
ABSTRACT

BAIRD, LORIN RICHARDS. Linear Hydrodynamic Response in a Uniform Fermi Gas.
(Under the direction of John Thomas).

In this dissertation, we have developed a new probe for hydrodynamic response in

ultracold atomic gases, made possible by the use of digital micromirror technology. As a

first step, we directly measure the density response δn of a unitary Fermi gas confined in

a box potential U0(z) and subject to a spatially periodic optical potential δU(z, t). We

create a hydrodynamic linear response model, and fit it to the data to extract transport

properties, namely the thermal conductivity κT . We use the previously measured shear

viscosity, and measured equation of state as inputs to our model.

The box trap U0(z) and optical potential δU(z, t) are created with digital micromirror

devices (DMDs), giving us independent control over the wavelength λ and frequency f

of δU(z, t). This allows us to translate δU(z, t) into the cloud at speeds ranging from

subsonic to supersonic.

We show that the time-dependent change of the density profile is sensitive to the

thermal conductivity κT , which controls the relaxation rate γκ of the temperature gra-

dients and hence the responses arising from adiabatic and isothermal compression. The

thermal conductivity extracted from the density response profiles is found to be κT =

1.14(17)× (15/4) (kB/m) h̄ n0, at a reduced temperature θ0 = 0.50.

We compare our measurement of the thermal conductivity with variational calcula-

tions for a unitary gas in the high temperature 2-body Boltzmann limit. These calcu-

lations determine the ratio of the thermal conductivity κT to shear viscosity η0 to be

κT/η0 = (15/4) (kB/m). Using the measured shear viscosity η0, we find that the ratio of

the thermal conductivity to the shear viscosity is (κT/η0) = 0.93(14)× (15/4) (kB/m).
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Chapter 1

Introduction

This dissertation describes the measurement of hydrodynamic linear response in a unitary

Fermi gas. We utilize a sample of fermionic 6Li in an optical box trap U0(z) that is

nearly uniform in density and covers a smaller region in phase space than a typical

harmonic trap. The uniform region is hydrodynamic and allows us observe and measure

transport properties. The thermal conductivity κT is measured by moving a periodic

optical potential δU(z, t) through the sample with varying the wavelength λ and speed v.

The decay rate γκ ∝ κT/λ
2 of temperature gradients created by the periodic compression

changes the timescale that the temperature gradients are allowed to relax. The effects

from these relaxing temperature gradients are observed in the density response δn which

is recorded as a function of this periodic optical potential’s speed v and wavelength λ.

We create a linear hydrodynamic model to extract the thermal conductivity κT from this

density response.

Strongly interacting fermions play a central role in the structure of matter. Unitary

Fermi gases have connections to condensed matter, high energy physics, astrophysics,

nuclear physics, and string theory. Our tabletop system provides a clean, controllable
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Figure 1.1: (a) Pictorial representation of the experiment. (b) Typical density response.

way for quantitative comparison between experiment and many body theory. The unitary

Fermi gas shares universal behavior with other strongly interacting Fermi systems [1, 3,

13, 22, 27] such as the strongly coupled electrons in high TC superconductors, neutron

matter, and the quark-gluon plasma (QGP), a state of matter that existed moments

after the big bang.

This condition for this universal behavior arises from the two-body scattering process

of our quantum particles which we will briefly cover here. We will consider a two body

scattering process where our incoming particle with momentum p = h̄k can be described

by a plane wave eikz. A scattering event from a spherically symmetric scattering potential

in the far field can be approximated as a spherical wave. The information from the

scattering event is contained in the scattering amplitude f(θ, k), where θ is the angle

between the incoming and outgoing wave in spherical coordinates. We can describe the

area where a two body scattering even occurs as the collision cross section σc.

2



If we take the ratio of the probability of observing a scattered particle at the differen-

tial solid angle dΩ compared to the incident probability perpendicular to the incoming

wave eikz we can obtain the equation

d σc
dΩ

= | f(θ, k) |2. (1.1)

The scattering amplitude in the far field is

f(θ) =
∞∑
l=0

(2 l + 1) al(k)Pl ( cos θ ), (1.2)

where Pl(cos(θ)) are Legendre polynomials. The coefficients for each polynomial are found

from the radial Schrödinger equation,

al(k) =
e2 i δl − 1

2ik
= ei δl

sin δl
k

, (1.3)

where l is the angular momentum and δl is the phase shift in a scattered wave compared

to an unscattered wave. In our low temperature gas we have s-wave scattering retaining

only the l = 0 term. Integrating equation 1.1 over the solid angle dΩ = sin θ dθ dφ gives

us the collision cross sectional area

σc =
4π

k2
sin2 δ. (1.4)
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If the scattering potential is spherically symmetric, the collision cross section can be

described by a one dimensional length called the scattering length as. If we solve the

radial Schrödinger equation d2u/dr2 + 2µm/h̄
2Eu = 0 in the far field, away from the

range of the potential we obtain

u(r) = A sin(k r + δ). (1.5)

The linearized solution for low energy collisions crosses the r axis when

0 = A

(
1 +

k

tan δ
r

)
sin δ. (1.6)

If we solve equation 1.6 for r we obtain our scattering length

as ≡ − lim
k→0

tan δ

k
. (1.7)

Using trig. identities gives us our collision cross section in terms of the scattering length

σc =
4π

k2
sin2 δ =

4π

k2
tan2 δ

1 + tan2 δ
=

4πa2s
1 + (kas)2

. (1.8)

For diverging scattering length our collision cross section is simply

σc =
4π

k2
. (1.9)

When the s-wave scattering length as is much greater than the range R of the colli-

sional potential, both parameters vanish from the problem. The gas can be completely

characterized by the de Broglie wavelength λT and the interparticle distance, or inverse

4



Fermi wavenumber 1/kF . A rescaling of the spatial coordinates will simply rescale the

Hamiltonian. Dimensional arguments then allow us to write all measurable quantities in

universal form in terms of λT and 1/kF . This strongly interacting scale invariant system

is a unitary Fermi gas [22].

Working at unitarity, we have a parameter free comparison of our ultracold dilute

gas to different strongly interacting fermionic systems such as the QGP which is about

20 orders of magnitude higher in temperature. Neutron matter in neutron stars, which

is about 25 orders of magnitude more dense than our dilute gas, is naturally strongly

interacting because the neutron-neutron interactions have a large scattering length as ≈

−18.5 fm compared to the magnitude of the interaction range R ≈ 1 fm. The unitary

condition is not naturally occurring in our dilute ultracold sample, and must be created

by operating near a magnetically tunable collisional resonance.

A magnetically tunable collisional resonance, called a Feshbach resonance, allows us

to change the scattering length between two fermionic particles by applying a magnetic

field. To understand how this Feshbach resonance works, we need to look at the two

particle collisions that occur in our gas. Our sample is made up of the two lowest energy

hyperfine ground states of 6Li. These two states can approach each other along two

different channels, a shallow triplet potential where the electronic spin states are parallel,

or a much deeper singlet potential where the spins are anti-parallel. When a magnetic field

is applied, the difference in magnetic moments shifts the energy of the triplet collisional

channel downward with respect to the singlet collisional channel. The triplet channel

is more energetically favorable and atoms will scatter along this potential. The singlet

potential, while energetically closed in a magnetic field, has bound states that are now

near the energy of the open channel. A Feshbach resonance occurs when the scattering

continuum of the open channel is tuned with a magnetic field near a bound state of

5



the closed channel. This equates to scattering from an attractive well with the scattered

wavefunction having a phase shift δ which changes the scattering length as as seen in

equation 1.7. Near a Feshbach resonance, the scattering length as a function of magnetic

field, shown in Fig. 1.2, can be approximated as,

a = ab

(
1− ∆

B −B0

)
, (1.10)

where ab = −1582(1)a0 is the unmodified scattering length, ∆ = −262.3(3) is the res-

onance width, B is the magnetic field, and B0 = 832.18(8) is the resonant magnetic

field [33]. When the continuum energy is tuned to be degenerate to a bound state in the

closed channel, the scattering length diverges. We obtain our universal system by oper-

ating near a Feshbach resonance where the diverging scattering length is much greater

than the interaction range.
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Figure 1.2: Tuning the magnetic field below the Feshbach resonance results in a molec-
ular Bose Einstein condensate (BEC). Above the resonance is described by the Bardeen-
Cooper-Schrieffer theory of a Fermionic system. The crossover region where the scattering
length diverges is a unitary Fermi gas.
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1.1 Thermodynamics and transport measurement in

the unitary Fermi gas

A great deal of work has gone into measuring the universal numbers that describe the

unitary gas and its thermodynamic properties. Dilute atomic gases held in equilibrium

have provided the thermodynamic properties over a wide range of temperatures using

fundamental thermodynamic relations [24, 25]. We use the equation of state obtained

from these experiments as an input to our hydrodynamic model.

Transport measurements for coefficients such as the shear viscosity η, bulk viscosity

ζ, and thermal conductivity κT require dynamical experiments. Bulk viscosity in the

unitary limit is predicted to vanish in the normal phase [15,28]. Releasing a gas from an

anisotropic trap and observing the hydrodynamic expansion gives measurements of the

bulk viscosity consistent with 0 in the normal fluid regime [10]. Shear viscosity is also

determined by releasing the gas from an anisotropic trap and tracking the hydrodynamic

expansion as a function of the reduced temperature at the center of the cloud [19]. When

released from an anisotropic trap, the pressure gradients are much larger in the narrow

direction. As the gas expands, the aspect ratio will reach a maximum value at large time t

which is determined by the shear viscosity η. An analysis [4] of the expansion data which

takes into account the non-hydrodynamic modes of the less dense edge of the cloud gives

the shear viscosity η in the normal fluid regime as a function of temperature and density

η = η0
(mkBT )3/2

h̄2
[
1 + η2(nλ

3
T ) + ...

]
, (1.11)

where λT = h/
√

2πmkB T is the de Broglie wavelength and n is the total density for a

balanced two-component mixture. The first two terms in the expansion, η0 = 0.265(20)

7



and η2 = 0.060(20), fit the expansion data from temperatures just above the super-

fluid transition TC to the high temperature limit where variational two-body Boltzmann

equation for a unitary Fermi gas gives η0 = 15/(32
√
π) = 0.26446 [4]. The thermal con-

ductivity κT has a negligible effect on expansion experiments, because the clouds are in

thermal equilibrium.

Thermal conductivity is a coefficient that describes the ability of a substance to

conduct heat between areas of unequal temperature. In this equation, we can see the

relationship between the heat current JT, thermal conductivity κT and the temperature

T

JT = −κT ∇T. (1.12)

In order to measure the thermal conductivity, we need a cloud of non-uniform tempera-

ture.

1.1.1 Primary results

My experiment, pictorially shown in Fig. 1.1, shows a repulsive periodic optical potential

which is moved through a uniform sample, creating spatially varying temperature profiles.

With control over the speed and wavelength of this potential, we can change the pressure

and temperature gradients, and vary the timescales over which these gradients are allowed

to relax. The density response δn has contributions from both the shear viscosity and

the thermal conductivity. With this shear viscosity known, and vanishing bulk viscosity

in the normal fluid regime, the only transport coefficient that remains is the thermal

conductivity.

The measured density response, observed as a function of λ and v of the periodic

optical potential gives us regimes where the temperature gradients relax slowly or quickly.
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When the decay rate for the temperature change γκ ∝ κT/λ
2 is larger than the wave

frequency ω of the periodic optical potential, γκ >> ω, the compression is isothermal.

When γκ << ω, the temperature gradients relax slowly and the compression is adiabatic.

Our model has good sensitivity to measure the thermal conductivity when the periodic

potential is moved through the gas at subsonic speeds. Moving δU(z, t) through the gas at

supersonic speed results in nonlinear effects such as the creating of weak shockwaves.The

thermal conductivity is impossible to extract with a linear hydrodynamic model when

the density response is nonlinear and sound waves are propagating adiabatically.

Variational calculations for a unitary gas in the 2-body Boltzmann high temperature

limit [5,6] determines the ratio of the thermal conductivity κT to shear viscosity η to be

κT
η0

=
15

4

kB
m
. (1.13)

Comparing the experimental measurement of the thermal conductivity at θ0 = 0.50 with

the high temperature ratio, we have

κT
η0

= 0.93(14)× 15

4

kB
m
. (1.14)

where we have used the previously measured shear viscosity η0 = 1.23 h̄n0 [4, 19].
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Chapter 2

Experimental Setup

This chapter summarizes the cooling and trapping techniques used in the experiment and

the addition of micro-mirror technology used to create boxlike traps U0(z) and project

moving periodic optical potentials δU(z, t), shown in Fig. 2.1. Some techniques and equip-

ment have been covered in great detail in previous theses [7, 9, 12, 18, 21], but will be

described briefly in this chapter to provide background for the current work.

Our apparatus uses two physical mechanisms for cooling and trapping the atomic

sample. The first mechanism slows and traps atoms through the repeated absorption and

emission of photons near the 671 nm transition of 6Li. Photon absorption and emission

are used to create velocity and spatially dependent radiation pressure in the Zeeman

slower and magneto-optical trap or MOT, which provides a source of cold atoms.

The second cooling and trapping mechanism uses an electric dipole polarizability

interaction where the frequency of a focused electric field is far away the atomic resonance

to avoid optical scattering and heating. The electric dipole force, previously used only to

create a harmonic trap, is now also used to create the six sheet beams that make up the

box trap U0(z) and the perturbative optical potential δU(z, t).
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Figure 2.1: Pictorial representation of the box trap U0(z) shown on the right contains a
uniform sample (orange) with a perturbative optical potential δU(z, t) shown on the left.

We use absorption imaging to extract the density profile of the cloud. This technique

uses a pulse of resonant light to image a shadow of the density distribution from the

atomic cloud on a CCD camera. This imaging process destroys the atomic sample, and

another one must be created.

2.0.1 Velocity dependent radiation pressure

The first cooling mechanism uses the momentum of photons p = h̄k = h/λ to reduce

the velocity of the atoms. A photon absorbed by an atom will transfer momentum to

the atom in the direction that the photon was traveling. When an atom in an excited

state spontaneously emits a photon in a random direction, it will recoil in the opposite
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direction. A laser beam tuned near resonance with an atomic transition will provide a net

momentum transfer in the direction of the laser propagation, while the net momentum

transfer from the spontaneous emission of photons will average to zero. Atoms moving

with a velocity va in the direction of a laser will have a shifted resonance frequency

f =
(

1− va
c

)
f0, (2.1)

from the Doppler effect, where f is the frequency observed by the atom, f0 is the laser

frequency and c is the speed of light. An atom co-propagating along a laser beam, va < 0,

that is tuned below resonance will absorb upshifted photons and decrease in velocity. An

atom propagating in the same direction as a laser beam tuned below resonance it will

not absorb any photons as the downshifted photons will not be in resonance with the

atomic transition. In one dimension, two overlapping co-propagating laser beams that

have been tuned below the atomic resonance will slow atoms moving in either direction.

This velocity dependent radiation pressure, also called optical molasses, is used to slow

down atoms in three dimensions by overlapping three orthogonal co-propagating laser

beams pairs. Atoms slowed by this velocity dependent radiation pressure will gradually

drift out of the laser beam path without spatial confinement.

2.0.2 Spatially dependent radiation pressure

A spatially varying magnetic field will create a spatially dependent energy shift that we

use to trap atoms. A magnetic field will energetically shift, or Zeeman shift, the mF ± 1

excited state sublevels in 6Li. The red-detuned laser beams used to create a velocity

dependent radiation pressure are cicrularly polarized to provide a spatially dependent

radiation pressure to atoms in a spatially varying magnetic field. Atoms in a region of
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positive magnetic field will have mF = −1 excited state sublevel shifted down in energy

and will absorb circularly polarized σ− photons. Atoms in negative magnetic field will

have the mF = 1 excited sublevel downshifted and will absorb σ+ polarized photons.

Consider a one dimensional case where atoms are free to move in a magnetic field

that increases linearly in the positive direction about a zero point. A beam propagating

in the positive direction with σ+ polarization is overlapped with a beam propagating

in the negative direction with σ− polarization. Atoms in regions of negative magnetic

field absorb σ+ photons and receive momentum kicks in the positive direction. Atoms

in regions of positive magnetic field absorb σ− photons and receive momentum kicks in

the negative direction. The combined result of the magnetic and optical fields creates

a spatially dependent radiation pressure that confines atoms near the zero point of the

magnetic field.

The spatially dependent radiation pressure, in addition to the velocity dependent

radiation pressure is used to trap and cool atoms in three dimensions. One dimensional

radiation pressure is used in a Zeeman slower to slow an atomic beam of vapor with

thermal velocities of over 1000 m/s down to a few m/s over a distance of approximately

30 cm.

2.0.3 Zeeman slower

A constant flux of atoms is provided as a collimated atomic vapor traveling from the

source oven, heated to approximately 400◦ C, through a small hole at the end of a pipe.

The atomic beam enters the Zeeman slower where it is overlapped with a co-propagating

red-detuned laser in a spatially varying magnetic field used to produce a Zeeman shift.

The magnitude of the magnetic field, created by a series of electromagnetic coils, is set to
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spatially decrease as the atoms move along the Zeeman slower. Atoms with large velocities

are slowed by absorbing co-propagating photons that are brought into resonance by the

Doppler effect and Zeeman shift from the magnetic field. As the atoms moving down the

Zeeman slower are decelerated by the repeated absorption and emission of photons, the

magnetic field is spatially decreased to keep the atoms close to resonance with the laser

beam.

2.0.4 Magneto-optical trap

After exiting the Zeeman slower, atoms are trapped and cooled by three retro reflected or-

thogonal beams overlapping near the point of zero magnetic field gradient of a quadrupole

magnetic field. The combination of velocity and spatially dependent radiation pressure

used to cool and confine atoms, shown in Fig. 2.2, is called a magneto-optical trap or

MOT. The MOT at full intensity spatially confines the atoms and cools them to ∼ 1 mK.

The mechanism for trapping and cooling in the MOT relies on the momentum transfer

from absorbed photons. The recoil momentum from photons emitted from atoms in the

MOT puts a lower bound on the temperatures that can be achieved in the MOT which

is ∼ 150 µK when the intensity is lowered by a factor of ∼ 100 and the frequency is

brought closer to resonance. The dipole force trapping mechanism, which doesn’t rely on

the momentum of photons for trapping and cooling, can achieve lower temperatures by

evaporatively cooling atoms held in a dipole trap.

2.0.5 Far off resonance dipole trapping

Atoms polarized in the electric field of a laser detuned far from an atomic resonance, will

experience a force from the dipole interaction with the electric field gradient F = −∇V ,
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Figure 2.2: The magneto-optical trap (MOT). Three orthogonal retro-reflected laser
beams along with the quadrupole magnetic field generated by two electromagnetic coils
in an anti-Helmholtz configuration trap and cools the atoms exiting the Zeeman slower.
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where the cycle-averaged potential of the electric field is

V = −1

2
αE2 =

−2π

c
α(ω) I(x, y, z), (2.2)

where c is the speed of light, α(ω) the polarizability of the sample, and I(x, y, z) the

intensity of the laser beam. The dipole polarizability of 6Li

α =
α0 ω

2
0

ω2
0 − ω2

, (2.3)

is determined by the frequency of the laser light ω, where α0 = 24.310−24 cm is the static

polarizability [30] and ω0 is the resonant frequency. Atoms will be attracted to regions of

high laser intensity when the polarizability is positive or repelled when the polarizability

is negative.

2.0.6 FORT

When the MOT beams are extinguished, the focused beam of a CO2 laser, λCO2 =10.6 µm,

produces an attractive far off resonance trap (FORT) for further cooling of the atoms

through evaporation. The laser is tuned far below resonance, ω << ω0, to provide fric-

tionless confinement while the most high energy atoms escape from the trap. To aid in

efficient evaporative cooling, a magnetic field is applied near a broad Feshbach resonance

occurring at 832.2 Gauss [33] giving us a diverging scattering length as and strong in-

teractions. Evaporation in the full power FORT cools the atoms to a temperature of

∼ 50 µK.

Further cooling of the sample is done by forced evaporation. The CO2 beam power

is lowered with an acousto-optic modulator (AOM), a device that uses an RF signal
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to generate acoustic waves in a material to diffract a laser beam, altering the intensity

and frequency of diffracted modes. An artificial waveform generator provides the control

voltage V (t) for the AOM, giving us full control over the trap depth U(t) as a function

of time. A lowering curve is programmed into the artificial waveform generator with user

defined inputs including the lowering time and final trap depth. Lowering the CO2 power

over 4 seconds with a shallow final trap depth, Ufinal ≈ U0 × 10−3, produces an atomic

sample with temperatures as low as ∼ 10 nK. Cooling the gas below the superfluid

critical temperature TC will result in some portion of the gas becoming a superfluid. A

typical absorption image of an atomic sample at the end of forced evaporation is shown

in Fig 2.3.

Figure 2.3: Atomic sample in the approximately harmonic FORT after forced evapora-
tion.
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The instruments controlling the trap depth U(t) of the attractive dipole trap need to

have low electronic noise in order to transfer the atoms from the FORT to the uniform

box trap at shallow trap depths. The control voltage provided V (t) to the AOM by

the previous artificial waveform generators (Agilent 33250A) was electronically noisy

and needed to be integrated by external electronics to quiet the signal. Integrating the

control voltage signal resulted in a non-zero trap depth when the CO2 laser beam was

extinguished during the transfer to the box trap. Extinguishing the beams when the trap

depth still has finite value results in an abrupt release of the atoms from a harmonic

trap to a box trap causing violent collisions with the box walls and unwanted collective

oscillations. To obtain a more responsive control voltage for the AOM at low trap depths,

we use artificial waveform generators (Keysight 33500B) with low electronic noise which

eliminates the need to integrate the signal. Lowering the shallow FORT to zero trap

depth over 10 ms before extinguishing the CO2 beams now provides a gentle release into

the box trap without setting up collective oscillations.

2.1 Dynamical and spatial control of repulsive opti-

cal potentials

Digital light processing (DLP) technology is emerging as a versatile tool for creating

dynamically controlled optical potentials, creating disorder, and imprinting patterns in

dilute quantum gases [8,16,26]. Initially, we used a DLP chipset to improve on a previous

shockwave experiment [20]. The technology gave us control over the depth and width of

a separation between two fermionic atomic clouds in a harmonic potential. When the

optical potential creating the separation between the two clouds was extinguished, we
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would observe the collision and resulting shockwave in the gas. The DLP technology

proved to be a versatile tool in the shockwave experiments and we added a second chipset.

The new optical system used to project the images from two digital micromirror devices

(DMD) with blue-detuned laser beams is shown in Fig. 2.4.

Figure 2.4: The DMDs, control boards, and trigger boxes are mounted on custom ma-
chined mounts. This apparatus couples a blue-detuned Gaussian beam from a high power
fiber to a DMD. The spatially modulated beam from the DMD is demagnified and pro-
jected onto the atom sample to form the optical box potential U0(z) and perturbation
δU(z, t).

Most movie theaters across the world use digital light processing (DLP) for video pro-

jection. The technology is based on reflecting light from an array of microscopic mirrors
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where each individual mirror can be rapidly repositioned to ON or OFF corresponding to

a ±12 degree tilt from the flat state. A 1920×1080 resolution array has over two million

mirrors, each mirror corresponding to a pixel of an image. The illuminated surface of

the micromirror array can be magnified to form the images of a movie at the theater, or

demagnified onto the atom sample to create the images of a dynamical optical potential

U0(z) and δU(z, t). The surface of the digital micromirror device (DMD) acts like an

intensity mask on the Gaussian shaped blue-detuned beam with each mirror tilted to the

ON position directing part of the beam to the atoms and mirrors in the OFF position

directing part of the beam to a beam dump.

2.1.1 Optical box potential U0(z)

The six sides of the optical box potential U0(z) are created by a vertically propagating

green beam, λgreen = 532 nm, and a horizontally propagating red beam, λred = 669 nm.

Using laser light with a higher frequency than the atomic transition, ω > ω0, gives a

negative dipole polarizability α, which results in a repulsive force on the atomic sample.

The green laser beam first passes through an AO for smoothly controlling the power.

The output of the AO is coupled into a high-power fiber to create a clean Gaussian

profile with good pointing stability at the DMD. At the output of the fiber, shown

schematically in Fig. 2.5, we use a combination of two prisms, called a total internal

reflection prism (TIR), to correctly angle the laser light onto the DMD and provide the

best power efficiency. The array of mirrors on the DMD behaves like a 2D diffraction

grating. Illuminating the array from the proper angle yields the most power into the

primary diffracted beam. The blue-detuned beam is then demagnified with a microscope

objective. This increases the intensity on the atoms compared to a 1:1 projection from
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Figure 2.5: Red and green laser light is modulated by DMDs to form our repulsive
optical box potential U0(z) and perturbative potential δU(z, t). A blue-detuned repulsive
Gaussian beam exits a high power fiber and is coupled to the DMD with a total internal
reflection (TIR) prism. The image from the DMD is demagnified by a 10× microscope
objective. A telescope projects the demagnified image onto the atomic sample.

the DMD. The demagnified beam from the microscope is then reflected onto the atomic

sample with a dichroic beamsplitter and an approximately 1:1 telescope. The dichroic

allows the laser light for the optical potential U0(z) to share the large windows of the

imaging beam path by reflecting the green laser light and allows the red imaging beam

to pass through the beamsplitter to the CCD camera. The horizontally propagating red

laser beam uses an optical system similar to the vertically propagating green beam shown

in Fig. 2.5.

The vertically propagating green beam modulated by the DMD creates four sides of

the uniform box trap U0(z) and the perturbative optical potential δU(z, t). The spatially

shaped beam, shown in Fig. 2.6, made from the 532 nm laser light has a trap depth of

approximately 5 times the Fermi energy EF = 0.16 µK.
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(a) (b)

Figure 2.6: (a) The vertically propagating beam, λgreen = 532 nm, spatially modulated
by a DMD forms four walls of the optical box potential U0(z). The effect of the Gaussian
profile on the projected intensity can be seen. (b) The optical box potential gives a
uniform sample, imaged from the vertical direction, with dimensions 129× 84× 58 µm.

The horizontally propagating red beam, λred =699 nm, spatially modulated by a

second DMD creates the top and bottom of the optical box trap U0(z), shown in Fig. 2.7.

Using a wavelength closer to the atomic resonance of 6Li at λ =671 nm gives dipole

polarizability that is approximately 60 times larger than for 532 nm laser light. This

allows us to have a much greater force on the atoms with much less laser power at the

DMD. Resonant light resulting from amplified spontaneous emission from our red diode

laser is eliminated with an Optigrate Bragg grating notch filter.

Gently releasing the atomic sample from the FORT into the optical box trap U0(z)

gives a uniform sample where the peak density is only 10% more than the average density

n0 = N/V ≈ 2.6 × 1011 atoms/cm3 where N is the total atom number, and V is the

volume of the box, which has dimensions (129× 84× 58)µm. The slow variation of the

density n0(z), shown in the horizontal and vertical directions in figures 2.6 and 2.7, is
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Figure 2.7: (a) The vertically propagating beam, λred = 669 nm 532 nm, spatially mod-
ulated by a DMD forms the top and bottom of the optical box potential U0(z). (b) The
uniform atomic sample imaged from the horizontal direction.

due to the curvature of the bias magnetic field potential

Umag =
1

2
mω2

xmag x
2 +

1

2
mω2

ymag y
2 +

1

2
mω2

zmag z
2. (2.4)

The spin states we trap are high field seeking and have a potential from the magnetic

dipole moment Umag = −µ ·B [21], where µ is the magnetic dipole moment of an atom.

The magnetic dipole moment will align along the direction of the magnetic field ŷ which

is created by electromagnetic coils. Using ∇2 ·B = 0 we have

∇2 ·B = ∇2Bŷ = ∇2

(
−Umag
µ

)
ŷ = 0, (2.5)

which gives us

ω2
xmag + ω2

ymag + ω2
zmag = 0. (2.6)
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Because the atoms are high field seeking, the atoms will experience a repulsive force

along the direction of the electromagnet field coils bore ŷ and an attractive force in the

x̂ and ẑ direction. The harmonic frequencies

−ω2
ymag = 2ω2

xmag = 2ω2
zmag (2.7)

are obtained from 2.6, where the cylindrical symmetry of the electromagnetic coil de-

mands that ω2
ymag = ω2

zmag. In our system, the measured frequency of the magnetic

potential is ωzmag = 2π × 22.7 Hz.

2.1.2 Perturbative potential δU(z, t)

An optical perturbation δU(z, t) with a depth of δU0 ≈ 0.25EF is created by modulating

the vertically propagating green laser beam that makes up four of the box walls, shown

in Fig. 2.8.

Figure 2.8: The DMD illuminated by green laser light forms four walls for the box
trap and creates the perturbative potential δU(z, t). The walls U0(z) remain stationary,
while the perturbative potential δU(z, t) moves through the uniform atomic sample with
velocity v.
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The perturbative optical potential, programmed into the DMD [32],

δU(z, t) = δU0 [1− ε cos(qz − qvt)] φ(vt− z), (2.8)

has velocity v and q = 2π/λ as programmable input parameters. A smooth step function

φ(vt − z) gives a vanishing perturbation inside the box at t = 0 and provides a leading

edge for the periodic perturbation moving into the uniform density.

To create a dynamical optical potential, a series of images is loaded into the DLP

device memory which is triggered with digital pulses to advance through the images. Each

full period of the perturbative potential is made up of ten images. The wave frequency

of the spatially periodic perturbation

ω = 2π f = 2π v / λ, (2.9)

is determined by the time between pulses ∆t = (1/10)(1/f) triggering the image se-

quence, where λ is the wavelength and v is the velocity. An absorption image is taken

when δU(z, t) has traveled a fixed number of periods into the sample. For a wavelength

of λ = 19 µm, the image is taken after four periods, when the leading edge is at 76 µm,

as shown in Fig. 2.8. The leading edge of the λ = 30 µm perturbation is at 90 µm, after

three periods, when the image is taken. The density response δn is recorded over the

frequency range of 100 Hz to 1200 Hz for these two wavelengths.

In the experiment, we want to project sinusoidal periodic optical potentials from

the DMD onto the uniform sample, but each mirror can only set to a binary state of

ON or OFF. We create binary images that simulate smooth images using a halftoning

technique that varies the spacing of ON and OFF mirrors shown in Fig. 2.9. A 7.56 µm

25



mirror demagnified by a 10× microscope objective has an image size that is smaller than

the 2.9 µm airy radius, determined from the limited aperture of the vacuum chamber

windows which have a diameter D = 4 cm. The blurred binary image provides a smooth

sinusoidal perturbative potential.

Figure 2.9: Binary images projected from the surface of the DMD are blurred through
the finite aperture of our imaging system.
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Chapter 3

Thermodynamic Preliminaries

The density response δn to a perturbing optical potential δU(z, t) with variable wave

frequency ω = 2 π v / λ is a new probe for measuring transport properties. The measured

density response δn of a nearly uniform normal unitary Fermi gas to such a perturbation

is characterized by the density n0, temperature T , equation of state, and the transport

coefficients η and κT . To develop a hydrodynamic model for our experiment, we need a

mathematical description of the change in pressure δP , change in temperature δT , and

thermodynamic quantities such as the heat capacity. Fortunately, the equation of state

for the unitary Fermi gas was recently measured by a group at MIT [25] which greatly

aids in our analysis and allows us to determine the temperature of our gas in-situ from

the measured sound speed. In this chapter we will cover the thermodynamic preliminaries

needed to build a fluid dynamics description in the next chapter.
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3.1 Thermodynamic derivations

We begin with derivations of the relationships between the heat capacity per particle

at constant volume cV ≡
(
∂Q
∂T

)
V
, the heat capacity per particle at constant pressure

cP ≡
(
∂Q
∂T

)
P
, and the expansivity β ≡ 1

V

(
∂V
∂T

)
P

, where the volume per particle is V = 1/n.

Starting with dQ = TdS, where S is the entropy per particle, and the definition of

heat capacity, it follows that

cV = T

(
∂S

∂T

)
V

(3.1)

and

cP = T

(
∂S

∂T

)
P

. (3.2)

We can use 3.1, 3.2, and

dS =

(
∂S

∂P

)
T

dP +

(
∂S

∂T

)
P

dT (3.3)

to obtain

cV = cP + T

(
∂S

∂P

)
T

(
∂P

∂T

)
V

. (3.4)

We eliminate
(
∂S
∂P

)
T

using the Maxwell relation −
(
∂S
∂P

)
T

=
(
∂V
∂T

)
P

obtained from the

Gibbs free energy dG = −SdT + V dP and

(
∂2G

∂P ∂T

)
= −

(
∂S

∂P

)
T(

∂2G

∂T ∂P

)
=

(
∂V

∂T

)
P

.
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Defining the thermal expansivity β,

1

V

(
∂V

∂T

)
P

≡ β, (3.5)

we have from the Maxwell relation,

(
∂S

∂P

)
T

= −βV. (3.6)

Now we can write
(
∂S
∂P

)
T

(
∂P
∂T

)
V

in 3.4 in terms of β and the isothermal sound speed

c2T ≡ 1
m

(
∂P
∂n

)
T

. Taking dP = 0, we start with

dP =

(
∂P

∂V

)
T

dV +

(
∂P

∂T

)
V

dT(
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

. (3.7)

Using the volume per particle V = 1/n, we have

∂ n

∂ V
= − 1

V 2
. (3.8)

We rewrite
(
∂P
∂V

)
T

to get

(
∂P

∂V

)
T

=

(
∂P

∂n

)
T

∂ n

∂ V
= − 1

V 2

(
∂P

∂n

)
T

. (3.9)

Using this in 3.7 we have

(
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

=
1

V 2

(
∂V

∂T

)
P

(
∂P

∂n

)
T

. (3.10)
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Substituting in 3.9 and 3.6 into 3.4 we obtain

cV = cP − β2 T

(
∂P

∂n

)
T

. (3.11)

3.1.1 Sound speed

One quantity that is easily measured is the speed of sound. The adiabatic sound speed

c0 can be determined from the fit of our hydrodynamic model to the time dependent

density profiles in our experiment.

The isothermal sound speed cT and adiabatic sound speed c0 are given by

c2T ≡
1

m

(
∂P

∂n

)
T

(3.12)

c20 ≡
1

m

(
∂P

∂n

)
S

. (3.13)

We can use the sound speed to get the thermal expansivity β in terms of measurable

quantities. We begin with P (n, T ), writing P (n, S) = P [n, T (n, S)] so that

(
∂P

∂n

)
S

=

(
∂P

∂n

)
T

+

(
∂P

∂T

)
n

(
∂T

∂n

)
S

. (3.14)

Taking dS(P, T ) = 0, we can find
(
∂T
∂n

)
S

from

0 =

(
∂S

∂P

)
T

(
∂P

∂n

)
S

+

(
∂S

∂T

)
P

(
∂T

∂n

)
S

(3.15)

Using 3.6 and 3.1 in the equation above, it follows that

(
∂T

∂n

)
S

=
V β T

cP

(
∂P

∂n

)
S

(3.16)
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Using 3.10 and 3.5 while noting n = 1
V

so that
(
∂P
∂T

)
V

=
(
∂P
∂T

)
n
, we have

(
∂P

∂T

)
n

= β n

(
∂P

∂n

)
T

. (3.17)

Using 3.16 and 3.17 in 3.14 gives us

(
∂P

∂n

)
S

=

(
∂P

∂n

)
T

+
β2 T

cP

(
∂P

∂n

)
T

(
∂P

∂n

)
S

. (3.18)

Using 3.11 in the equation above yields

(
∂P

∂n

)
S

=

(
∂P

∂n

)
T

+
cP − cV
cP

(
∂P

∂n

)
S

. (3.19)

Using 3.19 along with
(
∂P
∂n

)
T

= mc2T from 3.12 and
(
∂P
∂n

)
S

= mc20 from 3.13 gives us the

relationship between the isothermal sound speed and the adiabatic sound speed

c2T =
cV
cP

c20. (3.20)

Substituting
(
∂P
∂n

)
T

= mc2T into 3.11 and using 3.20 gives the thermal expansivity in

terms of measurable quantities

β2 =
cP
cV

cP − cV
mc20 T

. (3.21)

3.1.2 Change in pressure and temperature

Sweeping a repulsive periodic optical potential into a uniform gas changes the pressure

P (n, S) = P [n, T (n, S)] and the temperature T (S, n). We can use the results from the

previous section to write down the change in pressure δP and temperature δT . The
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change in pressure is

δP =

(
∂P

∂n

)
S

δn+

(
∂P

∂S

)
n

δS

= mc20 δn+

(
∂P

∂T

)
n

(
∂T

∂S

)
n

δS, (3.22)

where 3.13 has been used. Using the heat capacity per particle at constant volume cV =

T (∂S/∂T )n, 3.12, 3.17, and 3.20 we obtain

δP = mc20 δn+mc20 β
T

cP
n δS. (3.23)

The change in temperature T (n, s) is

δT =

(
∂T

∂S

)
n

δS +

(
∂T

∂n

)
S

δn. (3.24)

Using 3.16 as
(
∂T
∂n

)
S

= 1
n
β T
cP

(
∂P
∂n

)
S

and 3.1, we write 3.24 as

δT =
T

cV
δS +mc20 β

T

cP

δn

n
. (3.25)

3.1.3 Unitary Fermi gas thermodynamics

Thermodynamic quantities for a unitary Fermi gas can be determined as universal func-

tions of density n and the reduced temperature θ = T/TF using the equation of state. In

2012 Ku et al. [25] measured the universal function fE(θ) that completely determines the

equation of state for a unitary Fermi gas. In our experiments, the density is determined

from absorption images and the reduced temperature is determined by measuring the

adiabatic sound speed c0(θ). The measured equation of state, density and temperature
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then allows us to calculate all thermodynamic quantities needed for our hydrodynamic

model.

The energy density ε, chemical potential µ, and entropy per particle S in a unitary

Fermi gas are given by

ε =
3

5
n εF (n) fE(θ) (3.26)

µ = εF (n) fµ(θ) (3.27)

S = kB fS(θ), (3.28)

where the local Fermi energy εF (n) and Fermi temperature TF are

kB TF = εF (n) =
h̄2

2m

(
3π2n

)2/3
, (3.29)

with n being the total density for a 50-50 mixture of two spin states.

If the density and temperature are known, any thermodynamic quantity such as the

heat capacity cV can be determined using the measured equation of state,

cV = T

(
∂S

∂T

)
V

= T
∂fS(θ)

∂T
kB, (3.30)

or equivalently using dE = T dS − P dV

cV =
1

n

(
∂ε

∂T

)
n

= kB
3

5
f ′E(θ), (3.31)

where S is the entropy per particle and the energy per particle is E = ε/n. The heat

capacity cV calculated from the equation of state is shown in Fig 3.1.

In a harmonically trapped unitary Fermi gas, the shape of the density profile with the

33



0 0.5 1 1.5

0.5

1

1.5

2

Figure 3.1: The heat capacity per particle at constant volume CV and heat capacity at
constant pressure CP as a function of the reduced temperature θ are determined by the
measured universal function fE(θ).

equation of state gives the temperature. Parametric resonance characterizes the harmonic

potential and the virial theorem gives the total energy of the cloud. In a uniform box trap,

this technique is more difficult to implement. We instead measure the temperature from

the adiabatic speed of sound c0(θ0) extracted from density profiles in-situ. We compare

the in-situ measurement of c0 with the speed of a density perturbation in a uniform

sample of equivalent density for a cross check.

The adiabatic sound speed is given by

c20 ≡
1

m

(
∂P

∂n

)
S

=
1

m

(
∂P

∂n

)
θ

, (3.32)

where we can see from 3.28 that constant S is equivalent to constant θ. In a unitary

Fermi gas the pressure P and energy density ε are related by P = (2/3) ε [14, 29].
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Using 3.32, 3.26, and P = (2/5)n εF (n) fE(θ) we obtain

c0 = vF

√
fE(θ)

3
, (3.33)

where εF (n0) = 1
2
mv2F is given by 3.29 for n = n0.

The measured sound speed c0 combined with the measured universal function fE(θ)

enables thermometry in our experiment. The temperature as a function of the sound

speed, shown in Fig 3.2, is a monotonic function of c0/vF for θ > 0.25.
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Figure 3.2: In our experiments we find c0 = 1.3 cm/s for our density n0 = 2.6 × 1011

and Fermi velocity vF = 2.11 cm/s. The ratio c0/vF = 0.62 gives a reduced temperature
θ = 0.50 which we use to determine the heat capacity per particle at constant volume
cv and heat capacity per particle at constant volume cP , as well as the shear viscosity η
discussed later in chapter 4.
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Chapter 4

Transport in a normal unitary Fermi

gas

A unitary Fermi gas above the superfluid critical temperature TC is a normal fluid with

only two transport parameters, the shear viscosity η and the thermal conductivity κT . In

normal fluid regime, a unitary Fermi gas has vanishing bulk viscosity ζ as a consequence

of scale invariance [15, 28]. Measurements of the transport properties can be compared

with variational calculations for a unitary gas in the 2-body Boltzmann limit. In the

high temperature limit, the predicted ratio [5,6] of the thermal conductivity to the shear

viscosity is

κT
η

=
15

4

kB
m
, (4.1)

with the shear viscosity

η =
15

32
√
π

(mkB T )3/2

h̄2
. (4.2)

These relations are valid for a unitary Fermi gas in the Bolztmann limit, where kB is the

Boltzmann constant, T is temperature, and m is the atom mass.
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4.0.1 Shear Viscosity η

The internal friction between parts of a fluid traveling with different velocities causes

a transfer of momentum from regions of high velocity to low velocity. The equations of

motion that describe the unitary Fermi gas as a viscous fluid include the force from the

viscous stress tensor [23]

∂j (η σij) = ∂j

[
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂vl
∂xl

)]
. (4.3)

The shear viscosity η in a unitary Fermi gas was previously measured in the normal fluid

regime [4,19]. The shear viscosity is extracted by observing the hydrodynamic expansion

of a uniform temperature cloud released from an anisotropic trap at a fixed time t.

The unequal pressure gradients of an anisotropic trap lead to internal friction from the

transverse flow during expansion after release. The expanding cloud aspect ratio of the

recorded at a fixed time t is determined by the shear viscosity. An analysis of this data

precisely determines the shear viscosity η(θ) in the normal fluid regime by modeling the

hydrodynamic flow near the cloud center and the non-hydrodynamic modes of the less

dense edges [4]. The effect of the thermal conductivity in the expanding cloud experiment

can be neglected as the clouds maintain uniform temperature due to the uniform scale

transformation that governs the expansion.

Our analysis of the hydrodynamic density response δn in a unitary Fermi gas to

determine the thermal conductivity benefits from the above recent work in determining

the shear viscosity from expanding clouds released from anisotropic traps [19]. In the

analysis, the shear viscosity η in the normal fluid regime as a function of temperature
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and density it taken to be an expansion in powers of the diluteness nλ3T

η(n, T ) = η0
(mkB T )3/2

h̄2
[1 + η2 (nλ3T ) + ...], (4.4)

where λT = h/
√

2 πmkB T is the thermal de Broglie wavelength and n is the total density.

The leading term ∝ η0 is a function of temperature only. η0 has been calculated using the

two-body Boltzmann equation for a unitary Fermi gas, η0 = 15/(32
√
π) = 0.26446 [4].

This is in excellent agreement with the fits to the expansion data, η0 = 0.265(20), showing

that the analysis properly reproduces the high temperature limit. The first order of the
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Figure 4.1: The dimensionless shear viscosity η/h̄n from equation 4.5 shown in black
with h̄ and m set to unity [4]. Shear viscosity calculated by Enss et al. [11] shown in red
for comparison.

expansion is a function of the density only with η2 = 0.060(20). Using only the first two

terms in the expansion, the dimensionless shear viscosity takes the form

α ≡ η

h̄n
=

3π2

√
8
η0 θ

3/2 + (2π)3/2 η0 η2 = 2.77(21) θ3/2 + 0.25(8). (4.5)
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Equation 4.5 is shown in Fig. 4.1, is comparable to calculations from Enss et al. [11] and

Wlazowski et al. [31]. We use the shear viscosity determined from the expanding cloud

data [4,19] as an input to our hydrodynamic model, leaving the thermal conductivity κT

as the only transport property to be determined.

4.1 Hydrodynamic linear response for a normal fluid

We measure the density response δn of a uniform Fermi gas to a perturbing repulsive

optical potential δU(z, t). As noted above, the response contains information about the

transport coefficients η and κT [32]. To extract the thermal conductivity κT in a unitary

Fermi gas, we have created a linear hydrodynamic response model for the δn response of

a uniform gas confined in a box potential U0(z) perturbed by the periodic potential

δU(z, t) = δU0 [1− ε cos(qz − qvt)] φ(vt− z) e−(z−z0)
2/σ2

. (4.6)

A smoothed step function φ(vt − z) gives a vanishing perturbation inside the box at

t = 0 and provides a leading edge for the periodic perturbation moving into the uniform

density. The last term in 4.6 accounts for the gaussian profile of the beam illuminating

the DMD.

We begin the construction of our hydrodynamic model by requiring that the density

n(z, t) of the fluid satisfies the continuity equation

∂t n+∇(nv) = 0. (4.7)
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The equations of motion for a viscous fluid are obtained writing the acceleration of a

particle moving in a fluid

dv

dt
=
∂v

∂t
+
∂v

∂x

dx

dt
+
∂v

∂y

dy

dt
+
∂v

∂z

dz

dt
. (4.8)

and equating the force per unit volume

nm
dv

dt
= nm (∂t v + v · ∇v) (4.9)

to the forces per unit volume arising from the pressure −∇P , applied potential −n∇U ,

and the viscous stress tensor ∂i (η σij).

We write our equations of motion as Euler’s equation in one dimension for a viscous

fluid

nm (∂t + vz∂z)vz = −∂zP − n∂zU + ∂z(η σzz), (4.10)

and the continuity equation

∂t n+ ∂z(n vz) = 0. (4.11)

The viscous stress tensor ησij in one dimension is

η σzz = η

(
∂z vz + ∂z vz −

2

3
∂z vz

)
= η

4

3
∂z vz. (4.12)
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A perturbative external potential δU(z, t) produces first order change in the density,

pressure, and velocity

n = n0(z) + δn(z, t)

P = P0 + δP

U = U0(z) + δU(z, t)

vz = 0 + vz.

Substituting this into 4.10 and 4.11 gives us

(n0 + δn)m (∂t + vz ∂z)vz = −∂z(P0 + δP )− (n0 + δn) ∂z (U0 + δU) + ∂z η
4

3
∂z vz, (4.13)

and

∂t (n0 + δn) + ∂z [(n0 + δn)vz] = 0. (4.14)

The force from the pressure and box potential cancel each other in equilibrium, as shown

in Fig. 4.2, which requires

−∂z P0 − n0 ∂z U0 = 0. (4.15)

Using 4.15 and keeping only terms up to first order we write 4.13 and 4.14 as

−n0 ∂t vz =
1

m

(
∂z δP + n0 ∂z δU + δn ∂z U0 − ∂z η

4

3
∂z vz

)
(4.16)

and

∂t δn = −∂z n0 vz ≈ −n0 ∂z vz. (4.17)
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Figure 4.2: (a) Background density ñ0(z) (blue) fit with an analytic function (red). (b)
The box potential U0(z)/εF0 is obtained by integrating ∂zU0(z). The gradient of the box
potential ∂zU0(z) is determined from the background density n0(z).

Taking the derivative ∂z of equation 4.16 and ∂t of equation 4.17 we obtain

−∂z ∂t n0 vz =
1

m
∂z (∂z δP + n0 ∂z δU + δn ∂z U0 − ∂z η

4

3
∂z vz) (4.18)

and

∂2t δn = −∂t ∂z n0 vz. (4.19)

Substituting equation 4.19 into equation 4.18, we have

∂2t δn =
1

m
∂z

(
∂z δ P + n0 ∂z δU + δn ∂z U0 − ∂z η

4

3
∂z vz

)
. (4.20)

We use

δP = mc20 δn+mc20 β
T

cP
n δS (4.21)

from chapter 3, where S is the entropy per particle, and ∂z vz = −1
n0
∂t δn from 4.17 to
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eliminate the velocity field to obtain

∂2t δn−c20 ∂2z δn−c20 β n0
T

cP
∂2z δS−

4

3

η

n0m
∂2z ∂t δn =

1

m
∂z (n0 ∂z δU + δn ∂z U0) . (4.22)

We treat the sound speed c0 as a constant with respect to position in equation 4.22

because c0/vF should be independent of density in the unitary Fermi gas [17]. In Fig. 4.3

we show c0/vF as a function of density for a fixed temperature θ0.
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Figure 4.3: The ratio of the sound speed to the Fermi velocity c0/vF as a function of den-
sity n/n0. We use c0/vF =

√
f(θ)/3 from chapter three, where θ(n/n0) = θ0(n/n0)

−2/3.
We show the nearly constant c0/vF for θ0 = 1 in red, θ0 = 0.5 in black, and θ0 = 0.2 in
blue.
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The evolution of δS is determined by the heating rate per unit volume,

δq̇

n0

= T0 (∂t + vz ∂z) δS. (4.23)

The heating rate from conduction q̇ is obtained by substituting the heat current

JQ = −κT ∇T (4.24)

into the thermal conduction equation

∂t ε+∇ · JQ = 0. (4.25)

We neglect higher order heating terms in ∂tε arising from shear viscosity O(v2) to obtain

δq̇ ≈ κT ∂
2
z δT. (4.26)

Substituting the temperature change

δT =
T0
cV

δS +mc20 β
T0
cP

δn

n
, (4.27)

from chapter 3 with n = n0 and T = T0, and equation 4.26 into 4.23 we obtain

∂t δS −
κT
n0cV

∂2z δS =
κT mc20
n2
0 cP

β ∂2z δn, (4.28)

where the vz ∂z δS term from 4.23 is second order.
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It is convenient to use dimensionless variables

δS̃ ≡ β T0 n0 δS / (cP n0)

δñ ≡ δn/n0

ñ0(z) ≡ n0(z)/n0

δŨ(z, t) ≡ δU(z, t)/εF0

Ũ0(z, t) ≡ U0(z, t)/εF0

in 4.22 and 4.28 to make numerical integration easier, where n0 is the average density and

the Fermi energy εF0 = (1/2)mv2F0 = h̄2 (3 π n0)
2/3 /2m. Working with dimensionless

variables, we have two coupled equations which describe the response of the density δñ

and entropy δS̃ to a perturbing potential δŨ(z, t) in a box trap Ũ0(z, t),

∂t δS̃ −
κT
n0 cV

∂2z δS̃ =
κT
n0 cV

cP − cV
cP

∂2z δñ, (4.29)

and

∂2t δñ− c20 (∂2z δñ+ ∂2z δS̃)− 4

3

η

n0m
∂2z ∂t δñ =

v2F0

2
∂z

(
ñ0 ∂z δŨ + δñ ∂z Ũ0

)
. (4.30)

The c20 terms in equation 4.30 are from the change in pressure δP , the η term accounts

for the viscous damping of the density response δn which is driven by the δŨ term. The

Ũ0 term is the force from the box potential, derived later in this chapter.
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Equations 4.29 and 4.30 are solved numerically with the initial conditions

δñ = 0,

δ ˙̃n = 0,

δS̃ = 0.

4.2 Damping and decay rates

We can understand the damping in equation 4.29 and 4.30 as the irreversible processes

of thermal conduction and internal friction. Density perturbations created by moving

δU(z, t) through the uniform sample are damped at a rate set by the shear viscosity η

and the thermal conductivity κT . The decay rate of temperature gradients is obtained

by considering the energy flux resulting from thermal conduction in a static fluid

∂t ε+∇ · JQ = 0. (4.31)

The heat current

JQ = −κT ∇T (4.32)

results from the heat transfer from points of high temperature regions to low temperature.

The magnitude of the heat current is determined by the thermal conductivity κT .

We can write equation 4.31 as

(
∂ε

∂T

)
n

(
∂T

∂t

)
+∇ · JQ = 0. (4.33)
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Substituting (
∂ε

∂T

)
n

= n cV (4.34)

into 4.33, we obtain

n cV

(
∂T

∂t

)
+∇ · JQ = 0. (4.35)

Substituting 4.32 into 4.35, we have

(
∂T

∂t

)
− κT
ncV
∇2 T = 0. (4.36)

Assuming we have a solution of the form

T (z, t) = T0 + A(t) cos(qz), (4.37)

we can solve [
Ȧ(t) +

κT q
2

ncV
A(t)

]
cos(qz) = 0 (4.38)

to obtain

A(t) = A0 e
−γκt. (4.39)

This gives us the rate at which temperature gradients decay,

γκ =
κT
n cV

q2. (4.40)

The decay rate γκ can be seen in the equation that describes the change in entropy 4.29

as a result of a change in density δñ, assuming a sinusoidal solution for the change in

entropy

δS̃(z, t) = δS̃0 + A(t) cos(qz). (4.41)
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The frictional or viscous forces resulting from sheer stress ∂z vz have a damping rate

γη =
4

3

η

n0m
q2. (4.42)

that can be obtained from equation 4.30 by assuming a solution for the change in density

δñ(z, t) = δñ0 + A(t) cos(qz). (4.43)

Damping form shear viscosity and thermal conductivity both contribute to sound

absorption. In the high frequency limit, c0 q >> γκ, the damping rate [23] is

Γ = q2
[

4

3

η

n0m
+

κT
n0cV

(
1− cV

cP

)]
. (4.44)

4.2.1 Force from the box potential

An atomic sample trapped in the optical box U0(z) trap does not provide an infinite

medium. We need to account for the boundary conditions to properly model the density

response δn(z, t). The force from the box potential F = −∂zU0(z), shown in Fig. 4.4, is

obtained from the condition for equilibrium ∂zP0 = n0∂zU0(z), where the gradient of the

pressure is

∂z P0 [n0(z), T0] =

(
∂P0

∂n0

)
T

∂z n0(z). (4.45)

We can write the isothermal sound speed from chapter 3 as

mc2T =

(
∂P0

∂n0

)
T

= m
cV
cP

c20, (4.46)
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Figure 4.4: Box force profile −∂zŨ0 in dimensionless variables.

and the adiabatic sound speed as

c20 =
2 εF
m

fE(θ)

3
, (4.47)

where we have used v2F = 2 εF /m. Substituting 4.47 and 4.46 into equation 4.45, we

obtain

∂z U0 = −2

3
εF fE(θ)

cV
cP

∂z n0(z)

n0(z)
. (4.48)

Using dimensionless variables, ñ0(z) ≡ n0(z)/n0 and Ũ0(z, t) ≡ U0(z, t)/εF0, we have

∂z Ũ0(z) = −2

3
fE(θ)

cV [θ(z)]

cP [θ(z)]

∂z ñ0(z)

[ñ0(z)]1/3
. (4.49)

The thermodynamic quantities and measured equation of state,

ε =
3

5
n εF (n) fE(θ), (4.50)

from chapter 3, are universal functions only of the reduced temperature θ = T/TF . The
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reduced temperature θ scales as n−2/3 as seen in the equation for the local Fermi energy

kB TF = εF (n) =
h̄2

2m

(
3 π2 n

)2/3
. (4.51)

In our sample,

θ(z) = θ0 [ñ0(z)]−2/3 (4.52)

is calculated from the density profile ñ0(z). The reduced temperature evaluated at the

mean central density, θ0 = T0 / TF (n0), is determined from the fitted adiabatic sound

speed c0. We avoid the divergence of θ as ñ0 → 0 by adding an offset ñ0 × 10−4 to the

density ñ0(z) in equation 4.52.

Equation 4.45 can also be used to determine the force from the box potential ∂zU0(z)

by evaluating (∂P/∂n)T from the pressure for a unitary gas. From chapter three, we have

the pressure for a unitary Fermi gas,

P =
2

5
n εF (n) fE(θ) =

2

5

h̄2

2m
(3π2)2/3 n5/3 fE(θ). (4.53)

This directly gives us the force from the box potential for the unitary Fermi gas

∂z Ũ0(z) = −2

3

[
fE(θ)− 2

5
θ f ′E(θ)

]
∂z ñ0(z)

[ñ0(z)]1/3
, (4.54)

from the density profile, using the known equation of state f(θ), and the reduced tem-

perature θ(z) from equation 4.52.
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Chapter 5

Comparison of Model to Data

In this chapter we compare the hydrodynamic model to the data from the experiment.

We discuss the effect each fitting parameter has on the modeled density response. We

then measure the thermal conductivity κT from the global fit of the model to the data.

Using a DMD gives us independent control over the wavelength λ and frequency f of

the periodic optical potential δU(z, t). This allows us to move the optical perturbation

through the uniform sample at speeds above and below the relaxation rate of temperature

gradients

γκ =
κT
n0 cV

q2, (5.1)

where q = 2π/λ. When the density is driven at low frequencies relative to the decay

rate, ω < γκ, the density response δn is sensitive to the thermal conductivity κT . In

this regime, temperature gradients have time to decay and the compression is closer to

isothermal.

Independently choosing the wavelength and frequency of the periodic optical poten-

tial allows us to probe regimes where the data and model are sensitive to the thermal
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conductivity κT and regimes where the thermal conductivity has a negligible effect on

the density response δn.

5.1 Experimental data

We observe the density response using two different wavelengths for our periodic optical

potential δU(z, t), λ = 19 µm and λ = 30 µm. The decay rate γκ for each wavelength

γκ ∝ q2, where q = 2π/λ. To estimate the decay rate γκ, we use the thermal conductivity

calculated in the high temperature limit [5, 6]

κT = η0
15

4

kB
m
. (5.2)

We calculate the decay rate γκ using equation 5.1 for two different wavelengths using the

measured shear viscosity η0 = 1.23 h̄n0 [4, 19] and heat capacity cV = 1.13 kB from the

measured equation of state [25], assuming a temperature of θ0 = 0.5, which is comparable

to what we measure in our experiments.

Table 5.1: Damping rates.

Rate λ = 19 µm λ = 30 µm

c0 q 2π × 685 Hz 2π × 433 Hz

γη 2π × 301 Hz 2π × 121 Hz

γκ 2π × 750 Hz 2π × 300 Hz

We choose a range of frequencies to measure the density response above and below

the decay rate γκ. The frequency range of the λ = 19 µm optical potential is 100-1200
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Hz in steps of 100 Hz. The frequency range of the λ = 30 µm optical potential is 100-750

Hz in steps of 50Hz.

The optical potential δU(z, t) vanishes inside the box at t = 0, and moves along the

z axis for a fixed number of periods. The leading edge of δU(z, t) is roughly centered

in the box trap when an absorption image is taken to obtain the column density. The

λ = 19 µm perturbation moves four periods into the sample for each frequency f , resulting

in a leading edge at 76 µm when the absorption image is taken, as shown in Fig. 5.1. The

λ = 30 µm perturbation moves only three periods into the sample, resulting in a leading

edge is at 90 µm when the absorption image is taken. Five absorption images are taken

for each frequency f to obtain an average column density. The background density n0(z)

is recorded for an unperturbed uniform sample δU0 = 0. The average background density

is n0 = N/V = 2.6× 1011. The total atom number for both spin states is N = 1.69× 105

and V is the volume of the box trap U0(z), with dimensions 129 × 84 × 58 µm. The

density response profiles,

δñ ≡ ∆n

n0

=
n(z)− n0(z)

n0

, (5.3)

for the optical potential with wavelength λ = 19 µm and λ = 30 µm are sown in

Fig. 5.2 and 5.3 respectively.

Figures 5.2 and 5.3 show how the shape of the density response δn changes as the

perturbing potential is moved through at subsonic v < c0 and supersonic v > c0 speeds.

When the drive speed v is low, v/c0 < 0.5, sound waves propagate past the leading edge

of the perturbing optical potential δU(z, t), resulting in a positive and nearly flat density

response δn in the region between the leading edge of the perturbation and the box wall

at 129 µm. The leading edge of the density response increases in amplitude and narrows

as v approaches c0 as the sound waves cannot propagate far past the edge of δU(z, t).
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(a) δU at the final time for λ = 19 µm.

0 20 40 60 80 100 120

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) δU at the final time for λ = 30 µm.

Figure 5.1: The periodic optical potential δU(z, t)/EF plotted at time tf when the ab-
sorption image is taken. The form of δU(z, t), as shown in equation 5.12, properly accounts
for the blurring through the imaging system and the gaussian profile of the beam illumi-
nating the DMD. (a) The 19 µm wavelength perturbation has moved 4 spatial periods
into the uniform sample at time t = tf . (b) The 30 µm wavelength perturbation has
moved 3 spatial periods into the uniform sample at time t = tf .

54



0 50 100

-0.4

-0.2

0

0.2

0.4

(a) 100 Hz, v/c0 =0.15
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(d) 700 Hz, v/c0 =1.02
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Figure 5.2: A periodic optical potential with wavelength λ = 19 µm, velocity v = λf ,
and magnitude δU0 ≈ 0.25EF is swept through a uniform sample which has an average
density n0 = N/V = 2.6× 1011 atoms/cm3, where N is the total atom number for both
spin states. The response of the density δn is recorded as a function of the periodic
potential frequency with a range f=100-1200 Hz in steps of 100 Hz.
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Figure 5.3: A periodic optical potential with wavelength λ = 30 µm, velocity v = λf ,
and magnitude δU0 ≈ 0.25EF is swept through a uniform sample which has an average
density n0 = N/V = 2.6× 1011 atoms/cm3, where N is the total atom number for both
spin states. The response of the density δn is recorded as a function of the periodic
potential frequency with a range f=100-750 Hz in steps of 50 Hz.
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The amplitude of the density response is largest when the speed of δU(z, t) is nearly

resonant with the sound speed, v/c0 = 1. In the supersonic regime, v/c0 > 1, the am-

plitude of the density response falls as the perturbation travels faster than the speed of

sound.

5.2 Preparing the hydrodynamic model for numeri-

cal integration

We use the hydrodynamic model from chapter 4 to understand the features of the density

response δn and to extract the thermal conductivity κT . To make the extraction of

transport parameters easier, we will slightly modify the form of the equations in chapter

4, which are repeated here,

∂2t δñ− c20 (∂2z δñ+ ∂2z δS̃)− 4

3

η0
n0m

∂2z ∂t δñ =
v2F0

2
∂z

(
ñ0 ∂z δŨ + δñ ∂z Ũ0

)
, (5.4)

and

∂t δS̃ −
κT
n0 cV

∂2z δS̃ =
κT
n0 cV

cP − cV
cP

∂2z δñ. (5.5)

The measured shear viscosity [4, 19] at temperature θ0

η0 = α0 h̄ n0, (5.6)

is used as input to equation 5.4. Using 5.6, the factor (4/3)(η0/n0m) in equation 5.4

becomes

4

3

η0
n0m

=
4

3

h̄

m
α0. (5.7)
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We use a fitting parameter Cκ in equation 5.5 to extract the thermal conductivity κT .

We insert the fitting parameter Cκ into our model by writing the thermal conductivity

in terms of the calculated ratio of the thermal conductivity to the shear viscosity in the

high temperature limit [5, 6],

κT = Cκ
15

4

kB
m
η0 = Cκ

15

4

kB
m
α0 h̄ n0. (5.8)

Using 5.8, the factor κT/(n0 cV ) in equation 5.5 becomes

κT
n0 cV

= Cκ
15

4

kB
cV

h̄

m
α0. (5.9)

Using the substitutions 5.7 and 5.9, the hydrodynamic model takes the form

∂2t δñ− c20 (∂2z δñ+ ∂2z δS̃)− 4

3

h̄

m
α0 ∂

2
z ∂t δñ =

v2F0

2
∂z

(
ñ0 ∂z δŨ + δñ ∂z Ũ0

)
, (5.10)

and

∂t δS̃ − Cκ
15

4

kB
cV

h̄

m
α0 ∂

2
z δS̃ = Cκ

15

4

kB
cV

h̄

m
α0

cP − cV
cP

∂2z δñ. (5.11)

5.2.1 Periodic optical potential δU(z, t)

The data are modeled by numerically integrating equations 5.10, and 5.11 with the per-

turbing optical potential

δU(z, t) = δU0 [1− ε cos(qz − qvt)]φ(vt− z) e−(z−z0)
2/σ2

(5.12)
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which is shown at t = tf in Fig. 5.1. The gaussian profile of the beam illuminating the

DMD is accounted for with the gaussian function

e−(z−z0)
2/σ2

. (5.13)

The position z0 and width σ of the gaussian beam used to create the perturbing optical

potential are easily measured and are not used as fit parameters.

The envelope function

φ(vt− z) =
1 + tanh [z/σφ]

2
× 1 + tanh [(vt− z)/σφ]

2
(5.14)

is created with hyperbolic tangent functions. The time dependent factor

1 + tanh [(vt− z)/σφ]

2
(5.15)

moves with [1− ε cos(qz − qvt)] and provides a cutoff for the leading edge of the pertur-

bation. The time independent factor of the envelope function

1 + tanh [z/σφ]

2
(5.16)

provides a cutoff for the perturbation δU(z, t) at the box potential wall located at z = 0.

The width of the envelope function edges σφ are set to 4 µm, to approximate the blurring

from the finite resolution of the imaging system.
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5.2.2 Fit parameter effects on the modeled density response

Global fits determine the fit parameters, ε, c0, δU0 and Cκ. Each fit parameter controls

unique spatial features in the density response δn.

0 20 40 60 80 100 120

-0.5

0

0.5

Figure 5.4: Effect of the modulation depth ε of equation 5.12 on the destiny response.
The perturbing optical potential has wavelength λ = 19 µm and frequency f =400 Hz.
The optical perturbation parameter ε = 0.23 is shown in red, ε × 2 shown in blue, and
ε× 0.5 shown in black.

Fig. 5.4 shows the effect of the perturbing potential parameter ε in equation 5.12.

The depth of the periodic part of the perturbing potential ε affects the density response

δn in the region where the density response shows periodic modulation.

Fig. 5.5 shows the effect of the sound speed c0 on the modeled density response δn. As

discussed in chapter 3, the fitted c0 is used as an in situ thermometer to determine the

reduced temperature θ0 = T0/TF . This temperature θ0(c0) determines the heat capacities

per particle cV and cP from the measured equation of state [25], and the measured shear

viscosity η0 [4, 19] in equation 5.22.
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Figure 5.5: Effect of the adiabatic sound speed c0 on the destiny response. The perturb-
ing optical potential has wavelength λ = 19 µm and frequency f =400 Hz. The sound
speed c0 = 1.3 cm/s is shown in red, c0 = 1.6 cm/s shown in blue, and, c0 = 1.0 cm/s
shown in black.

The fitted c0 is checked by measuring the speed of a density perturbation in a uniform

trap, as shown in Fig. 5.6. We create the density perturbation with a 300 µs pulse of

repulsive laser light at position z = 0 and time t = 0. Tracking the position of the density

peak as a function of times gives a speed of vp = 1.4 cm/s, which is within 10% of the

fitted sound speed from the density response, c0 = 1.3 cm/s.

Fig. 5.7 shows the effect of the thermal conductivity fitting parameter Cκ on the

density response for different ω/γκ. A larger value for the fitting parameter Cκ increases

the amplitude of the leading density response peak. When δU(z, t) moves through the

sample slowly enough to allow temperature gradients to relax, ω << γκ, the compression

is isothermal. Moving δU(z, t) through the sample with frequency ω >> γκ results in

adiabatic compression.
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Figure 5.6: (a) Profiles of a density perturbation traveling through the uniform sample
at two different times: t = 2000 µs in blue and t = 4000 µs in red. (b) Tracking the
position of the density peak as a function of times gives a speed of vp = 1.4 cm/s, which
is within 10% of the fitted sound speed from the density response, c0 = 1.3 cm/s.
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(a) 200 Hz
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(c) 700 Hz

Figure 5.7: Effect of the thermal conductivity fitting parameter Cκ on the destiny re-
sponse. The perturbing optical potential has wavelength λ = 19 µm. The modeled density
response is shown for three frequencies f = 200 Hz, f = 400 Hz, and f = 700 Hz. As
the wave frequency ω = 2πf of the perturbing potential approaches the decay rate γκ,
the sensitivity to the thermal conductivity vanishes. The thermal conductivity fitting
parameter Cκ = 1 is shown in red, Cκ = 2 shown in blue, and Cκ = 0.5 shown in black.
(a) ω/γκ = 0.26 (b) ω/γκ = 0.52 (c) ω/γκ = 0.92
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5.2.3 Global fits

The thermal conductivity κT is extracted by varying the parameters c0, δU0, ε, and Cκ,

one at a time, across all frequencies and minimizing χ2 in the central region of the data

away from the less dense edges at the box potential walls. A global best fit is obtained

when varying the parameters no longer results in improvement. The uncertainty in Cκ is

determined from the curvature of χ2 in the region of the minimum [2]

σ2
κT

= 2

(
∂2 χ2

∂ κT

)−1
, (5.17)

where

χ2 ≡
∑[

1

σ2
i

(yi − y(xi))
2

]
. (5.18)

The results of the global fits are shown in Fig. 5.8 and 5.9 with the fitted parameters

in the figure caption and the table 5.2. The hydrodynamic model reproduces the spatial

features of the density response δn for all frequencies in the subsonic regime, v < c0.

Table 5.2: Best Fit Parameters.

Parameter λ = 19 µm λ = 30 µm

c0 1.3 cm/s 1.3 cm/s

θ(c0) 0.50 0.50

ε 0.23 0.29

δU0/EF 0.23 0.26

z0 93 µm 93 µm

σ 113 µm 113 µm

σφ 4 µm 4 µm

The fitted values of δU0/EF ≈ 0.25 are consistent with the calculated value of
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(a) 100 Hz, v/c0 =0.15
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Figure 5.8: The hydrodynamic model is fit globally to the subsonic data for a periodic
optical potential with wavelength λ = 19 µm and velocity v = λf . Fit parameters are
δU0/EF = 0.23, ε = 0.23, and c0 = 1.3 cm/s.
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Figure 5.9: The hydrodynamic model is fit globally to the subsonic data for a periodic
optical potential with wavelength λ = 30 µm and velocity v = λf . Fit parameters are
δU0/EF = 0.26, ε = 0.29, and c0 = 1.3 cm/s.
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δU0/EF = 0.31 which is estimated from the measured intensity of the illuminating blue-

detuned beam. The fitted value of δU0 is used to account for variations in the beam

intensity and imperfect imaging. The perturbing potential parameter ε for λ = 19 µm is

smaller than the λ = 30 µm wavelength because of the blurring from the finite resolution

≈ 3.5 µm of our imaging system. The fitted sound speed c0 = 1.3 cm/s, determines the

temperature to be θ0(c0) = 0.50. In chapter 3 we discussed how the measured sound

speed c0 combined with the measured universal function fE(θ) enables thermometry in

our experiment. The temperature as a function of the sound speed, shown in Fig 3.2, is

a monotonic function of c0/vF for θ > 0.25.

5.2.4 Measurement of κT

The global fits to the data determine the fitting parameter in equation 5.8 to be

Cκ = 0.93(14). (5.19)

We defined the fitting parameter Cκ in equation 5.8 to provide an easy comparison with

the variational calculations in the high temperature limit [5, 6]

κT
η0

=
15

4

kB
m
. (5.20)

The fitting parameter Cκ gives a straightforward comparison with the high temperature

ratio,

κT
η0

= 0.93(14)× 15

4

kB
m
. (5.21)
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The previously measured shear viscosity is given by equation 4.5 of chapter 4,

η0 = α0 h̄ n0 =
[
2.77(21) θ

3/2
0 + 0.25(8)

]
h̄ n0 (5.22)

yields η0 = 1.23 h̄n0 at θ0 = 0.50.

Using η0 = 1.23 h̄n0 in equation 5.21 yields the measured thermal conductivity from

our global fits,

κT = 1.14(17)× 15

4

kB
m
h̄n0. (5.23)

The fitting parameters in table 5.2 are fit globally and are constant for all frequencies.

The hydrodynamic model loses sensitivity to the thermal conductivity as the periodic

potential is moved through the sample at speeds comparable to the decay rate of tem-

perature gradients γκ. The vanishing sensitivity to the thermal conductivity can be seen

in Fig. 5.7. For this reason, we determine Cκ from fits to the data below the decay rate

ω < γκ.

For the optical potential with wavelength λ = 19 µm, where γκ = 2π × 760 Hz, we

obtain reliable measurements of Cκ in the frequency range 200-600 Hz. For the optical

potential with wavelength λ = 30 µm and decay rate γκ = 2π × 305 Hz, we obtain

reliable measurements of Cκ in the frequency range 150-300 Hz. The extracted thermal

conductivity κT is determined from the weighted arithmetic mean of the individually fit

Cκ from both wavelengths.

When the perturbing optical potential is moved through the sample at supersonic

speed, v > c0, we observe a discrepancy with the model, as shown in Fig. 5.10. This

discrepancy may arise from the creation of weak shock waves which are not included in

our linear hydrodynamic model.
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Figure 5.10: The quality of the fits decreases as the speed of δU(z, t) surpasses the
adiabatic sound speed v > c0. The globally fit hydrodynamic model is plotted for a
λ = 19 µm optical perturbation at 900 Hz, v/c0 = 1.32.
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Chapter 6

Conclusion

We have created a novel technique for measuring transport properties from the density

response δn of a uniform density atomic cloud driven by a perturbative optical potential

δU(z, t). Using DMDs to create the perturbing periodic optical potential δU(z, t) gives

us independent control over the wavelength λ and frequency f of the driving potential.

This control allows us to probe the density response for both adiabatic and isothermal

compression. We measure the density response δn to the perturbing optical potential

δU(z, t) as a function of wavelength and frequency, and fit the data with a hydrodynamic

linear response model. Excellent agreement between the data and our model validates

this treatment.

The model is sensitive to the thermal conductivity κT when δU(z, t) moves through

the sample slowly enough to allow temperature gradients to relax, ω << γκ. In this

regime, the measured thermal conductivity is

κT = 1.14(17)× 15

4

kB
m
h̄n0, (6.1)
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at a temperature θ0 = 0.50.

The temperature θ0 in our experiment was not further increased because the trapping

potential U0(z, t) was too weak to confine higher temperatures. Future work may be done

to obtain a deeper trapping potential to measure the thermal conductivity at higher

temperatures.

6.1 Outlook

The addition of DMD technology to the apparatus enable us to create designer opti-

cal potentials. The ability to arbitrarily shape dynamic optical potentials opens up the

possibility for many exciting new experiments. Varying the shape of the driving optical

potential δU(z, t) is easy to implement and could allow us to probe transport parameters

in a new way. Using a DMD, the damping and decay of sound can be studied by im-

printing a uniform density sample with multiple wavelength patterns and observing the

evolution of density perturbations.

Other possibilities for future work include trapping spin imbalanced mixtures in the

box trap U0(z), which changes the transport properties, and studying the breakdown of

fluid dynamics by changing the interaction strength to weakly interacting.
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Appendix A

Numerical integration and best fit

MATLAB code

The following MATLAB code is used simulate the density response to a periodic optical

potential

δU(z, t) = δU0 [1− ε cos(qz − qvt)] φ(vt− z) e−(z−z0)
2/σ2

. (A.1)

The program numerically integrates the two coupled equations,

∂2t δñ− c20 (∂2z δñ+ ∂2z δS̃)− 4

3

h̄

m
α0 ∂

2
z ∂t δñ =

v2F0

2
∂z

(
ñ0 ∂z δŨ + δñ ∂z Ũ0

)
, (A.2)

and

∂t δS̃ − Cκ
15

4

kB
cV

h̄

m
α0 ∂

2
z δS̃ = Cκ

15

4

kB
cV

h̄

m
α0

cP − cV
cP

∂2z δñ. (A.3)

Global fits determine the fit parameters, ε, c0, δU0 and Cκ by minimizing χ2 in the

central region of the data away from the less dense edges at the box potential walls.
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A.1 Linear response code main function

1 %% beginning

2

3 % choose which program to run

4 modenumber = 0 ;

5 %case0 p l o t dn vs dn exper imenta l

6 %case1 C \kappa f i t

7 %case2 e p s i l o n f i t

8 %case3 c0 f i t

9 %case4 wavelength f i t

10 %case5 Adjust S ta r t i ng po int f o r \ de l t a U

11 %case6 M u l t i p l i e r to ad jus t parameters on the f l y

12 %case7 Vary c 0 and mult at the same time f o r one f requency

13

14 % index cor r e spod ing to f requency f o r s i n g l e f requency p lo t

15 f r eq index = 6 ;

16 % m u l t i p l i e r s e t to 1

17 mult = 1 ;

18 % Dataset number

19 datase t = 14 ;

20 % 14−>19 micron wavelength

21 % 10−>25 micron wavelength

22 % 8 −>30 micron wavelength

23
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24 %% parameters f o r d i f f e r e n t da ta s e t s

25 switch datase t

26 case 14

27 f i l ename = ’Z :\Network Harddrives f o r Lab Computers\

LAB1 DOCS\NCSU Data \2019 .1 .8\14 pi8%\Lor inAna lys i s \

JohnsData1long . mat ’ ;

28 % frequency range to g l o b a l l y f i t data

29 f r e q r a n g e S t a r t =1;

30 f r eq range =7;

31 % C \kappa

32 KappaT = 1 ;

33 % e p s i l o n f o r per turb ing p o t e n t i a l \ de l t a U

34 eps = . 2 2 5 1 ;

35 % sound speed in m/ s

36 c0 = . 0 1 3 ;

37 % m u l t i p l i e r f o r c a l c u l a t e d \ de l t a U 0

38 % accounts f o r l o s s through o p t i c s and imper f e c t imaging

o p t i c s

39 dUmult = .7277* (1/2) ;

40 % adjus t the s t a r t i n g po int o f \ de l t a U( z , 0 )

41 dUof f s e t = −2;

42 % wavelength

43 lam = 1 8 . 6 6 7 ;

44 % number o f s p a t i a l pe r i od s \ de l t a U i s moved in to the
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sample

45 NumPeriods = 4 ;

46 % atom number in the box trap ( both sp in s t a t e s )

47 AtomNumber = 76199*2;

48 case 10

49 f i l ename = ’Z :\Network Harddrives f o r Lab Computers\

LAB1 DOCS\NCSU Data \2019 .1 .8\10 pi8%\Lor inAna lys i s \

JohnsData1long . mat ’ ;

50 f r e q r a n g e S t a r t =1;

51 f r eq range = 4 ;

52 KappaT = 1 ;

53 eps = . 3 2 7 1 ;

54 c0 = . 0 1 4 2 ;

55 dUmult = .8275* (1/2) ;

56 dUof f s e t = −1;

57 lam = 24 . 8182 ;

58 NumPeriods = 3 ;

59 AtomNumber = 84922*2;

60 case 8

61 f i l ename = ’Z :\Network Harddrives f o r Lab Computers\

LAB1 DOCS\NCSU Data \2019 .1 .8\8 pi8%\Lor inAna lys i s \

JohnsData1long . mat ’ ;

62 f r e q r a n g e S t a r t =1;

63 f r eq range = 6 ;
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64 KappaT = 1 ;

65 eps = . 2 8 5 4 ;

66 c0 = . 0 1 3 ;

67 dUmult = .8414* (1/2) ;

68 dUof f s e t = 15 ;

69 lam = 30 ;

70 NumPeriods = 3 ;

71 AtomNumber = 84291*2;

72 otherw i s e

73 di sp ( ’ I n v a l i d case ’ )

74 f i l ename = ’ I n v a l i d ’ ;

75 end

76

77 load ( f i l ename ) ;

78

79 switch modenumber

80

81 %% KappaT

82 % minimize ch i ˆ2 to f i n d best f i t f o r thermal conduc t i v i ty

f i t t i n g

83 % parameter C \kappa

84 case 1

85 % range to check

86 KappaT = . 2 5 : . 2 5 : 4 ;
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87 f r eq index = f r e q r a n g e S t a r t : f r eq range ;

88 f o r j = 1 : l ength ( f r eq index )

89 pa r f o r i = 1 : l ength (KappaT)

90 [A,B, BErr , Chi2 , Chi2reduced ( i , j ) , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index ( j ) ,KappaT( i ) , eps , c0 ,

lam , dUof f set , dUmult , mult ) ;

91 di sp ( ’ Parameter KappaT ’ )

92 end

93 end

94 % minimize ch i ˆ2 and f i n d cor re spond ing value f o r C \kappa

95 v = sum( Chi2reduced , 2 ) ;

96 x = KappaT ;

97 f i n exq = l i n s p a c e (min (KappaT) ,max(KappaT) ,100) ;

98 f i n evq = in t e rp1 (x , v , f inexq , ’ s p l i n e ’ ) ;

99 [ minval , indexmin ] = min ( f i n evq ) ;

100 di sp ( [ num2str ( f i n exq ( indexmin ) ) , ’ i s the va lue o f KT’ ] )

101 di sp ( [ num2str ( minval ) , ’ i s the Chi2 ’ ] )

102 p lo t (KappaT , v )

103 shg

104

105 %% eps

106 % minimize ch i ˆ2 to f i n d best f i t f o r \ de l t a U f i t t i n g

parameter

107 % e p s i l o n
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108 case 2

109 eps = . 2 : . 0 0 5 : . 2 3 ;

110 f r eq index = f r e q r a n g e S t a r t : f r eq range ;

111 f o r j = 1 : l ength ( f r eq index )

112 pa r f o r i = 1 : l ength ( eps )

113 [A,B, BErr , Chi2 , Chi2reduced ( i , j ) , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index ( j ) ,KappaT , eps ( i ) , c0 ,

lam , dUof f set , dUmult , mult ) ;

114 di sp ( ’ Parameter eps ’ )

115 end

116 end

117 v = sum( Chi2reduced , 2 ) ;

118 x = eps ;

119 f i n exq = l i n s p a c e ( eps (1 ) ,max( eps ) ,100) ;

120 f i n evq = in t e rp1 (x , v , f inexq , ’ s p l i n e ’ ) ;

121 [ minval , indexmin ] = min ( f i n evq ) ;

122 f i n exq ( indexmin )

123 di sp ( [ num2str ( minval ) , ’ i s the Chi2 ’ ] )

124 p lo t ( eps , v )

125 shg

126

127 %% c0

128 % minimize ch i ˆ2 to f i n d best f i t f o r the sound speed c 0

129 case 3
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130 c0 = . 0 1 2 : . 0 0 0 5 : . 0 1 6 ;

131 f r eq index = f r e q r a n g e S t a r t : f r eq range ;

132 f o r j = 1 : l ength ( f r eq index )

133 pa r f o r i = 1 : l ength ( c0 )

134 [A,B, BErr , Chi2 , Chi2reduced ( i , j ) , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index ( j ) ,KappaT , eps , c0 ( i ) ,

lam , dUof f set , dUmult , mult ) ;

135 di sp ( ’ Parameter c0 ’ )

136 end

137 end

138 v = sum( Chi2reduced , 2 ) ;

139 x = c0 ;

140 f i n exq = l i n s p a c e (min ( c0 ) ,max( c0 ) ,100) ;

141 f i n evq = in t e rp1 (x , v , f inexq , ’ s p l i n e ’ ) ;

142 [ minval , indexmin ] = min ( f i n evq ) ;

143 f i n exq ( indexmin )

144 di sp ( [ num2str ( minval ) , ’ i s the Chi2 ’ ] )

145 p lo t ( c0 , v )

146 shg

147 %% lam

148 % minimize ch i ˆ2 to f i n d best f i t f o r the wavelength (known

parameter )

149 case 4

150 lam = 1 7 : . 5 : 2 2 ;
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151 f r eq index = f r e q r a n g e S t a r t : f r eq range ;

152 f o r j = 1 : l ength ( f r eq index )

153 pa r f o r i = 1 : l ength ( lam )

154 [A,B, BErr , Chi2 , Chi2reduced ( i , j ) , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index ( j ) ,KappaT , eps , c0 , lam

( i ) , dUof f set , dUmult , mult ) ;

155 di sp ( ’ Parameter lam ’ )

156 end

157 end

158 v = sum( Chi2reduced , 2 ) ;

159 x = lam ;

160 f i n exq = l i n s p a c e (min ( lam ) ,max( lam ) ,100) ;

161 f i n evq = in t e rp1 (x , v , f inexq , ’ s p l i n e ’ ) ;

162 [ minval , indexmin ] = min ( f i n evq ) ;

163 f i n exq ( indexmin )

164 p lo t ( lam , v )

165 shg

166

167 %% dUof f s e t

168 % adjus t the s t a r t i n g po int f o r \ de l t a U to c o r r e c t l y begin

at the edge

169 % of the box

170 case 5

171 dUof f s e t = −3 :1 :3 ;
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172 f r eq index = f r e q r a n g e S t a r t : f r eq range ;

173 f o r j = 1 : l ength ( f r eq index )

174 pa r f o r i = 1 : l ength ( dUof f s e t )

175 [A,B, BErr , Chi2 , Chi2reduced ( i , j ) , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index ( j ) ,KappaT , eps , c0 , lam

, dUof f s e t ( i ) , dUmult , mult ) ;

176 di sp ( ’ Parameter dUof f s e t ’ )

177 end

178 end

179 v = sum( Chi2reduced , 2 ) ;

180 x = dUof f s e t ;

181 f i n exq = l i n s p a c e (min ( dUof f s e t ) ,max( dUof f s e t ) ,100) ;

182 f i n evq = in t e rp1 (x , v , f inexq , ’ s p l i n e ’ ) ;

183 [ minval , indexmin ] = min ( f i n evq ) ;

184 f i n exq ( indexmin )

185 p lo t ( dUof f set , v )

186 shg

187

188 %% mult

189 % m u l t i p l i e r f o r ad ju s t i ng parameters on the f l y

190 case 6

191 mult = . 4 : . 0 5 : . 9 ;

192 % freq index = 1 : l ength (SumData . f requency ) ;

193 f r eq index = f r e q r a n g e S t a r t : f r eq range ;
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194 f o r j = 1 : l ength ( f r eq index )

195 pa r f o r i = 1 : l ength ( mult )

196 [A,B, BErr , Chi2 , Chi2reduced ( i , j ) , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index ( j ) ,KappaT , eps , c0 , lam

, dUof f set , dUmult , mult ( i ) ) ;

197 di sp ( ’ Parameter mult ’ )

198 end

199 end

200 v = sum( Chi2reduced , 2 ) ;

201 x = mult ;

202 f i n exq = l i n s p a c e (min ( mult ) ,max( mult ) ,100) ;

203 f i n evq = in t e rp1 (x , v , f inexq , ’ s p l i n e ’ ) ;

204 [ minval , indexmin ] = min ( f i n evq ) ;

205 f i n exq ( indexmin )

206 di sp ( [ num2str ( minval ) , ’ i s the Chi2 ’ ] )

207 p lo t ( mult , v )

208 shg

209

210

211 %% dUmult and c 0 at the same time

212 % adjus t \ de l t a U 0 and the sound speed f o r a s i n g l e

f requency

213 case 7

214 mult = . 7 : . 0 5 : 1 . 2 ;
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215 c0 = . 0 1 2 : . 0 0 1 : . 0 1 6 ;

216 f o r j = 1 : l ength ( c0 )

217 pa r f o r i = 1 : l ength ( mult )

218 [A,B, BErr , Chi2 , Chi2reduced ( i , j ) , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index , KappaT , eps , c0 ( j ) , lam

, dUof f set , dUmult , mult ( i ) ) ;

219 di sp ( ’ Parameter mult ’ )

220 end

221 end

222 c l o s e a l l

223 imagesc ( Chi2reduced )

224 [ min val , idx ]=min ( Chi2reduced ( : ) )

225 [ rowmin , colmin ]= ind2sub ( s i z e ( Chi2reduced ) , idx )

226 di sp ( [ num2str ( min val ) , ’ Chi2reduced ’ ] )

227 di sp ( [ num2str ( c0 ( colmin ) ) , ’ c0 ’ ] )

228 di sp ( [ num2str ( mult ( rowmin ) *dUmult ) , ’ dUmult ’ ] )

229

230 otherw i s e

231 %% Just a p l o t o f the f i t with d e f a u l t parameters

232 [A,B, BErr , Chi2 , Chi2reduced , n0 f i t , l e f t s i d e , r i g h t s i d e , z ] =

LR13Thesis ( f i l ename , NumPeriods , f r eq index , KappaT , eps , c0 , lam ,

dUof f set , dUmult , mult ) ;

233

234 % reduced ch i ˆ2
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235 chi2KT = Chi2reduced ;

236

237 %% dens i ty p l o t s

238 ymin = min ( [ min (A) , min (B) ] ) ;

239 ymax = max ( [ max(A) ,max(B) ] ) ;

240 % plo t the hydrodynamic model

241 p lo t (A( l e f t s i d e : r i g h t s i d e ) , ’ r ’ , ’ Linewidth ’ , 2 . 5 )

242 x l a b e l ( ’ $$z (\mu m) $$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

243 y l a b e l ( ’ $$\ f r a c {\Delta n}{n 0}$$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

244 ylh = get ( gca , ’ y l a b e l ’ ) ;

245 ylp = get ( ylh , ’ Po s i t i on ’ ) ;

246 s e t ( ylh , ’ Rotation ’ ,0 , ’ Po s i t i on ’ , ylp , ’ Vert ica lAl ignment ’ , ’

middle ’ , ’ Hor izontalAl ignment ’ , ’ r i g h t ’ )

247 xlim ( [ 0 l ength (A( l e f t s i d e : r i g h t s i d e ) ) ] )

248 ylim ( [ ymin−.2 ymax+.2 ] )

249 hold on

250 % s c a t t e r has a l r o f f s e t to match up the data

251 % plo t the exper imenta l data with e r r o r b a r s

252 e r r o rba r ( z ( l e f t s i d e : r i g h t s i d e )− l e f t s i d e +2,B( l e f t s i d e : r i g h t s i d e ) ,

BErr ( l e f t s i d e : r i g h t s i d e ) , ’b ’ )

253 s c a t t e r ( z ( l e f t s i d e : r i g h t s i d e )− l e f t s i d e +2,B( l e f t s i d e : r i g h t s i d e )

,25 , ’ b lue ’ , ’ f i l l e d ’ )

254 % put the f requency in the t i t l e

255 % t i t l e ( [ num2str (SumData . f requency ( f r eq index ) ) , ’ Hz ’ ] ) ;
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256 shg

257

258

259 end

A.2 Linear response code numerical integration

1 %% beg in ing

2 f unc t i on [A,B, BErr , Chi2 , Chi2reduced , n0 f i t , l e f t s i d e , r i g h t s i d e , z ]

= LR13Thesis ( f i l ename , NumPeriods , f r eq index , KappaT , eps , c0 , lam ,

dUof f set , dUmult , mult )

3

4 load ( f i l ename ) ;

5

6 % Tp and Lp are time and length s c a l e s ( microseconds and microns

) .

7 Tp = 10ˆ6 ;

8 Lp = 10ˆ6 ;

9

10

11 %% Constants

12 % volume o f the box trap

13 vo l =(129E−6)*(58E−6)*(84E−6) ;

14 %frequency in MHz

15 f r e q = SumData . f requency ( f r eq index ) /Tp ;
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16 q=2*pi /lam ;

17 nu=2*pi * f r e q ;

18 v = nu/q ;

19 % Vef f = v/c0 ;

20 num = 2* pi /lam ;

21

22 % number o f atoms f o r both sp in s t a t e s

23 N=1.686 e +05;

24 % average dens i ty in the box trap

25 n0=N/ vo l ;

26 % peak dens i ty i s n0 *1 .116

27 % Fermi temperature

28 TF=hbar ˆ2/(2*mLi6 ) *(3* pi ˆ2*n0 ) ˆ(2/3) /kB ;

29 % Fermi energy

30 EF = TF*kB ;

31 % Fermi v e l o c i t y

32 vF = s q r t (2*EF/mLi6 ) ;

33

34

35

36 % theta0 i n t e r p o l a t i o n range

37 th e t a0 i n t e rp = . 1 : . 0 1 : 1 . 5 ;

38 % equat ion o f s t a t e data

39 load ( ’MartinEEOS . mat ’ ) ;
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40 % i n t e r p o l a t e d f E (\ theta )

41 Feqinterp = in t e rp1 ( FEtheta ( : , 1 ) , FEtheta ( : , 2 ) , the ta0 in te rp , ’

s p l i n e ’ ) ;

42 % c 0 correspond ing to i n t e r p o l a t e d equat ion o f s t a t e

43 c0 in t e rp = vF* s q r t ( Feqinterp /3) ;

44 % Calcu lated theta0 from c0 and equat ion o f s t a t e

45 theta0 = in t e rp1 ( c0 inte rp , the ta0 in te rp , c0 , ’ s p l i n e ’ ) ;

46

47 % dimens i on l e s s shear v i s c o s i t y ( mu l ip l i ed by hbar/m)

48 a0 = Tp*( hbar/mLi6 ) * (2 .77* theta0 ˆ1 .5+0.27) ;

49

50 % c a l c u l a t e s p e c i f i c heat per p a r t i c l e at the ta 0

51 [ Cv ,Cp]= S p e c i f i c H e a t s ( theta0 ) ;%from MartinEoS

52 % C1 i s the s u b s t i t u t i o n f o r the f a c t o r KT/n0/Cv m u l t i p l i e d by

the f i t t i n g

53 % parameter C \kappa to e x t r a c t the thermal conduc t i v i ty

54 C1 = KappaT*(15/4) *(1/Cv) *a0 ;

55 C2 = (Cp−Cv) /Cp ;

56

57

58 %% Time Mesh

59 % The s imu la t i on i s run f o r a l i t t l e l onge r than the end time to

make sure

60 % the s imu la t i on ends at the same time as the data .
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61 tend=NumPeriods/ f r e q +0.1/ f r e q ;

62 % number o f po in t s in time

63 numtim = 6000 ;

64 t=l i n s p a c e (0 , tend , numtim) ;

65 dt = t (2 )−t (1 ) ;

66

67

68 %% Space Mesh

69 % s t a r t and endpoint s p a t i a l l y . The data i n c l u d e s a range

out s id e o f the

70 % box p o t e n t i a l

71 s t a r t p o i n t = 20 ;

72 endpoint = 200 ;

73 % p i x e l s i z e f o r the camera in microns

74 p s i z e = 1 . 3 4 ;

75 % s e l e c t r eg i on o f i n t e r e s t f o r data

76 % background dens i ty n 0

77 vn0data = l rn0 ( f r eq index , s t a r t p o i n t : endpoint ) ;

78 % \ de l t a n

79 vdndata = lrdn ( f r eq index , s t a r t p o i n t : endpoint ) ;

80 % e r r o r in \ de l t a n

81 vdnErrdata = lrdnErr ( f r eq index , s t a r t p o i n t : endpoint ) ;

82 % xdata i s the un i t s o f the camera

83 xdata = l i n s p a c e ( 0 , ( endpoint−s t a r t p o i n t ) , ( endpoint−s t a r t p o i n t )
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+1)* p s i z e ;

84 % number o f po in t s s p a t i a l l y

85 numzpoints = f l o o r (max( xdata ) ) ;

86 % z makes each bin one micron in s i z e

87 z=l i n s p a c e (0 , numzpoints , numzpoints+1) ;

88 dz=z (2)−z (1 ) ;

89 [ Z ,T]= meshgrid ( z , t ) ;

90 % i n t e r p o l a t e s the data to the micron s c a l e ra the r than the

p s i z e s c a l e

91 vn0dataq = in t e rp1 ( xdata , vn0data , z , ’ s p l i n e ’ ) ;

92 vdndataq = in t e rp1 ( xdata , vdndata , z , ’ s p l i n e ’ ) ;

93 vdnErrdataq = in t e rp1 ( xdata , vdnErrdata , z , ’ s p l i n e ’ ) ;

94

95 %% n 0 f i t

96 % f i t s the background dens i ty n 0 with the f i t f u n c t i o n

97 % f i t f u n c t i o n = @( a0 , a1 , a2 , b1 , b2 , b3 , b4 , x ) ( a0+a1*x+a2*x . ˆ 2 ) . * . . .

98 % 0.25 .* (1+ tanh ( ( x−b1 ) /b2 ) ) .*(1+ tanh((−x+b3 ) /b4 ) ) ;

99 [ g f i t ] = FitUniformGas ( vn0dataq , 0 ) ;

100 % l e f t s i d e o f the box

101 n 0 l e f t = g f i t . b1 ;

102 % r i g h t s i d e o f the box

103 n0r ight = g f i t . b3 ;

104 % f i t t e d dens i ty n 0 ( z )

105 n 0 f i t = g f i t ( z ) ’ ;
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106

107 %% dU0dz

108 % temperature co r r e spon ing to the max c e n t r a l dens i ty

109 Ttwid = theta0 *(max( n 0 f i t ) ˆ(2/3) ) ;

110 % 10ˆ−4 o f f s e t to the dens i ty

111 bgpercent = . 0 0 0 1 ;

112 % add the o f f s e t to the dens i ty and r e s c a l e the max

113 n 0 o f f s e t = (1−bgpercent ) * n 0 f i t+max( n 0 f i t ) *bgpercent ;

114 % reduced temperature o f the gas \ theta ( z )

115 TTfgas = Ttwid . / ( n 0 o f f s e t . ˆ ( 2 / 3 ) ) ;

116 %This data proper ly i n t e r p o l a t e s the equat ion o f s t a t e in the

high

117 %temperature regime with Martins Data .

118 %created with fE in te rph igh .m

119 %Reference John ’ s mathematica f i l e on 9/5/2019

120 load ( ’ MartinDataHigh . mat ’ ) ;

121 % Feqinterp2 i s the equat ion o f s t a t e f o r the extended

temperature (up to

122 % 450)

123 % TTFinterp i s the extended temperature up to 450

124 % s p e c i f i c heat per p a r t i c l e as a func t i on o f p o s i t i o n c V ( z )

and c p ( z )

125 Cval l = in t e rp1 ( TTfinterp , CVExtend , TTfgas , ’ s p l i n e ’ ) ;

126 Cpal l = in t e rp1 ( TTfinterp , CPExtend , TTfgas , ’ s p l i n e ’ ) ;
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127 % the s p e c i f i c heat per p a r t i c l e i s c a l u l a t e d with

128 % CVExtend = (3/5) * grad i en t ( Feqinterp2 , TTfinterp ) ;

129 % CPExtend = (3/5) * grad i en t ( Feqinterp2 , TTfinterp ) .* Feqinterp2 . . .

130 % . / ( Feqinterp2 −(2/5) .* TTfinterp .* grad i en t ( Feqinterp2 , TTfinterp )

) ;

131

132 %% I n t e r p o l a t e f E (\ theta ) f o r the TTf

133 FeqfordU0dz = in t e rp1 ( FEtheta ( : , 1 ) , FEtheta ( : , 2 ) , TTfgas , ’ s p l i n e ’ )

;

134 GradientFeqforDU0dz = grad i en t ( FeqfordU0dz , TTfgas ) ;

135

136 % %For p l o t s o f c 0 /v F vs dens i ty

137 % nn0 = 0 . 1 : . 0 1 : 1 ;

138 % theta05 = 0.5* nn0 .ˆ(−2/3) ;

139 % theta10 = 1*nn0 .ˆ(−2/3) ;

140 % theta02 = 0.2* nn0 .ˆ(−2/3) ;

141 % Feq05 = in t e rp1 ( TTfinterp , Feqinterp2 , theta05 , ’ sp l i n e ’ ) ;

142 % Feq10 = in t e rp1 ( TTfinterp , Feqinterp2 , theta10 , ’ sp l i n e ’ ) ;

143 % Feq02 = in t e rp1 ( TTfinterp , Feqinterp2 , theta02 , ’ sp l i n e ’ ) ;

144 % cvf05 = nn0 . ˆ ( 1 / 3 ) .* s q r t ( Feq05 /3) ;

145 % cvf10 = nn0 . ˆ ( 1 / 3 ) .* s q r t ( Feq10 /3) ;

146 % cvf02 = nn0 . ˆ ( 1 / 3 ) .* s q r t ( Feq02 /3) ;

147 % c l o s e a l l

148 % hold on
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149 % plo t ( nn0 , cvf05 , ’ k ’ , ’ LineWidth ’ , 0 . 2 )

150 % plo t ( nn0 , cvf10 , ’ r ’ , ’ LineWidth ’ , 0 . 2 )

151 % plo t ( nn0 , cvf02 , ’ b ’ , ’ LineWidth ’ , 0 . 2 )

152 % y l a b e l ( ’ $$\ f r a c { c 0 }{ v {F0}}$$ ’ , ’ I n t e r p r e t e r ’ , ’ LaTeX ’ )

153 % x l a b e l ( ’ $$n/n 0$$ ’ , ’ I n t e r p r e t e r ’ , ’ LaTeX ’ )

154

155 % c a l c u l a t e dU0dz from the equat ion o f s t a t e and \ theta ( z )

156 dU0dzsmooth = (−2/3) *( FeqfordU0dz−(2/5)*TTfgas .*

GradientFeqforDU0dz ) . * ( g rad i en t ( n0 f i t , dz ) . / ( n 0 o f f s e t . ˆ ( 1 / 3 ) ) )

;

157

158 %% I n t e g r a t e dU0dz to obta in U 0 ( z )

159 U0 = ze ro s (1 , s i z e ( dU0dzsmooth , 2 ) ) ;

160 f o r i =1: s i z e ( dU0dzsmooth , 2 )

161 U0( i )= sum( dU0dzsmooth ( 1 : i ) ) ;

162 end

163

164 % f o r p l o t t i n g the p o t e n t i a l U 0 ( z )

165 % c l o s e a l l

166 % plo t (U0 , ’ LineWidth ’ , 2 )

167 % x l a b e l ( ’ $$z [\mu m] $$ ’ , ’ I n t e r p r e t e r ’ , ’ LaTeX ’ )

168 % y l a b e l ( ’ $$\ t i l d e {U} {0}$$ ’ , ’ I n t e r p r e t e r ’ , ’ LaTeX ’ )

169

170
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171 %% dU

172

173 % width o f edge o f hype rbo l i c tanh

174 s i g = 4 ;

175 % s t a r t i n g po int ad justed to s t a r t at edge o f box f o r each

wavelength

176 dUstart = n 0 l e f t−dUof f s e t ;

177

178 % dUenvelope l e ad ing edge

179 dUenvelope = (1/2) *(1+tanh(−(Z−v*T−dUstart ) / s i g ) ) ;

180 % z 0 f o r the gauss ian i l l u m i n a t i n g beam

181 Guassmiddle = 1.4175* n 0 l e f t +(n0r ight−n 0 l e f t ) /2 ;

182 % width o f the gauss ian i l l u m i n a t i n g beam

183 SigGauss = 113 ;

184 % parameter ad jus t the s t a t i c enve lope to the l o c a t i o n o f the

box p o t e n t i a l

185 % wal l

186 nudge l e f t = 7 ;

187 % gauss ian p r o f i l e and LHS o f the enve lope func t i on

188 % put toge the r here because they are both s t a t i c

189 dUGaussandWall = exp(−(z−Guassmiddle ) .ˆ2/ SigGauss ˆ2) .* ( . 5* (1+

tanh ( ( z−n 0 l e f t−nudge l e f t ) / s i g ) ) ) ;

190

191 % s i n u s o i d a l part o f the \ de l t a U( z , t ) func t i on
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192 dUcos = (1−eps * cos(−num*(Z−v*T−dUstart−lam ) ) ) ;

193

194 % \ de l t a U( z , t )

195 dU = dUenvelope .* dUcos .* dUGaussandWall ;

196

197

198 %% Estimate f o r \ de l t a U 0 from the measured i n t e n s i t y o f the

green beam

199 U0GB=(2* .4/( p i *( SigGauss *10ˆ−6) ˆ2) /10ˆ6) * .0627*(10ˆ−6*kB) ;

200 % we use 8% modulation o f the GB on the DMD

201 % dUmult accounts f o r l o s s and imper f e c t imaging system

202 dU0 = dUmult *0 .08*U0GB;

203 % adjus t the data to match the un i t s hydrodynamic model used f o r

the

204 % simula t i on

205 vdndataq = vdndataq /(dU0/EF) ;

206 vdnErrdataq = vdnErrdataq /(dU0/EF) ;

207

208 %% I n i t i a l i z e f o r computat ional speed

209 dn = ze ro s ( l ength ( t ) , l ength ( z ) ) ;

210 dndot = ze ro s ( l ength ( t ) , l ength ( z ) ) ;

211 dUdz = ze ro s ( l ength ( t )−1, l ength ( z ) ) ;

212 Vforce = ze ro s ( l ength ( t )−1, l ength ( z ) ) ;

213 dU0dz = ze ro s ( l ength ( t )−1, l ength ( z ) ) ;
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214 V0force = ze ro s ( l ength ( t )−1, l ength ( z ) ) ;

215 ds = ze ro s ( l ength ( t ) , l ength ( z ) ) ;

216

217

218

219 %% Nmerical i n t e g r a t i o n o f hydrodynamic model

220 f o r l =3:( l ength ( t ) )

221

222 % eq 1

223 % time d e r i v a t i v e o f change in dens i ty

224 dndot ( l −1 , : ) = 1/ dt *(dn( l −1 , : )−dn( l −2 , : ) ) ;

225

226 % s p a t i a l g r ad i e n t s

227 dndotdz = grad i en t ( dndot ( l −1 , : ) , dz ) ;

228 d2ndotdz2 = grad i en t ( dndotdz , dz ) ;

229

230 dndz = grad i en t (dn( l −1 , : ) , dz ) ;

231 d2ndz2 = grad i en t ( dndz , dz ) ;

232

233 dsdz = grad i en t ( ds ( l −1 , : ) , dz ) ;

234 d2sdz2 = grad i en t ( dsdz , dz ) ;

235

236 % s p a t i a l g rad i en t o f \ de l t a U( z , t )

237 dUdz( l −1 , : ) = grad i en t (dU( l −1 , : ) , dz ) ;
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238

239 % f o r c e term from \ de l t a U( z , t )

240 Vforce ( l −1 , : ) = 0 .5*vFˆ2* grad i en t ( n 0 f i t .*dUdz( l −1 , : ) , dz ) ;

241 % grad i ent o f box p o t e n t i a l c a l c u l a t e d above

242 dU0dz ( l −1 , : ) = dU0dzsmooth ;

243 % f o r c e term from U 0 ( z )

244 V0force ( l −1 , : ) = 0 .5*vFˆ2* grad i en t (dn( l −1 , : ) .* dU0dz ( l −1 , : ) ,

dz ) ;

245

246 % eq2

247 % change in dens i ty from a pe r tu rba t i v e p o t e n t i a l in a box

248 dn( l , : ) = 2*dn( l −1 , : )−dn( l −2 , : )+dt ˆ2*( c0 ˆ2*d2ndz2+c0 ˆ2*

d2sdz2+4/3*a0*d2ndotdz2+Vforce ( l −1 , : )+V0force ( l −1 , : ) ) ;

249 % supre s s dens i ty change in r e g i o n s o f low dens i ty

250 supre s s = dn( l , : ) ;

251 o l d s u p r e s s = dn( l −1 , : ) ;

252 supre s s ( n0 f i t < .0005) = o l d s u p r e s s ( n0 f i t < .0005) ;

253 dn( l , : ) = supre s s ;

254

255 % eq3

256 % change in entropy equat ion

257 ds ( l , : ) = ds ( l −1 , : )+dt *(C1*d2sdz2+C1*C2*d2ndz2 ) ;

258 end

259
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260 %% Time Correc t ion

261 % make sure the s imu la t i on ends on the same time as the data

262 % t h i s a lgor i thm automat i ca l l y matches end time o f the

s imu la t i on to match

263 % the data

264 t range = round ( . 5 / f r e q /dt ) ;

265 t range s t ep = round ( . 025/ f r e q /dt ) ;

266 t i m e c o r r e c t i o n = numtim−t range : t range s t ep : numtim ;

267 Chi2time = ze ro s (1 , l ength ( t i m e c o r r e c t i o n ) ) ;

268 f o r m=1: l ength ( t i m e c o r r e c t i o n )

269 A=dn( t i m e c o r r e c t i o n (m) , : ) ;

270 B=vdndataq ;

271 Chi2time (m) = sum ( (A−B) . ˆ 2 ) ;

272 end

273 [ Valuemin , Indexmin ] = min ( Chi2time ) ;

274 % t index o f bes t f i t

275 t i n d e x b e s t f i t = t i m e c o r r e c t i o n ( Indexmin ) ;

276 % time o f best f i t

277 t ( t i m e c o r r e c t i o n ( Indexmin ) ) ;

278

279 %% Chiˆ2 c a l c u l a t i o n

280 l e f t s i d e = round ( n 0 l e f t ) ;

281 r i g h t s i d e = round ( n0r i ght ) ;

282 % A i s the s imu la t i on
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283 A=dn( t i n d e x b e s t f i t , : ) *(dU0/EF) ;

284 % B i s the data

285 B=vdndataq *(dU0/EF) ;

286 % Error bars in the data

287 BErr = vdnErrdataq *(dU0/EF) ;

288 % Calcu la te Chiˆ2 f o r the data and s imu la t i on

289 Chi2 = sum ( (A−B) . ˆ 2 ) ;

290 %Chi2reduced used f o r c a l c u l a t i n g the ac tua l reduced Chi2

291

292

293 %f o r KappaT measurement change the r eg i on o f i n t e r e s t to the

middle where

294 % the data and model are s e n s e t i v e to the parameter .

295 % f o r a l l o ther parameters , go to edge o f the r s = r i g h t s i d e .

296 % l s and r s are f o r c a l c u l a t i n g ch i ˆ2 away from the l e s s dense

edge o f the

297 % sample

298 l s = l e f t s i d e +30;

299 r s = r i g h t s i d e −10;

300 % Chi2reduced = sum ( (A( l s : r s )−B( l s : r s ) ) . ˆ 2 . / BErr ( l s : r s ) . ˆ 2 ) /(

l ength (A( l s : r s ) )−1) ;

301 Chi2reduced = sum ( (A( l s : r s )−B( l s : r s ) ) . ˆ 2 . / BErr ( l s : r s ) . ˆ 2 ) ;

302 end
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Appendix B

DMD control

B.1 DMD MATLAB code

Figure B.1: Graphical user interface for controlling the DMD.
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The MATLAB code used to communicate with the device and control the board.

The graphic user interface shown in Fig. B.1 allows the user to probe all parameters and

status of the DMD, load images to the memory of the control board, and set up the

device to accept triggers from a pulse generator that controls the equipment in the lab.

1 f unc t i on varargout = ALP GUI 2( vara rg in )

2 % ALP GUI 2 MATLAB code f o r ALP GUI 2 . f i g

3 % ALP GUI 2 , by i t s e l f , c r e a t e s a new ALP GUI 2 or r a i s e s

the e x i s t i n g

4 % s i n g l e t o n * .

5 %

6 % H = ALP GUI 2 re tu rn s the handle to a new ALP GUI 2 or

the handle to

7 % the e x i s t i n g s i n g l e t o n * .

8 %

9 % ALP GUI 2 ( ’CALLBACK’ , hObject , eventData , handles , . . . ) c a l l s

the l o c a l

10 % func t i on named CALLBACK in ALP GUI 2 .M with the g iven

input arguments .

11 %

12 % ALP GUI 2 ( ’ Property ’ , ’ Value ’ , . . . ) c r e a t e s a new ALP GUI 2

or r a i s e s the

13 % e x i s t i n g s i n g l e t o n * . S t a r t i ng from the l e f t , property

value p a i r s are

14 % app l i ed to the GUI be f o r e ALP GUI 2 OpeningFcn ge t s
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c a l l e d . An

15 % unrecognized property name or i n v a l i d value makes

property a p p l i c a t i o n

16 % stop . Al l inputs are passed to ALP GUI 2 OpeningFcn v ia

vararg in .

17 %

18 % *See GUI Options on GUIDE’ s Tools menu . Choose ”GUI

a l l ows only one

19 % ins tance to run ( s i n g l e t o n ) ” .

20 %

21 % See a l s o : GUIDE, GUIDATA, GUIHANDLES

22

23 % Edit the above text to modify the re sponse to he lp ALP GUI 2

24

25 % Last Modif ied by GUIDE v2 . 5 25−Aug−2016 12 : 19 : 51

26

27 % Begin i n i t i a l i z a t i o n code − DO NOT EDIT

28 g u i S i n g l e t o n = 1 ;

29 g u i S t a t e = s t r u c t ( ’ gui Name ’ , mfilename , . . .

30 ’ g u i S i n g l e t o n ’ , gu i S ing l e t on , . . .

31 ’ gui OpeningFcn ’ , @ALP GUI 2 OpeningFcn , . . .

32 ’ gui OutputFcn ’ , @ALP GUI 2 OutputFcn , . . .

33 ’ gui LayoutFcn ’ , [ ] , . . .

34 ’ gu i Ca l lback ’ , [ ] ) ;
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35 i f narg in && i s c h a r ( vara rg in {1})

36 g u i S t a t e . gu i Ca l lback = s t r 2 f u n c ( vararg in {1}) ;

37 end

38

39 i f nargout

40 [ varargout {1 : nargout } ] = gui main fcn ( gu i S ta te , vara rg in { :} )

;

41 e l s e

42 gui main fcn ( gu i S ta te , vara rg in { :} ) ;

43 end

44 % End i n i t i a l i z a t i o n code − DO NOT EDIT

45

46

47 % −−− Executes j u s t be f o r e ALP GUI 2 i s made v i s i b l e .

48 f unc t i on ALP GUI 2 OpeningFcn ( hObject , eventdata , handles ,

va ra rg in )

49 % This func t i on has no output args , s e e OutputFcn .

50 % hObject handle to f i g u r e

51 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

52 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

53 % vararg in command l i n e arguments to ALP GUI 2 ( see VARARGIN)

54 % load l i b r a r y

55
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56 i f ˜ l i b i s l o a d e d ( ’ a lp4395 ’ )

57 h f i l e = ’ a lp . h ’ ;

58 l o a d l i b r a r y ( ’ a lp4395 ’ , h f i l e )

59 end

60

61 di sp ( ’ l i b r a r y loaded ’ ) ;

62 % d e f a u l t dev i ce Id

63 ALP DEFAULT = 0 ;

64 handles . DeviceId = ALP DEFAULT;

65

66 % d e f a u l t parameters f o r AlpSeqTiming

67 handles . I l luminateTime = ALP DEFAULT;

68 handles . PictureTime = 33334 ;

69 handles . SynchDelay = ALP DEFAULT;

70 handles . SynchPulseWidth = ALP DEFAULT;

71 handles . Tr iggerInDelay = ALP DEFAULT;

72

73 % s e t p i c t u r e time text box to d e f a u l t

74 s e t ( handles . Picture Time , ’ S t r ing ’ , num2str ( handles . PictureTime ) ) ;

75

76 % d e f a u l t p l o t

77 columns = 1024 ;

78 rows = 768 ;

79 handles . BlackImage = ze ro s ( columns , rows ) ;
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80 imshow ( handles . BlackImage , [ 0 , 1 ] ) ;

81

82 % Choose d e f a u l t command l i n e output f o r ALP GUI 2

83 handles . output = hObject ;

84

85 % Update handles s t r u c t u r e

86 guidata ( hObject , handles ) ;

87

88 % UIWAIT makes ALP GUI 2 wait f o r user re sponse ( s ee UIRESUME)

89 % uiwa i t ( handles . f i g u r e 1 ) ;

90

91 % −−− Outputs from t h i s func t i on are returned to the command

l i n e .

92 f unc t i on varargout = ALP GUI 2 OutputFcn ( hObject , eventdata ,

handles )

93 % varargout c e l l array f o r r e tu rn ing output args ( s ee VARARGOUT

) ;

94 % hObject handle to f i g u r e

95 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

96 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

97

98 % Get d e f a u l t command l i n e output from handles s t r u c t u r e

99 varargout {1} = handles . output ;
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100

101 % −−− Executes on s l i d e r movement .

102 f unc t i on s l i d e r 1 C a l l b a c k ( hObject , eventdata , handles )

103 % hObject handle to s l i d e r 1 ( s ee GCBO)

104 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

105 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

106

107 % % f i r s t we need the handles s t r u c t u r e which we can get from

hObject

108 % handles = guidata ( hObject ) ;

109

110 % get the s l i d e r va lue and convert i t to the nea r e s t i n t e g e r

that i s l e s s

111 % than t h i s va lue

112 newVal = round ( get ( hObject , ’ Value ’ ) ) ;

113

114 % s e t the s l i d e r va lue to t h i s i n t e g e r which w i l l be in the s e t

{ 1 , 2 . . . }

115 s e t ( hObject , ’ Value ’ , newVal ) ;

116

117

118 % now only do something in response to the s l i d e r movement i f

the
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119 % new value i s d i f f e r e n t from the l a s t s l i d e r va lue

120 i f newVal ˜= handles . l a s t S l i d e r V a l

121 % i t i s d i f f e r e n t , so we have moved up or down from the

prev ious i n t e g e r

122 % save the new value

123 handles . l a s t S l i d e r V a l = newVal ;

124 guidata ( hObject , handles ) ;

125 end

126

127 % s e t the axes name to be the f i r s t f i l e name

128 s e t ( handles . ImageName , ’ S t r ing ’ , handles .D( get ( hObject , ’ Value ’ ) ) .

name)

129

130 % plo t the f i r s t image

131 imshow ( handles . image ( : , : , get ( hObject , ’ Value ’ ) ) , [ 0 , 1 ] )

132

133 % save the new value

134 % handles . l a s t S l i d e r V a l = newVal ;

135 guidata ( hObject , handles ) ;

136

137 % Hints : get ( hObject , ’ Value ’ ) r e tu rn s p o s i t i o n o f s l i d e r

138 % get ( hObject , ’ Min ’ ) and get ( hObject , ’Max’ ) to determine

range o f s l i d e r

139
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140 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

141 f unc t i on s l i d e r1 Crea t eFcn ( hObject , eventdata , handles )

142 % hObject handle to s l i d e r 1 ( s ee GCBO)

143 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

144 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

145

146 % Hint : s l i d e r c o n t r o l s u sua l l y have a l i g h t gray background .

147 i f i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

148 s e t ( hObject , ’ BackgroundColor ’ , [ . 9 . 9 . 9 ] ) ;

149 end

150

151 % −−− Executes on button pr e s s in A l l o ca t e .

152 f unc t i on A l l o ca t e Ca l l back ( hObject , eventdata , handles )

153 % hObject handle to A l l o ca t e ( s ee GCBO)

154 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

155 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

156

157 handles . DeviceId = Start DMD ( ) ;

158
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159 % enable buttons

160 s e t ( handles . Load , ’ Enable ’ , ’ on ’ ) ;

161 s e t ( handles . Pro j e c t i on Inqu i r e Pop , ’ Enable ’ , ’ on ’ ) ;

162 s e t ( handles . Device Inquire Pop , ’ Enable ’ , ’ on ’ ) ;

163 s e t ( handles . Pro j e c t i on Inqu i r e Pop , ’ Enable ’ , ’ on ’ ) ;

164 s e t ( handles . Picture Time , ’ Enable ’ , ’ on ’ ) ;

165

166 % change c o l o r s

167 s e t ( handles . Free , ’ BackgroundColor ’ , [ . 9 4 , . 9 4 , . 9 4 ] ) ;

168 s e t ( handles . Al locate , ’ BackgroundColor ’ , ’ green ’ ) ;

169 s e t ( handles . Al locate , ’ Enable ’ , ’ o f f ’ ) ;

170

171 % update handles

172 guidata ( hObject , handles ) ;

173

174

175 % −−− Executes on button pr e s s in Free .

176 f unc t i on Free Cal lback ( hObject , eventdata , handles )

177 % hObject handle to Free ( s ee GCBO)

178 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

179 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

180

181 di sp ( handles . DeviceId ) ;
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182 Halt DMD( handles . DeviceId ) ;

183 Free DMD( handles . DeviceId ) ;

184

185 % enable buttons

186 s e t ( handles . Load , ’ Enable ’ , ’ o f f ’ ) ;

187 s e t ( handles . Pro j e c t i on Inqu i r e Pop , ’ Enable ’ , ’ o f f ’ ) ;

188 s e t ( handles . Device Inquire Pop , ’ Enable ’ , ’ o f f ’ ) ;

189 s e t ( handles . Picture Time , ’ Enable ’ , ’ o f f ’ ) ;

190 s e t ( handles . s l i d e r 1 , ’ Enable ’ , ’ o f f ’ ) ;

191 s e t ( handles . Sequence Inquire Pop , ’ Enable ’ , ’ o f f ’ ) ;

192 s e t ( handles . Project , ’ Enable ’ , ’ o f f ’ ) ;

193 s e t ( handles . Project Cont inuous , ’ Enable ’ , ’ o f f ’ ) ;

194 s e t ( handles . No Dark Time , ’ Enable ’ , ’ o f f ’ ) ;

195 s e t ( handles . Master Externa l Tr igger , ’ Enable ’ , ’ o f f ’ ) ;

196 s e t ( handles . Update Timing , ’ Enable ’ , ’ o f f ’ ) ;

197 s e t ( handles . Slave Mode , ’ Enable ’ , ’ o f f ’ ) ;

198

199 % change c o l o r s

200 s e t ( handles . Free , ’ BackgroundColor ’ , ’ red ’ ) ;

201 s e t ( handles . Al locate , ’ BackgroundColor ’ , [ . 9 4 , . 9 4 , . 9 4 ] ) ;

202 s e t ( handles . Al locate , ’ Enable ’ , ’ on ’ ) ;

203

204 % turn p lo t b lack because no images are loaded

205 imshow ( handles . BlackImage , [ 0 , 1 ] )
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206 s e t ( handles . ImageName , ’ S t r ing ’ , ’No Sequence Loaded ’ )

207

208 % −−− Executes on button pr e s s in Pro j e c t .

209 f unc t i on Pro j e c t Ca l l back ( hObject , eventdata , handles )

210 % hObject handle to Pro j e c t ( s ee GCBO)

211 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

212 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

213

214 Proj DMD( handles . DeviceId , handles . SequenceId )

215

216 % −−− Executes on button pr e s s in Pro ject Cont inuous .

217 f unc t i on Pro jec t Cont inuous Ca l lback ( hObject , eventdata , handles

)

218 % hObject handle to Pro ject Cont inuous ( s ee GCBO)

219 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

220 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

221

222 Proj Cont DMD ( handles . DeviceId , handles . SequenceId )

223

224 % −−− Executes on button pr e s s in Halt .

225 f unc t i on Hal t Ca l lback ( hObject , eventdata , handles )

226 % hObject handle to Halt ( s e e GCBO)
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227 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

228 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

229

230 Halt DMD( handles . DeviceId ) ;

231

232 % −−− Executes on s e l e c t i o n change in Pro j e c t i on Inqu i r e Pop .

233 f unc t i on Pro j e c t i on Inqu i r e Pop Ca l l back ( hObject , eventdata ,

handles )

234 % hObject handle to Pro j e c t i on Inqu i r e Pop ( see GCBO)

235 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

236 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

237

238 va l = get ( hObject , ’ Value ’ ) ;

239 s t r = get ( hObject , ’ S t r ing ’ ) ;

240

241 %This part w i l l i n q u i r e the ALP based on the command from the

pop up menu

242 [ ret , Inq ] = AlpPro j Inqu i re ( handles . DeviceId , P r o j e c t i o n I n q u i r e

( s t r { va l }) ) ;

243

244 % s u c c e s s o f the inqu i ry

245 Return Values ( r e t ) ;
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246

247 % r e s u l t o f the inqu i ry d i sp layed in a text box

248 s e t ( handles . P r o j e c t i o n I n q u i r e D i s p l a y , ’ S t r ing ’ , num2str ( Inq ) )

249

250

251 % Hints : contents = c e l l s t r ( get ( hObject , ’ Str ing ’ ) ) r e tu rn s

Pro j e c t i on Inqu i r e Pop contents as c e l l array

252 % contents { get ( hObject , ’ Value ’ ) } r e tu rn s s e l e c t e d item

from Pro j e c t i on Inqu i r e Pop

253

254

255 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

256 f unc t i on Pro j ec t i on Inqu i r e Pop CreateFcn ( hObject , eventdata ,

handles )

257 % hObject handle to Pro j e c t i on Inqu i r e Pop ( see GCBO)

258 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

259 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

260

261 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

262 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;
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263 end

264

265 f unc t i on P r o j e c t i o n I n q u i r e D i s p l a y C a l l b a c k ( hObject , eventdata ,

handles )

266 % hObject handle to P r o j e c t i o n I n q u i r e D i s p l a y ( see GCBO)

267 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

268 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

269

270

271 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

272 f unc t i on Pro j e c t i on Inqu i r e D i sp l ay Crea t eFcn ( hObject , eventdata

, handles )

273 % hObject handle to P r o j e c t i o n I n q u i r e D i s p l a y ( see GCBO)

274 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

275 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

276

277 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

278 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

279 end
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280

281

282 % −−− Executes on button pr e s s in Load .

283 f unc t i on Load Callback ( hObject , eventdata , handles )

284 % hObject handle to Load ( see GCBO)

285 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

286 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

287

288 % load a l l the f i l e s from a f o l d e r i n to the dmd

289 [ handles . SequenceId , handles . image , handles .D, handles . PicNum ] =

Load DMD( handles . DeviceId , handles . PictureTime ) ;

290

291 % plo t the f i r s t image

292 imshow ( handles . image ( : , : , 1 ) , [ 0 , 1 ] )

293

294 % s e t the axes name to be the f i r s t f i l e name

295 s e t ( handles . ImageName , ’ S t r ing ’ , handles .D(1) . name)

296

297 % s e t the s l i d e r range and step s i z e

298 i f handles . PicNum > 1

299 numSteps = handles . PicNum ;

300 s e t ( handles . s l i d e r 1 , ’Min ’ , 1) ;

301 s e t ( handles . s l i d e r 1 , ’Max ’ , numSteps ) ;
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302 s e t ( handles . s l i d e r 1 , ’ Value ’ , 1) ;

303 s e t ( handles . s l i d e r 1 , ’ S l i d e r S t e p ’ , [ 1 / ( numSteps−1) , 1/(

numSteps−1) ] ) ;

304 end

305

306 % save the cur rent / l a s t s l i d e r va lue

307 handles . l a s t S l i d e r V a l = get ( handles . s l i d e r 1 , ’ Value ’ ) ;

308

309 % enable s l i d e r and other buttons a f t e r images are loaded

310 s e t ( handles . s l i d e r 1 , ’ Enable ’ , ’ on ’ ) ;

311 s e t ( handles . Sequence Inquire Pop , ’ Enable ’ , ’ on ’ ) ;

312 s e t ( handles . Project , ’ Enable ’ , ’ on ’ ) ;

313 s e t ( handles . Project Cont inuous , ’ Enable ’ , ’ on ’ ) ;

314 s e t ( handles . Halt , ’ Enable ’ , ’ on ’ ) ;

315 s e t ( handles . No Dark Time , ’ Enable ’ , ’ on ’ ) ;

316 s e t ( handles . Master Externa l Tr igger , ’ Enable ’ , ’ on ’ ) ;

317 s e t ( handles . Update Timing , ’ Enable ’ , ’ on ’ ) ;

318 s e t ( handles . Slave Mode , ’ Enable ’ , ’ on ’ ) ;

319

320 %We need to updata the handles data s t r u c t u r e once again

321 guidata ( hObject , handles ) ;

322

323

324 % −−− Executes on button pr e s s in pushbutton7 .
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325 f unc t i on pushbutton7 Cal lback ( hObject , eventdata , handles )

326 % hObject handle to pushbutton7 ( see GCBO)

327 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

328 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

329

330 % −−− Executes on s e l e c t i o n change in Sequence Inquire Pop .

331 f unc t i on Sequence Inqu i re Pop Cal lback ( hObject , eventdata ,

handles )

332 % hObject handle to Sequence Inquire Pop ( see GCBO)

333 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

334 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

335

336 va l = get ( hObject , ’ Value ’ ) ;

337 s t r = get ( hObject , ’ S t r ing ’ ) ;

338

339 %This part w i l l i n q u i r e the ALP based on the command from the

pop up menu

340 [ ret , Inq ] = AlpSeqInquire ( handles . DeviceId , handles . SequenceId ,

Sequence Inqu i r e ( s t r { va l }) ) ;

341

342 % s u c c e s s o f the inqu i ry

343 Return Values ( r e t ) ;
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344

345 % r e s u l t o f the inqu i ry d i sp layed in a text box

346 s e t ( handles . Sequence Inqu i r e Di sp lay , ’ S t r ing ’ , num2str ( Inq ) )

347

348 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

349 f unc t i on Sequence Inquire Pop CreateFcn ( hObject , eventdata ,

handles )

350 % hObject handle to Sequence Inquire Pop ( see GCBO)

351 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

352 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

353

354 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

355 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

356 end

357

358

359 f unc t i on Sequence Inqu i r e D i sp l ay Ca l lback ( hObject , eventdata ,

handles )

360 % hObject handle to Sequence Inqu i r e D i sp lay ( s ee GCBO)

361 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f
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MATLAB

362 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

363

364

365 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

366 f unc t i on Sequence Inqu i re Di sp lay CreateFcn ( hObject , eventdata ,

handles )

367 % hObject handle to Sequence Inqu i r e D i sp lay ( s ee GCBO)

368 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

369 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

370

371 % Hint : e d i t c o n t r o l s u sua l l y have a white background on Windows

.

372 % See ISPC and COMPUTER.

373 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

374 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

375 end

376

377

378 % −−− Executes on s e l e c t i o n change in Current Sequence Pop .
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379 f unc t i on Current Sequence Pop Cal lback ( hObject , eventdata ,

handles )

380 % hObject handle to Current Sequence Pop ( see GCBO)

381 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

382 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

383

384 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

385 f unc t i on Current Sequence Pop CreateFcn ( hObject , eventdata ,

handles )

386 % hObject handle to Current Sequence Pop ( see GCBO)

387 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

388 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

389

390 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

391 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

392 end

393

394

395
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396 f unc t i on Picture Time Cal lback ( hObject , eventdata , handles )

397 % hObject handle to Picture Time ( see GCBO)

398 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

399 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

400

401

402 % get the contents o f P ic ture time e d i t a b l e t ex t

403 PictureTime = uint32 ( str2num ( get ( hObject , ’ S t r ing ’ ) ) ) ;

404

405 % p i c t u r e time must be l e s s than 10ˆ7 microseconds

406 i f PictureTime > 10000000

407 PictureTime = 10000000;

408 end

409

410 handles . PictureTime = PictureTime ;

411

412 s e t ( hObject , ’ S t r ing ’ , num2str ( PictureTime ) ) ;

413

414

415 guidata ( hObject , handles ) ;

416

417 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
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418 f unc t i on Picture Time CreateFcn ( hObject , eventdata , handles )

419 % hObject handle to Picture Time ( see GCBO)

420 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

421 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

422

423 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

424 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

425 end

426

427

428 % −−− Executes on s e l e c t i o n change in Dev ice Inqu i re Pop .

429 f unc t i on Dev i ce Inqu i r e Pop Ca l lback ( hObject , eventdata , handles

)

430 % hObject handle to Dev ice Inqu i re Pop ( see GCBO)

431 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

432 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

433

434 va l = get ( hObject , ’ Value ’ ) ;

435 s t r = get ( hObject , ’ S t r ing ’ ) ;

436
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437 %This part w i l l i n q u i r e the ALP based on the command from the

pop up menu

438 [ ret , Inq ] = AlpDevInquire ( handles . DeviceId , Dev i c e Inqu i r e ( s t r {

va l }) ) ;

439

440

441 % s u c c e s s o f the inqu i ry

442 Return Values ( r e t ) ;

443

444 % r e s u l t o f the inqu i ry d i sp layed in a text box

445 s e t ( handles . Dev i c e Inqu i r e D i sp l ay , ’ S t r ing ’ , num2str ( Inq ) )

446

447 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

448 f unc t i on Device Inquire Pop CreateFcn ( hObject , eventdata ,

handles )

449 % hObject handle to Dev ice Inqu i re Pop ( see GCBO)

450 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

451 % handles empty − handles not c r ea ted u n t i l a f t e r a l l

CreateFcns c a l l e d

452

453 % Hint : popupmenu c o n t r o l s u sua l l y have a white background on

Windows .
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454 % See ISPC and COMPUTER.

455 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

456 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

457 end

458

459

460

461 f unc t i on Dev i c e Inqu i r e D i sp l ay Ca l l back ( hObject , eventdata ,

handles )

462 % hObject handle to Dev i c e Inqu i r e D i sp l ay ( s ee GCBO)

463 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

464 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

465

466

467 % −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

468 f unc t i on Dev i ce Inqu i r e Di sp lay CreateFcn ( hObject , eventdata ,

handles )

469 % hObject handle to Dev i c e Inqu i r e D i sp l ay ( s ee GCBO)

470 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

471 % handles empty − handles not c r ea ted u n t i l a f t e r a l l
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CreateFcns c a l l e d

472

473 % Hint : e d i t c o n t r o l s u sua l l y have a white background on Windows

.

474 % See ISPC and COMPUTER.

475 i f i s p c && i s e q u a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

476 s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

477 end

478

479

480 % −−− Executes on button pr e s s in No Dark Time .

481 f unc t i on No Dark Time Callback ( hObject , eventdata , handles )

482 % hObject handle to No Dark Time ( see GCBO)

483 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

484 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

485

486 Fast Switch DMD ( handles . DeviceId , handles . SequenceId , handles .

PictureTime )

487

488 Externa l Tr igge r Frame Trans i t i on ( handles . DeviceId , handles .

PictureTime , handles . SequenceId ) ;

489
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490

491 % −−− Executes on button pr e s s in Maste r Exte rna l Tr igge r .

492 f unc t i on Maste r Exte rna l Tr igge r Ca l lback ( hObject , eventdata ,

handles )

493 % hObject handle to Maste r Exte rna l Tr igge r ( s ee GCBO)

494 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

495 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

496

497

498 Externa l Tr igge r Frame Trans i t i on ( handles . DeviceId , handles .

PictureTime , handles . SequenceId ) ;

499

500 % −−− Executes on button pr e s s in Slave Mode .

501 f unc t i on Slave Mode Cal lback ( hObject , eventdata , handles )

502 % hObject handle to Slave Mode ( see GCBO)

503 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

504 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

505

506 External Trigger Mode ( handles . DeviceId , handles . PictureTime ,

handles . SequenceId ) ;

507

508
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509 % −−− Executes on button pr e s s in pushbutton11 .

510 f unc t i on pushbutton11 Cal lback ( hObject , eventdata , handles )

511 % hObject handle to pushbutton11 ( see GCBO)

512 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

513 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

514

515

516 % −−− Executes on button pr e s s in pushbutton12 .

517 f unc t i on pushbutton12 Cal lback ( hObject , eventdata , handles )

518 % hObject handle to pushbutton12 ( see GCBO)

519 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

520 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

521

522

523 % −−− Executes when user attempts to c l o s e f i g u r e 1 .

524 f unc t i on f igure1 CloseRequestFcn ( hObject , eventdata , handles )

525 % hObject handle to f i g u r e 1 ( s ee GCBO)

526 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

527 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

528

529
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530 % unload l i b r a r y

531

532 un l oad l i b r a ry alp4395

533 di sp ( ’ l i b r a r y unloaded ’ ) ;

534

535

536 % Hint : d e l e t e ( hObject ) c l o s e s the f i g u r e

537 d e l e t e ( hObject ) ;

538

539

540 % −−− Executes on button pr e s s in Update Timing .

541 f unc t i on Update Timing Callback ( hObject , eventdata , handles )

542 % hObject handle to Update Timing ( s ee GCBO)

543 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

544 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

545

546 Update Timing DMD ( handles . DeviceId , handles . SequenceId , handles .

PictureTime )
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B.2 DMD datasheet

Table B.1: A datasheet for the two DMDs used in our apparatus.

Name DLP7000 LightCrafter6500

Array Size 1024x768 1920x1080

Mirror Size 13.68 µm 7.56 µm

Mirror Width 1.4 cm 1.45 cm

Binary Rate 32,000Hz 9,523Hz

Micromirror tilt angle (degrees) ±12 ±12

Damage threshold intensity 20W/cm2 CW 20W/cm2 CW

Micromirror array optical efficiency 68% 68%
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