

load (filename ) ;

switch modenumber

%% KappaT

% minimize chi”"2 to find best fit for thermal conductivity

fitting

% parameter C_\kappa
case 1
% range to check

KappaTl = .25:.25:4;
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87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

freqindex = freqrangeStart:freqrange;

for j = 1l:length(freqindex)

parfor i = 1:length (KappaT)

[A,B,BErr, Chi2 , Chi2reduced (i,j),n0fit ,leftside ,rightside ,z] =
LR13Thesis (filename ,NumPeriods, freqindex (j) ,KappaT (i), eps,c0,
lam , dUoffset ,dUmult , mult ) ;

disp ( ’Parameter KappaT’)

end

end

% minimize chi”2 and find corresponding value for C_\kappa

v = sum(Chi2reduced ,2) ;

x = KappaT;

finexq = linspace (min(KappaT) ,max(KappaT) ,100) ;

finevqg = interpl(x,v,finexq, "spline ");

[minval ,indexmin| = min(finevq);

disp ([num2str (finexq (indexmin) ),  is the value of KI'])

disp ([num2str (minval) ,’ is the Chi2’])

plot (KappaT,v)

shg

Y% eps
% minimize chi"2 to find best fit for \delta U fitting
parameter

% epsilon
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108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

case 2

eps = .2:.005:.23;

freqindex = freqrangeStart:freqrange;

for j = 1:length(freqindex)

parfor i = 1:length (eps)

[A,B,BErr, Chi2 , Chi2reduced (i,j),n0fit ,leftside ,rightside ,z]

LR13Thesis (filename , NumPeriods, freqindex (j) ,KappaT,eps(i),c0,

lam, dUoffset ,dUmult, mult) ;
disp ( ’Parameter eps’)
end
end
v = sum(Chi2reduced ,2) ;

X = eps;

finexq = linspace (eps (1) ,max(eps),100);

finevq = interpl (x,v,finexq, "spline ");

[minval ,indexmin] = min(finevq);

finexq (indexmin)

disp ([num2str (minval),’ is the Chi2’])

plot (eps,v)

shg

Y% ¢c0

% minimize chi"2 to find best

case 3
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130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

c0 = .012:.0005:.016;

freqindex = freqrangeStart:freqrange;

for j = 1:length(freqindex)

parfor i = 1:length(c0)

[A,B,BErr, Chi2 , Chi2reduced (i,j),n0fit ,leftside ,rightside ,z] =
LR13Thesis(filename ,NumPeriods, freqindex (j) ,KappaT,eps,c0(i),
lam , dUoffset ,dUmult, mult) ;

disp ('Parameter c0")

end

end

v = sum(Chi2reduced ,2) ;

x = c0;

finexq = linspace (min(c0) ,max(c0),100);

finevqg = interpl(x,v,finexq, "spline ") ;

[minval ,indexmin] = min(finevq);

finexq (indexmin)

disp ([num2str (minval) ,’ is the Chi2’])

plot (c0,v)

shg

%% lam

% minimize chi”"2 to find best fit for the wavelength (known
parameter)

case 4

lam = 17:.5:22;
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151 freqindex = freqrangeStart:freqrange;

52 for j = 1l:length(freqindex)

153 parfor 1 = 1:length (lam)

5 [A,B,BErr,Chi2, Chi2reduced (i, j),n0fit ,leftside ,rightside ,z] =
LR13Thesis (filename ,NumPeriods, freqindex (j) ,KappaT,eps,c0,lam
(i),dUoffset ,dUmult, mult) ;

155 disp ('Parameter lam’)

156 end

157 end

155 v. = sum( Chi2reduced ,2) ;

150 X = lam;

o finexq = linspace (min(lam) ,max(lam) ,100);
w61 finevq = interpl (x,v,finexq, 'spline );

12 [minval jindexmin| = min(finevq);

163 finexq (indexmin)

16a plot (lam,v)

165 Shg

166

167 %% dUoffset

168 % adjust the starting point for \delta U to correctly begin
at the edge

169 % of the box

170 case D

imn dUoffset = —3:1:3;
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172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

188

189

190

191

192

193

freqindex = freqrangeStart:freqrange;

for j = 1l:length(freqindex)

parfor i = 1:length(dUoffset)

[A,B,BErr, Chi2 , Chi2reduced (i,j),n0fit ,leftside ,rightside ,z] =
LR13Thesis (filename ,NumPeriods, freqindex (j) ,KappaT,eps,c0,lam
,dUoffset (i) ,dUmult, mult) ;

disp ('Parameter dUoffset ’)

end

end

v = sum(Chi2reduced ,2) ;

x = dUoffset ;

finexq = linspace (min(dUoffset) ,max(dUoffset) ,100);

finevqg = interpl(x,v,finexq, "spline ");
[minval ,indexmin] = min(finevq);
finexq (indexmin)
plot (dUoffset ,v)
shg
%% mult
% multiplier for adjusting parameters on the fly
case 6

mult = .4:.05:.9;

% freqindex = 1:length (SumData. frequency)

freqindex = freqrangeStart:freqrange;
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194

195

197

198

200

201

202

203

204

205

206

207

208

210

211

212

213

214

for j = 1:length(freqindex)

parfor i = 1:length (mult)

[A,B,BErr, Chi2, Chi2reduced (i,j) ,n0fit ,leftside ,rightside ,z| =
LR13Thesis (filename ,NumPeriods, freqindex (j) ,KappaT,eps,c0,lam
,dUoffset ,dUmult , mult (i));

disp ('Parameter mult’)

end

end

v = sum(Chi2reduced ,2) ;

x = mult;

finexq = linspace (min(mult) ,max(mult) ,100);
finevq = interpl (x,v,finexq, "spline ");
[minval ,indexmin] = min(finevq);

finexq (indexmin)
disp ([num2str (minval),’ is the Chi2'])
plot (mult ,v)

shg

%% dUmult and ¢_0 at the same time

% adjust \delta U0 and the sound speed for a single
frequency

case 7

mult = .7 :.05:1.2;
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215 ¢ = .012:.001:.016;

a6 for j = 1:length(c0)

217 parfor i = l:length (mult)

a1 [A,B,BErr, Chi2, Chi2reduced (i,j) ,n0fit ,leftside ,rightside ,z] =
LR13Thesis (filename ,NumPeriods, freqindex ,KappaT, eps,c0(j) ,lam
,dUoffset ,dUmult , mult (i));

219 disp ('Parameter mult”)

220 end

221 end

222 close all

223 imagesc (Chi2reduced)

224 [min_val ,idx]=min(Chi2reduced (:))

225 [rowmin , colmin]=ind2sub (size (Chi2reduced) ,idx)

226 disp ([num2str(min_val),’ Chi2reduced ’])

227 disp ([num2str(cO(colmin)),” c0'])

228 disp ([num2str (mult (rowmin)+«dUmult) ,” dUmult " ])

229

230 otherwise

231 Y0 Just a plot of the fit with default parameters

232 [A,B,BErr, Chi2, Chi2reduced , n0fit , leftside ,rightside ,z] =
LR13Thesis (filename ,NumPeriods, freqindex ,KappaT,eps,c0,lam,
dUoffset ;,dUmult, mult) ;

23¢ % reduced chi”2
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235

236

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

chi2KT = Chi2reduced;

%% density plots
ymin = min ([min(A) ,min(B)]) ;
ymax = max ([max(A) max(B)]) ;

% plot the hydrodynamic model

plot (A(leftside :rightside), v’ , Linewidth’  2.5)

xlabel (7$%z(\mu m)$$’ ,"interpreter ’, latex ’);

ylabel ("$$\frac{\Delta n}{n_0}$$’, interpreter’, latex’)

ylh = get(gca, ylabel ");

ylp = get(ylh, "Position");

set (ylh, ’Rotation’,0, ’Position’,ylp, ’'VerticalAlignment’,’
middle’, "HorizontalAlignment ', right )

xlim ([0 length (A(leftside:rightside))])

ylim ([ymin—.2 ymax+.2])

hold on

% scatter has a lr offset to match up the data

% plot the experimental data with errorbars

errorbar (z(leftside:rightside)—leftside+42,B(leftside:rightside),
BErr(leftside :rightside),'b’)

scatter (z(leftside:rightside)—leftside+2,B(leftside:rightside)
,25, "blue’ " filled )

% put the frequency in the title

% title ([num2str (SumData. frequency (freqindex)),” Hz’]) ;
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256

257

259

4

shg

end

A.2 Linear response code numerical integration

%% begining

function [A,B,BErr,Chi2, Chi2reduced ,n0fit ,leftside ,rightside ,z]

= LR13Thesis(filename ,NumPeriods, freqindex ,KappaT,eps,c0,lam,

dUoffset ,dUmult, mult)

load (filename ) ;

% Tp and Lp are time and length scales

Tp = 1076;

Lp = 107°6;

%% Constants

% volume of the box trap
vol=(129E—6) % (58E—6)*(84E—6);
%frequency in MHz

freq = SumData. frequency (freqindex)/Tp;
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16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

q=2%pi/lam;
nu=2*pixfreq;
v = nu/q;

% Veft = v/c0;

num = 2xpi/lam;

% number of atoms for both spin states
N=1.686e+05;

% average density in the box trap
n0=N/vol;

% peak density is nO*1.116

% Fermi temperature

TF=hbar "2/(2%mLi6) (3% pi "2xn0) " (2/3) /kB;
% Fermi energy

EF = TFxkB;

% Fermi velocity

vF = sqrt (2«EF/mLi6) ;

% thetalO interpolation range
thetaOinterp = .1:.01:1.5;
% equation of state data

load ( "MartinEEOS . mat ") ;
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40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

% interpolated f_E(\theta)

Feqinterp = interpl (FEtheta(:,1) ,FEtheta(:,2)  thetaOinterp ,’

spline ") ;

% c¢_0 corresponding to interpolated equation of state

cOinterp = vFxsqrt (Feqinterp/3);

% Calculated theta0 from c¢0 and equation of state

theta0 = interpl (cOinterp ,thetalOinterp ,c0, spline );

% dimensionless shear viscosity (muliplied by hbar/m)

a0 = Tpx(hbar/mLi6) *(2.77«theta0 " 1.5+0.27);

% calculate specific heat per particle at theta_0

[Cv,Cp|=SpecificHeats (theta0) ;%from MartinEoS

% C1 is the substitution for the factor KI/n0/Cv multiplied by

the fitting

% parameter C_\kappa to extract the thermal conductivity

Cl = KappaT=*(15/4)*(1/Cv)*a0;

C2 = (Cp—Cv)/Cp;

%% Time Mesh
% The simulation
make sure

% the simulation

is run for a little longer than the end time to

ends at the same time as the data.
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63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

tend=NumPeriods/freq+0.1/freq;
% number of points in time
numtim = 6000;

t=linspace (0, tend ,numtim) ;

dt = t(2)—t(1);

%% Space Mesh

% start and endpoint spatially. The data includes a range
outside of the

% box potential

startpoint = 20;

endpoint = 200;

% pixel size for the camera in microns

psize = 1.34;

% select region of interest for data

% background density n_0

vnOdata = lrn0 (freqindex ,startpoint:endpoint);

% \delta n

vdndata = lrdn (freqindex ,startpoint:endpoint);

% error in \delta n

vdnErrdata = IrdnErr (freqindex ,startpoint:endpoint);

% xdata is the units of the camera

xdata = linspace (0,(endpoint—startpoint),(endpoint—startpoint)
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85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

+1)xpsize;

% number of points spatially
numzpoints = floor (max(xdata));

% 7z makes each bin one micron

in size

z=linspace (0,numzpoints , numzpoints+1);

dz=z(2)—2z(1);
[Z,T]=meshgrid(z,t);

% interpolates the data to the micron scale rather than the

psize scale

vnOdataq = interpl(xdata,vnOdata,z, spline);

vdndataq = interpl (xdata,vdndata,z, spline ');

vdnErrdataq = interpl (xdata,vdnErrdata ,z, spline ’);

%% no0fit

% fits the background density n_0 with the fitfunction

% fitfunction = @(a0,al,a2,bl,b2,b3,bd, x) (al+alxx+a2xx."2)

% 0.25.%(14+tanh ((x—b1)/b2)).x(1+tanh((—x+b3)/bd));

[gfit] = FitUniformGas(vnOdataq,0) ;

% left side of the box
n0left = gfit.bl;
% right side of the box
n0right = gfit.b3;
% fitted density n_0(z)

n0fit = gfit(z) ’;
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106

wr %% dU0dz

ws % temperature corresponing to the max central density

1o Ttwid = thetal*(max(n0fit) " (2/3));

1m0 % 10°—4 offset to the density

1 bgpercent = .0001;

12 % add the offset to the density and rescale the max

ns nOoffset = (1—bgpercent )*n0fit+max(n0fit)xbgpercent;

s % reduced temperature of the gas \theta(z)

us TTfgas = Ttwid./(nOoffset. (2/3));

e %This data properly interpolates the equation of state in the
high

ur %temperature regime with Martins Data.

ns %created with fEinterphigh .m

ns %Reference John’s mathematica file on 9/5/2019

120 load ("MartinDataHigh . mat’);

121 % Feqinterp2 is the equation of state for the extended
temperature (up to

122 % 450)

123 % TTFinterp is the extended temperature up to 450

124 % specific heat per particle as a function of position ¢V (z)
and c_p(z)

125 Cvall = interpl (TTfinterp ,CVExtend, TTfgas, "spline ") ;

126 Cpall = interpl (TTfinterp ,CPExtend, TTfgas, 'spline ") ;
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127

128

129

130

131

132

134

135

136

138

139

140

141

142

143

144

145

146

147

148

% the specific heat per particle is calulated with
% CVExtend = (3/5)+gradient (Feqinterp2 , TTfinterp);
% CPExtend = (3/5)*gradient (Feqinterp2 , TTfinterp).x Feqinterp2 ...
% ./(Feqinterp2 —(2/5) .« TTfinterp.* gradient (Feqinterp2 , TTfinterp)

);

%% Interpolate f_E(\theta) for the TTf
FeqfordUOdz = interpl (FEtheta(:,1) ,FEtheta(:,2) ,TTfgas, "spline )

GradientFeqforDU0Odz = gradient (FeqfordU0dz , TTfgas) ;

% %For plots of ¢.0/v_.F vs density

% nn0 = 0.1:.01:1;

% theta05 = 0.5%nn0."(—2/3);

% thetal0 = 1xnn0."(—2/3);

% theta02 = 0.2xnn0."(—2/3);

% Feq05 = interpl (TTfinterp , Feqinterp2 ,theta05,’spline ') ;
% Feql0 = interpl (TTfinterp , Feqinterp2 ,thetalO,’spline ') ;
% Feq02 = interpl (TTfinterp , Feqinterp2 ,theta02,’spline ) ;
% cvf05 = nn0."(1/3) .xsqrt (Feq05/3);

% cvfl0 = nn0."(1/3) .xsqrt (Feql0/3);

% cvf02 = nn0."(1/3) .xsqrt (Feq02/3);

% close all

% hold on
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e % plot (nn0,cvf05,’k’, " LineWidth’,0.2)

150 % plot (nn0,cvfl0,’r’ ’LineWidth’,0.2)

151 % plot (nn0,cvf02,’b’, " LineWidth’,0.2)

22 % ylabel ("$$\frac{c 0}{v_{F0}}$$ , Interpreter ', LaTeX")

13 % xlabel (7$$n/n_0%%’, Interpreter ', "LaTeX")

154

155 % calculate dUOdz from the equation of state and \theta (z)

156 dUOdzsmooth = (—2/3)«(FeqfordU0dz —(2/5)*TTfgas.x
GradientFeqforDUO0dz) .x( gradient (n0fit ,dz)./(n0Ooffset.”(1/3)))

157

158 %0 Integrate dUOdz to obtain U.0(z)

159 U0 = zeros(1,size(dUOdzsmooth,2));

o for i=1:size (dU0dzsmooth,2)

161 U0(1i)= sum(dUOdzsmooth (1:1));

162 end

163

s % for plotting the potential U.0(z)

s % close all

6 % plot (U0, LineWidth’,2)

1e7 % xlabel (7$$z [\mu m]$$’, Interpreter ’, LaTeX")

s %0 ylabel (7$$\tilde{U}_{0}$$ ", Interpreter ', LaTeX’)

170
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171

172

173

174

175

176

178

179

180

181

182

183

184

185

187

188

189

191

%% dU

% width of edge of hyperbolic tanh

sig = 4;

% starting point adjusted to start at edge of box for each
wavelength

dUstart = nOleft —dUoffset ;

% dUenvelope leading edge

dUenvelope = (1/2)*(1+tanh(—(Z—v+T—dUstart)/sig));

% z_0 for the gaussian illuminating beam

Guassmiddle = 1.4175xn0left+(n0Oright—n0left ) /2;

% width of the gaussian illuminating beam

SigGauss = 113;

% parameter adjust the static envelope to the location of the
box potential

% wall

nudgeleft = 7;

% gaussian profile and LHS of the envelope function

% put together here because they are both static

dUGaussandWall = exp(—(z—Guassmiddle)."2/SigGauss "2).x(.5x(1+
tanh ((z—n0Oleft —nudgeleft) /sig)));

% sinusoidal part of the \delta U(z,t) function
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12 dUcos = (1—epsxcos(—numx(Z—v«T—dUstart—lam)));

193

we % \delta U(z,t)

195 dU = dUenvelope.*dUcos.*xdUGaussandWall ;

196

197

s Y00 Estimate for \delta U.0 from the measured intensity of the
green beam

199 UOGB=(2x.4/(pix(SigGauss*x10"—6)"2)/1076)*.0627*(10" —6xkB) ;

200 % we use 8% modulation of the GB on the DMD

20 % dUmult accounts for loss and imperfect imaging system

200 dUO = dUmult*0.08xU0GB;

203 % adjust the data to match the units hydrodynamic model used for
the

200 % simulation

25 vdndataq = vdndataq/(dUO/EF) ;

206 vdnErrdataq = vdnErrdataq/(dUO/EF) ;

208 Y% Initialize for computational speed
200 dn = zeros (length(t),length(z));

210 dndot = zeros(length(t),length(z));
au dUdz = zeros(length(t)—1,length(z));

I

212 Vforce = zeros(length(t)—1,length(z));
213 dUOdz = zeros (length(t)—1,length(z))
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214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

237

VOforce = zeros(length(t)—1,length(z));
ds = zeros(length(t),length(z));

%% Nmerical integration of hydrodynamic model

for 1=3:(length(t))

% eq 1
% time derivative of change in density

dndot(l—1,:) = 1/dt*(dn(l —=1,:)=dn(1-2,:));
% spatial gradients
dndotdz = gradient (dndot(1—1,:),dz);

d2ndotdz2 = gradient (dndotdz ,dz);

dndz = gradient (dn(l—1,:),dz);
d2ndz2 = gradient (dndz,dz);

dsdz = gradient (ds(1—1,:),dz);
d2sdz2 = gradient (dsdz,dz);

% spatial gradient of \delta U(z,t)

dUdz(1—1,:) = gradient (dU(1—1,:),dz);
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238

239 % force term from \delta U(z,t)

240 Vforce(l —1,:) = 0.5%xvF " 2xgradient (n0fit.xdUdz(1—-1,:),dz);

241 % gradient of box potential calculated above

242 dU0dz (1 —1,:) = dU0Odzsmooth;

243 % force term from U_0(z)

244 VoOforce (1 —1,:) = 0.5%xvF " 2xgradient (dn(l—1,:).%dU0dz(l —1,:),
dz) ;

245

246 % eq?2

247 % change in density from a perturbative potential in a box

248 dn(l,:) = 2%dn(1—1,:)=dn(l —2,:)+dt "2%(c0"2xd2ndz2+4c0 " 2%

d2sdz2+4/3xa0+xd2ndotdz2+Vforce (1 —1,:)+VO0force(l —1,:));

249 % supress density change in regions of low density
250 supress = dn(l,:);

251 oldsupress = dn(l—1,:);

252 supress (n0fit <.0005) = oldsupress (n0fit <.0005);
253 dn(1l,:) = supress;

254

255 % eq3

256 % change in entropy equation

257 ds(l,:) = ds(1—1,:)+dt*(Clxd2sdz2+C1xC2xd2ndz2) ;
258 end

259
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261

262

263

264

265

267

268

269

270

271

272

273

274

275

277

278

279

280

281

282

9% Time Correction

% make sure the simulation ends on the same time as the

% this algorithm automatically matches end time of the
simulation to match

% the data

trange = round (.5/freq/dt);

trangestep = round(.025/freq/dt);

timecorrection = numtim—trange:trangestep :numtim;

Chi2time = zeros(1,length(timecorrection));

for m=1:length (timecorrection)

A=dn(timecorrection (m) ,:) ;

B=vdndataq;

Chi2time (m) = sum((A-B)."2);

end
[ Valuemin , Indexmin| = min(Chi2time);
% t index of best fit

tindexbestfit = timecorrection (Indexmin);
% time of best fit

t(timecorrection (Indexmin) ) ;

%% Chi"2 calculation
leftside = round(nOleft);
rightside = round(nOright);

% A is the simulation

102

data



283

284

286

287

288

289

291

292

293

294

295

296

297

299

300

301

302

A=dn(tindexbestfit ,:) *x(dUO/EF) ;

% B is the data

B=vdndataq*(dUO/EF) ;

% Error bars in the data

BErr = vdnErrdataq*(dU0/EF) ;

% Calculate Chi"2 for the data and simulation
Chi2 = sum((A-B)."2);

%Chi2reduced used for calculating the actual reduced Chi2

%for KappaT measurement change the region of interest to the
middle where

% the data and model are sensetive to the parameter.

% for all other parameters, go to edge of the rs = rightside.

% 1s and rs are for calculating chi”"2 away from the less dense
edge of the

% sample

Is = leftside +30;

rs = rightside —10;

% Chi2reduced = sum((A(ls:rs)-B(ls:rs))."2./BErr(ls:rs)."2)/(
length (A(ls:rs))—1);

Chi2reduced = sum((A(ls:rs)-B(ls:rs))."2./BErr(ls:rs)."2);

end
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Appendix B

DMD control

B.1 DMD MATLAB code

Projection Control Sequence Control View

Box10027.bmp

Load

OFF
Current Sequence

Project

Project Continuous

Halt Projection

Sequence Inguire

Projection inquire.

ALP_MIN_PICTURE_THE v

ALP_PROJ_MODE -

Picture Time (microssconds}

Device Inquire 50 = =
Pl 1 S

Update Timing |

ALP_DEVICE_NUMBER b

Mede

‘ Master Ext. Trigg. ‘ ‘ Slave Mode

| Ho Dark Time.

Figure B.1: Graphical user interface for controlling the DMD.
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10

11

12

13

14

The MATLAB code used to communicate with the device and control the board.

The graphic user interface shown in Fig. B.1 allows the user to probe all parameters and

status of the DMD, load images to the memory of the control board, and set up the

device to accept triggers from a pulse generator that controls the equipment in the lab.

function varargout = ALP_.GUI.2(varargin)

0y

0

%

%
%0

%

07
0

%

%

0y

0

%

%

ALP_GUI_2 MATLAB code for ALP_GUI 2. fig
ALP_GUI 2, by itself , creates a new ALP_GUI 2 or raises
the existing

singleton x.

H = ALP_GUI.2 returns the handle to a new ALP_GUI. 2 or
the handle to

the existing singleton x.

ALP_GUI_2 (’CALLBACK’ , hObject ,eventData , handles ,...) calls
the local
function named CALLBACK in ALP_GUI.2.M with the given

input arguments.

ALP_GUI2(’Property ’,’Value’ ,...) creates a new ALP_GUI 2
or raises the
existing singleton=. Starting from the left , property

value pairs are

applied to the GUI before ALP_GUI_2_OpeningFcn gets
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15

16

17

18

19

20

21

22

23

24

25

26

27

30

31

32

33

34

called. An

% unrecognized property name or invalid value makes
property application

% stop. All inputs are passed to ALP_GUI_2 OpeningFcn via
varargin.

%

% xSee GUI Options on GUIDE’s Tools menu. Choose "GUI
allows only one

% instance to run (singleton)”.

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help ALP_GUI.2

% Last Modified by GUIDE v2.5 25—Aug—2016 12:19:51

% Begin initialization code — DO NOT EDIT

gui_Singleton = 1;

gui_State = struct ( gui Name mfilename ,

‘gui_Singleton’, gui_Singleton ,

"gui_OpeningFen’, QALP_GUI_2_OpeningFcen
"gui_ OutputFen’, @QALP_GUI_2_OutputFcn,

‘gui_LayoutFen’, []
"gui_Callback ", 1) ;

106



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

if nargin && ischar(varargin{l})
gui_State.gui_Callback = str2func(varargin{l});

end

if nargout

[varargout {1:nargout }| = gui_-mainfcn (gui-State , varargin{:})
else

gui_mainfen (gui_State , varargin{:});
end

% End initialization code — DO NOT EDIT

% —— Executes just before ALP_GUI2 is made visible.
function ALP_GUI_2_OpeningFcn(hObject, eventdata , handles
varargin)

% This function has no output args, see OutputFen.

% hObject handle to figure
% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)
% varargin = command line arguments to ALP_GUI.2 (see VARARGIN)

% load library
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56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

if “libisloaded (alp4395")
hfile = "alp . h’;

loadlibrary ( "alp4395°

end

disp(’'library loaded’);

% default device Id

ALP DEFAULT = 0;

handles. Deviceld = ALP DEFAULT;

% default parameters
handles . IlluminateTime = ALP DEFAULT;
handles . PictureTime = 33334;
handles.SynchDelay = ALP DEFAULT;
handles.SynchPulseWidth = ALP DEFAULT;
handles. TriggerInDelay = ALPDEFAULT;

% set picture time text box to

set (handles.Picture_Time , String ' ,num2str(handles.PictureTime));

% default plot
columns = 1024;

rows = 768;

handles . BlackImage

for AlpSeqTiming

zeros (columns , rows ) ;



80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

imshow (handles . BlackImage , [0,1]);

% Choose default command line output for ALP_GUI.2

handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes ALP_GUI.2 wait for user response (see UIRESUME)

% uiwait (handles. figurel);

% —— Outputs from this function are returned to the command
line .

function varargout = ALP_GUI_2_OutputFen(hObject, eventdata,
handles)

% varargout cell array for returning output args (see VARARGOUT

)

% hODbject handle to figure
% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{l} = handles.output;
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100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

% —— Executes on slider movement.
function sliderl_Callback (hObject, eventdata, handles)
% hObject handle to sliderl (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

% % first we need the handles structure which we can get from
hObject
% handles = guidata(hObject);

% get the slider value and convert it to the nearest integer
that is less
% than this value

newVal = round(get (hObject,  Value’));

% set the slider value to this integer which will be in the set

{1,2...}
set (hObject , "Value’ jnewVal);

% now only do something in response to the slider movement if

the

110



119 % new value is different from the last slider value
120 1f newVal "= handles.lastSliderVal

121 % it is different , so we have moved up or down from the

previous integer

122 % save the new value

123 handles.lastSliderVal = newVal;
124 guidata (hObject , handles) ;

125 end

126

127 % set the axes name to be the first file name

128 set (handles.ImageName, 'String ' handles.D(get (hObject, Value’)).
name)

129

10 % plot the first image

131 imshow (handles.image (:,:, get (hObject, "Value)), [0,1])

132

133 % save the new value

132 0 handles.lastSliderVal = newVal;

135 guidata (hObject , handles) ;

136

17 % Hints: get (hObject,’Value’) returns position of slider

138 0 get (hObject ,’Min’) and get (hObject, Max’) to determine
range of slider

139
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o Y0 Executes during object creation, after setting all

properties.
i function sliderl_CreateFcn (hObject, eventdata, handles)
2 % hObject handle to sliderl (see GCBO)

s % eventdata reserved — to be defined in a future version of
MATLAB
us % handles empty — handles not created until after all

CreateFcns called
145
us % Hint: slider controls usually have a light gray background.
ur if isequal (get (hObject , 'BackgroundColor ), get (0,

defaultUicontrolBackgroundColor "))

148 set (hObject , "BackgroundColor” ,[.9 .9 .9]);
1o end

150

51 0 Executes on button press in Allocate.

152 function Allocate_Callback (hObject, eventdata, handles)

153 %0 hObject handle to Allocate (see GCBO)

s« % eventdata reserved — to be defined in a future version of
MATLAB

155 % handles structure with handles and user data (see GUIDATA)

156

157 handles . Deviceld = Start_DMD () ;

158
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159 % enable buttons
wo set (handles.Load, 'Enable’, “on’);
61 set (handles. Projection_Inquire_Pop , "Enable’, "on’);

handles. Projection_Inquire_Pop, 'Enable’, “on’);

(
(

62 set (handles.Device_Inquire_Pop, 'Enable’, “on’);
63 set (
(

e set (handles.Picture_Time, "Enable’ “on’);

165

166 % change colors

67 set (handles.Free, 'BackgroundColor’, [.94,.94,.94]);
s set (handles. Allocate , 'BackgroundColor’, “green’);
6o set (handles. Allocate , "Enable’, "off");

170

i % update handles

12 guidata (hObject , handles);

173

174

15 % —— Executes on button press in Free.

176 function Free_Callback (hObject, eventdata, handles)

177 % hObject handle to Free (see GCBO)

s % eventdata reserved — to be defined in a future version of
MATLAB
179 % handles structure with handles and user data (see GUIDATA)

;1 disp (handles. Deviceld) ;
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182

183

Halt_DMD (handles. Deviceld) ;

Free. DMD (handles . Deviceld);

184
155 % enable buttons

s set (handles.Load, 'Enable’, "off");

17 set (handles.Projection_Inquire_Pop , 'Enable’, "off’);

1ss set (handles.Device_Inquire_Pop, 'Enable’ | "off’);

19 set (handles. Picture_Time, "Enable’, "off");

wo set (handles.sliderl , ’"Enable’, "off");

191 set (handles.Sequence_Inquire_Pop, "Enable’, "off");

w2 set (handles.Project , "Enable’ | “off’");

w3 set (handles.Project_Continuous, 'Enable’ “off’);

ws set (handles.No_Dark Time, ’"Enable’, "off");

w5 set (handles. Master_External _Trigger, 'Enable’, “off);
ws set (handles.Update_Timing, 'Enable’, "off’);

w7 set (handles.Slave_Mode, "Enable’, "off’);

198

1o % change colors

200 set (handles.Free, 'BackgroundColor’, 'red’);

200 set (handles. Allocate , "BackgroundColor ™, [.94,.94 ,.94]);
202 set (handles. Allocate , "Enable’, "on’);

203

% turn plot black because no images are loaded

[0,1])

204

205 imshow (handles. BlackImage ,
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206

207

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

set (handles.ImageName, 'String ', 'No Sequence Loaded ")

%

Executes on button press in Project.
function Project_Callback (hObject, eventdata, handles)
% hObject handle to Project (see GCBO)

07

v eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

Proj_ DMD (handles.Deviceld , handles.Sequenceld)

% —— Executes on button press in Project_Continuous.

function Project_Continuous_Callback (hObject, eventdata, handles

)

% hObject handle to Project_Continuous (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

Proj_Cont_DMD (handles. Deviceld , handles.Sequenceld)

% —— Executes on button press in Halt.
function Halt_Callback (hObject, eventdata, handles)
% hObject handle to Halt (see GCBO)
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227

228

229

230

231

232

234

235

237

238

239

240

241

242

243

244

245

% eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

Halt_ DMD (handles . Deviceld);

% —— Executes on selection change in Projection_Inquire_Pop.
function Projection_Inquire_Pop_Callback (hObject, eventdata,
handles)

% hObject handle to Projection_Inquire_Pop (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

val = get (hObject, 'Value');

str = get (hObject, 'String’);

%This part will inquire the ALP based on the command from the
pop up menu

[ret , Inq] = AlpProjlnquire(handles.Deviceld, Projection_Inquire

(str{val}));

% success of the inquiry

Return_Values(ret);
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246

27 % result of the inquiry displayed in a text box

28 set (handles. Projection_Inquire_Display , "String’, num2str(Inq))

249

250

51 % Hints: contents = cellstr (get (hObject,’ String ’)) returns
Projection_Inquire_Pop contents as cell array

252 0 contents{get (hObject,’ Value’)} returns selected item
from Projection_Inquire_Pop

253

254

25 % —— Executes during object creation, after setting all
properties.

556 function Projection_Inquire_Pop_CreateFcn (hObject, eventdata
handles)

257 % hObject handle to Projection_Inquire_Pop (see GCBO)

s % eventdata reserved — to be defined in a future version of
MATLAB
250 % handles empty — handles not created until after all

CreateFcns called

260

261 1f ispc && isequal(get (hObject, BackgroundColor '), get (0,
defaultUicontrolBackgroundColor "))

262 set (hObject , "BackgroundColor’, "white ") ;
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263 end
264

25 function Projection_Inquire_Display_Callback (hObject, eventdata,

handles)
266 /0 hObject handle to Projection_Inquire_Display (see GCBO)
267 % eventdata reserved — to be defined in a future version of
MATLAB

26s /0 handles structure with handles and user data (see GUIDATA)

269

270

271 %

Executes during object creation, after setting all
properties.

o2 function Projection_Inquire_Display_CreateFcn (hObject, eventdata

, handles)
23 % hObject handle to Projection_Inquire_Display (see GCBO)
aa % eventdata reserved — to be defined in a future version of
MATLAB
a5 % handles empty — handles not created until after all

CreateFcns called

276

o if ispc & isequal(get (hObject, BackgroundColor '), get (0,
defaultUicontrolBackgroundColor "))

278 set (hObject , "BackgroundColor’ | "white ") ;

279 end
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280

281

282

283

284

285

287

288

289

291

292

293

294

296

297

298

299

300

301

% —— Executes on button press in Load.

function Load-Callback (hObject, eventdata, handles)

% hObject handle to Load (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

% load all the files from a folder into the dmd

[handles.Sequenceld, handles.image, handles.D, handles.PicNum]|

Load DMD (handles . Deviceld , handles.PictureTime) ;

% plot the first image

imshow (handles .image (: ,: ,1), [0,1])

% set the axes name to

set (handles.ImageName,

% set the slider range

if handles.PicNum > 1

be the first file name

"String ' ,handles.D(1) .name)

and step size

numSteps = handles.PicNum;

set (handles.slider1 ,

set (handles.sliderl1 ,

'Min’, 1);

"Max’, numSteps) ;
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302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

set (handles.slider1 ,

set (handles.sliderl1 ,
numSteps—1) ) ;
end
% save the current/last

"Value’, 1);

"SliderStep’

, [1/(numSteps—1)

slider wvalue

1/

handles.lastSliderVal = get(handles.sliderl , Value');

% enable slider and other buttons after images are loaded
set (handles.sliderl , "Enable’, “on’);

set (handles.Sequence_Inquire_Pop, "Enable’, ‘on’);

set (handles.Project , "Enable’, “on’);

set (handles.Project_Continuous, "Enable’, ‘on’);

set (handles.Halt, "Enable’, “on’);

set (handles.No_Dark_Time, 'Enable’, "on’);

set (handles. Master _External _Trigger , "Enable’, “on’);

set (handles.Update_Timing, 'Enable’, "on’);

set (handles.Slave_Mode, 'Enable’, "on’);

%We need to updata the handles data structure once again

guidata (hObject , handles);

% —— Executes on button

press
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35 function pushbutton7_Callback (hObject, eventdata, handles)

s26 %0 hObject handle to pushbutton7 (see GCBO)

s27 % eventdata reserved — to be defined in a future version of
MATLAB

s /0 handles structure with handles and user data (see GUIDATA)

329

ss0 %0 —— Executes on selection change in Sequence_Inquire_Pop.

ss1 function Sequence_Inquire_Pop_Callback (hObject, eventdata ,
handles)

s32 % hObject handle to Sequence_Inquire_Pop (see GCBO)

s33 % eventdata reserved — to be defined in a future version of
MATLAB
s« %0 handles structure with handles and user data (see GUIDATA)

335

s val = get (hObject, 'Value');

sar str = get (hObject, "String);

338

s %This part will inquire the ALP based on the command from the
pop up menu

a0 [ret, Inq|] = AlpSeqlnquire (handles.Deviceld, handles.Sequenceld,
Sequence_Inquire (str{val}));

341

s2 % success of the inquiry

si3 Return_Values(ret);
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344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

% result of the inquiry displayed in a text box

set (handles.Sequence_Inquire_Display , 'String’, num2str(Inq))

%

Executes during object creation, after setting all

properties.
function Sequence_Inquire_Pop_CreateFcn (hObject, eventdata ,
handles)

% hObject handle to Sequence_Inquire_Pop (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles empty — handles not created until after all

CreateFcns called

if ispc && isequal (get (hObject, BackgroundColor”), get (0,
defaultUicontrolBackgroundColor "))
set (hObject , "BackgroundColor’ | "white ") ;

end

function Sequence_Inquire_Display_Callback (hObject, eventdata
handles)
% hObject handle to Sequence_Inquire_Display (see GCBO)

% eventdata reserved — to be defined in a future version of
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MATLAB
se2 /0 handles structure with handles and user data (see GUIDATA)
363

364

365 %

Executes during object creation, after setting all
properties.

ss6 function Sequence_Inquire_Display_CreateFcn (hObject, eventdata,
handles)

se7 % hObject handle to Sequence_Inquire_Display (see GCBO)

38 % eventdata reserved — to be defined in a future version of
MATLAB
se0 % handles empty — handles not created until after all

CreateFcens called
370

sn % Hint: edit controls usually have a white background on Windows

372 % See ISPC and COMPUTER.
ais 1f ispe & isequal(get (hObject, BackgroundColor’), get (0,

defaultUicontrolBackgroundColor 7))

374 set (hObject , "BackgroundColor’ | "white ") ;

ars end

376

377

ars 0 Executes on selection change in Current_Sequence_Pop.
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379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

function Current_Sequence_Pop_Callback (hObject, eventdata,
handles)

% hObject handle to Current_Sequence_Pop (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

%

Executes during object creation, after setting all
properties.

function Current_Sequence_Pop_CreateFcn (hObject, eventdata ,
handles)

% hObject handle to Current_Sequence_Pop (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles empty — handles not created until after all

CreateFcns called

if ispc && isequal(get (hObject, BackgroundColor ), get(0,’
defaultUicontrolBackgroundColor 7))
set (hObject , "BackgroundColor’ | "white ") ;

end
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396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

function Picture_Time_Callback (hObject, eventdata, handles)

% hObject handle to Picture_Time (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

% get the contents of Picture time editable text

PictureTime = uint32 (str2num (get (hObject,  String ')));
% picture time must be less than 10°7 microseconds
if PictureTime > 10000000
PictureTime = 10000000;
end

handles.PictureTime = PictureTime;

set (hObject, "String ' ,num2str (PictureTime) ) ;

guidata (hObject , handles);

% —— Executes during object creation, after setting all

properties.
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ss function Picture_.Time_CreateFcn (hObject, eventdata, handles)

a9 % hObject handle to Picture_Time (see GCBO)

w20 % eventdata rteserved — to be defined in a future version of
MATLAB
o1 % handles empty — handles not created until after all

CreateFcns called

422

w23 1f ispc && isequal(get (hObject, BackgroundColor’), get (0,
defaultUicontrolBackgroundColor "))

124 set (hObject , "BackgroundColor’, "white ") ;

w25 end

426

427

0y
0

128 Executes on selection change in Device_Inquire_Pop.

120 function Device_Inquire_Pop_Callback (hObject, eventdata, handles

)

o % hObject handle to Device_Inquire_Pop (see GCBO)

11 % eventdata reserved — to be defined in a future version of
MATLAB
w2 % handles structure with handles and user data (see GUIDATA)

433
wa val = get (hObject, 'Value');
w5 str = get (hObject, "String');

436
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s3r %This part will inquire the ALP based on the command from the
pop up menu

ws [ret, Inq] = AlpDevInquire(handles.Deviceld, Device_Inquire(str{
val}));

439

440

a1 % success of the inquiry

12 Return_Values(ret);

443

as % result of the inquiry displayed in a text box

us set (handles. Device_Inquire_Display , 'String ’, num2str(Inq))

446

447 %

Executes during object creation, after setting all
properties.

us function Device_Inquire_Pop_CreateFcn (hObject, eventdata ,
handles)

as % hObject handle to Device_Inquire_Pop (see GCBO)

0 % eventdata reserved — to be defined in a future version of
MATLAB
w1 % handles empty — handles not created until after all

CreateFcns called
452
w3 % Hint: popupmenu controls usually have a white background on

Windows.
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454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor "))
set (hObject , "BackgroundColor’, "white ") ;

end

function Device_Inquire_Display_Callback (hObject, eventdata,
handles)
% hObject handle to Device_Inquire_Display (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

% —— Executes during object creation, after setting all

properties .

function Device_Inquire_Display_CreateFcn (hObject, eventdata ,
handles)

% hObject handle to Device_Inquire_Display (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles empty — handles not created until after all
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472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

CreateFcns called

% Hint: edit controls usually have a white background on Windows

% See ISPC and COMPUTER.
if ispc && isequal(get (hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor "))
set (hObject , "BackgroundColor ", "white ") ;

end

% —— Executes on button press in No_Dark_Time.
function No_Dark_Time_Callback (hObject, eventdata, handles)
% hObject handle to No_Dark_Time (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

Fast_Switch_DMD (handles . Deviceld , handles.Sequenceld, handles.

PictureTime)

External _Trigger_Frame_Transition (handles.Deviceld, handles.

PictureTime, handles.Sequenceld);
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490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

% —— Executes on button press in Master_External_Trigger.
function Master_External Trigger_Callback (hObject, eventdata ,
handles)

% hObject handle to Master_External Trigger (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

External Trigger Frame_Transition (handles.Deviceld , handles.

PictureTime, handles.Sequenceld);

% —— Executes on button press in Slave_Mode.

function Slave_Mode_Callback (hObject, eventdata, handles)

% hObject handle to Slave_Mode (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

External Trigger_Mode (handles.Deviceld, handles.PictureTime

handles . Sequenceld) ;
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509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

%

function pushbuttonll_Callback (hObject, eventdata, handles)

Executes on button press in pushbuttonll.

% hObject handle to pushbuttonll (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

%

function pushbuttonl2_Callback (hObject, eventdata, handles)

Executes on button press in pushbuttonl2.

% hObject handle to pushbuttonl2 (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)

% —— Executes when user attempts to close figurel.

function figurel_CloseRequestFcn (hObject, eventdata, handles)

% hObject handle to figurel (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)
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533

534

535

536

537

538

539

540

541

542

543

544

545

546

(¢

% unload library
unloadlibrary alp4395

disp(’library unloaded’);

% Hint: delete (hObject) closes the figure

delete (hObject) ;

%
function Update_Timing_Callback (hObject, eventdata, handles)

Executes on button press in Update_Timing.

% hObject handle to Update Timing (see GCBO)

% eventdata reserved — to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)

Update_Timing_ DMD (handles . Deviceld , handles.Sequenceld, handles.

PictureTime)

132



B.2

DMD datasheet

Table B.1: A datasheet for the two DMDs used in our apparatus.

Name DLP7000 LightCrafter6500
Array Size 1024x768 1920x1080

Mirror Size 13.68 um 7.56 um

Mirror Width 1.4 cm 1.45 cm

Binary Rate 32,000Hz 9,523Hz
Micromirror tilt angle (degrees) +12 +12

Damage threshold intensity 20W/em? CW | 20W/em? CW

Micromirror array optical efficiency 68% 68%
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