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Abstract

Strongly interacting Fermi gases provide a paradigm for studying strong interac-

tions in nature. Strong interactions play a central role in the physics of a wide

range of exotic systems, including high temperature superconductors, neutron

stars, quark-gluon plasmas, and even a particular class of black holes. In an

ultracold degenerate 6Li Fermi gas, interactions between the atoms in the two

lowest hyperfine states can be widely tuned by a magnetic-field-dependent col-

lisional resonance. At the resonance, the strongly interacting Fermi gas has an

infinite s-wave scattering length and a negligible potential range, which ensures

that the behavior of the gas is independent of the microscopic details of the in-

terparticle interactions. In this limit, a strongly interacting Fermi gas is known

as the unitary Fermi gas. The unitary Fermi gas emerges as one of the most

fascinating problems in current many-body physics. It not only exhibits univer-

sal thermodynamic properties in common with a variety of strongly interacting

systems, but also shows ideal hydrodynamic behavior.

In this dissertation, I present the first model-independent thermodynamic

study of a strongly interacting degenerate Fermi gas. The measurements deter-

mine the entropy and energy. The entropy versus energy data has been adopted

by several theoretical groups as a benchmark to test current strong-coupling

many-body theories, which reveals universal thermodynamics in unitary Fermi

gases. My measurements show a transition in the energy-entropy behavior at
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Sc/kB = 2.2 ± 0.1 corresponding to the energy Ec/EF = 0.83 ± 0.02, where Sc

and Ec are the critical entropy and energy per particle respectively, kB is Boltz-

mann constant, and EF is the Fermi energy of a trapped gas. This behavior

change of entropy is interpreted as a thermodynamic signature of a superfluid

transition in a strongly interacting Fermi gas. By parametrization of energy-

entropy data, the temperature is extracted by T = ∂E/∂S, where E and S are

the energy and entropy of a strongly interacting Fermi gas. I find that the critical

temperature is about T/TF = 0.21± 0.01, which agrees extremely well with very

recent theoretical predictions.

I also present an investigation of viscosity from the hydrodynamics of a strongly

interacting Fermi gas. First, the study of the hydrodynamic expansion of a rotat-

ing strongly interacting Fermi gas reveals nearly prefect irrotational flow arising

in both the superfluid and the normal fluid regime. Second, by modeling the

damping data of the breathing mode, I present an estimation of the upper bound

of viscosity in a strongly interacting Fermi gas. Using the entropy data, this study

provides the first experimental estimate of the ratio of the viscosity η to the en-

tropy density s in strongly interacting Fermi systems. Recently the lower bound of

η/s is conjectured by using a string theory method, which shows η/s ≥ ~/(4πkB).

Our experimental estimate indicates that this quantity in strongly interacting

Fermi gases approaches the lower bound limit.

Finally, I describe the technical details of building a new all-optical cooling

and trapping apparatus in our lab for the purpose of the above research as well

as our studies on optimizing the evaporative cooling of a unitary Fermi gas in an

optical trap.
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Chapter 1

Introduction

When my friends and family members asked me “What are you doing in the

graduate school?” I always hesitated for a moment considering how to explain

my research to my curious questioners. It is not easy to explain an atomic physics

research to a general audience with simple words while still being interesting

enough to satisfy their curiosity. Usually I will tend to give an easy answer

like “Study a gas.”“A gas?” people’s face registered surprise, for whom modern

physicists should study more “fancy” things such as semiconductors or quarks.

“Yes, it is a gas, but it is one of the coldest materials in the universe.” I began

to show the “fancy” point. “Really, what it is used for?” people began to be

interested. “By studying it, we can better understand the baby universe and

even a black hole.” “Cool, tell me the story!” finally I got the chance to describe

the “cool” story about “laser frozen atoms” which occupied my life during the

past several years.

The same story is described in this dissertation. I will try to tell my readers

a “cool” story about the ultracold atoms in my lab. More specifically, they are

strongly interacting ferminonic atoms of 6Li.

In this introduction, first I will explain why strongly interacting Fermi gases

have a prominent role in understanding some of the most fundamental physics
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in nature. Following that, I will give a brief review of the progress in the field

of cold Fermi gases in recently years. Then I will talk about the significance of

my Ph.D. research, which is focused on experimental studies of thermodynamics

of strongly interacting Fermi gases as well as its nearly ideal fluidity. Finally an

outline of this dissertation will be provided.

1.1 Strongly Interacting Fermions in Nature

As a law of nature, identical fundamental particles are indistinguishable. In quan-

tum mechanics, this law causes the wavefunction of identical particles to fall into

two classes of symmetry: symmetric or antisymmetric. If two identical particles

have a symmetric wavefunction, they are named as bosons and obey Bose-Einstein

statistics. In contrast, the particles with an antisymmetric wavefunction are called

fermions and obey Fermi-Dirac statistics. For atoms, the intrinsic spin decides

whether an atom is a boson or fermion: atoms with integer spin (0, 1, and so on)

are bosons, while fermions have half-integer spin (1/2, 3/2, and so on).

At very low temperature, these two classes of atoms show quite different be-

havior: bosons “like each other,” and occupy the same quantum state to form

a condensate, whereas the Pauli-exclusion principle makes the fermions “avoid

each other” by filling the energy levels from the lowest state up to the highest

state labeled as Fermi energy. Such Fermi gases have a tower structure in the

energy domain and are called as degenerate Fermi gases. From the perspective of

modern physicists, Fermi gases are more important sources of new physics than

Bose gases, because all the material elementary particles are fermions, such as

quarks, electrons, muons, taus and neutrinos.
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The intriguing properties of many-body quantum physics are usually related

to complex interactions between fermionic particles. One of the most compelling

problems is to study strong interacting fermions. In an interacting system, strong

interaction is defined by the condition that the scattering length of the inter-

acting particles is much larger than the average interparticle spacing. Strong

interactions between fermions dominate behavior of a wide scale of matter in the

universe, which appears in terms of all four fundamental forces. In condensed

matter, high-temperature superconductor is a well-known example of strongly in-

teracting system, where strong interactions arise through electromagnetic forces.

In nuclear matter, neutron stars are examples of strongly interacting systems,

where strong interactions are produced by gravity and strong forces. In high en-

ergy matter, an example of strongly interacting Fermi systems is a quark-gluon

plasma (QGP), where fermionic quarks interact strongly by exchanging the gauge

boson of gluons in a certain energy range. QGPs are believed to be the initial

state of matter in the universe that existed only within ten of microseconds after

the Big Bang [1]. Recently a QGP created at the Relativistic Heavy Ion Collider

in Brookhaven National Laboratory exhibited amazing hydrodynamic properties,

which is believed to be a signature of strong interactions in this system [2]. Very

recently, string theory methods showed that a class of black holes in higher dimen-

sional space have elegant connections with strongly interacting quantum fields,

which adds another type of strongly interacting system [3].

Strongly interacting Fermi gases created by ultracold Fermi atoms provide a

clean, controllable laboratory environment to study those novel strong interacting

Fermi systems in nature. For our lab, this system is realized by laser cooling and

trapping an ultracold degenerate 6Li Fermi gas in the two lowest hyperfine states.
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When a Fermi gas becomes degenerate, the Pauli exclusion principle prevents

collisions between the identical atoms. So trapping a Fermi gas with atoms in

different spin states is a precondition for creating an interacting Fermi gas. The

tunability of interactions in our degenerate 6Li gas relies on a magnetic field

dependent collisional resonance known as Feshbach resonance. By tuning a bias

magnetic field, the s-wave scattering length of the colliding atoms changes from

an infinite positive value to a infinite negative value at the field below or above

Feshabach resonance.

At resonance, a strongly interacting Fermi gas has an infinite s-wave scatter-

ing length and a negligible potential range, which ensures the behavior of such

systems becomes totally independent of the microscopic details of their interpar-

ticle interactions. In this limit, a strongly interacting Fermi gas is usually known

as a unitary Fermi gas. Unitary Fermi gases exhibit universal behavior in both

thermodynamics and hydrodynamics, which can be used to study other strongly

interacting Fermi systems mentioned in the above. For example, unitary Fermi

gases are predicted to exhibit finite temperature thermodynamics that is univer-

sal in a variety of strongly interacting systems [4–6]. The other example is nearly

ideal fluidity in a strongly interacting Fermi gas, which is believe to be a common

phenomena in all strongly interacting Fermi systems [3, 7].

Even now, a complete understanding of the physics of strongly interacting

systems from a theoretical viewpoint has been impossible due to the lack of small

coupling parameters at the unitary limit [8]. There is a pressing need for inde-

pendent experimental investigations in strongly interacting Fermi gases.
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1.2 Overview of Current Progress in Ultracold

Fermi Gases

After the breakthrough of Bose-Einstein condensations (BECs) created in dilute

cold bose gases in 1995, the realization of degenerate strongly interacting Fermi

gases with ultracold fermionic atoms immediately became the next milestone

targeted by the whole field of cold atom physics [9–11].

The first degenerate strongly interacting Fermi gas was created in our lab at

Duke in 2002 [12]. Before that, degenerate Fermi gases were created by several

methods, such as double RF knife evaporative cooling [13], sympathetic cooling

both bosons and fermions in a magnetic trap [14–16], and direct evaporative

cooling in an optical dipole trap [17,18]. Six groups, including our group at Duke,

Jin’s group at JILA, Hulet’s group at Rice, Ketterle’s group at MIT, Grimm’s

group at Innsbruck, and Salomon’s group at ENS, have made major contributions

to the experimental investigations.

Several milestones have been realized by those groups, including studies of

thermodynamics and superfluidity of unitary Fermi gases [19, 19–25], realization

of molecular BEC [26–28], Fermi condensation [29, 30], and creation of novel

quantum phases such as spin polarized Fermi superfluids [31,32].

Below the Feshbach resonance, a degenerate Fermi gas has a positive scattering

length, where a tightly bounded molecular state is formed [33, 34]. Molecular

BECs were first observed in 40K and 6Li in 2003 [26,28].

Far above the Feshbach resonance, the scattering length has a small negative

value and the effective interaction is attractive. This permits the existence of

the Cooper pair predicted by BCS theory, developed by Bardeen, Cooper, and
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Schrieffer [35].

Near resonance, a high temperature Fermi superfluid in a strongly interacting

Fermi gas was sought for a long time [9,36]. Evidence of this new state of matter

appeared in both microscopic and macroscopic measurements in recent years.

Anisotropic expansion of a strongly interacting Fermi gas was firstly observed in

2002 [12], suggesting that the Fermi gas entered into the superfluid hydrodynamic

regime. In 2004, Fermi condensates were observed by pair projection experiments

using fast magnetic field sweep [29, 30]. The collective mode measurements in

breathing mode [19–22], quadrupole mode [37] and scissors mode [23] showed

superfluid transition behavior in the damping versus temperature data. Radio-

frequency (RF) spectroscopy revealed a pairing gap near the transition point [38].

Vortex lattices in a rotating strongly interacting Fermi gas directly demonstrated

a high temperature superfluidity in this system [24, 25]. Very recently, normal-

superfluid phase separation in spin polarized Fermi gases [31, 32] provides a rich

source for exploring novel quantum phases in strongly interacting Fermi gases.

1.3 Significance of My Doctoral Research

My Ph.D. research is divided into two stages: apparatus building and scientific

research in the time period before and since 2006 respectively. I will present the

scientific results first. In Section 1.3.1, I will discuss the significance of my research

on model-independent thermodynamic measurements of both the energy and the

entropy of a strongly interacting Fermi gas. Following that, in Section 1.3.2, I will

present our studies of nearly ideal hydrodynamics in a strongly interacting Fermi

gas, which shows extremely low viscosity behavior. I will put my emphasis on the
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topic of thermodynamics. A more detailed description about the hydrodynamics

will be presented in the concurrent thesis of my colleague student Bason Clancy

[39]. In Section 1.3.3, I will summarize my work on developing a new compact

all-optical cooling and trapping system for ultracold 6Li gas.

1.3.1 Thermodynamics of a Strongly Interacting Fermi

Gas

Strong interactions play a central role in thermodynamics for a wide range of

exotic strongly interacting systems, including high temperature superconductors,

neutron stars, quark-gluon plasmas, and even a particular class of black holes. It

is very surprising that, although the above systems are different by many orders

in the energy scale, their thermodynamic properties are all independent of the

details of the microscopic interactions. Theoretical studies in recent years predict

that there exists a universality in the unitary Fermi gas. For the ground state of

a uniform gas, the universality indicates that the difference between the energy

of a strongly interacting Fermi gas ESI and the energy of a noninteracting ideal

Fermi gas ENI can be characterized by ESI = (1 + β)ENI , where β is a univer-

sal many-body parameter. At finite temperature, universality predicts universal

thermodynamics for strongly interacting Fermi gases that is valid for different

particles and different energy scales.

Among the most interesting thermodynamic properties are the critical pa-

rameters of the normal-superfluid transition in strongly interacting Fermi gases.

This phase transition attracts intense interest from condensed matter physicists

because it represents a novel superfluid phase with a very high transition tem-

perature: up to 30% the Fermi temperature. The critical temperature is much
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“higher” than any superfluid or superconductor that exists in the liquid or solid

phase, where “higher or lower critical temperature” refers to the ratio of their

absolute transition temperature Tc to the Fermi temperature TF . TF is a char-

acteristic temperature of the Fermi system corresponding to the Fermi energy by

EF = kB TF , where kB is the Boltzmann constant. In cuprate high temperature

superconductors, the absolute transition temperature is about 100 K and a typical

Fermi temperature is on the order of 104 K, which gives the critical temperature

is about Tc/TF ≈ 10−2 [40]. Very surprisingly, in strongly interacting Fermi gases

Tc/TF is predicted up to 0.30 by a strongly pairing mechanism [41–44]. So study-

ing high temperature superfluidity in ultracold Fermi gases will help to shed light

on the mysterious mechanisms of high temperature superconductivity in solids.

The primary efforts presented in this dissertation are experimental investiga-

tions of thermodynamics of strongly interacting Fermi gases in the unitary limit.

Previously our lab made the first thermodynamic study of strongly interacting

Fermi gases by measuring heat capacity, where the heat capacity was extracted

from the temperature dependence of the energy [45]. However, the tempera-

ture was determined in a model-dependent way. They first fit the profile of a

strongly interacting Fermi gas to get an empirical temperature, then use a theo-

retical model based on pseudogap theories to extract the real temperature from

the empirical temperature. Unfortunately, in the strongly interacting regime, no

theoretical model including the pseudogap theory is well accepted. There is no

strong-coupling theory that has been verified to give precise predictions in the uni-

tary regime. For this reason, this previous measurement of the heat capacity only

provides a self-consistent test of the pseudogap theory and is a model-dependent

result.

8



Several other methods have been used previously to characterize the temper-

ature of a strongly interacting Fermi gas. One method is based on connecting the

temperature of a strongly interacting Fermi gas to the temperature of a molec-

ular BEC or a noninteracting Fermi gas [30, 38]. A magnetic field is swept to

change the scattering length, which converts a strongly interacting Fermi gas to

a molecular BEC or a noninteracting Fermi gas. Then the temperature of the

molecular BEC or the noninteracting Fermi gas is measured by well established

theoretical models. The temperature of the strongly interacting gas is then es-

timated from the temperature of the molecular BEC or the noninteracting gas

Fermi gas by strong-coupling theoretical models that relates the temperature in

different regimes [46]. It is very obvious that those methods for thermodynamic

measurements are still model-dependent. A model-independent method of deter-

mining the temperature of a spin-polarized strongly interacting Fermi gas was

recently developed by the MIT group, which is based on the phase separation of

superfluid-normal fluid in imbalanced spin mixtures of a two-component Fermi

gas [47]. This method fits the noninteracting edge of the majority spin by a

Thomas-Fermi distribution to extract the temperature. However, this method is

only appropriate for spin-polarized systems with phase separation, and it is not

applicable to a spin-balanced strongly interacting Fermi gas.

To provide experimental data for the comparison with many-body theories,

model-independent measurements of the thermodynamic parameters are required

for a strongly interacting Fermi gas. For this purpose, we measured both the

entropy and the energy of a strongly-interacting Fermi gas in the unitary limit.

The energy is determined by measuring the mean square size of the atom cloud

in the strongly-interacting regime. Our laboratory have proven that the virial
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theorem is strictly valid for a scale-invariant strongly interacting system [48],

which assures a simple relation between the cloud size and the total energy. The

entropy measurement proceeds by adiabatically sweeping the magnetic field from

the strongly interacting regime to the weakly interacting regime, during which

the entropy of the gas is conserved. In the weakly interacting regime, the entropy

of gas can be well determined: The entropy of the weakly interacting Fermi gas

has a well defined relation with the mean square size of the cloud, which is readily

measured.

This method gives a very precise model-independent measurement of both en-

tropy and energy in a strongly-interacting Fermi gas. From the entropy-energy

relation, I determine the ground state energy of a strongly interacting Fermi gas

and find a transition behavior in the entropy versus energy curve. This transition

is interpreted as a thermodynamic signature of a normal-superfluid phase transi-

tion in a strongly interacting Fermi gas [49]. Furthermore, the energy dependence

of the entropy data provides the most important evidence for proving universal

thermodynamics in strongly interacting Fermi gases [6]. The parametrization of

the energy-entropy data provides a real thermometry for a strongly interacting

Fermi gas, which can be used to classify the order of this novel phase transition

for future research.

1.3.2 Nearly Ideal Fluidity in a Strongly Interacting Fermi

Gas

The nearly ideal fluid behavior of strongly interacting Fermi gases is a very inter-

esting topic. It is predicted that a strongly interacting Fermi gas shows fermionic

superfluidity below the critical temperature, where superfluids exhibit collisionless
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hydrodynamics with zero shear viscosity η in frictionless flow [41–44]. Surpris-

ingly, above the critical temperature, a strongly-interacting Fermi gas still shows

nearly perfect hydrodynamics, which is confirmed by both the previous anisotropic

expansion and breathing mode experiments in our laboratory [12, 19, 20]. This

hydrodynamics originates from the unitary-limited elastic collisions between the

fermionic atoms in the different spin states, and is believed to have very low

viscosity behaviors [50].

One of the interesting behaviors for ideal fluids is irrotational flow, which is

usually thought of as symbol of a superfluid instead of a normal fluid, unless the

normal fluid has extremely low viscosity. In this dissertation, I will present our

experiment of the expansion dynamics of a rotating strongly interacting Fermi

gas [51], where nearly perfect irrotational flow in the normal fluid is observed and

indicates the extremely low viscosity in this system.

The irrotaional hydrodynamics suggests a normal strongly interacting Fermi

gas may reach a nearly “perfect fluidity” regime, which is a new concept appearing

in studies of the strongly interacting quantum particles and fields. The “perfect-

ness” of fluidity is determined by the temperature dependence of the viscosity. At

a given temperature, the smaller the viscosity, the better the fluidity. Through a

string theory calculation, Kovtun et al predicted that the ratio of shear viscosity η

to entropy density s has a lower bound of η/s ≥ ~/(4πkB) for strongly interacting

fluids [3], which constitutes the quantum limit of viscosity in nature for a given

entropy density. According to their theory, this extremely low quantum viscosity

exists in strongly interacting quantum fields or particles that are in the unitary

limit. In this dissertation, by using a simple hydrodynamic model based on vis-

cous force, I reanalyze the previous damping data of the collective oscillations of
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the cloud in our laboratory, and find η/s for a strongly interacting Fermi gas at

the unitarity approaches the lower bound limit conjectured by the strong theory

method.

1.3.3 Building an Apparatus for Cooling and Trapping 6Li

Atoms

When I joined the group in 2003, our lab only had one all-optical cooling and

trapping system, which was built in 2000. Due to the strong competition in this

field, we decided to build a second apparatus for research on ultracold 6Li atoms.

One reason to build a new system is to update the technology for all-optical

cooling and trapping. Our old system is the first apparatus in the world for all-

optical cooling and trapping of fermions. The equipment was built according to

the principle of “as long as it works.” After several years of experiments, we

found there is plenty of room to improve the whole capability and reliability of

the all-optical cooling and trapping system by redesigning or simplifying some

key components. Bason Clancy and I spent about two years building the new

system.

To give a better description for what we built, it is worth summarizing the

subsystems of the all-optical cooling and trapping apparatus used in our lab:

1. Vacuum and atom source: a main atomic oven, an atomic beam Zeeman

slower, and an ultrahigh vacuum chamber.

2. Magnetic-optical trap (MOT): lasers and optics for 6Li MOT, waveme-

ter and Fabry-Perot cavity for laser frequency measurement, an auxiliary

atomic beam and optoelectronics for laser frequency locking.
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3. Ultrastable CO2 laser optical dipole trap: an ultrastable CO2 laser sys-

tem, optics and high vacuum viewport for the infrared beam, a high power

acoustic-optic modulator, and ultralow noise electronics for beam control-

ling.

4. Magnets: MOT and high field magnets, magnet power supplies, and water

cooling and self-protection electronics.

5. Imaging and probing system: a charge-coupled device (CCD) camera for

absorption imaging, a photo-multiplier tube (PMT) for atom’s fluorescence

detection, and an antenna for radio-frequency (RF) spectroscopy,

6. Computer control and data acquisition: a high speed 32-bit digital pulse

timing system, a multiplexer for digital to analog conversion, a GPIB control

system for arbitrary wavefuntion generation, and a high precision optical

and RF pulse generation system.

7. Software programs: a program package for timing and instrument control

by combining Labview, Perl, C++ and SCPI languages, the Andor camera

program, and image processing and data analysis programs written in Igor

and Mathematica.

My main contribution to the new lab is designing and constructing the optics

and electronics for the ultrastable CO2 laser trap. There are several key tech-

niques for applying a high power CO2 laser in all-optical cooling and trapping

experiments. In the new lab, we used a commercial stable CO2 laser from Co-

herent. I designed and built a liquid-cooling system, which is not included in this

commercial package and is crucial to the laser stability. I measured the intensity
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and pointing noise of the CO2 laser beam to ensure the stability is appropriate

for our application.

An important technique for the ultrastable CO2 laser trap is controlling the

high power CO2 beam very quietly. We used a commercial acoustic-optic modu-

lator (AO) from IntraAction Corp. But the noise level of the internal RF source

in the modulator does not satisfy our requirements for forced evaporation of 6Li

in an optical trap. I modified the electronics of the modulator to applying the

external RF source instead of the internal RF source.

The high power CO2 laser beam was transported into the high vacuum cham-

ber through homemade ultrahigh vacuum infrared viewports. For high power

CO2 laser beams, zinc selenide (ZnSe) crystals are the best choice for the vacuum

viewports to get high transparency and high beam quality. However, ZnSe crys-

tals are very soft and are not appropriate for the application of ultrahigh vacuum

windows, since ultrahigh vacuum windows usually requires high torques for hard

sealing that will break the soft crystal material. Soft sealing viewports for ultra-

high vacuum require very special vacuum techniques. The commercial products

are sold by very few companies, whose products are extremely expensive and not

always available. For these reasons, we decided to develop our own techniques for

making infrared ZnSe viewports. By combining two vacuum sealing techniques

“differential pumping” and “soft seals with a Pb-Ag-Sn alloy”, I developed a

novel high vacuum infrared viewport for our new cooling and trapping system.

The home-made viewports support a 10−11 torr vacuum and at least 100 watt

laser power. The total material cost of making this new window is only one third

of the price of the commercial ones.

I also designed and built the whole electronics system for timing and data
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acquisition. There are two main functions for the electronic control system: pre-

cision timing and digital-to-analog conversion. A cycle for cooling and trapping

cold atoms runs according to precise timing sequences. Most elements require

time steps of 100 microseconds and some need sub-microsecond precision. In

the new timing system, I used a National Instruments high speed 32-bit digital

pulse card for the first application, while I used Stanford pulse generators for

the higher precision applications. The digital pulse sequence is described in the

“timing files,” which guided the Labview program to control the activity of every

element. For some applications, analog signals are needed instead of the digi-

tal one. For this purpose, a home-made multiplexer is used for digital-to-analog

conversion.

We created our first CO2 laser trap in the new apparatus in October 2005.

Then we spent time investigating the unique characteristics of forced evapora-

tion in the strongly interacting regime. By doing this, we optimized the forced

evaporation of a strongly interacting Fermi gas, and enabled a run-away evapo-

ration by lowering the optical trap according to a certain lowering curve. Finally

we obtained the absorption images of strongly interacting Fermi gases near the

ground state in the spring of 2006. This was the stepping-stone to experimentally

exploring the physics of strongly interacting Fermi gases.

1.4 Organization of Dissertation

Chapter 2 summaries the physical system of 6Li atoms in the hyperfine states that

we used to create strongly interacting Fermi gases. I first present the hyperfine

structures of 6Li atoms in a magnetic field. After that, I give a brief introduction
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on quantum collision physics and the s-wave Feshbach resonance, which is the key

method to make cold atoms strongly interacting.

In Chapter 3, I introduce the general experimental methods we use to gener-

ate and characterize a strongly interacting Fermi gas, which includes: absorption

imaging in a magnetic field, evaporative cooling of the unitary Fermi gas, cre-

ating strongly interacting, weakly interacting and noninteracting Fermi gas, and

calibrating the magnetic field.

In Chapter 4, I describe the theory for determining the total energy of a

strongly interacting Fermi gas from the mean square size of the cloud. First, I

give a proof of the virial theorem for the unitary Fermi gas, which enables me

to make an elegant connection between the energy and the cloud size. Then, I

explain how to measure the mean square size of the cloud by fitting the column

density with the Thomas-Fermi profile. In the end, I apply the virial theorem for

the trapped gas in both harmonic traps and Gaussian profile potentials.

In Chapter 5, I describe my method to measure the total entropy of a strongly

interacting Fermi gas. Due to the lack of a reliable method to determine the

entropy in the strongly interacting regime, I adiabatically sweep the gas from the

unitary regime to the weakly interacting regime by smoothly varying the magnetic

field, so that the total entropy is conserved. I summarize our calculation of the

entropy versus the mean square size of the cloud for a trapped noninteracting gas.

In the end, I will demonstrate that the entropy of weakly interacting Fermi gas

can be well determined based on the entropy of a trapped noninteracting Fermi

gas with a small mean field correction to the ground state energy.

In Chapter 6, the experimental measurements of both energy and entropy are

presented. First, the method of preparing the atom clouds at different energies
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is introduced. After that, the technique of the adiabatical sweep is described.

Then, I give the primary measurements for the energy and entropy. By param-

eterizing these data, I extract the ground state energy of a strongly interacting

Fermi gas, the critical parameters of the superfluid phase transition, and the

temperature of a strongly interacting Fermi gas. I also obtain the chemical po-

tential and the heat capacity from basic thermodynamic relations. Finally, I

compare my model-independent energy-entropy with the calculations from some

strong-coupling theories. My measurement provides the first model-independent

benchmark to test the theories as well as important evidence for universal ther-

modynamics in strongly interacting Fermi gases.

In Chapter 7, I describe the study on the hydrodynamic expansion of a ro-

tating strongly interacting Fermi gas. I observed the quenching of the moment

of inertia in the expansion, indicating that irrotational flow exists in this system.

By conservation of angular momentum, I test a fundamental relation between the

effective moment of inertia and the rigid body moment of inertia for this irrota-

tional hydrodynamics. After that, I describe a theoretical model for extracting

the shear viscosity from the previous data of the damping of the collective breath-

ing mode in our laboratory. Combined with the entropy data, I make an estimate

of the energy dependence of η/s in a strongly interacting Fermi gas.

In Chapter 8, I describe the technical details of how to build an all-optical

cooling and trapping apparatus. While the basic cooling and trapping techniques

are summarized briefly, I focus on the key techniques of the ultrastable CO2 laser

optical dipole trap. This chapter can provide a “technical manual” for building

similar CO2 laser traps.

Chapter 9 offers a conclusion to this dissertation, possible improvements to
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the apparatus, and an outlook for future studies of strongly interacting Fermi

gases.

There are two appendices included in this dissertation.

Appendix A presents Mathematica programs for calculating a number of ther-

modynamic properties of a noninteracting trapped Fermi gases in both harmonic

and Gaussian potentials. A program that calculates the thermodynamic prop-

erties of the ground state gases in the whole regime of BEC-BCS crossover is

also included in this appendix. This appendix is intended for the future study of

thermodynamics of a strongly interacting Fermi gas.

Appendix B includes the updated Igor procedure file I wrote for imaging pro-

cessing. These new user-defined functions are very helpful for the ongoing and

future projects in our lab that requires 2D image processing and double-spin

imaging processing.
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Chapter 2

6Li Hyperfine States and
Collisional Properties

In our experiments, a strongly interacting Fermi gas comprise a two-component

mixture of 6Li atoms in the lowest hyperfine states. At very low temperature,

a magnetic field is applied to tune the s-wave scattering length of the atoms

in different hyperfine states to diverge, due to the collisional effect known as a

Feshbach Resonance. In this chapter, I will describe the hyperfine states of 6Li

atoms, and explain how the Feshbach resonance makes the interaction strength

tunable in this system.

2.1 Hyperfine States of 6Li

2.1.1 Hyperfine States in Zero Magnetic Field

To study an ultracold Fermi gas, we need to choose the proper species of Fermi

atoms which can be laser cooled and trapped. The relatively simple atomic struc-

tures and spectra of the alkali metal atoms make them the most common ones

for the experiments in cold atom physics. 6Li atoms are one of the isotopes of

the third element in the periodic table composed of 3 protons, 3 neutrons, and 3
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Property Symbol Value Reference

Electron Spin Angular Momentum s 1/2

Electron Orbit l(2 2S) 0

Angular Momentum l(2 2P ) 1

Electron Total J(2 2S1/2) 1/2

Angular Momentum J(2 2P1/2) 1/2

J(2 2P3/2) 3/2

gJ (2 2S1/2) -2.0023010 [52]

Total Electronic g-Factor gJ (2 2P1/2) -0.6668 [52]

gJ (2 2P3/2) -1.335 [52]

A2 2S1/2
152.136 840 7 MHz [52]

Magnetic Dipole Constant A2 2P1/2
17.375MHz [52]

A2 2P3/2
-1.155MHz [52]

Electric Quadrupole Constant B2 2P3/2
-0.10MHz [52]

Nuclear Spin Angular Momentum I 1

Nuclear Spin g-Factor gI 0.0004476540 [52]

Table 2.1: The fine energy levels of 6Li and the corresponding g-factors.

electrons. The nuclear spin of 6Li is one. The unpaired valence electron makes

the total atom spin half integral so that neutral 6Li atoms are fermions.

The fine structure of 6Li atoms is induced by the spin-orbit interaction, which

is the magnetic dipole interaction between the spin angular momentum Ŝ and the

orbit one L̂. The coupling of Ŝ and L̂ gives the total electron angular momentum

Ĵ = L̂ + Ŝ. Because of this interaction, the transition from the ground state

to the excited state splits into the D1 and D2 lines, corresponding to the fine

structure transitions of 2 2S1/2 ↔ 2 2P1/2 and 2 2S1/2 ↔ 2 2P3/2 respectively. The

quantum numbers and g-factors of the fine structure energy levels of 6Li are listed

in Table 2.1.
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Figure 2.1: The hyperfine energy levels of 6Li. The energy splitting is not to
scale.

Hyperfine splitting appears within the D1 and D2 lines due to the interaction

between the valence electron and the non-spherically-symmetric nucleus. The

Hamiltonian of the hyperfine interaction includes both the nuclear magnetic dipole

and nuclear electric quadrupole interactions. The eigenstates of the hyperfine

interaction are represented by the total angular momentum quantum number

F̂, which is given by the sum of the total electron angular momentum Ĵ and

the nucleus angular momentum Î according to the relation of F̂ = Ĵ + Î. The

measured hyperfine splitting of 6Li atoms [52] is shown in Fig. 2.1.

21



The hyperfine splitting of the excited states is about one or two orders of

magnitude smaller than the the ground state hyperfine splitting. So the effects

due to the hyperfine splitting of the excited states are not primary concerns for

the resonance frequency shift we used in this thesis. The accurate calculation of

the hyperfine structure splitting is shown in Appendix A in [53], which includes

the interaction energies arising from both magnetic dipole and electric quadrupole

moments.

2.1.2 Hyperfine States in a Magnetic Field

In the presence of a strong magnetic field, the magnetic interaction energy can

not be treated as a perturbation on the electron-nucleus interaction in the most

general cases. That means F and mF are no longer good angular momentum

quantum numbers. The strict way to find the eigenstates is to diagonalize the

Hamiltonian of the total interaction energy in the |S mS L mL I mI〉 basis. The

total interaction combines both the hyperfine interaction and magnetic interac-

tions is

Hint = HB + Hhyperfine

= −µB (gS S + gI I + gJ J) ·B− µ̂ · B̂(0) +
1

6
e
∑

αβ

Q̂αβ
∂ 2φ(0)

∂xα∂xβ

,(2.1)

where B is the external magnetic field, and µ̂ and Q̂ are the nuclear magnetic

dipole moment and nuclear electric quadrupole moment operators, respectively,

B̂ is the operator of the magnetic field due to the electrons, and φ is the electric

potential from the electrons. The last two terms represent the primary electron-

22



nucleus interactions.

For the electron in the 2 2S1/2 ground state, the angular wavefunction is spher-

ically symmetric so that it does not support the nuclear electric quadrupole in-

teraction. Eq. (2.1) can be simplified as

Hground = hA2 2S1/2
S · I− µB

[
gJ(2 2S1/2 )S + gI I

] ·B, (2.2)

where A2 2S1/2
and gJ(2 2S1/2 ) are listed in Table 2.1. S and I are the dimensionless

angular momenta.

The six eigenstates for the above interactions in the basis |mS mI〉 are shown

below from the lowest to highest energy by

|1〉 = sin Θ+ |1/2 0〉 − cos Θ+ |−1/2 1〉 (2.3)

|2〉 = sin Θ− |1/2 − 1〉 − cos Θ− |−1/2 0〉 (2.4)

|3〉 = |−1/2 − 1〉 (2.5)

|4〉 = cos Θ− |1/2 − 1〉+ sin Θ− |−1/2 0〉 (2.6)

|5〉 = cos Θ+ |1/2 0〉+ sin Θ+ |−1/2 1〉 (2.7)

|6〉 = |1/2 1〉 . (2.8)
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The coefficients are defined as

sin Θ± =
1√

1 + (Z± + R±)2 /2
(2.9)

cos Θ± =

√
1− sin2 Θ± (2.10)

Z± =
µB B

Agnd

(−ggnd
J + gI)± 1

2
(2.11)

R± =

√
(Z±)2 + 2, (2.12)

where Agnd and ggnd
J are the magnetic dipole constant and electronic g-factors of

the 2 2S1/2 ground state respectively.

The eigenvalues En of the above eigenstates |n〉 are plotted as a function of

the magnetic field in Fig. 2.2 given by

E1 = −1

4

(
Agnd + 2 gI µB B + 2 Agnd R+

)
(2.13)

E2 = −1

4

(
Agnd − 2 gI µB B + 2 Agnd R−)

(2.14)

E3 =
Agnd

2
+ µB B(gI + ggnd

J /2) (2.15)

E4 = −1

4

(
Agnd − 2 gI µB B − 2 Agnd R−)

(2.16)

E5 = −1

4

(
Agnd + 2 gI µB B − 2 Agnd R+

)
(2.17)

E6 =
Agnd

2
− µB B(gI + ggnd

J /2). (2.18)

At the zero field position in Fig. 2.2, the total angular momentum quantum

numbers F = 1/2 and F = 3/2 are good quantum numbers. When the magnetic

field increases, the six energy levels evolve into two groups because the hyperfine

interaction is much smaller than the magnetic interaction when the magnetic field

is large enough. Under this condition, the eigenstates eventually are the states of
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Figure 2.2: The Zeeman energy levels of the 6Li hyperfine states are plotted
in frequency units versus applied magnetic field in gauss. There are six energy
levels at nonzero magnetic field, and are labeled |1〉, |2〉, and so on, in order of
increasing energy.

|mS mI〉. Because gS is much larger than gI , the three mS = −1/2 states remain in

the bottom group in Fig. 2.2 and the three mS = 1/2 states remain in the top one.

Note that magnetic trapping only works for the states in the top group, which

are attracted to a region of a local minimum of the magnetic field. In contrast,

the states in the bottom group are attracted to a region of a local maximum of

the magnetic field, which is forbidden in free space. For this reason, we use an

optical dipole trap to trap the lowest two hyperfine state.

In the next section, I will describe a broad s-wave collision resonance between

|1〉 and |2〉. This resonance constitutes the physical basis for creating a strongly

interacting Fermi gas.
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2.2 Collisional Resonance in an Ultracold 6Li

Gas

Strongly interacting Fermi gases in my experiments are two-component Fermi

gases in the |1〉 and |2〉 states of 6Li atoms near a collisional resonance, which

is usually called a Feshbach Resonance. To understand the Feshbach resonance,

I will give a brief introduction to low energy quantum scattering, then quanti-

tatively explain why the 6Li atoms in the lowest hyperfine levels have a broad

collisional resonance when they are in a bias magnetic field. Finally, I will de-

scribe the s-wave scattering length dependence on a magnetic field in an ultracold

6Li gas.

2.2.1 S-wave Quantum Scattering

The quantum scattering of two particles is a central topic in nearly every quantum

mechanics textbook [54–57]. Here, I will provide a brief introduction to s-wave

quantum scattering, which is necessary to understand the important physics and

experimental methods presented in this thesis.

S-wave, or zero angular momentum quantum scattering, happens in quantum

collisions at very low temperature. Assume a single incident particle of reduced

mass µ that is scattered by a spherically symmetric potential V(r). The incident

particle traveling in the +ẑ direction with momentum ~k can be described by an

incident plane wave eikz. After the scattering, the asymptotic scattered wavefunc-

tion at infinite distance equals the incoming plane wave plus an spherical wave

f(θ) eikr/r [58]. The function f is known as the scattering amplitude, and θ is the

angle between the incident direction ẑ and the scattered direction of the particle.
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The differential cross section dσ/dΩ equals the square magnitude of the scat-

tering amplitude by

dσ

dΩ
= |f(θ)|2. (2.19)

If we assume the scattering potential is a central potential, it allows us to expand

the scattered wave functions in an orbital angular momentum basis |l〉 with the

Legendre polynomials Pl(x),

f(θ) =
∞∑

l=0

(2l + 1)fl(k)Pl(cos θ). (2.20)

The coefficients of this expansions are known as the partial wave amplitudes, which

are related to the scattering phase shifts δl by [56],

fl(k) =
exp(i δl) sin δl

k
. (2.21)

In the case of an ultracold gas of neutral atoms, the dominant quantum scat-

tering process is the s-wave (l = 0) due to the extremely low kinetic energy of the

colliding atoms. Suppose the interatomic potential has some finite range r0 and

the relative linear momentum for the two atoms is p = h/λdB, where λdB is the

de Broglie wavelength of the relative momentum. Then the maximum relative

orbital angular momentum is given by the L ' r0p. We know the relative angular

momentum between two atoms is quantized by L = l~ where l is an integer. By

using the typical interacting potential r0 ∼ 10
◦
A and the typical size of the de

Broglie wavelength of 7000
◦
A for 6Li atoms at ' 1 µK, we readily get

l ' 2πr0

λdB

' 0.01 << 1, (2.22)
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This shows that the only relevant value for ` is zero for scattering processes of

Fermi gases at such ultracold temperatures.

We rewrite all the above equations only with the lowest order scattering phase

shift δ0. Eq. (2.20) reduces to

f(θ) = eiδ0
sin(δ0)

k
, (2.23)

The total scattering cross section of s-wave scattering is obtained by integrating

Eq. (2.19),

σ =

∫
dΩ |f(θ)|2 = 4π

sin2 δ0

k2
. (2.24)

The total scattering cross section also can be written in term of the s-wave scat-

tering length by

as ≡ − lim
k→0

tan δ0

k
, (2.25)

σ =
4 π a2

s

1 + k2 a2
s

. (2.26)

The physical interpretation of the scattering length is given in [56]. We as-

sume the center of the scattering potential is located at the origin of a spherical

coordinate system. Without the scattering potential, the free particle asymptotic

function will intersect the r axis at the origin. In the limit of k → 0, the scattering

length is defined as the distance between the origin and the crossing point of the

asymptotic radial wavefunction on the r axis. So the value of as represents how

much the particle wavefunction is modified by the scattering potential. Larger

as represents stronger interactions between the particles. A positive as indicates

that the scattering wavefunction is pushed away from the origin by the scattering

28



potential, which indicates that the effective interaction is repulsive. On the con-

trary, a negative scattering length as means the scattering wavefunction is pulled

closer to the origin, which represents an effective attractive interaction.

The strength of the interaction is represented by the value of the scattering

length. For weak interactions as ¿ 1/k ' λdB/2π, which means that the zero

energy s-wave scattering length is much smaller than the de Broglie wavelength

of the relative momentum of the colliding atoms, the scattering cross section is

σ ≈ 4 π a2
s. For strong interactions, the zero energy s-wave scattering length is

much larger than the de Broglie wavelength, so that as À 1/k ' λdB/2π. When

as → ±∞, the s-wave atomic cross section is given by

lim
as→±∞

σ =
4 π

k2
. (2.27)

This gives the unitary limit of the s-wave scattering for distinguishable particles

that are in the different hyperfine states of a two-component gas (Note that for

a single-component gas, this limit is 8 π/k2 because the colliding particles are

indistinguishable). Eq. (2.27) implies that the collisional behavior of the system

is effectively completely independent of the scattering length. In the other words,

the collisional behavior only depends on the wave vector of the thermal energy

instead of any microscopic structure of the interparticle potentials.

Strongly interacting Fermi gases in this limit are known as unitary Fermi gases.

In this dissertation, I will use both terms to refer to Fermi gases with a divergent

s-wave scattering length. In the following, I will discuss how to tune as → ±∞
in ultracold 6Li atoms by applying a magnetic s-wave Feshbach resonance.
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2.2.2 The Broad Feshbach Resonance of 6Li Atoms

A much more thorough discussion of 6Li atom collisions can be found in the

previous thesis of Ken O’Hara [59]. I strongly suggest reading that dissertation

to understand why the mixture of 6Li atoms in the |1〉 and |2〉 hyperfine state

are an ideal system for experimental studies of a strongly interacting Fermi gas.

The 6Li atoms in the different spin states of |1〉 and |2〉 interact via either a

singlet or triplet molecular potential for s-wave scattering. The singlet potential

means that the valence electrons from two different atoms form a spin singlet

state with the total spin S = S1 + S2 = 0. In contrast, the triplet potential is

made by the electrons combining to a spin triplet state S = S1 + S2 = 1. For

fermions, the total wavefuntion should be antisymmetric. In the singlet state,

the spin wavefunction is antisymmetric, so the spatial wavefunction of electrons

should be symmetric. A symmetric spacial wavefunction means that the density

of electrons at the midpoint between two nuclei can be nonzero. On the contrary,

in the triplet state, the space wavefunction is antisymmetric, which requires the

space density of the electrons to be zero in the midpoint between the two nuclei.

Because the nonzero electron density in the midpoint between two nuclei helps to

shield the repulsive forces between the nuclei, the singlet potential is much deeper

than the triplet potential. This causes the energy of colliding atoms that are

unbounded in the triplet potential can be the same as that of a bound state in the

singlet potential. Under this condition, the scattering length between the colliding

atoms is enhanced dramatically, which results in the Feshbach resonance shown

in Fig. 2.3. The triplet potential is usually called as the “open channel,”while the

the singlet potential is named the “closed channel.”

The energy difference between the energy of the unbound colliding atoms
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ν=38

Figure 2.3: Phenomenological explanation of the origin of the Feshbach reso-
nance. VS is the singlet potential and VT is the triplet potential. The relative
energy gap between the singlet potential and the triplet potential is tunable by
a magnetic field. When the total energy of the unbound colliding atoms in the
triplet state equals to the energy of the ν = 38 bound state in the singlet poten-
tial, a Feshbach resonance occurs due to the hyperfine mixing of the singlet and
triplet states.

in the open triplet channel and the energy of the bound atoms in the closed

singlet channel depends on the strength of magnetic field. This energy difference

determines the s-wave scattering length between the atoms in |1〉 and |2〉, which

can calculated. 1

It is predicted in theory [60] and confirmed by the experimental measurement

[61] that there is a strong enhancement of the scattering length occurring at the

magnetic fields of approximately B = 834 gauss, due to the Feshbach resonance

1The collision channel for the |1〉 − |2〉 has a total spin projection mF = 0. mF is conserved
in s-wave scattering. In a magnetic field, the |1〉 − |2〉 collision processes are coupled to four
mF = 0 channels:|4〉− |5〉,|3〉− |6〉,|2〉− |5〉,|1〉− |4〉. All those channels have higher energy than
the |1〉 − |2〉 with the minimum 10 mK energy difference. Thus, those channels are prohibited
at very low temperatures so that the |1〉 − |2〉 collision can be treated as an elastic process.
However, in the exact calculation of the elastic scattering length [60], those prohibited channels
have effects on the scattering process because virtual collisions, so all the coupled channels
should be included in the calculation
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Figure 2.4: The s-wave scattering Length of the Feshbach resonance of 6Li atoms
versus the magnetic field. Note that a narrow Feshbach resonance located at 543
gauss with width less than 1 gauss is omitted in this figure.

for the |1〉-|2〉 mixture. This resonance occurs as the energy of colliding atoms in

the triplet state is magnetically tuned to equal the energy of the ν = 38 bounded

molecular state in the singlet potential.

The broad Feshbach resonance can be calculated from the parameters of the

singlet and triplet potentials, which are determined by radio-frequency spec-

troscopy of weakly bound 6Li molecules [62]. The Feshbach resonance is pa-

rameterized as a function of the magnetic field B, and shown in Fig. 2.4 by

as(B) = ab

(
1 +

∆

B −B0

)
(1 + α(B −B0)) , (2.28)

where the background scattering length ab = −1450 a0, and a0 is the Bohr radius.

The resonance field B0 = 834.149G, and the resonance width ∆ = 300G. The
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first-order correction parameter is α = 0.00040G−1. This parameterized curve fits

the numerical calculation to better than 1% in the regime between 600 G to 1200

G.

This broad Feshbach resonance provides a controllable system to explore

strongly interacting Fermi gases experimentally. In Chapter 3, I will show that

Fermi gases are much easier to cool in the strongly interacting regime. The broad

Feshbach resonance provides a unique system, the so called “BEC-BCS crossover”.

Below the Feshbach resonance at 834 G, with repulsive interactions, the scattering

length can be continuously tuned from a very large positive scattering length to a

zero scattering length at about 528 Gauss. In this regime, stable bound molecules

form from atoms in the two different hyperfine states, producing molecular BECs

below the critical temperature. Thus, this regime is referred to as the “BEC

side”. Above the Feshbach resonance, Fermi gases have an attractive interaction

energy. The scattering length is tunable from a very large negative scattering

length to a very small negative one. In the limit of a small negative scattering

length, the system is described by BCS theory and referred as the “BCS side”.

Near the Feshbach resonance, the scattering length as is much larger than the

average interparticle spacing between 6Li atoms La. On the other hand, in a

dilute ultracold atom gas, the potential range of 6Li atoms Rp is much smaller

than La. So the diverging scattering length and negligible potential range satisfy

as →∞À La À Rp → 0. (2.29)

This condition ensures that the local macroscopic behavior of such systems only

depends on the local density and temperature. In this limit, a strongly inter-

33



acting Fermi gas exhibit universal behavior, which is totally independent of the

microscopic details of interparticle interactions.

For most experiments presented in this thesis on studying a strongly interact-

ing Fermi gas, we use an ultracold degenerate Fermi gas at the Feshbach resonance

of 834 gauss or a field a few gauss above the resonance. To study a noninteracting

Fermi gas, we set the bias magnetic field at the zero crossing of the scattering

length, near 528 gauss [17,18].
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Chapter 3

General Experimental Methods

In our lab, all-optical cooling and trapping techniques provide a simple and effi-

cient method for creating a strongly interacting Fermi gas. In this chapter, I will

introduce the general experimental methods we use to generate and characterize a

strongly interacting Fermi gas. First, I will describe the optical transition we use

to take absorption images of cold atoms in a magnetic field. Then I will talk how

we calibrate the magnetic field by locating the zero crossing of the s-wave scatter-

ing length in a broad Feshbach resonance. After that, I will present our studies

of evaporative cooling of strongly interacting 6Li atoms in an optical trap [63].

In the end, I will overview the general experimental procedures of using cold 6Li

atoms to create strongly interacting, weakly interacting, and noninteracting Fermi

gases.

3.1 Optical Transition for Absorption Imaging

Absorption imaging of 6Li atoms in a high magnetic field (above 300 Gauss)

can be treated as an optical dipole transition between a nearly perfect two-level

system [53, 64], shown in Fig. 3.1. The two-level system for absorption imaging

avoids optical pumping of the atoms into the other states, thereby increasing the
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Figure 3.1: The two-level system used for absorptive imaging of 6Li atoms at
the ground states when a high magnetic field is present. In high magnetic fields,
the energy levels can be treated as approximate eigenstates in the J,mJ basis.

signal-to-noise ratio of the absorption images.

In Section 2.1.2, I described the two lowest hyperfine ground states of the 6Li

atom: |1〉 and |2〉, which we used for a strongly interacting Fermi gas. In high

magnetic fields, the hyperfine interaction between the electron and nuclear spin

states becomes small compared with the magnetic field energy of the electron

spin. The |1〉 and |2〉 states can be treated as approximate eigenstates in the

|J mJ I mI〉 basis,

|1〉 = |1/2,−1/2; 1, 1〉

|2〉 = |1/2,−1/2; 1, 0〉 . (3.1)

According to the selection rule for electric dipole transitions [58], the electric
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dipole changes the total and orbital angular momentum by

∆J = ±1, 0

∆L = ±1

∆mJ = ±1, 0. (3.2)

Now consider the |1〉 state as the initial state of an optical transition for

absorption images. Because the nuclear spin is not changed by this optical dipole

transition, according to Eq. (3.1) and Eq. (3.2), the possible final states for |1〉
through the D2 line transition where ∆J = 1 are

|F1〉 = |3/2,−3/2; 1, 1〉

|F2〉 = |3/2,−1/2; 1, 1〉

|F3〉 = |3/2, 1/2; 1, 1〉 . (3.3)

From the selection rule, we know that the |F1〉 , |F2〉 , |F3〉 states correspond to

left-circularly, linear, and right-circularly polarized imaging beams, respectively.

We note that at high magnetic field, mJ states are well separated by a couple

of GHz, which is much larger the natural linewidth of the D2 line, which is 5.9

MHz for full width at half maximum (FWHM). For single-frequency absorption

imaging, the |F1〉 , |F2〉 , |F3〉 states are not coupled. For the application of the

absorption imaging, we need to choose a final state that can be used for the

upper level in a two-level system. For the above state, only |F1〉 satisfies our

requirement of a two level system while the atoms in |F2〉 and |F3〉 can decay to

the dark state of |1/2, 1/2; 1, 1〉.
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For the excited states of |F1〉, left-circularly polarized light is used when the

imaging beam propagates coaxially along the quantization axial of the magnetic

field ẑ. This coaxial imaging setup is used in our old system. However, in the

new system, our imaging beam propagates in a direction perpendicular to the

axis of the magnetic field. For this setup, circularly-polarized light for the |F1〉
state is not a possible polarization for the light beam. Instead, laser light with

linear polarization perpendicular to the quantization axis of the magnetic field is

used for absorption imaging, and its frequency is adjusted to select the mJ = −1

transition.

We need to pay attention to the optical absorption cross-section: it is different

for the linear polarized light in comparison to the left-circularly polarized light.

The resonant optical cross-section for two-level system is given by

σopt =
4πk(ê · µ̂)2

~γs/2
, (3.4)

where µ̂ is the vector of the optical transition element pointing along the quanti-

zation direction of the magnetic field, and ê is the unit vector of the linear momen-

tum of the photon, and k is the wavevector of the photon, and γs = 4µ2k3/(3~)

is the natural line width of the transition.

In the case of left-circularly polarized imaging light propagating coaxially with

the quantization axis of the magnetic field, we define ê · µ̂ = µ, and we obtain

σ−opt =
3λ2

2π
. (3.5)

In the case of imaging light with x̂ linear polarization perpendicular to the quan-

tization axis of the magnetic field, we have êx = −ê+/
√

2+ ê−/
√

2, where ê+ and

38



ê− correspond to right-circular and left-circular polarized light, respectively. As

I pointed out above, right-circular right is for the ∆mJ = 1 transition, which is

well separated from with the ∆mJ = −1 transition, so only one component of the

light can be absorbed by the atoms. We readily get the optical cross-section for

the imaging light whose linear polarization perpendicular to the magnetic field,

σ∗opt =
3λ2

4π
. (3.6)

For 6Li atoms, σ∗opt = 0.107 µm2. This optical cross-section is a factor of 2 smaller

than that of the absorption imaging using left-circularly polarized light, which

propagates coaxially along the quantization axial of the magnetic field. This effect

decreases the signal-to-noise ratio of absorption images in our imaging system

compared with the old system. The compensation for this drawback is that

we avoid imaging beams sharing the same viewports as vertical MOT beams.

This ensures a large aperture for the imaging system, which can increase the

resolution of the imaging system. In the future, this apparatus will be used

for one-dimensional optical lattice experiments, where high imaging resolution is

required for imaging the atoms in a single site of optical lattice.

3.2 Magnetic Field Calibration for Feshbach Res-

onance

In our system, the high field magnets are controlled by a DC command voltage,

which determine the magnetic field we apply to the atoms. The precise command

voltage for the zero crossing point of the s-wave scattering length is calibrated
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Figure 3.2: Mean square cloud size in the trap versus the commanding voltage
for the magnetic field. The maximum mean square size is located at 1.249±0.001
V.

experimentally. To locate the magnetic field for the zero crossing, we hold the

atoms in a CO2 trap with a fixed trap depth for a fixed time and measure the

decrease of the atoms number and the cloud size as a function of the magnetic

field. At the zero crossing, the cloud size will have a maximum value, indicating

no evaporation. A similar method that probed the temperature and the atom

number was used in [61]. For calibrating the new system, we hold the optical

trap in a specific magnetic field for 10 seconds, then sweep the cloud to a fixed

magnetic field of 400 G to take an image. In Fig. 3.2, I show the radial mean

square size versus the command voltage for the required magnetic field.

The maximum cloud size locates at the 1.249 volt command voltage, which

corresponds to the zero crossing of the s-wave scattering length at 528 G [61]. We

have verified that the magnetic field has a very good linear dependence on the
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command voltage [39]. By extrapolation, we have the following relation for the

command voltage V as function of the magnetic field,

B(V )(gauss) = 528× V (volt)/1.249. (3.7)

3.3 Evaporative Cooling in the Unitary Limit

Prior to evaporative cooling, there are two methods to load the optical trap. The

simplest is by directly loading the atoms from a MOT [12, 27], and the other is

after initial evaporative cooling in a MOT-loaded magnetic trap [16,29,30,65]. We

utilize the first method, where efficient evaporation in the optical trap is crucial

for the whole experiment. The evaporation efficiency determines not only the

cloud temperature but also the final cold atom number.

Efficient evaporation in the optical trap is realized by keeping the ratio H of

the trap depth U to the thermal energy kBT large. A large value of H for the

elastic processes assures that the energy carried away by the evaporating atoms

is much larger than the average thermal energy of the atoms. This condition also

assures a large fraction of the initial atom number remains in the optical trap when

the desired temperature is achieved. However, an arbitrary time dependent trap

lowering curve U(t) can not make H constant. In a previous theoretical study of

evaporative cooling in optical trap [66], our laboratory derived the scaling law for

the number of atoms as a function of the trap depth, which assures a constant H

during the evaporation. Then, based on the energy conservation, our laboratory

derived a scaling law for the trap lowering curve in the case of evaporative cooling

of a weakly interacting Fermi gas.
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Evaporative cooling a unitary Fermi gas exhibits new physics compared with

cooling a weakly interacting Fermi gas. The weakly interacting Fermi gas has

an energy-independent s-wave scattering cross section σ = 4 π a2, so the colli-

sion rate for evaporation always decreases as the trap is lowered [66]. In con-

trast, near the Feshbach resonance, the s-wave scattering cross-section for a two-

component Fermi gas reaches the unitarity value of σ = 4π/k2, where k is the

relative wavevector of the colliding particles. This energy-dependent cross-section

indicates that the cross-section of a unitary Fermi gas actually increases when the

temperature of the gas drops during the evaporation. In that case, the resulting

collision cross-section for evaporation σevap ∝ 1/U , where U is the trap depth,

which can compensate for the suppression of the evaporation rate due to the de-

crease of the temperature and density. This mechanism enables a high H of about

10 for the whole evaporation process, which enables runaway evaporation being

possible for the unitary conditions.

Before the studies presented in [63], our lab used a lowering curve optimized for

an energy-independent scattering cross section to operate the evaporative cooling

in the strongly interacting regime. It is important to make a careful study of

evaporative cooling in the unitary limit. In this section, I will review our studies.

I first describe the scaling law for the number of atoms and the cloud size as a

function of trap depth. After that, I will derive the optimal trap lowering curve

which maintains a constant H for a unitary gas. Then, I will demonstrate the

experimental results of applying this lowering cure. I found that, in the strongly

interacting regime, the new evaporation curve generates a quantum degenerate

Fermi gas in a fraction of a second from a classical gas with only a factor of 3 loss

in atom number.
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3.3.1 Scaling Laws for Evaporative Cooling in an Optical

Trap

The scaling laws for evaporative cooling in optical traps were first derived in [66].

Here, I only give the major results from the theoretical model in [63, 66] instead

of repeating the whole calculation.

The evaporation process can be described with a time-dependent optical trap-

ping potential

U(x, t) = −U(t) g(x), (3.8)

where U is the trap depth and g(x) describes the Gaussian-like trap shape with

g(0) = 1, and g(±∞) → 0. I assume that evaporation is carried out at low

temperatures where the average thermal energy kT << U .

For kT << U and an approximate harmonic potential, we have

Ė =
U̇

U

E

2
+ Ṅ(U + αkT ). (3.9)

Here the first term arises from the change in the harmonic potential energy. The

second term U +α kB T is the total evaporation energy per particle. The net effect

is that the trapped gas loses energy at a rate Ė < 0 by both evaporation and

lowering the trap potential. Note that α kB T represents the excess evaporation

energy per particle with the value of α between 0 and 1 [67]. In the case of a

unitary Fermi gas, the value of α is nearly the same as that of a weakly interacting

Fermi gas, which has the value α = (H−5)/(H−4). Both the energy loss and the

number loss are related to the collision integral of the cross-section for evaporation

σevap.
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At unitarity, the cross-section for evaporative collisions σevap is only a function

of the trap depth U . I give the following heuristic explanation. For a collision

between two atoms of energies ε1 and ε2, energy conservation dictates that ε1+ε2 =

ε3+ε4, where ε3 and ε4 are the energies of the outgoing atoms. For evaporation, we

require that ε4 > U while ε3 ≤ kBT . For atoms that collide at position xc which is

close to the bottom of the trap, we have U(xc) ≤ kBT << U for a trap with large

H. Here we take v3 ' 0, compared to the other speeds for 1,2, and 4. According

to energy and momentum conservation, we readily have that v2
4 = v2

1 + v2
2 and

v1 + v2 = v4, which yields v1 · v2 ' 0 and v2
rel = (v1 − v2)

2 ' v2
4 ' 2U/M . The

unitary cross-section of evaporation for a single component Bose gas is given by

σ = 8π/k2. Applying k = Mvrel/(2~), we obtain the evaporative cross section

σevap =
16π~2

MU
. (3.10)

For a 50-50 mixture Fermi gas of two spin states, the effective collision rate is

reduced by a factor of 1/2 because s-wave scattering requires the antisymmetric

spin state that has 1/2 possibility for the colliding atoms. Eq. (3.10) shows the

evaporative collision cross section is determined only by the trap depth U >> kT .

Hence, the cross section is nearly constant in both the collision integral for energy

loss and in that for the number loss, and can be factored out in the ratio of

Ė/Ṅ = U + αkT . For this reason, the value of α is not a sensitive value whether

the cross-section is energy-dependence or energy-independent for the case when

the optical trap has H >> 1.

For evaporative cooling from the classical regime to degeneracy, we can take

the total energy to be that of a classical gas in a harmonic potential by E =
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3NkBT , and use it in Eq. (3.9) for a fixed H, which yields

N(t)

N0

=

(
U(t)

U0

) 3
2(η′−3)

, (3.11)

where the subscript 0 denotes the initial condition at t = 0, and η′ = H + α =

H + (H − 5)/(H − 4).

The phase-space density scaling also can be determined form Eq. (3.11). The

phase space density ρ for a 50-50 mixture of two spin states in the classical

regime is essentially N/2 divided by the total number of accessible harmonic

oscillator states ρ = (N/2)(Hν̄/kBT )3, where ν̄ ≡ (νxνyνz)
1/3. Using ν̄ ∝ √

U

and kBT ∝ U/H in Eq. (3.11), we obtain

ρ

ρ0

=

(
U0

U

) 3(η′−4)

2(η′−3)

=

(
N0

N

)η′−4

. (3.12)

According to Eq. (3.12), the evaporation efficiency χ is

χ =
ln(ρ/ρ0)

ln(N0/N)
= η′ − 4. (3.13)

While χ ≤ 3 is typical for BECs produced in magnetic traps [68], we find from

Eq. (3.13) that an optical trap with a typical value of H = 10 in our experiments

yields χ = 6.83. This indicates that a quantum degenerate Fermi gas can be

produced with much smaller reduction in atom number in an optical trap.

A dramatic consequence of keeping H constant during the evaporation process

is that the mean square cloud size in the trap does not change. This follows

from the scaling of the total energy as the function of the mean square size,

E = 3NMω2
x〈x2〉trap. This relation holds generally for both a unitary gas and
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an ideal gas in a harmonic trap according to the virial theorem discussed in

Chapter 4. In the classical region, since E = 3NkBT = 3NU/H, we have the

following relation

〈x2〉trap =
U

HMω2
x

. (3.14)

By assuming a harmonic approximation to a gaussian trap U [1−exp(−2x2/a2
x)] '

Mω2
x x2/2, where ax is the trap field 1/e radius in the x-direction, we obtain the

spring constant Mω2
x = 4U/a2

x. By applying this relation in Eq. (3.14), we get

〈x2〉trap =
a2

x

4H
, (3.15)

which shows the mean square size of the trapped cloud does not change as the

trap is lowered with a constant value of H.

3.3.2 Trap Lowering Curve for a Unitary Gas

In this section, I will determine the trap depth lowering curve to maintain constant

H in a unitary gas. I start by calculating the evaporation rate. From the s-wave

Boltzmann equation [67], we obtain the evaporation rate to the lowest order in

exp(−H). Neglecting background gas collisions for simplicity, we get

Ṅ = −2(H − 4) exp(−H)γ N. (3.16)

Since the cloud size does not change, the collision rate for evaporation γ = nvrelσ.

Because the relative speed scales as U1/2 and the cross section as 1/U , we obtain

γ

γ0

=

(
U

U0

) 6−η′
2(η′−3)

. (3.17)
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The initial collision rate γ0 for a single component Bose gas is obtained by using

the results given in [66]

γ0 =
4πN0Mσν̄3

kT0

. (3.18)

Now we insert the cross section from Eq. (3.10) into Eq. (3.18), and apply it to a

unitary Fermi gas of a 50-50 mixture of two spin states. Note that the effective

collision rate is reduced by a factor of 1/2 because s-wave scattering requires the

antisymmetric spin state, and another factor of 1/4 arising from a 50:50 spin

mixture, where only N/2 atoms in each spin state. But the evaporation rate

includes both spin states which gives a factor of 2 to the collision rate. Totally,

we find the evaporation is reduced by a factor of 1/4 for a two-component Fermi

gas compared with a single component Bose gas. By using kT0 = U0/H, we

obtain

γ0 =
16N0π

2~2ν̄3H

U2
0

. (3.19)

In contrast to the collision rate for a constant cross section, where the collision

rate decreased as the trap depth is lowered, the unitary collision rate increases as

the trap depth is lowered in case of η′ > 6. This is a consequence of the faster

increase of the cross section compared with the decrease of flux nvrel.

Differentiating Eq. (3.11) with respect to t and using the results in Eq. (3.16)

and Eq. (3.19), we obtain the lowering curve for a unitary Fermi gas

U(t)

U0

=

(
1− t

τu

)2(η′−3)/(η′−6)

, (3.20)
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where 0 ≤ t ≤ τu. The time constant for the lowering curve is given by

1

τu

=
2

3
(H − 4)(η′ − 6) exp(−H) γ0. (3.21)

Note that, for η′ = 6, one can show that the trap lowering curve is exponential.

In Fig. 3.3, I show trap lowering curves for a gas with an energy-independent

collision cross section and for a unitary gas. The dashed lowering curve is for an

energy-independent cross section with H = 10, U/U0 = 1/(1+ t/τ)1.45 [66], where

τ = 0.08 second is chosen to optimize the evaporation in our experiment. The

solid line is for a unitary gas with H = 10, where U(t) is determined by Eq. (3.20)

with U/U0 = (1− t/τu)
3.24, and τu = 0.77 second is calculated by Eq. (3.21). The

unitary lowering process is much faster, as it achieves runaway evaporation, which

does not occur for an energy-independent cross section.

We can estimate the ratio U/U0 that is required to achieve degeneracy for

a Fermi gas. Assuming a 50-50 mixture of spin-up and spin-down atoms, the

initial phase space density is ρ0 = (N0/2)(Hν̄0/kBT )3. For our full trap depth

of U0 = 550 µK, we have ν̄0 = 1780 Hz and kBT0 ' U0/H = 55 µK for H ' 10.

With N0 = 8 × 105, ρ0 = 1.5 × 10−3, from Eq. (3.12) with H = 10, we have

ρ = ρ0 (U0/U)1.3. Lowering the trap by a factor of 150 yields ρ ' 1, which

corresponds to 0.61 second in the unitary gas lowering curve, and 2.45 seconds

for the constant cross section curve.
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Figure 3.3: Trap depth U/U0 versus time for evaporative cooling of a unitary
Fermi gas. Dashed line: Lowering curve for a gas with an energy-independent
collision cross section. Solid line: Lowering curve for a unitary gas. Each curve
ends when U/U0 = 1/150, where the gas becomes quantum degenerate.

3.3.3 Experiments on Evaporative Cooling of a Unitary

Fermi Gas

Our experiments employ evaporative cooling of a 50-50 mixture of the two lowest

hyperfine states of 6Li fermions in a CO2 laser trap at 834 G, for which the s-wave

scattering length diverges to produce a unitary Fermi gas. The CO2 laser trap is

directly loaded from a 6Li magneto-optical trap. Typically, the total number of

loaded atoms is 2× 106. The magnetic field is ramped to the Feshbach resonance

and the atoms are allowed to evaporate at fixed trap depth first, which yields

N0 = 8 × 105 at stagnation. The trap depth is then lowered according to the

lowering curve U(t)/U0 shown in Fig. 3.3.

The maximum laser power P0 at the trap focus is between 50 and 60 W. Para-
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metric resonance measurements in the weakly interacting regime at low magnetic

field yield the typical harmonic oscillator frequencies at full trap depth U0 as,

ωx = 2πνx = 2π×5500 Hz, ωy = 2πνy = 2π×5400 Hz, and ωz = 2πνz = 2π×190

Hz.

We estimate the maximum trap depth using the known power and U0 =

4αg P0/(c axay), where αg is the ground state static polarizability of 6Li (24.3 ×
10−24 cm3 [69]), c = 3× 1010 cm/s is the speed of light, and ax, ay are 1/e radii of

the electric field for a Gaussian trap in the x- and y-direction, respectively. We

can determine ax for a given laser power according to a4
x = 4(νy/ν

3
x)αg P0/(π

2Mc),

where M = 1.0 × 10−23 g is the 6Li atom mass and ay = axνx/νy. We obtain

U0/kB = 550 µK with ax = 50.3 µm, ay = 51.2 µm for P0 = 60 W, and U0/kB =

500 µK for P0 = 50 W.

Fig. 3.4 shows how the observed total number of atoms N/N0 scales with trap

depth U/U0 for the two different trap lowering curves shown in Fig. 3.3. We use

N/N0 = (U/U0)
p to fit the data in Fig. 3.4 obtained by using the trap lowering

curve for unitary gases, and find p = 0.21(0.01). For H = 10, Eq. (3.11) predicts

p = 0.191, which is shown as the solid line in Fig. 3.4. The scaling law is obeyed

down to about 1% of the maximum trap depth, where the Fermi gas becomes

degenerate and the scaling law based on a classical gas fails as discussed further

below.

We also measured the transverse cloud size after release and subsequent expan-

sion for a time texp, which is between 400 and 1200 µs. The measured expanded

transverse cloud size is found to scale linearly with trap depth U and quadratically

with expansion time texp, which indicates the cloud size in the trap is independent

of trap depth U , as we will show in the following.
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Figure 3.4: Remaining atom fraction versus trap depth for evaporative cooling
of a unitary Fermi gas. Note that the trap lowering time increases from right
to left. Open circles: Data obtained using a trap lowering curve for an energy-
independent scattering cross section. Solid squares: Data obtained using the trap
lowering curve for a unitary gas. The solid line shows the scaling law prediction
for H = U/kBT = 10. The data deviate from the scaling law prediction when the
gas becomes degenerate near U/U0 = 0.007.

The size of the observed expanded cloud is related to that of the trapped

gas by 〈x2〉obs = b2
x(texp) 〈x2〉trap, where there is a known scale factor bx(texp)

for hydrodynamic expansion [12]. However, for ωxtexp >> 1, the difference be-

tween the hydrodynamic and ballistic expansion factors is small. Hence, we take

b2
x(texp) ' (ωxt)

2, the ballistic value for large expansion time. Using ω2
x = 4U/Ma2

x

and Eq. (3.15), we see that

〈x2〉obs

(U/U0) t2exp

=
U0

HM
(3.22)

should be nearly independent of U/U0.

Fig. 3.5 shows the data corresponding to the left side of Eq. (3.22). As expected

for a constant value of H, we find that the ratio 〈x2〉obs/[(U/U0) t2exp] ' 0.06 m2/s2
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is nearly constant, which yields U0/kB = 440 µK for a constant H = 10 from the

number scaling. We find that this initial trap depth is comparable to the above

estimates we made by the measured trap oscillation frequencies and power.

Our data shows that both of the two lowering curves yield similar results for

the number and trap size, but the unitary lowering curve is much faster than that

for the energy-independent cross section. From Fig. 3.4, the atom number data

deviates from the scaling law predictions below U/U0 = 0.007 ' 1/150, which is

in good agreement with the predicted depth at which degeneracy occurs. In the

degenerate regime, further lowering of the trap depth cuts into the Fermi surface

and causes the scaling laws to fail. A different trap lowering curve is required to

optimize the efficiency in this regime. However, in practice, one simply adjusts

the final trap depth to slightly cut into the Fermi surface to achieve the minimum

temperature in the degenerate regime.

3.3.4 Mean Free Path for Evaporating Atoms

The above modeling of evaporative cooling is based on the assumption that the

evaporating atoms leave the trap experiencing only one binary collision. When

the gas is unitary and the collision cross section is large, there exists a question:

Do the evaporating atoms collide with other trapped atoms as they leave the trap?

If this is true, the evaporative process must be modeled by much more complex

multiple collisions. We now show that the chance for these collisions is small even

when the gas is in the hydrodynamic region. This condition is achieved because

the mean free path of the evaporative atoms is much larger than the transverse

trap dimension.

Consider the ratio of the mean free path l = 1/(n̄σ) to the rms transverse
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trap size dx ≡
√〈x2〉trap, where n̄ is the average atoms density. Since the cloud

size during the evaporation does not change, and the average density n̄ scales

as N and the σ scales as 1/U , so that 1/n̄σ scales as U/N . The ratio l/dx =

(l0/dx)(l/l0) = (n̄0σ0/n̄σ)/(n̄0σ0dx) yields

l

dx

=
N0U

NU0

1

n0σ0dx

. (3.23)

For H = 10, N/N0 = (U/U0)
0.19, l/dx scales as (U/U0)

0.81 ' U/U0. We find the

mean free path decreases almost linearly with trap depth.

To achieve l ≥ dx, we require (U/U0)
0.81 ≥ n0σ0dx. Using σ0 = σevap/4 in

Eq. (3.10) for a 50:50 spin mixture and λ = ωz/ωx, we obtain

(U/U0)
0.81 ≥ 2

U0

√
π

λH ~2N0

Maxay

. (3.24)

For our trap, λ = 0.035 and U0 = 500 µK, we find U/U0 ≥ (12.7/500)1.23 = 0.011,

which means that the evaporating atoms will not scatter with other atoms in

the trap until the trap can be lowered by a factor of ' 100. After that limit,

the evaporation process starts to become hydrodynamic. There is a very good

agreement between the scaling law predictions and the data in Fig. 3.4, where the

prediction of constant H is valid above U/U0 = 0.01.

In conclusion, by reducing the trap depth with a lowering curve that maintains

a fixed large ratio H, we find that atom loss is reduced and high efficiency is

achieved in evaporative cooling of a unitary Fermi gas. The faster evaporation

time is important for suppressing excess atom loss and excess heating, such as

background gas collisions or intensity and pointing noises in the laser beam.
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3.4 Creating Strongly Interacting, Weakly In-

teracting, and Noninteracting Fermi Gases

In this section, I will give a schematic introduction to the basic procedures we

use to create ultracold Fermi gases with 6Li atoms. The creation of a strongly

interacting Fermi gas, a weakly interacting Fermi gas as well as a noninteracting

one is shown in the block diagram of Fig. 3.6.

There are four kinds of ultracold Fermi gas samples that have been imple-

mented in our apparatus: a 50:50 spin balanced strongly interacting Fermi gas;

a 50:50 spin balanced noninteracting Fermi gas; a 50:50 spin balanced weakly

interacting Fermi gas; and spin polarized noninteracting or strongly interacting

Fermi gases. Spin polarized Fermi gases are beyond the scope of this disserta-

tion, so I will not give details here. Instead, I will focus on how we generate spin

balanced Fermi gases. Noted that all the Fermi gases presented in this thesis are

spin balanced, except for specific mention.

The creation of Fermi gases with different interaction strength uses the same

precooling methods. First, a collimated 6Li atomic beam is generated from the

hot vapor in an atomic oven. The beam propagates from the oven region to

the trapped region through a Zeeman slower. Inside the slower, the atoms are

slowed down by the counterpropagating slower laser beam due to Doppler cooling

mechanism. After exiting the slower, the atoms enter a ultrahigh vacuum chamber

where the atoms with speed less than 100 m/s can be captured by a MOT. The

period of the slow atoms loading into the MOT is called “MOT loading phase”,

which lasts for about 10 seconds to load about 200 million atoms.

Throughout the MOT loading time, a CO2 laser optical dipole trap is also
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Figure 3.6: The schematic diagram for the procedure of producing ultracold
Fermi gases with different strengths of interaction.
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present in the region of the MOT. The positions of the MOT and that of the

CO2 laser trap are carefully overlapped by moving the MOT position slightly

with several bias magnetic coils. To increase the trap depth of the CO2 laser

trap, the CO2 laser trap is generated by both the forward propagating beam and

the back-going beam. The back-going beam is retroreflected by a rooftop mirror,

which rotates the linear polarized incoming beam by 90 degrees to avoid creating

a standing wave trap. The back-going beam then retraces the path of the forward

beam all the way to a thin-film polarizer, at which point the back-going beam is

directed to a beam dump. The focus points of the forward beam and the back-

going beam are aligned carefully to overlap with each other for providing the

tightest spacial confinement. Approximately two million atoms at a temperature

of 140 µK are loaded into the CO2 laser trap.

After the laser beams and the spherical quadrupole magnetic field for the MOT

are turned off, a bias magnetic field produced by a pair of high field magnets is

turned on. First, the bias magnetic field is swept to 8 gauss to split the hyperfine

states |1〉 and |2〉. A broadband white noise RF pulse is applied to equalize the

spin population in those two states. After that, we use different procedures to

create ultracold Fermi gases of different interacting strength. I will describe these

procedures in the following paragraphs.

In the case of creating strongly interacting Fermi gases, the magnetic field is

ramped to 834 G. Then the retroreflected CO2 laser beam is adiabatically blocked

to producing a forced evaporation, which only leaves a single forward propagating

beam to form the optical trap. Then the optical potential is kept constant for

about 5 seconds to allow thermalization and evaporation of the trapped atoms. I

call this “free evaporation.” At the end of the free evaporation, about 1 million
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atoms at the temperature of 50 µK are contained in a single beam optical trap

with the trap depth of about 500 µK. The free evaporation is followed by the

forced evaporation, which is achieved by lowering the optical trap by a factor of

a thousand from the full trap depth according to the “unitary lowering curve”

that I discussed in the previous section. This lowering curve generates atomic

ensembles close to the ground state energy in a fraction of a second with about

1× 105 atoms in each spin states. Once the forced evaporation is completed, the

optical trap depth is held at its final value for a brief time of about a fraction of

second to allow the atoms to thermalize. Then the depth of the CO2 laser trap

is adiabatically recompressed to a desired value in another fraction of second.

Finally, the ultracold 6Li atoms are prepared as a sample of a strongly interacting

Fermi gas.

In the case of creating a noninteracting Fermi gas, there are two primary

difference for the forced evaporative cooling shown in Fig. 3.6. First, the magnetic

field is ramped to 300 gauss to operate the forced evaporation. Second, the forced

evaporation process at 300 gauss is much longer than that at 834 gauss. At

300 gauss, the gas is weakly interacting with a small negative scattering length.

Smaller interatomic collision rates make the thermalization process much slower

at 300 gauss than that at the Feshbach resonance. Usually, the forced evaporative

cooling at 300 gauss lasts about 10 seconds to cool the cloud to a temperature of

T/TF ≈ 0.20 with the 2× 105 atoms number in each spin state. Further cooling

is very difficult in the weakly interacting regime since the collision rate decreases

with the temperature decreases while the collision cross section is a constant.

After evaporative cooling, we sweep the magnetic field from 300 gauss to the zero

crossing of the scattering length at about 528 gauss, where as ≈ 0 and a truly
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noninteracting gas is obtained. The sweep is done adiabatically over about 0.8

second to keep the temperature of the cloud almost constant. 1

In Fig. 3.6, I also show how to use the evaporative cooling in the strongly

interacting regime for producing a weakly interacting Fermi gas on the BCS side.

We do the evaporative cooling at 834 gauss, then adiabatically sweep the magnetic

field from the the unitary limit to the weakly interacting BCS region near 1200

gauss. This adiabatical sweep process is very stable. There is no heating or

atom loss observed due to the ramping of the magnetic field. By doing adiabatic

sweeping, the total entropy of the cloud is conserved, which provides a tool to

connect thermodynamic properties of strongly interacting Fermi gases with those

of weakly interacting Fermi gases, as described in Chapter 5.

After producing strongly interacting, noninteracting and weakly interacting

Fermi gases, we mainly operate two kinds of experiments for ultracold atoms.

One is to study dynamics, such as release of the atoms from the trap, excitation

of collective oscillations, and rotation of the optical trap, etc. The other one is

to study thermodynamics, such as heating the cloud and ramping the magnetic

field, etc.

The final step of our experiment is to extract information from the cold atoms.

In our lab, we use absorption imaging with resonant optical pulses as described

before. We usually first release the atom cloud from the trap to let the cloud

expand so that the transverse size of the cloud images are much larger than

1In zero magnetic field, |1〉− |2〉 mixture is also a nearly noninteracting Fermi gas. However,
there are two reason preventing us to get a noninteracting gas in zero field [53, 64]. First, the
signal-to-noise level for the absorption images of the atoms is reduced at zero magnetic field
because the resonance imaging pulse optically pumps substantial atoms into the dark states.
Second, there exists three p-wave Feshbach resonances for a |1〉 − |2〉 mixture between 159 and
215 gauss [70,71], which results in the significant heating and atom loss as the magnetic field is
swept down.
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the resolution of our imaging system. The expansion behavior depends on the

collisional properties of the cloud and is explained in great detail in [64]. Based

on the known expansion dynamics, we can trace back the cloud size to the trap

before the release. The images of the cloud are recorded by a cooled ultralow

noise CCD camera. Resonant imaging is a destructive imaging method. After

the atoms disappear, a second optical pulse is sent into the imaging system and

recorded by the CCD as the reference pulse.

In the end, the images of the atoms are acquired by a computer system and

processed by Igor data analysis software. An image processing program was de-

veloped in our group to extract the atom information, such as the spatial density,

atom number, cloud size etc. The updated part of this program for my experi-

ments can be found in Appendix B.
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Chapter 4

Method of Measuring the Energy
of a Unitary Fermi Gas

From an experimental view, we take absorption images of the cold atoms to

obtain the atom number and column density in the optical trap. When we say

“measure” the energy and entropy, actually we “determine” the energy and the

entropy from the atom number and column density. So there is a question about

the measurement: Can we use a model-independent method to directly determine

the energy and entropy from the atoms number and column density of a strongly

interacting Fermi gas? The answers for the above question are quite different in

the case of energy and entropy. For energy measurement, the answer is Yes. A

strongly interacting Fermi gas obeys virial theorem at all temperatures [48], which

enables a direct determination of the energy of a strongly interacting Fermi gas

from the cloud size in the strongly interacting regime. However, we have no model-

independent way to determined the entropy of a strongly interacting Fermi gas

directly from their column density in the strongly interacting regime. Instead, we

rely on adiabatically sweeping the magnetic field to the noninteracting or weakly

interacting regime, where the entropy can be determined from the cloud size based

only on the fundamental thermodynamic principles without invoking any specific

theoretical models. In this chapter, I will focus on how to measure the energy
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of the cloud of a trapped strongly interacting Fermi gas. I will introduce the

virial theorem for unitary Fermi gases first. The virial theorem provides a model-

independent way to determine the total energy of a cloud from its mean square

size. After that, I will describe our method to extract the axial mean square size

of the cloud by fitting the cloud profile using a Thomas-Fermi distribution. In

the end, I will show how to determine the total energy of a unitary Fermi gas in

terms of the axial mean square size of a cloud.

4.1 Virial Theorem

In this section I will show that strongly interacting Fermi gases obey the virial

theorem at all temperatures. According to the universal hypothesis for a strongly

interacting Fermi gas, the thermodynamic functions of a homogeneous gas in the

unitarity only depend on the local density n and temperature T [5].

First consider the local energy ∆E (kinetic and interaction energy) contained

in a small volume ∆V of gas centered at position x in a harmonic trap. Assume

that the volume ∆V contains a fixed number of atoms ∆N , so that n = ∆N/∆V ,

where
∫

d3xn(x) = N is the total number of trapped atoms.

For such a unitary gas, the local energy ∆E and local entropy ∆S must be of

the general form

∆E = ∆N εF (n) fE

[
T

TF (n)

]
, (4.1)

∆S = ∆N kB fS

[
T

TF (n)

]
. (4.2)

Here, εF (n) fE and kB fS are the average energy and the average entropy per

particle, respectively. The natural energy scale is taken to be the local Fermi
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energy εF (n) ≡ ~2 (3π2 n)2/3/(2m) = kBTF (n), where n is the local particle den-

sity and TF (n) is the corresponding local Fermi temperature. Note that we have

fE = 3/5 for a zero-temperature ideal Fermi gas, while fE = 3(1 + β)/5 for a

zero-temperature unitary gas, where β is a universal many-body parameter de-

fined as the difference between the local energy of a strongly interacting gas and

that of a noninteracting Fermi gas εSI = (1 + β)εNI [12, 72]. For a classical gas,

the temperature dependent function fE = (3/2)T/TF (n).

The local pressure of the gas is readily determined from the relation

P = −
(

∂(∆E)

∂(∆V )

)

∆N,∆S

. (4.3)

From Eq. (4.2), we see that holding the local entropy constant requires fS to

be a constant, which means that we need to hold the local reduced temperature

T/TF (n) constant in taking the derivative of ∆E with respect to volume ∆V .

Hence, we only need to find the volume derivative to the local Fermi energy,

which yields the local pressure

P (n, T ) = −∆N
∂(εF (n))

∂(∆V )
fE

= ∆N
2

3

εF (n)

n

∆N

∆V 2
fE

=
2

3
n εF (n) fE

=
2

3
E(n, T ). (4.4)

where the local energy density (total kinetic plus interaction energy per unit

volume) E(n, T ) = n εF (n) fE[T/TF (n)]. Eq. (4.4) relates the pressure and local

energy density for the unitary gas in the same way as for an ideal, noninteracting
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homogeneous gas, although the energy densities are quite different. Since εF (n) ≡
~2 (3π2 n)2/3/(2m), the pressure of the unitary gas have the general form

P (n, T ) =
~2

m
n5/3 fP

[
T

TF (n)

]
, (4.5)

where the fP is a dimensionless function only depends on the the T/TF .

In mechanical equilibrium, the balance of the forces arising from the pressure

P and trapping potential U yields

∇P (x) + n(x)∇U(x) = 0. (4.6)

Now we consider any arbitrary trap potential that satisfies the condition that

the local atom density approaches zero at the surface of the cloud. Taking an

inner product of x · ∇P (x) and integrating over the total volume of the trapped

gas, we get

∫
d3xx · ∇P (x) =

∫
d3x∇ · (xP (x))−

∫
d3xP (x)∇ · x (4.7)

Note that the first term on the right side of Eq. (4.7) equals zero because the

integration of xP (x) is in the surface of the trap, where both the atoms density

and the local pressure is zero. In the second term on the right side, ∇ · x = 3.

Inserting Eq. (4.6) into Eq. (4.7), we get

3

∫
d3xP (x) =

∫
d3xn(x)x · ∇U(x). (4.8)

Applying the relation of P (x) = 2
3
E(x) and

∫
d3xn(x) E(x) = NE − N〈U〉,
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where E and 〈U〉 are the total energy and the potential energy per particle, we

then obtain

E = 〈U〉+
1

2
〈x · ∇U(x)〉, (4.9)

where 〈x · ∇U(x)〉 is defined as

〈x · ∇U(x)〉 =

∫
d3xn(x)x · ∇U(x)

N
. (4.10)

Eq. (4.9) is the general form of the virial theorem for any trapping potential. In

the following, we will consider the virial theorem for a specific trapping potential.

First, we consider a harmonic potential U(x) = m(ω2
x x2 + ω2

y y2 + ω2
z z2)/2. For

the harmonic trap, applying x · ∇U(x) = 2 U(x) in Eq. (4.9), we readily get

E = 2〈U〉. (4.11)

In the local density approximation, the pressure of the cloud is equal in all

three direction, we have 〈x∂U
∂x
〉 = 〈y ∂U

∂y
〉 = 〈z ∂U

∂z
〉 from Eq. (4.8). So the potential

energies are equal in three dictions since by 〈Ux〉 = 〈Uy〉 = 〈Uz〉 = mω2
z〈z2〉/2,

then we have the total energy for a harmonic potential as

E = 3 mω2
z〈z2〉. (4.12)

A more realistic potential of the optical dipole trap is a Gaussian profile. The

anharmonicity arising from the Gaussian trap will add a small correction for the

total energy in Eq. (4.11) and Eq. (4.12). The Gaussian potential is given by

U(x, y, z) = U0 − U0 exp

[
− m

2U0

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)]

. (4.13)
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Using the geometric mean trap frequency ω̄ = (ωx ωy ωz)
1/3, we can rewrite

Eq. (4.13) as a symmetric effective potential

U(x) = U0 − U0 exp

(
−mω̄2x2

2U0

)
, (4.14)

where x is the reduced space vector with x2 = x2
i + x2

j + x2
k and xi = ωxx/ω̄, xj =

ωyy/ω̄, xk = ωzz/ω̄.

To obtain the anhamonicity effects of the Gaussian trap, we use the Taylor

expansion of Eq. (4.14) up through quadratic terms, which is given by

U(x) =
mω̄2x2

2
− m2ω̄4x4

8U0

. (4.15)

The square term in Eq. (4.15) is the harmonic potential and the quartic term pro-

vides the anharmonicity correction for the harmonic trap. Now we can calculate

the anharmonicity correction for the virial theorem by applying Eq. (4.15) into

Eq. (4.9) which yields

E = mω̄2〈x2〉 − 3m2ω̄4〈x4〉
8U0

. (4.16)

Note that a symmetric potential gives 〈x2〉 = 〈y2〉 = 〈z2〉 = 〈x2〉/3, and 〈x4〉 =

5〈x4〉 = 5〈y4〉 = 5〈z4〉. Eq. (4.16) can be written in terms of the mean square size

in the z direction by

E = 3mω2
z〈z2〉 − 15m2ω4

z〈z4〉
8U0

(4.17)

= 3mω2
z〈z2〉

(
1− 5mω2

z〈z4〉
8U0〈z2〉

)
. (4.18)
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Now we can make an estimate for the value of 〈z4〉/〈z2〉 by assuming the

density distribution of the atoms in a Gaussian shape, which is valid at the higher

temperature T > 0.5TF . We should admit that the density profile is precisely a

Gaussian shape only at high temperatures T ≥ TF . However, at low T/TF , the

correction is so small that the error in the Gaussian approximation is negligible.

So here, for the purpose of estimating the anharmonic correction, the Gaussian

approximation should be good enough. By assuming n(z) = exp(− z2

a2 )/(a
√

π),

we get

〈z4〉 =

∫ ∞

−∞
dx

exp(− z2

a2 )x
4

a
√

π
=

3

4
a4 = 3〈z2〉2. (4.19)

By inserting Eq. (4.19) into Eq. (4.18), we finally obtain

E = 3mω2
z〈z2〉

(
1− 15mω2

z〈z2〉
8U0

)
. (4.20)

It is worth noting that the anharmonicity correction only depends the ratio be-

tween the mean square size and the depth of the Gaussian trap, while is indepen-

dent of the interactions. This provides us with a unified method to calculate the

anharmonic corrections for both noninteracting and strong interacting gases.

Hence, universality requires a strongly interacting Fermi gas to obey the virial

theorem just as a noninteracting ideal Fermi gas, where the total energy of the

cloud can be determined by measuring the mean square size of the cloud in the

trap. The mean square size of the cloud can be readily measured in a model-

independent way from the atom column density. In the next section, I will describe

how to calculate the mean square size from the column density by fitting the

density profile.
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4.2 Mean Square Size of a Unitary Fermi Gas

To calculate the mean square size of the cloud, one can either directly use the

column density to calculate it by the definition of the mean square size, or use a

density profile to fit the cloud shape, then determine the mean square size from

the fitting curve. For the first method, it is always a problem to deal with the

background noise of absorption images. Instead, we use the curve fitting method,

which provides a consistent way to extract the mean square size from the could

images.

For the application of fitting the cloud profile, the optical dipole trap can be

well approximated by a harmonic trap. In a harmonic trap, a noninteracting

ideal Fermi gas has a Thomas-Fermi profile. Even though we are trying to fit

the density profile of a unitary Fermi gas, we will show that the density profile

of a unitary Fermi gas in the ground state is exactly the Thomas-Fermi shape by

using an effective particle mass in the equation of state for a unitary Fermi gas.

For the finite temperature states, the Thomas-Fermi profile can be treated as a

very good approximation for the profile of a unitary Fermi gas [45].

4.2.1 Equation of State for a Ground State Unitary Gas

Let us study a noninteracting ideal Fermi gas in a harmonic trap first. Suppose

the harmonic potential is given by

UHO(x, y, z) =
m

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
. (4.21)
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A noninteracting Fermi gas at the zero temperature with N/2 atoms per spin

state has a Fermi energy given by

EF = ~ ω̄(3N)1/3, (4.22)

where the geometric mean of the trap oscillation frequencies is given by ω̄ =

(ωx ωy ωz)
1/3. The Fermi energy sets a characteristic energy scale, below which

the Fermi occupation number becomes unity for all energy levels and above which

it is zero for any energy levels. The corresponding temperature scale is the Fermi

temperature TF , which is given by

TF =
EF

kB

=
~ ω̄(3N)1/3

kB

. (4.23)

The Fermi radii for an noninteracting ideal Fermi gas are defined as

σi =

(
2 EF

m

)1/2
1

ωi

, i = x, y, z. (4.24)

Accordingly, the harmonic potential can be rewritten as

UHO(r) = EF

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)
. (4.25)

The equation of state of a ground state noninteracting Fermi gas trapped in

a potential UHO(r) is given by [73]

~2 kF (r)2

2 m
+ U(r) = µ, (4.26)

where kF (r) represents the position dependent local Fermi wave vector, and µ is
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the global chemical potential of the trap which is defined as the chemical potential

at the center of the trap. For the ground state, µ is equal to the Fermi energy

µ = EF = ~ ω̄(3 N)1/3. (4.27)

Now we look at the equation of state for a unitary Fermi gas at zero tem-

perature T = 0. As I discussed in Section 2.2.1, when as → ±∞, the ground

state unitary gas has a cross section given by σ = 4 π/k2. The equation indicates

that the collisional behavior of the ground state unitary Fermi gas only depends

effectively on the the Fermi wavevector kF while being completely independent of

the sign and strength of the interparticle interactions.

Following this argument, the interaction energy also depends only on the Fermi

energy. Let us look back at the weakly interacting case, where the mean field in-

teraction energy is approximately to the scattering length and particle density

Uint(r) ∝ asn(r) [74, 75], where n(r) is local atoms density related to the local

Fermi wavevector via n(r) = k3
F (r)/(3π2). When the strength of the interparticle

interactions approaches the unitarity, the s-wave scattering length should be re-

placed by an effective scattering length aeff . Because the only remaining length

scale related to the system is the local Fermi wave vector kF (r), we require that

aeff ∝ 1/kF (r) from dimensional analysis, which yields Uint ∝ kF (r)2. From the

local density approximation, the local Fermi energy is determined by the local

density n(r) by

εF (r) =
~2 kF (r)2

2 m
=
~2(3π2 n(r))

2
3

2 m
. (4.28)
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So we can rewrite the interaction energy as [4, 12]

Uint = β εF (r), (4.29)

where β is a universal many-body constant for a strongly interacting Fermi system

with the unitary scattering length.

The additional term of the interaction energy should be added into the equa-

tion of state by

(1 + β)
~2 kF (r)2

2 m
+ U(r) = µ∗, (4.30)

where the asterisk on the global chemical potential in Eq. (4.30) represents the

case of a strongly interacting gas in the unitary limit.

Our goal is to determine what is the value of the µ∗. The method we use is to

define an effective mass m∗ = m/(1 + β). By doing that, Eq. (4.30) is rewritten

as

~2 kF (r)2

2 m∗ + U(r) = µ∗. (4.31)

Comparing Eq. (4.26) and Eq. (4.31), we find the equation of state for a unitary

gas is the same as the equation of state for a noninteracting gas with a scaled mass.

Since ω̄2 ∝ 1/m, the scaled geometric mean of the trap oscillation frequencies is

given by ω̄∗ =
√

1 + β ω̄. As a result, the chemical potential for the ground state

unitary Fermi gas is given by

µ∗ =
√

1 + β µ =
√

1 + β EF . (4.32)

From the result of the chemical potential, we find the thermodynamic param-

eters of the ground state unitary Fermi gas only depends on the Fermi energy and
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a universal many-body constant β. At finite temperature, the thermodynamics

of a strongly interacting Fermi gas is known as “universal thermodynamics” since

thermodynamic properties have the same dependence on the temperature and

density while are completely independent of microscopic interparticle interactions

in all strongly interacting systems. From Eq. (4.30), we can see that the ground

state unitary gas behaves similarly to a noninteracting gas composed of particles

with an effective mass m∗ = m/(1 + β). For attractive interactions β < 0, the

effective mass exceeds the bare mass, m∗ > m. So the shape of a noninteracting

Fermi gas in a harmonic trap should be exactly the shape for a unitary Fermi

gas in the same trap only differing with a constant. In the next section, I will

describe this difference.

4.2.2 Mean Square Size of a Ground State Unitary Fermi

Gas

The three-dimensional distribution of atomic density of a noninteracting Fermi gas

in the harmonic trap is given by the zero temperature Thomas-Fermi profile [53],

ng(x, y, z) =
4 N

σx σy σz π2

(
1− x2

σ2
x

− y2

σ2
y

− z2

σ2
z

)3/2

Θ

[
1− x2

σ2
x

− y2

σ2
y

− z2

σ2
z

]
, (4.33)

where the Heaviside step function Θ restricts the integration to the regime of space

of x2

σ2
x
+ y2

σ2
y
+ z2

σ2
z

< 1, and σi is the Fermi radius defined in Eq. (4.24). Integrating in

the x and y direction, the normalized one-dimensional ground state distribution

in the z direction is found to be

ng(z) =
8 N

5 π σz

(
1− z2

σ2
z

)5/2

Θ

[
1− z2

σ2
z

]
. (4.34)
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Note that integration of Eq. (4.34) over x is confined from −σx to +σx. By

definition, the ground state mean square size 〈z2
g〉 is given by

〈z2
g〉 =

∫ zmax

−zmax

z2 ng(z) dz (4.35)

=
σ2

z

8
. (4.36)

For a unitary Fermi gas with µ∗ =
√

1 + β EF , we find that the Fermi radius

in the unitary case σ∗i is related to the noninteracting Fermi radius σi via

σ∗i = (1 + β)1/4 σi. (4.37)

Accordingly, the mean square size of the unitary Fermi gas 〈z2
g〉∗ is given by

〈z2
g〉∗ = (1 + β)1/2σ2

z

8
(4.38)

In the experiment, we always have a finite temperature gas, so we need to use

a finite temperature Thomas-Fermi profile to calculate the mean square size of

the cloud. In the following, I will describe this method.

4.2.3 Mean Square Size of a Unitary Fermi Gas at Finite

Temperature

Now we look at the finite temperature case for a noninteracting Fermi gas. The

three- and one-dimensional density distributions are given by the 3D and 1D finite
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temperature Thomas-Fermi profiles [53] as

n(x, y, z; T ) = − 3 N

π3/2 σx σy σz

(
T

TF

)3/2

Li3/2


exp




µ
EF
− x2

σ2
x
− y2

σ2
y
− z2

σ2
z

T/TF





 ,

(4.39)

n(z; T ) = − 3 N√
π σz

(
T

TF

)5/2

Li5/2

[
exp

(
µ

EF
− z2

σ2
z

T/TF

)]
, (4.40)

where Lin(x) is the nth-order polylog function given by

Lin(x) =
∞∑

k=1

xk

kn
, |x| < 1. (4.41)

Here µ is the chemical potential at the finite temperature, which depends on the

EF and T by an integral equation [64]

E3
F

3
=

∫ ∞

0

ε2dε

exp
(

ε−µ
kBT

)
+ 1

. (4.42)

By fitting the one-dimensional density distribution with Eq. (4.40), we obtain

the fitting parameters σz and T/TF from the absorption images. Since the virial

theorem ensures the mean square size 〈z2(T )〉 ∝ E(T ) in a harmonic trap, we can

write the mean square size 〈z2(T )〉 at the finite temperature by

〈z2(T )〉 = 〈z2
g〉

E(T )

E0

=
σ2

z

8

E

E0

[
T

TF

]
. (4.43)

Here E
E0

[
T
TF

]
is a numerical function that only depends on the scaled temper-

ature T
TF

of the noninteracting Fermi gas in the harmonic trap, which is shown in

Fig. 4.1. This function is calculated by counting the energy levels and the Fermi

occupation number, then integrating the energy from the lowest energy state up to
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Figure 4.1: The numerical function of E/E0 versus T/TF for a noninteracting
Fermi gas in a harmonic trap.

the highest state, which is determined by the finite temperature chemical poten-

tial. The detailed calculation and Mathematica program are given in Appendix A.

Now we look at the case for the unitary Fermi gas. We have found that a

modified 1D noninteracting Fermi gas Thomas-Fermi profile can be used to fit

the strongly interacting gas very well in the whole temperature range we studied

from previous studies [45]. The only modification for fitting the unitary Fermi

gas is to use σ∗i instead of σi in Eq. (4.40), and to replace T/TF by an empirical

reduced temperature T̃

n(z; T̃ ) = − 3 N√
π σ∗z

T̃ 5/2 Li5/2

[
exp

(
µ
µ∗ − x2

(σ∗z )2

T̃

)]
, (4.44)

where µ∗ is the chemical potential for the ground state unitary Fermi gas defined
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in Eq. (4.32).

It is worth noting that the formalism described above does not mean we can

determine the real temperature T/TF in the strongly interacting regime. To

extract the temperature information from T̃ , we need rely on a specific theoretical

model, such as pseudogap theory our lab used in the previous study of the heat

capacity [45].

For very high temperatures in the classical limit, the reduced temperature T̃

is related to the real temperature using the following argument. In the very high

temperature limit, such as T/TF > 0.8, the cloud profile is actually a Gaussian

shape following e
−m ω2

z z2

2 kB T = e
−z2

σ2
z T/TF [45], where the Fermi radius and temperature

enter into the expression of the Gaussian profile as a product. In this high T/TF

limit, the product should be invariable by (σ∗z)
2T̃ = σ2

zT/TF , which requires

T̃ =
T

TF

√
1 + β

. (4.45)

In the real experiment, we fit the coldest temperature cloud with a zero tem-

perature Thomas-Fermi profile to get σ∗z , then hold σ∗z constant in a finite tem-

perature Thomas-Fermi profile to obtain T̃ . Although the fit value of T̃ can not

tell us the real temperature of a unitary Fermi gas in a model-independent way,

T̃ and σ∗z can give an accurate determination of the mean square size of the cloud

in the unitary limit. We replace σz with σ∗z and T/TF with T̃ in Eq. (4.43), then

obtain

〈z2(T̃ )〉 =
(σ∗z)

2

8

E

E0

[
T̃

]
. (4.46)

In this section, I showed that I can measure the mean square size of the unitary

Fermi gas by fitting the profile with a finite temperature Thomas-Fermi profile of
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the noninteracting Fermi gas. This procedure does not invoke any specific model,

and is valid for the temperature range I studied, since it is has been proved that

the finite temperature Thomas-Fermi profile describes the profile of a strongly

interacting profile very well for both below and above the superfluid transition in

a strongly interacting Fermi gas [45]. In the next section, I will show that the

total energy of a strongly interacting Fermi gas can be readily obtained from the

mean square cloud size by applying the virial theorem.

4.3 Energy of a Unitary Fermi Gas

4.3.1 Energy for a Unitary Gas in a Harmonic Trap

From the virial theorem given by Eq. (4.12) and Eq. (4.35), the total energy of a

noninteracting ideal Fermi gas is given by

ENI0 = 3mω2
z〈z2

g〉 =
3mω2

zσ
2
z

8
=

3

4
EF . (4.47)

Similarly, from Eq. (4.12) and Eq. (4.38), we get the total energy of a strongly

interacting Fermi gas in the ground state

ESI0 =
3m∗(ω∗z)

2(σ∗z)
2

8
=

3

4

√
1 + βEF . (4.48)

Now we look at the finite temperature case. From Eq. (4.12) and Eq. (4.43),

the total energy for a noninteracting Fermi gas is given by

ENI(T ) = 3mω2
z〈z2(T )〉 =

3

4
EF

E

E0

[
T

TF

]
. (4.49)

77



From the mean square size of a unitary gas at finite temperature given by Eq. (4.46),

we obtain the total energy of the unitary Fermi gas as

ESI(T̃ ) = 3m∗(ω∗z)
2〈z2(T̃ )〉 =

3

4

√
1 + β EF

E

E0

[T̃ ]. (4.50)

In summary, my method to determine the total energy of a strongly interacting

Fermi gas in the unitary limit has the following steps: First, by fitting the 1D

column density with a finite temperature Thomas-Fermi profile, I get the empirical

reduced temperature T̃ and the effective cloud width σ∗z for a strongly interacting

Fermi gas. Second, I obtain the function E
E0

[T̃ ] from our numerical calculation.

In the end, by applying Eq. (4.50), we obtain the total energy of the cloud.

4.3.2 Anhamonicity Correction for the Energy of a Uni-

tary Gas in a Gaussian Potential

For precision measurements, we need to consider the correction to the total energy

dependence on the mean square size of the cloud due to the anhamonicity arising

form the Gaussian potential.

According to Eq. (4.20), the anharmonicity correction only depends the ratio

between the mean square size and the depth of the Gaussian trap and is irrele-

vant to the interactions. This provides us a method to estimate the anharmonic

corrections for both the noninteracting and strong interacting gas.

As noted above, the nature energy scale in our system is the Fermi energy

EF . Now we define the mean square size of the cloud with the total energy EF

as z2
F , where we call z2

F the mean square size of the Fermi energy. Note that z2
F

is not equal to the square of the Fermi radius σz since mω2
zσ

2
z/2 = EF = 3mω2

zz
2
F
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giving z2
F = σ2

z/6. Inserting z2
F into Eq. (4.20), we get the scaled total energy of

the cloud with anharmonicity correction

E

EF

=
〈z2〉
z2

F

(
1− 15

24

EF

U0

〈z2〉
z2

F

)
(4.51)

=
〈z2〉
z2

F

(1− κ) , (4.52)

where κ is the anharmonic correction factor, which is less than 10% for most

of our experiments as determined from the measured mean square cloud size

and our knowledge for the trap depth and the Fermi energy. The Fermi energy

is determined by the atom number and the axial trap frequency measured by

parametric oscillation [64]. For the trap depth, we can either estimate it using

the parameters of our CO2 laser trap as described in Chapter 8 or extract it by

modeling the evaporation cooling data shown in Chapter 3.
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Chapter 5

Method of Measuring the
Entropy of a Unitary Fermi Gas

For a strongly interacting gas in the unitary limit, the entropy dependence on the

macrovariable of a unitary Fermi gas can be simplified by the argument of the

universality. For a homogeneous unitary Fermi gas, the only length scale of the

system is the Fermi wavevector kF . Correspondingly, the only energy scale of the

system is the Fermi energy EF . So the entropy S per particle can be written as a

universal function of the total energy

S = S

[
E

EF

]
. (5.1)

For a unitary Fermi gas, ideally Eq. (5.1) includes all the information about

the thermodynamics. For this reason, the primary goal in this chapter is to

develop methods to measure the entropy of a unitary Fermi gas. To make a

model-independent measurement on the entropy, I rely on adiabatically sweeping

the magnetic field to the noninteracting interacting regime, where the entropy is

conserved by the adiabatic sweep

SI = SSI . (5.2)
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In the noninteracting regime, the entropy SI can be calculated in terms of the

mean square cloud size of a ideal gas from the first principle without invoking

any specific models, which ensures a model independent method of measuring the

entropy of a strongly interacting Fermi gas by the adiabatic sweep. Note that I

will normally use the S and E to refer the entropy per particle and the energy

per particle, respectively, in the following chapters.

In real experiments, an adiabatic sweep from the strongly interacting regime

at 834 gauss to the noninteracting regime at 528 gauss is not applicable in 6Li

atoms. During such sweeping, atoms would be nearly totally lost from the optical

trap at the magnetic fields of about 680 and 540 gauss due to the seriously heating

mechanism discussed in the following [15, 61]. A possible reason for the heating

mechanism at 680 gauss is that 6Li-6Li molecules are created by the magnetic

field ramping to the BEC side, then those molecules collide with a third atom.

The three-body collisions would make the molecules decay to the deep bound

molecular states while releasing a huge kinetic energy to the third atom. Near

540 gauss, the heating is due to a narrow Feshbach resonance that is less than

1 gauss wide [65, 71]. This is an additional reason that, in Section 3.4, we do

not utilize evaporative cooling in the strongly interacting regime to produce a

noninteracting Fermi gas by a downward magnetic sweep.

Instead, we sweep a strongly interacting Fermi gas to the weakly interacting

regime at 1200 gauss as an alternative method, where we measure the mean

square axial cloud size 〈z2〉1200 at 1200 gauss. The entropy of a weakly interacting

gas SWI(〈z2〉1200 − 〈z2〉0) has been calculated by several theoretical groups [6,

76, 77], where 〈z2〉0 is the ground state size of a weakly-interacting Fermi gas

at 1200 gauss that automatically includes the mean field energy shift due to
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the weak interactions. 〈z2〉0 is also determined by measuring the coldest cloud

size in our experiments. Then we calculate SI(〈z2〉1200 − 〈z2〉I0) in the simplest

approximation, by assuming a noninteracting Fermi gas in a Gaussian trapping

potential. Here, we apply a first principle calculation based on the occupation

number f(ε) of a finite temperature ideal Fermi gas to find SI(〈z2〉1200 − 〈z2〉I0),

where 〈z2〉I0 is the ground state size of an ideal gas. By comparing SWI(〈z2〉1200−
〈z2〉0) and SI(〈z2〉1200 − 〈z2〉I0), we find the entropy in the weakly interacting

regime is very close to the noninteracting gas entropy over most of the energy

range

SSI = SWI ≈ SI . (5.3)

This result shows that the entropy in the weakly interacting regime can be de-

termined by calculating the noninteracting gas entropy plus a mean field shift of

the cloud size.

Curious readers may ask why we do not determine the entropy of a strongly

interacting Fermi gas directly from the column density in the strongly interacting

regime. In contrast with measuring the energy in the strongly interacting regime,

where the virial theorem provides a model-independent method to determine the

energy from the mean square size of the cloud, the entropy can not be determined

in an model-independent way in the strongly interacting regime. The reason

can be simply understood as following: To determine the energy of a strongly

interacting Fermi gas, we only need to know the relation between the internal

energy (the interaction energy plus the kinetic energy) and the potential energy.

The virial theorem provides an elegant relation between the potential energy

and the internal energy in the unitary system, which makes the energy readily

determined. However, to find the entropy, we need know more information about

82



how the kinetic and the interaction energy distribute in the quantum states, which

determines the amount of randomness of the microvariables in a macroscopic

ensemble. For this reason, the determination of entropy in the strongly interacting

regime involves the calculation of many-body quantum states in the unitary limit,

thus unavoidably requires strong coupling many-body theories.

In summary, our method to measure the entropy follows this scenario: Gen-

erate a unitary Fermi gas in the strongly interacting regime; Measure the mean

square size of the cloud in the strongly interacting regime to determine the total

energy of the gas; Generate the identical cloud in the strongly interacting regime

and adiabatically sweep the magnetic field to the weakly interacting regime; Mea-

sure the mean square size of the weakly interacting cloud to determine the entropy;

Repeat the above steps for strongly interacting gases at different energies; Finally,

we obtain both the entropy and energy for a strongly interacting Fermi gas.

In the following, I will first review the calculation of the entropy of the non-

interacting ideal Fermi gas in an optical trap. Then, the determination of the

entropy of a weakly interacting Fermi gas will be discussed in the second section.

5.1 Entropy for a Noninteracting Fermi Gas

I will first introduce the calculation of the entropy of a noninteracting ideal Fermi

gas in a harmonic trap. Following this simple example, I will discuss the more

complex situation for the entropy of a noninteracting Fermi gas in a Gaussian

potential.
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5.1.1 Entropy of a Noninteracting Fermi gas in a Har-

monic Trap

Let us consider a 50:50 spin mixture of a noninteracting Fermi gas in a harmonic

trap. The entropy per orbital is given by

s(ε) = −kB[f(ε) lnf(ε) + (1− f(ε)) ln(1− f(ε))], (5.4)

where f(ε, T ) is the occupation number for a Fermi gas

f(ε) =
1

exp
(

ε−µ
kB T

)
+ 1

. (5.5)

To calculate the dependence of the entropy on the cloud size, we need to go

through five steps, which are listed below. The numerical calculation for each

step is achieved by a Mathematica file listed in Appendix A

1. From the general theory of the Fermi statistics [75], the particle number

distribution in energy basis n(ε, T ) is determined by n(ε, T ) = f(ε, T )∗g(ε),

where the density of states g(ε) for a harmonic trap is

g(ε) =
ε2

2 (~ ω̄)3 . (5.6)

2. Integration of n(ε, T ) is normalized to the atom number by

N

2
=

∫ ∞

0

g(ε)f(ε) dε =
1

2(~ω̄)3

∫ ∞

0

ε2dε

exp
(

ε−µ
kB T

)
+ 1

. (5.7)

With the scaled energy and chemical potential ε′ = ε/EF and µ′ = µ/EF ,
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Figure 5.1: The chemical potential of the noninteracting gas in the harmonic
trap versus the temperature.

and T ′ = T/TF , Eq. (5.7) can be rewritten as

1 = 3

∫ ∞

0

ε′ 2dε′

exp
(

ε′−µ′
T ′

)
+ 1

, (5.8)

which yields the chemical potential µ(T ), shown in Fig. 5.1.

3. We obtain the entropy per particle SI(T ) by integrating the entropy per

orbital s(ε), and obtain

SI(T ) =
2

N

∫ ∞

0

g(ε) s(ε) dε

= −3 kB

∫ ∞

0

dε′ ε′ 2 {f(ε′) ln f(ε′)

+(1− f(ε′)) ln(1− f(ε′)}. (5.9)

The temperature dependence of the entropy per particle is shown in Fig. 5.2.
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Figure 5.2: The entropy per particle of a noninteracting Fermi gas in a harmonic
trap versus the temperature.

4. The energy EI(T ) per particle is obtained by integrating εf(ε) with the

density of states by

EI(T ) =
2

N

∫ ∞

0

ε g(ε) f(ε) dε = 3 EF

∫ ∞

0

ε′ 3dε′

exp
(

ε′−µ′
T ′

)
+ 1

. (5.10)

From the virial theorem, we know that the scale mean square size 〈z2(T )〉/z2
F

is equal to EI(T )/EF . The temperature dependence of 〈z2(T )〉/z2
F is shown

in Fig. 5.3.

5. Finally, the results of SI(T ) and 〈z2(T )〉/z2
F yield SI(〈z2(T )〉/z2

F ), which is

shown in Fig. 5.4.
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Figure 5.3: The mean square size of a noninteracting gas in a harmonic trap
versus the temperature.
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Figure 5.4: The entropy per particle of the noninteracting gas in the harmonic
trap versus the mean square size.
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5.1.2 Entropy of a Noninteracting Fermi gas in a Gaussian

Trap

Now we will present the method of calculating the entropy of a noninteracting

Fermi gas in a Gaussian trap. The main difference between the calculation for a

harmonic trap and that for a Gaussian trap is the density of energy state g(ε).

While the density of energy state in a harmonic trap is obtained directly from the

well-known energy eigenstates in a harmonic potential, the function G(E1) in a

Gaussian trap needs to be calculated based on the phase-space density W (x,p)

in the position-momentum space. Note that we use G(E1) for the density of state

in a Gaussian trap to make it discrepant from that g(ε) for a harmonic trap.

Assuming the Gaussian potential is given by

U(x, y, z) = −U0 exp

(
−x2

a2
− y2

b2
− z2

c2

)
= −U0 exp

(−r′ 2
)
, (5.11)

where the r′ is the effective raius with r′ 2 = x′ 2 + y′ 2 + z′ 2 and x = x′a, y =

y′b, z = z′c.

The phase space density is given by

W (x,p) =
1

(2π~)3
Θ[−H(x,p)]f [H(x,p)]

=
1

(2π~)3

∫ 0

−U0

dE1 δ[E1 −H(x,p)] f(E1), (5.12)

where H(x,p) is the hamiltonian of the noninteracting gas in the Gaussian trap.

Here we use the integration form of the definition of the Θ function.
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The normalization of the particle density gives the total number of atoms by

N

2
=

∫
d3x d3pW (x,p)

=

∫ 0

−U0

dE1 f(E1)

∫
d3x d3p

1

(2π~)3
δ[E1 −H(x,p)]

=

∫ 0

−U0

dE1 f(E1) G(E1), (5.13)

where the density of state in the Gaussian trap G(E1) is defined as

G(E1) =

∫
d3xd3p

1

(2π~)3
δ[E1 −H(x,p)]. (5.14)

From the particle density in the phase space, we also can obtain the mean

square size of the cloud 〈z2〉 given by

N

2
〈z2〉 =

∫
d3x d3pW (x,p) z2

=

∫ 0

−U0

dE1 f(E1)

∫
d3xd3p

z2

(2π~)3
δ[E1 −H(x,p)]

=

∫ 0

−U0

dE1 f(E1) I(E1), (5.15)

where the integral for the mean square size I(E1) is defined as

I(E1) =

∫
d3x d3p

z2

(2π~)3
δ[E1 −H(x,p)]. (5.16)

Using H(x,p) = p2

2m
+U(x) in Eq. (5.14) and Eq. (5.16), we have the following

result for the integration in momentum space

∫
d3p δ[E1 − p2

2m
− U(x)] = 2π(2m)3/2

√
E1 − U(x) Θ[E1 − U(x)]. (5.17)
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Then by using the above relation in G(E1) and I(E1), we get

G(E1) =
2π(2m)3/2

(2π~)3

∫

U≤E

d3x
√

E1 − U(x), (5.18)

I(E1) =
2π(2m)3/2

(2π~)3

∫

U≤E

d3xz2
√

E1 − U(x). (5.19)

We note that the symmetric effective potential shown in Eq. (5.11) is redefined

by the energy scale ε = E1+U0

U0
, which gives the energy relative to the trap bottom.

After some algebra, we evaluate Eq. (5.18) and show that the density state G(E1)

in the Gaussian trap differs with the density state in the harmonic trap g(ε) (see

Eq. (5.6)) by a factor g0(ε), which is given by

g0(ε) =
16

π

∫ 1

0

du u2
√

(1− ε)u2 − (1− ε)
[−ln(1− ε)]3/2

ε2
. (5.20)

I plot g0(ε) as a function of ε = E1+U0

U0
in Fig. 5.5.

Now we can do the next steps of the calculation, which are similar with step 2

and step 3 for calculating the entropy in the harmonic trap (see Section 5.1.1). We

only need to modify the formula for the harmonic trap by replacing the density

of state g(ε/EF ) in a harmonic trap with that for a Gaussian trap g0(ε)g(ε′) =

g0(
EF

U0
ε′)g(ε′), where ε′ = E1+U0

EF
is the energy related to the trap bottom scaled by

the Fermi energy.

Similar with Eq. (5.8), we have the normalization for generating the chemical

potential µ′(T ′)

1 = 3

∫ U0
EF

0

g0(
EF

U0
ε′) ε′ 2 dε′

exp
(

ε′−µ′
T ′

)
+ 1

, (5.21)

where T ′ = T/TF , and µ′ = µ+U0

EF
is the chemical potential relative to the trap
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Figure 5.5: The ratio of the density state in a Gaussian trap to that in a harmonic
trap g0 versus the energy relative to the bottom of a Gaussian trap.

bottom. As an example, I plot the chemical potential µ′(T/TF ) in a Gaussian

trap for U0

EF
= 10 in Fig. 5.6.

The entropy per particle of a noninteracting Fermi gas SGI(T ) in a Gaussian

trap is obtained by adding the factor g0(
EF

U0
ε′) into Eq. (5.9), which generates

SGI(T ) = −3 kB

∫ U0
EF

0

dε′ g0(
EF

U0

ε′) ε′ 2 {f(ε′) lnf(ε′) + (1− f(ε′)) ln(1− f(ε′)}.
(5.22)

The numerical result of the entropy per particle for a U0

EF
= 10 is shown in Fig. 5.7,

where U0

EF
= 10 is close to the value of Gaussian traps used in our experiments.

The following step is to calculate the temperature dependence of the mean

square size in a Gaussian trap. Here we calculate the integration of Eq. (5.15)

and Eq. (5.19). Here we will use the scaled potential ε′ = E1+U0

EF
. After some
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Figure 5.6: The chemical potential of a noninteracting gas in the Gaussian trap
of U0

EF
= 10 versus temperature. µ′ = µ+U0

EF
is the chemical potential relative to

the trap bottom.
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Figure 5.7: The entropy per particle of the noninteracting gas in the Gaussian
trap for U0

EF
= 10.
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Figure 5.8: The mean square size of a noninteracting gas versus temperature in
a Gaussian trap of U0

EF
= 10. Note that z2

F = σ2
z/6 is the mean square size of the

Fermi energy as we defined in Eq. (4.52).

algebra, the means square size is given by

〈z2〉 =
σ2

z

2

∫ U0
EF

0

g2(
EF

U0
ε′) ε′ 3 dε′

exp
(

ε′−µ′
T ′

)
+ 1

, (5.23)

where σ2
z = EF c2/U0 is the Fermi radius in the ẑ direction for a Gaussian trap.

The function of g2(ε) is given by

g2(ε) =
32

π

∫ 1

0

du u4
√

(1− ε)u2 − (1− ε)
[−ln(1− ε)]5/2

ε3
. (5.24)

The numerical result for the mean square size for a U0

EF
= 10 Gaussian trap is

shown in Fig. 5.8.

In the end, the results of SGI(T ) and 〈z2(T )〉/z2
F yield SGI(〈z2〉/z2

F ) for a

Gaussian trap, which is shown in Fig. 5.9. The numerical calculations of the
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Figure 5.9: The entropy per particle of the noninteracting gas in the Gaussian
trap versus the mean square size. The Gaussian trap depth have U0

EF
= 10.

thermodynamic properties of a noninteracting Fermi gas in a Gaussian trap are

operated by a Mathematica file included in Appendix A.

This entropy-size relation will be used to extract the entropy of a weakly

interacting Fermi gas from its measurable mean square size in a Gaussian trap.

There is only one more step we need to complete this calculation. That is a shift

of the origin of the entropy-size curve due to the finite mean field interactions in a

weakly interacting Fermi gas in 1200 G. The mean field correction of the ground

state cloud size will be discussed in details in the next section.
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5.2 Entropy Calculation for a Weakly Interact-

ing Fermi Gas

Our method to obtain the entropy from the mean square cloud size 〈z2〉1200 at 1200

gauss depends on a precise calculation of the dependence of the entropy on 〈z2〉1200

in a Gaussian trapping potential. The gas at 1200 G is a weakly interacting

Fermi gas with kF aS = −0.75. We obtain the entropy of a weakly interacting gas

SWI(〈z2〉1200 − 〈z2〉0) from a many-body prediction [76] and a quantum Monte

Carlo simulation [77] at kF aS = −0.75, where 〈z2〉0 is the ground state size of a

weakly-interacting Fermi gas at 1200 gauss that automatically includes the mean

field energy shift due to the weak interactions. We also calculate SI(〈z2〉1200 −
〈z2〉I0) by assuming a noninteracting Fermi gas in a Gaussian trapping potential,

where 〈z2〉I0 is the ground state size of an ideal gas. We find that the ideal Fermi

gas SI(〈z2〉1200 − 〈z2〉I0) differs from SWI(〈z2〉1200 − 〈z2〉0) by less than 1% over

the range of energies we studied, except the region near the lowest measured

energy, where they differ by 10%. From the above comparison, we conclude that

the shape of the entropy versus cloud size curve at 1200 G is nearly identical to

that for an ideal gas. Measurements of 〈z2〉1200 therefore provide an essentially

model-independent estimate of the entropy of the strongly interacting gas. The

only required correction is to determine the ground state size 〈z2〉0 at 1200 G,

which is shifted from the ideal gas value to the weakly interacting gas value due

to the mean field interaction. So we can use SI(〈z2〉1200−〈z2〉0) to extract entropy

of a weakly interacting Fermi gas.

In this section, I will show the comparison between the entropy curve of a

weakly interacting Fermi gas and that of a noninteracting Fermi gas first. Then
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I will describe how to determine the ground state mean square size shift.

5.2.1 Comparison of the Entropy between a Weakly In-

teracting Gas and a Noninteracting Gas

Now we will consider the entropy at 1200 G, where aS = −2900 bohr [62] and

kF aS = −0.75 in our case. At this field, we observed ballistic expansion of

the cloud even at our lowest temperatures, which indicates that the gas is still

in the normal state. For this weakly interacting normal Fermi gas, a many-

body calculation or a quantum Monte Carlo simulation can provide a entropy-

mean square size curve, which is precise enough to judge the validity of using the

entropy-mean square size curve of a noninteracting Fermi gas to determine the

entropy of a weakly interacting gas at kF aS = −0.75.

The group in Chicago University, Qijin Chen and Kathy Levin, provided us

with a pseudogap calculation of the entropy versus the mean square size for a

weakly interacting Fermi gas in a Gaussian trap. Also the group in University of

Washington, Aurel Bulgac and Joaqúın Drut, provided us their quantum Monte

Carlo simulation. We make a comparison between these theoretical results with

our calculated entropy SGI(〈z2〉/z2
F ) of a noninteracting Fermi gas in a Gaussian

trap in Fig. 5.10.

From Fig. 5.10, we find that the ideal gas entropy-size curve almost has the

same shape as the weakly interacting Fermi gas curve except that its origin is

different with that of the weakly interacting gas. This origin shift is expected

because the interaction energy induces a small reduction of the ground state

cloud size. At 1200 G, the mean field interaction energy is attractive so the mean

square size decreases.
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Figure 5.10: The weakly interacting case and noninteracting case of the entropy
versus the mean square size. The Gaussian trap depth for all the calculation is
U0

EF
= 10.
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Figure 5.11: Entropy curve comparison between a weakly interacting gas and a
noninteracting gas by overlapping at the origin. The Gaussian trap depth for all
the calculation is U0

EF
= 10. Note that for a weakly interacting gas, 〈z2〉0 is the

calculated ground cloud size for each theory which includes the mean field energy,
while for noninteracting case 〈z2〉0 is the unshifted value for a ideal Fermi gas.
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To show this comparison more clearly, we shift the origins of all the three

calculation to let them overlap, which is shown in Fig. 5.11. From this figure, we

find SGI(〈z2〉) curve differers from the many-body prediction and the quantum

Monte Carlo simulation by less than 1% over almost all the range we studied

(〈z2〉 − 〈z2〉0)/z2
F < 3. The only exception happens in the range of (〈z2〉 −

〈z2〉0)/z2
F < 0.05, where the weakly interacting calculation and the noninteracting

calculation have about 10% difference in the entropy. For such low energy, we

only have one data point in our measurement of the entropy, so this effect has

almost negligible effects on the measurement and data analysis. Hence, we could

draw a conclusion that measurements of 〈z2〉1200 therefore provide an essentially

model-independent determination of the entropy of a strongly interacting gas by

using an adiabatically magnetic sweep.

5.2.2 The Ground State Mean Square Size Shift

From the discussion of the entropy curves in the last subsection, we know that

the entropy curve of a weakly interacting Fermi gas almost has the same shape

as that of a noninteracting Fermi gas. However, at the zero entropy point, which

is the origin of the entropy curve, the ground state mean square sizes have dif-

ferent values for the weakly interacting case and the noninteracting case. In this

subsection, I will describe how we determine the ground state mean square size

at 1200 G, which is a necessary step to convert our mean square size data at 1200

G to the entropy data.

The determination of the ground state mean square size of a weakly interacting

Fermi gas in a Gaussian trap requires three steps: First, we need to know the

kF a dependence of the local chemical potential µ(n, kF a), where kF is defined as
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the Fermi wave number of a noninteracting Fermi gas. The interaction strength

presented by kF a modifies the value of the local chemical potential. Second,

inverting the function of µ(n, kF a), we can determine the local density n(µ, kF a)

from µ and kF a. Finally, using µ = µg−UG, we obtain the density in a Gaussian

potential UG, where µg represents the global chemical potential.

After these three steps, we obtain the mean square size of a weakly interact-

ing Fermi gas by using the same methods to obtain the mean square size of a

noninteracting gas in Gaussian trap (see Section 5.1.2). We integrate n(µ, kF a)

over the whole trap for the normalization to the total atom number, which yields

the global chemical potential µg. Then the mean square size 〈r2〉 is calculated by

evaluating the quantity r2n(µ, kF a) throughout the trap. Here r2 is the square

of radius for an effective Gaussian potential UG(r) = U0 − U0 exp(−mω̄2r2

2U0
).

The first step, determining kF a dependence of the local chemical potential

µ, is done by applying a mean field model of a weakly interacting Fermi gas in

the BEC-BCS crossover. The model was conceived by Chin in [78]. Readers

should review this paper to get the details of the model. In this thesis, I employ

this model and write a Mathematica program to operate the calculation of the

ground state size of a weakly interacting Fermi gas. The program is shown in

Appendix A. From this model, we obtain the ground state chemical potential of

an atom pair µp = 2µ in a uniform Fermi gas versus the interacting parameter

kF a. The result is shown in Fig. 5.12.

For the second step, we invert the curve shown in Fig. 5.12 to obtain n(µ, kF a).

The local chemical potential for a weakly interacting gas in a 50-50 mix of |1〉
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Figure 5.12: The solid line is the chemical potential of an atom pair in a uniform
Fermi gas versus the interacting parameter kF a. The dash line is the binding
energy of the molecules. We can see the chemical potential approach 2EF in
the BCS limit, where 1/(kF a) ¿ 0. This result is expected since the chemical
potential µp here refers to a pair of atoms. In the BEC limit where 1/(kF a) À 0,
the chemical potential approaches the binding energy of the real molecules because
there are only tightly bind molecules existing in this region.
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and |2〉 is given by

µ(n) = εFW (n) F [
1

kFW a
] =

~2(6π2n)2/3

2m
F [

1

kFW a
] =

~2k2
FW

2m
F [

1

kFW a
], (5.25)

where kFW and εFW represents the local Fermi wavevector and local Fermi energy

of a weakly interacting Fermi gas. Note that we use kF = (6π2n0I)
2/3 and EF =

~2k2
F

2m
for the Fermi wavevector and the Fermi energy of a noninteracting Fermi

gas in the center of the trap, where n0I is the single spin density of an ideal

Fermi gas in the center of a trap. F [ 1
kFW a

] is the correction function of the

chemical potential due to finite interactions. There is very subtle point here. In

principle, the function of F [ 1
kFW a

] = µ(n)/εFW (n) is not exactly µ/EF that we

obtain in Fig. 5.12, because the density n changes from a noninteracting value to

a weakly interacting value. However, for a weakly interacting Fermi gas such as

kF a = −0.75, the cloud density is just slightly perturbed by the interaction so

that we can treat µ/εFW and µ/EF equal.

For the third step, we use the scaled chemical potential µ/EF to rewrite

Eq. (5.25), and obtain the scaled chemical potential by

µ

EF

=
k2

FW

k2
F

F

[
1

kF a

kF

kFW

]
(5.26)

=

(
n

n0I

)2/3

F

[
1

kF a

(n0I

n

)1/3
]

. (5.27)

By inverting Eq. (5.26) using the numerical µ ∼ 1/(kF a) curve shown in

Fig. 5.12, we show n/n0I versus µ/EF for a weakly interacting Fermi gas with

kF a = −0.75 in Fig. 5.13.

By using the global chemical potential µg, we get µ = µg − U(r), where
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Figure 5.13: The atom density ratio between a weakly interacting Fermi gas
and a noninteracting Fermi gas versus the local chemical potential, where kF a =
−0.75 for the weakly interacting Fermi gas.
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U(r) = U0(1− e
−EF

U0

r2

σ2 ) is a Gaussian trap potential and σ is the effective Fermi

radius defined before. The global chemical potential is determined by the the

normalization of the total atom number

1

n0I

N

2
=

∫
d3r

n

n0I

[
µg − U(r)

EF

]
Θ

[
µg − U(r)

EF

]
, (5.28)

where µg − U(r) > 0 for a weakly interacting Fermi gas in the BCS side with

kF a < 0, which restricts the maximum integration range r. After some algebra,

Eq. (5.28) is rewritten as

1 =
32

π

∫ qmax

0

dq q2 n

n0I

[µs] Θ [µs] ,

µs =
µg

EF

− U0

EF

(
1− e

−EF
U0

q2
)

, (5.29)

where q = r/σ, and qmax is determined by µs = 0.

By using Eq. (5.29) to find the global chemical potential, we calculate the

mean square size in the ẑ direction, which is given by

〈z2〉0
〈z2

F 〉
= 2〈q2〉 =

64

π

∫ qmax

0

dq q4 [µs] Θ [µs] . (5.30)

Finally, I show the result of the dependence of the mean square size 〈z2〉0 on

1/(kF a) in the BCS region of kF a < 0 for both a harmonic trap and a Gaussian

trap in Fig. 5.14.

For the case of our experiment kF a = −0.75 at 1200 G, we find this mean field

calculation gives 〈z2〉0/z2
F = 0.69. In experiment, we determine σz and T/TF by

fitting the spatial profiles at the lowest temperatures with a Sommerfeld approx-

imation for the density [79]. We obtain 〈z2〉0/z2
F = 0.71(0.02). The theoretical
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Figure 5.14: The ground state mean square size 〈z2〉0 in the BCS region
1/(kF a) < 0 versus the interaction parameter 1/(kF a). The dash line is
calculated by an effective symmetric harmonic trap UHO(r) = mω̄2r2/2 and
the sold line is calculated by an effective symmetric Gaussian trap UG(r) =
U0 − U0 Exp(−mω̄2r2

2U0
) with U0/EF = 10.

and experimental results are in very good agreement. This gives us confidence in

using the measured lowest value 〈z2〉0/z2
F = 0.71 as the mean square size of the

ground state cloud at 1200 G. This point works as the origin (the zero entropy

point) for the shifted entropy curves shown in Fig. 5.11.
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Chapter 6

Model-independent
Thermodynamic Measurements
in a Strongly Interacting Fermi
Gas

Thermodynamic measurements play an important role to understand the physics

of a macroscopic system. Here I follow the formalism developed by Callen [80] to

explain the importance. In the case of a macroscopic system with large number

of particles, the reproducible properties of the equilibrium state of this system

is only characterized by a specification of variables that could have determined

values. Such variables are called macrovariables (X0, X1, ...., Xt). Usually the

primary macrovariable is the total energy E with the convention that X0 = E.

Other variables for the particles are called microvariables, which are not directly

measurable. In an equilibrium state, all the microvariables are random. To quan-

tify the randomness of microvariables, the entropy S represents the amount of

missing information. All possible thermodynamic information about a system is

contained in the fundamental equation of entropy as

S = S(E, X1, ...., Xt). (6.1)
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From the above statement, we can see that the primary thermodynamics is

determined by the dependence of entropy on the macrovariables. In the research

presented in this dissertation, we focused on the dependence of the entropy on

the energy in a strongly interacting Fermi gas at the unitary limit. This ensures

that we can implement model-independent thermodynamic measurements, which

can be used to determine most of the important thermodynamic properties of a

unitary strongly interacting Fermi system.

In the last two chapters, I already introduced the methods of measuring both

the energy and entropy in a strongly interacting Fermi gas. Here I will summa-

rize the procedure: Create a unitary Fermi gas in the strongly interacting regime;

Measure the mean square size of the cloud in the strongly interacting regime to

determine the total energy of the cloud; Create an identical cloud in the strongly

interacting regime and adiabatically sweep the magnetic field to the weakly in-

teracting regime; Measure the mean square size of the weakly interacting cloud

to determine the entropy; Repeat the above steps for the clouds with different

energies; Finally we obtain the energy-entropy curve for a strongly interacting

Fermi gas.

The entropy is postulated to be a continuous and differentiable function, which

can be inverted uniquely to give

E ≡ X0 = E(S, X1, ...., Xt). (6.2)

From the fundamental relations between the entropy and energy, the temperature
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of the system can be readily determined by

T =
∂E

∂S
. (6.3)

Other parameters like the chemical potential µ, the free energy F and the heat

capacity C in a uniform system also can be determined from the fundamental

thermodynamic relations given by

E = T S + µn− P, (6.4)

F = E − TS, (6.5)

C =
dE

dT
, (6.6)

where n is the particle density, P is the pressure, µ is the chemical potential, E

and S are the total energy and entropy.

In the following section, I will first describe our experimental measurement.

Then I will show our measured data of energy-entropy curve. The behavior of

the measured energy-entropy curve shows a clear thermodynamic signature of

a superfluid-normal fluid transition in a strongly interacting Fermi gas. I will

discuss how to parameterize the data to extract the critical parameters for this

phase transition. After that, I will describe how to use the energy-entropy data to

extract other thermodynamic properties. In the end, I will use our measurement

as a benchmark to test the current strong coupling many-body quantum theories

and simulations.
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6.1 Preparing Strongly Interacting Fermi Gases

at Different Energies

A strongly interacting Fermi gas is prepared using a 50:50 mixture of the two

lowest hyperfine states of 6Li atoms in an ultrastable CO2 laser trap with a bias

magnetic field of 840 G, just above a broad Feshbach resonance at B = 834 G [62].

At 840 G, the gas is cooled to quantum degeneracy by lowering the trap depth

U [12]. Then U is recompressed to U0/kB = 10 µK, which is large compared to

the energy per particle of the gas.

At the final trap depth U0, the measured trap oscillation frequencies in the

transverse directions are ωx = 2π×665(2) Hz and ωy = 2π×764(2) Hz, while the

axial frequency is ωz = 2π× 30.1(0.1) Hz at 840 G and ωz = 2π× 33.2(0.1) Hz at

1200 G. Note that axial frequencies differ due to the small change in the trapping

potential arising from the bias magnetic field curvature. The total number of

atoms N ' 1.3(0.2)× 105 is obtained from absorption images of the cloud using

a two-level optical transition at 840 G. The corresponding Fermi energy EF and

Fermi temperature TF for an ideal (noninteracting) harmonically trapped gas at

the trap center are EF = kBTF ≡ ~ ω̄(3N)1/3, where ω̄ = (ωxωyωz)
1/3. For our

trap conditions, we obtain TF ' 1.0 µK.

To measure the entropy as a function of the energy, we start with an energy

near the ground state and controllably increase the energy of the gas by releasing

the cloud for an adjustable time and then recapturing it. This method is described

in our previous study of the heat capacity [45]. We abruptly release the cloud and

then recapture it after a short expansion time theat. During the expansion time,

the total kinetic and interaction energy is conserved. When the trapping potential
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U(x) is reinstated, the potential energy of the expanded gas is larger than that

of the initially trapped gas, which increases the total energy of the cloud. By

choosing different heating kick times, we add different energies into the cloud in

a controllable way. The amount of added energy can be precisely calculated. The

calculation method is based on the hydrodynamic expansion of the cloud and can

be found in [64]. In my dissertation, we use the virial theorem to determine the

energy, so we don’t need to rely on the theoretical calculation. After recapture,

the gas is allowed to reach equilibrium for 0.7 s. This thermalization time is

omitted for the measurement of the ground state size, where no energy is added.

After equilibrium is established, the magnetic field is either ramped to 1200

G over a period of 1 s, or the gas is held at 840 G for 1 s. In either case,

after 1 s, the gas is released from the optical trap for a short time to increase

the transverse dimension of the cloud for imaging, without significantly changing

(less than 0.5%) the measured axial (ẑ direction)cloud sizes. Those axial cloud

sizes are used to determine S at 1200 G and E at 840 G respectively.

For our shallow trap, we find that there is a magnetic field and energy inde-

pendent heating rate, which causes the mean square size to slowly increase at a

rate of ˙〈z2〉 = 0.024 z2
F /s, corresponding to 24 nK/s in energy units. Since we

desire the energy and entropy just after equilibration, we subtract ˙〈z2〉×∆t from

the measured mean square axial sizes for both the 840 G and 1200 G data by

〈z2(0)〉
z2

F

=
〈z2(∆t)〉

z2
F

−∆t
˙〈z2〉

z2
F

, (6.7)

where ∆t= 1 second. The maximum correction is 5% for the smallest could size

at the lowest energy.

110



2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

E
84

0 / 
E

F

2.22.01.81.61.41.21.00.80.6

 < z
2
>840 / z

2
F840

Figure 6.1: The energy determined from the virial theorem versus the measured
mean square size at 840 G. The data points are the energies of the gas in the
real Gaussian traps used in our experiments, which is determined from the virial
theorem and includes anharmonic corrections. The dash line is the expectation
value for a harmonic trap.

The energy determined from the virial theorem versus the measured mean

square size at 840 G is shown in Fig. 6.1. The total data comprise about 900

measurements which have been averaged in energy bins of width ∆E = 0.04 EF .

For the shallow trapping potential U0 ' 10 EF used in our experiments, we find

that the anharmonicity correction κ defined in Eq. (4.52) varies from 3% at our

lowest energies to 13% at the highest.

For simplicity, we neglect an approximately 1% correction for the cloud energy
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arising from the finite scattering length at 840 G [6], where is about 6 G away

from the exact unitary value.

6.2 Adiabatic Magnetic Field Sweep

First let us look at the mean square size of the cloud at 1200 G. As we explained

in Chapter 5, we sweep the magnetic field towards the BCS regime at 1200 G. The

magnetic field ramp is nearly linear and the whole sweep process lasts about 0.8

second. We permit 1 second to ensure that the gas reaches the equilibrium state

at 1200 G. At 1200 G, we expect that the gas is weakly interacting in our shallow

trap, since kF aS = −0.75 with aS = −2900 bohr [62] and kF = (2mEF /~2)1/2

with EF /kB = 1µK. We observe ballistic expansion of the cloud at this field at

our lowest energy, which shows the gas is normal and weakly interacting.

We find that the magnetic field sweep is nearly adiabatic by the round-trip-

sweep. The mean square size of the cloud at 840 G after a round-trip-sweep lasting

2 seconds is found to be within 3% difference of the cloud that remains at 840

G after a hold time of 2 second. Fig. 6.2 shows the atom number and the atom-

number-independent mean square radial size of the cloud with and without the

round-trip-sweep. The clouds at the different energies are produced by different

heating kick times. From Fig. 6.2, we can see that the sweep does not cause any

significant atom loss or heating, which ensures entropy conservation for the sweep.

To display the results of the measured mean square size at 1200 G, we show

the ratio between the mean square size at 1200 G and that at 840 G. To make

the comparison to be meaningful, the displayed ratio and energy scale should

be independent of the atom number and trap parameters. This is accomplished
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Figure 6.2: The atom number and the cloud size with and without the round-
trip-sweep at 840 G. The solid dot is without the sweep, and the open square is
with the sweep.
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by scaling the mean square sizes at each field in units of z2
F , where z2

F is given

by the specific magnetic field and atom number. For example, at 1200 G this

quantity is represented by 〈z2〉1200/z
2
F1200. Note that, even for the same atom

number, the mean square sizes of the Fermi energy z2
F are different at 840 G and

1200 G because of the small change of the axial trapping frequencies, which gives

z2
F ∝ 1/ω

5/3
z . The axial frequencies ωz at different magnetic fields differ with

each other, due to the different magnetic potential provided by the magnetic field

curvature. The total axial frequency depends on its optical potential contribution

ωoz and magnetic potential contribution ωmz by ω2
z = ω2

oz + ω2
mz.

Fig. 6.3 shows the ratio of the mean square axial cloud size at 1200 G (mea-

sured after the sweep) to that at 840 G (measured prior to the sweep), as a

function of the energy of a strongly interacting gas at 840 G. The energy at 840 G

is directly measured from the axial cloud size at 840 G in Fig. 6.1. The total data

comprise about 900 individual measurements of the cloud size at 840 G as well

as the same number of measurements of the cloud size at 1200 G. We split the

energy scale into the energy bins with width of ∆E = 0.04 EF . For each energy

bin, all the measured points within the width of the bin are used to calculate the

average measured value and the corresponding standard deviation.

6.3 Entropy versus Energy in a Strongly Inter-

acting Fermi Gas

Now we obtain the entropy from the data of the mean square sizes in Fig. 6.3.

First, we extract the value of (〈z2〉1200 − 〈z2〉0)/z2
F using the measured 〈z2〉0 =

0.71 z2
F for the lowest energy state that we obtained at 1200 G. Then, we apply
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Figure 6.3: The ratio of the mean square cloud size at 1200 G, 〈z2〉1200, to that
at 840 G, 〈z2〉840, for an isentropic magnetic field sweep. E840 is the total energy
per particle of the strongly interacting gas at 840 G and EF is the ideal gas Fermi
energy at 840 G. The ratio converges to unity at high energy as expected (the
dashed line).
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the entropy curve for a ideal Fermi gas SI(〈z2〉I − 〈z2〉I0)/z
2
F shown in Fig. 5.11

to determine the entropy from the measured values of (〈z2〉1200 − 〈z2〉0)/z2
F .

This method automatically assures that S = 0 corresponds to the measured

ground state 〈z2〉0 at 1200 G, and compensates for the mean field shift between

the measured 〈z2〉0 for a weakly interacting Fermi gas and that calculated one

〈z2〉I0 = 0.77 z2
F for an ideal Fermi gas in our Gaussian trapping potential. For

each point, the standard deviation of the entropy S is determined by the corre-

sponding standard deviation of the measured mean square size 〈z2〉1200 using the

same entropy curve. The result of the conversion of the entropy from the cloud

size is shown in Fig. 6.4

Finally, we combine the entropy data measured at 1200 G after an adiabati-

cally magnetic sweep and the energy data directly measured at 840 G. We obtain

the energy-entropy curve for a strongly interacting Fermi gas in the unitary limit

shown in Fig. 6.5.

6.4 Critical Parameters of Superfluid Phase Tran-

sition

One of the applications of the energy-entropy curve is to estimate the critical

parameters for the phase transition. It has been theoretically predicted [41–44]

and experimentally proved [12,20,24,30] that strongly interacting Fermi gases ex-

perience a superfluid-normal fluid phase transition near the ground state energy.

However, the critical parameters, such as the critical temperature and entropy,

were not determined yet. The studies of superfluid dynamics [47] and the model-

dependent thermodynamic measurements [20] do not provide consistent results.
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Figure 6.5: Measured entropy per particle of a strongly interacting Fermi gas
at 840 G versus its total energy per particle in the range 0.4 ≤ E840/EF ≤ 2.0.
the slope of the entropy curve shows a behavior change near the region of Ec =
0.90 EF .

118



Meanwhile, different theoretical calculations and simulations produce quite differ-

ent values for those critical parameters. So a model-independent measurement is

required to provide a precise determination of such critical parameters for testing

current predictions based on many-body theories.

From Fig. 6.5, it is obvious that the entropy of a strongly interacting Fermi gas

as a function of its energy has a change in behavior near Ec = 0.90 EF , where a

kink appears in the profile of the curve. This suggests that the entropy may have

a different scaling law versus the energy below and above that behavior transition

point. It is well known that the different scaling law of the entropy dependence

on the energy or the temperature is usually a thermodynamic indication of phase

transitions.

6.4.1 Power Law Fit without Continuous Temperature at

the Critical Point

To find the critical energy and temperature, we need to parameterize the entropy

data of a strongly interacting Fermi gas by a curve fitting. The fit curve of the

entropy of a strongly interacting Fermi gas is shown in the Fig. 6.6 as well as the

entropy of an ideal gas, which differs significantly with the entropy of a strongly

interacting one with a larger ground state energy EI0 = 0.75 EF .

The simplest assumption consistent with S(E = E0) = 0 is to approximate

the data by a power law in E − E0, where E0 is the ground state energy. First,

we try to fit the data by applying a single power law curve. The fit formula and
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results are given by

S(E) = kB a

(
E − E0

EF

)b

,

a = 3.97± 0.02, E0 = 0.53± 0.01, b = 0.47± 0.01. (6.8)

Then we use a simple model with two different power laws, one above and one

below the critical energy Ec [49]. The fit formula and parameters a, b, d and EC

are given by

S<(E) = kB a

(
E − E0

EF

)b

; E0 ≤ E ≤ Ec

S>(E) = S<(Ec)

(
E − E0

Ec − E0

)d

; E ≥ Ec

a = 4.5± 0.2, b = 0.59± 0.03,

Ec = 0.94± 0.05, d = 0.45± 0.01. (6.9)

In this model, we assume S is continuous and ignore the requirement for the

continuous T = ∂E/∂S. For this fit, we hold E0 = Emin = 0.53(0.02) EF as

the minimum measured energy in our measurements, which is very close to the

predicated ground state energy 0.50 EF for a unitary gas in a harmonic trap

[45,81,82]. The standard deviation for each of the fit parameters is automatically

calculated by Igor program.

We use the fitting error χ2/N to judge the goodness of the fit, where χ2 =
∑

(y−yi

σi
)2 is determined by the fitted value y for a given point, the original data

value yi and corresponding the standard error σi for a given point, and the total

number of data N . Igor program uses the Levenberg-Marquardt algorithm to

search for the coefficient values that minimize chi-square. This is a form of non-
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Figure 6.6: Parametrization of the energy-entropy curve by power laws. The
dash line is the single power law fit using Eq. (6.8). The solid line is the two
power law fit without the continuous slope using Eq. (6.9). The dash-dot line is
the entropy of the noninteracting Fermi gas.

linear, least-squares fitting. We found the two power law fit yields a χ2 per degree

of freedom is about 1, almost a factor of two smaller than that obtained by fitting

a single power law. This indicates that a two power law fit is required.

By implementing the two power law fit, the critical energy is found to be

Ec/EF = 0.94 ± 0.05 with a corresponding critical entropy per particle Sc =

2.7(±0.2) kB. We find that the variances of a and b have a positive correlation,

so that S(E) is determined more precisely than the independent variation of a

and b would imply. In comparison, by trying to fit the energy-entropycurve of a

noninteracting gas with the two power laws, the fit fails to find the critical point,
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which indicates that such behavior change does not appear in the entropy curve

of a noninteracting gas.

However, the drawback of this fit is that Eq. (6.9) ignores the smooth transition

in slope near Ec, as required for the temperature to be continuous. The tempera-

ture is determined in a model-independent manner from 1/T = ∂S(E)/∂E. From

the derivative of the fit function S(E), we obtain the energy versus temperature

E(T ). For E ≤ Ec,

E − E0

EF

=

(
abT

TF

) 1
1−b

. (6.10)

We estimate the critical temperature Tc using the measured value of Ec =

(0.94 ± 0.05) EF . Here, we interpret Ec as the critical energy for the superfluid

transition, which is observed based on the collective mode damping and the heat

capacity [20,45], and proved by the vortex lattice [24]. Ideally, to obtain Tc, the fit

S(E) should have a continuous slope near Ec. Since our fit function has different

slopes above and below Ec, we use the average of the two slopes to approximate

the slope of the tangent to a smooth curve through the data at Ec. Inverting

Eq. (6.10) yields T/TF = 0.38 [(E − E0)/EF ]0.41 and Tc</TF = 0.26. Similarly,

for E(T ) > Ec, we find T/TF = 0.56 [(E−E0)/EF ]0.55 and Tc>/TF = 0.34. Taking

the average slope, 2/Tc ' 1/Tc< + 1/Tc>, we find Tc/TF = 0.29(+0.03/ − 0.02).

Here, the error estimate includes the cross correlations in the variances of a, b,

Ec, and d.
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6.4.2 Power Law Fit with Continuous Temperature at the

Critical Point

More recently we found a fit formula that ensures a continuous slope for the

energy-entropy curve. To make the Igor program do the fitting easier, we fit

E(S) instead of S(E), which helps the program to find the ground state energy

automatically by E0(S = 0). The E(S) fit formula (here the energy scaled by EF

and the entropy scaled by kB) is defined as

E<(S) = E0 + aSb; 0 ≤ S ≤ Sc

E>(S) = E1 + cSd; S ≥ Sc

E<(Sc) = E>(Sc);

∂E<

∂S
=

∂E>

∂S
at Sc. (6.11)

The continuation condition requires E1 and c not independent. Further we

have E(S) fit formula with independent fit parameters E0, Sc, a, b, d. The fit

formula and result are given by

E<(S) = E0 + aSb; 0 ≤ S ≤ Sc

E>(S) = E0 + aSb
c

[
1− b

d
+

b

d

(
S

Sc

)d
]

; S ≥ Sc

a = 0.12± 0.01, b = 1.35± 0.11, d = 2.76± 0.12

E0 = 0.48± 0.01, Sc = 2.2± 0.1. (6.12)

The fit curve is shown in Fig. 6.7, where E<(S) = E>(S) and ∂E<

∂S
= ∂E>

∂S
at the

joint point Sc. The standard deviation for each of the fit parameters is automat-
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Figure 6.7: Parametrization of the energy-entropy curve by the continuous tem-
perature fit. The solid line is the power law fit with the continuous slop at the
joint point. The joint point is shown by the dashed line.

ically calculated by Igor program.

From Eq. (6.12), we can check the first derivative at the critical point Sc.

The formula below and above the joint point give a consistent value of ∂E
∂S

=

abSb−1
c , which ensures that we can determine the temperature directly from this

fit formula with continuous first derivative. From the fit, we find the critical

entropy Sc/kB = 2.2± 0.1, and get the corresponding Ec/EF = 0.83± 0.02. The

critical temperature is determined as T/TF = ∂E(Sc)/∂S = 0.21± 0.01.

As a conclusion, I list the best estimates of the critical parameters of the
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superfluid transition in a strongly interacting Fermi gas from the parametrization

of our model-independent measurements on both entropy and energy: The critical

entropy Sc/kB = 2.2 ± 0.1, the critical energy Ec/EF = 0.83 ± 0.02, and the

corresponding critical temperature T/TF = 0.21± 0.01.

6.5 Other Thermodynamic Properties

6.5.1 Many-body Constant β

In Section 4.3, I introduced β, the universal many-body constant for a strongly

interacting system in the unitary limit, and showed that the ground state energy

of a unitary Fermi gas in a harmonic trap is given by

ESI0 =
√

1 + β EIG =
√

1 + β
3

4
EF , (6.13)

Form our measurement, we find ESI0/EF = 0.48 ± 0.01, which gives the corre-

sponding β = −0.59±0.02. This β value agrees fairly well with the most accurate

quantum Monte Carlo simulation β = −0.58 ± 0.01 [83], and predictions from

strong coupling theories β = −0.599 [84] and β = −0.55 [81, 82, 85]. This mea-

sured β value can also be compared with other experimental investigations, such

as β = −0.49±0.04 from the heat capacity measurement [45], β = −0.565±0.015

from the sound velocity measurement [86], and β = −0.54 ± 0.05 from the spin

separation experiment [32].
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6.5.2 Chemical Potential

According to Ehrenfest’s classification scheme for phase transitions [80], a phase

transition is classified by the following scheme. If the nth derivative of chemical

potential µ with a thermodynamic variable exhibits discontinuity, but no discon-

tinuity appears in any lower order derivatives, then the transition is an nth order

phase transition. For example, for a first order transition, the chemical potential

is continuous while its first derivative is discontinuous at the critical point.

As we discussed at the beginning of the chapter, the chemical potential µ can

be determined from the energy-entropy data based on the basic thermodynamic

relations. So the energy-entropy curve should provide enough information to

derive the chemical potential, from which we can classify the order of the phase

transition in a strongly interacting Fermi gas.

According to Eq. (6.4), the local chemical potential µ is given by

ε = T s + µn− P, (6.14)

where ε is the local internal energy (kinetic energy and interaction energy), and

s is the total entropy in a local volume. From the virial theorem for a unitary

Fermi gas, we have the pressure P = 2 ε/3. Using µ = µg − U , where U is the

local trap potential, we get

µg =
5

3
ε + U − T s. (6.15)
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By integrating the formula for the whole trap, we have

µg N =
5

3
(E − 〈U〉) N + 〈U〉N − T S N, (6.16)

where 〈U〉 is the average trap potential per particle, and E and S are the total

energy and total entropy per particle respectively. For a harmonic trap approx-

imation, E = 2〈U〉. Finally, the global chemical potential of the unitary Fermi

gas in a harmonic trap is given by the total energy and entropy per particle

µg =
4

3
E − T S =

4

3
E − ∂E

∂S
S. (6.17)

By using the measured entropy and energy data and T = ∂E/∂S from the fit of

Eq. (6.12), the global chemical potential of a trapped strongly interacting Fermi

gas can be calculated from Eq. (6.17). We plot the chemical potential data in

Fig. 6.8.

In Fig. 6.8, we can see that the chemical potential might show a discontinuity

in its first derivative with the energy. I also should point out that the accurate

behavior of chemical potential near the critical point is still not clear in our exper-

iment, since I use the fit result of T = ∂E/∂S to obtain the chemical potential.

The discontinuity in the first derivative of the chemical potential can only be

treated as a possible scenario. If the discontinuity is true, according to the clas-

sification of phase transition by Ehrenfest, the superfluid transition in a strongly

interacting Fermi gas might be the first order transition. For comparison, the or-

dinary superfluid phase transitions in weakly interacting systems are second order

transitions, such as the superfluid transition in 4He and the superconductor tran-

sition in Pb and Ag metals. Considering there is a possibility that the superfluid
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Figure 6.8: The global chemical potential versus the total energy of a strongly
interacting Fermi gas. The data points are calculated from the measured S and E
data and the parameterized T according to Eq. (6.17), where the parameterized
T is given by the fit parameters in Eq. (6.12). The standard deviation for each
point of the chemical potential is determined by the standard deviation of the
energy and the entropy data. The solid line is completely determined by the fit
parameters in Eq. (6.12), which gives µG = 4E/3−1.35(E−0.48) when E ≤ 0.83,
and µg = 4E/3− 2.76(E − 0.48) + 0.49 when E > 0.83.
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transition in a strongly interacting Fermi gas is the first order, the behavior of the

chemical potential near the critical point needs to be more carefully investigated

in further researches.

The free energy can be estimated according to the general thermodynamic

relations. In a harmonic trap, we have F = E − ∂E
∂S

S, where F is the free energy

per particle in a trap. Since the free energy includes equivalent information to

the chemical potential, I will not repeat the calculation here. Readers who are

interested in this thermodynamic quantity can extract it very easily from our

energy and entropy data.

6.5.3 Temperature

As we discussed in Section 1.3.1, it is a difficult task to develop a precise ther-

mometry for a strongly interacting Fermi gas. So it is important to extract the

general temperature form the energy and entropy data for a strongly interacting

Fermi gas.

Here we present a model-independent method to determine the temperature

from the fundamental thermodynamic relation T = ∂E/∂S. Our method is ap-

plicable for a strongly interacting Fermi gas in both superfluid and normal fluid

regime. The only drawback is it requires a parametrization of data. However,

with good curve fitting, the temperature is trustable.

Our best fit for the energy and entropy date in Eq. (6.12) generates the tem-
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perature T (in units of TF ) versus E (in units of EF ),

For E0 = 0.48 ≤ E ≤ Ec = 0.83

T<(E) = a
1
b b(E − E0)

b−1
b ;

= 0.28(E − 0.48)0.26;

For E ≥ Ec

T>(E) = a
1
b b(Ec − E0)

b−1
b

(
d

b

E − Ec

Ec − E0

+ 1

) d−1
d

;

= 0.21[5.84(E − 0.83) + 1]0.64. (6.18)

In the previous investigation of heat capacity, we got a model-dependent tem-

perature given in [64] by

T<(E) = (
1

97.3

E − 0.48

0.48
)

1
3.73 ; E0 ≤ E ≤ Ec = 0.85

T>(E) = (
1

4.98

E − 0.48

0.48
)

1
1.43 ; E ≥ Ec. (6.19)

It is quite interesting to compare these two temperatures. The scaling of

temperature with the energy is shown in Fig. 6.9.
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Figure 6.9: The temperature of a strongly interacting Fermi gas from the entropy
measurement versus the energy is shown in the solid line given by Eq. (6.18). The
dashed line is the temperature given by Eq. (6.19), which is extracted from the
heat capacity measurement by a pseudogap theory.
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Figure 6.10: The heat capacity versus the temperature given by Eq. (6.20)
for a strongly interacting Fermi gas. A heat capacity jump appears at about
T/TF = 0.21.

6.5.4 Heat Capacity

The next thing we can determine is the heat capacity by C = dE
dT

. From Eq. (6.18),

we obtain C in the unit of kB

ForT ≤ Tc = 0.21 TF

C<(T ) = 514 T 2.85;

ForT ≥ Tc

C>(T ) = 3.07 T 0.563. (6.20)

The heat capacity curve is shown in Fig. 6.10, which exhibits a heat capacity

jump at the critical temperature for the superfluid transition.
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6.6 Comparison between Experimental Result

and Strong-coupling Theories

In this section, I will give a short review of using our data as a benchmark to

test several strong coupling many-body theories and simulations. I will compare

our energy-entropy data with the prediction of a trapped strongly interacting

Fermi gas made by those theories. It is noted that currently many groups are

trying to improve their theoretical methods to give a more precise calculation for

our system. Most of the work is still going on at the time I wrote this thesis.

So I will only compare our data with the theoretical calculations that appeared

shortly after our experiment in [49]. They are a pseudogap theory [76, 87], a

T-matrix calculation by Nozières and Schmitt-Rink (NSR) approximation [6, 8],

and a quantum Monte Carlo simulation [77, 88]. The experimental data and

theoretical curves are shown in Fig. 6.11.

It is mentioning that the power law exponent of S ∝ T q below Tc, which

represent the characteristic low temperature excitation of the superfluid phase.

From Eq. (6.18), we obtain q = 2.85. For comparison, the pseudogap theory gives

S ∝ T 3/2, while the NSR theory gives S ∝ T 3 due to the low-lying Bogoliubov-

Anderson phonon modes [8].

Our measured critical temperature Tc/TF = 0.21± 0.1 can be compared with

our previous estimate of Tc/TF = 0.27 from a model-dependent heat capacity

mearement [45]. Moreover, the recent calculations of Tc/TF for a trapped strongly

interacting Fermi gas are 0.21 [6, 8, 89] and 0.25 [77], while previous rough esti-

mations had given 0.29 [45], 0.30 [90], 0.31 [44], and 0.30 [50].
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Figure 6.11: Comparison of the experimental entropy curve with the calculation
from strong coupling many-body theories. The dashed line is a pseudogap theory
[76, 87]. The dotted line is a NSR calculation [6, 8]. The solid line is a quantum
Monte Carlo simulation [77,88]. The dot-dashed line is the ideal Fermi gas result
for comparison.

134



Chapter 7

Studies of Perfect Fluidity in a
Strongly Interacting Fermi Gas

One intriguing feature of a strongly interacting Fermi gas is its nearly perfect

fluidity. It is predicted and proven that a high temperature superfluid phase exists

in a strongly interacting Fermi gas when the temperature of the gas is below the

critical temperature. In Chapter 6, I have discussed the thermodynamic signature

of the superfluid transition. In this chapter, I will investigate the nearly perfect

fluidity of a strongly interacting Fermi gas, which exhibits hydrodynamic behavior

with a very low viscosity.

The goodness of the fluidity is characterized by the viscosity. The viscosity is

defined to describe the relation between the shear stress tensor [Pij] and the sym-

metric part of velocity tensor [eij] of the fluid, where eij ≡ (∂vi/∂xj +∂vj/∂xi)/2,

and v and x is the velocity and space coordinate of the flow. The detailed rela-

tions between stress tensor and velocity tenser can be referred to [91]. Here we

assume a linear isotropic dependence of the shear stress tensor on the symmetric

velocity tensor and obtain

Pij = η(2eij − 2

3
δijeij) + ζδijeij, (7.1)
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Figure 7.1: The definition of the shear viscosity. The proportionality between
the friction force of per surface area and the velocity gradient from one layer to
the other gives the definition of the shear viscosity by Fx

A
= −η ∂vx

∂y
.

where i, j represent the space coordinates, and δij = 1 when i = j, else δij is zero.

η is the shear viscosity and ζ is the bulk viscosity. The bulk viscosity is related

to the change of the volume of the fluid, and vanishes for an incompressible fluid.

For a unitary gas it is has been suggested that the bulk viscosity vanishes [92]. In

this chapter, we will ignore the bulk viscosity and refer the term “viscosity” only

to the shear viscosity. The shear viscosity originates from the tangential stresses,

which is caused by the relative motions between the layers of the fluid close to

each other, as shown in Fig. 7.1.

When viscous effects are absent, the fluid flows without any friction. Such

flow is defined as ideal hydrodynamic flow. In recent years, hydrodynamic flow

in strongly interacting quantum systems has attracted strong interest from dif-

ferent fields in physics, which includes ultrahot quark-gluon plasmas as well as

ultracold fermionic atoms. One of the most compelling properties of strongly

interacting Fermi gases is that ideal hydrodynamic flow not only exists in the su-

perfluid regime, but also in the normal fluid regime as well. For superfluids, ideal
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hydrodynamic flow is a well known result as a consequence of zero viscosity in the

superfluid component. However, ideal hydrodynamic flow in the normal fluids of

strongly interacting system is still a novel phenomenon. Even though we know

that hydrodynamic behavior can be induced by strong interparticle collisions, the

extremely low viscosity in a strongly interacting Fermi gas still can not be well

explained by current theories of strong collisions [50].

The extremely low viscosity also exists in other strongly interacting systems,

such as a quark-gluon plasma [93,94] and a type of strongly interacting quantum

fields [3]. By string theory methods, Son’s group predicted that the ratio of shear

viscosity η to entropy density s has a lower bound given by

η

s
≥ 1

4π

~
kB

. (7.2)

It is believed that the lower bound is approached only in a unitary strongly inter-

acting system, which provides the quantum limit of the ratio between viscosity

and entropy density.

In this chapter, I will first describe our studies of hydrodynamic expansion of

a rotating strongly interacting Fermi gas. In this experiment, we observe nearly

perfect irrotational flow appearing not only in the superfluid regime but also in

the normal fluid regime. As I will show later, perfect irrotational flow actually

is a primary signature of a very low viscosity. The experiment of expansion of a

rotating cloud provides a very important tool to study the viscosity in a strongly

interacting Fermi gas. The main results of this experiment will be reviewed in

Section 7.1. More details for this experiment are presented in my colleague Bason

Clancy’s thesis [39].
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In Section 7.2, I estimate the upper bound of the viscosity using our collective

breathing mode data [19]. The viscosity is extracted from the damping of the

breathing mode by applying a hydrodynamic model of the collective mode with

finite viscous effects. Following that, I use our measured entropy of the gas to

estimate the ratio of the shear viscosity to the entropy density [95]. Finally I will

compare this results with the predicted lower bound that is conjectured by string

theory methods.

7.1 Observation of Irrotational Flow in a Rotat-

ing Strongly Interacting Fermi Gas

Previously, the hydrodynamic expansion of a strongly interacting Fermi gas has

been studied in the case of zero angular momentum [12, 96, 97]. The only inves-

tigation of finite angular momentum expansion for a strongly interacting Fermi

gas is with the formation of vortex lattices, which has been used to demonstrate

superfluidity in a strongly interacting Fermi gas [24, 25]. However, in the normal

regime, finite angular momentum expansion has never been studied before.

In this section, I will study the hydrodynamic expansion of a rotating strongly

interacting Fermi gas of 6Li atoms. We release a cigar-shaped cloud with a known

angular momentum L from an optical trap, and measure the angular velocity

Ω about the y-axis and the aspect ratio of the principal axes (z, x) from the

time-of-flight images. The data are in excellent agreement with irrotational hy-

drodynamics [98–100] in the superfluid regime, and surprisingly in the normal

fluid regime as well.

In this experiment, conservation of angular momentum for an expanding cloud
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enables a model-independent measurement of the effective moment of inertia I

by

I ≡ L/Ω. (7.3)

On the other hand, if the cloud is a rigid body, the rigid body value of the

moment of inertia Irig can be measured from the cloud images by

Irig = Nm〈x2 + z2〉, (7.4)

where the 〈x2 + z2〉 is the mean square size in the x − z plane, which is our

imaging plane. By comparing the measured effective momentum of inertia I with

the measured rigid body value Irig, we find that the effective momentum of inertia

of a rotating strongly interacting Fermi gas is suppressed with respect to the rigid

body value in the process of the expansion. Our measured ratios show very good

agreement with the fundamental prediction of ideal irrotational flow [98] as

I

Irig

= δ2 ≡ 〈z2 − x2〉2
〈z2 + x2〉2 , (7.5)

where the deformation parameter δ is directly obtained from the cloud images.

This measurement actually provides a clear proof of irrotaiotional flow in both

the superfluid and normal fluid regimes of a strongly interacting Fermi gas.

7.1.1 Irrotational Flow in Superfluid and Normal Fluid

Let us first introduce irrotational flow. The well known requirement for a su-

perfluid with the zero viscosity is irrotational hydrodynamics, which means the

vorticity is zero $ = ∇×v = 0, since v ∝ ∇φ and φ is the phase of a macroscopic

139



wavefunction of superfluid.

Now I will use 2D flow as an example to explain the difference between the

rotational flow and irrotational flow. Assume the stream line of incompressible 2D

flow can be described by a scalar function Ψ = ax2 + by2 in a 2D plane (x, y) [91].

The scalar function for the streamline can be divided into a pure rotation part

and a pure shear(irrotational) part by

Ψ = ax2 + by2 =
b + a

2
(y2 + x2) +

b− a

2
(y2 − x2) = Ψrot + Ψirrot. (7.6)

For the pure rotational part Ψrot, the velocity is given by

vx =
∂Ψrot

∂y
= (b + a)y

vy = −∂Ψrot

∂x
= −(b + a)x

∇× v =

(
∂vy

∂x
− ∂vx

∂y

)
ẑ = −2(b + a)ẑ. (7.7)

For the pure irrotational part Ψirrot, the velocity is given by

vx = (b− a)y

vy = (b− a)x

∇× v = 0. (7.8)

The contour plots of the streamlines of pure rotation flow and pure shear flow are

shown in Fig. 7.2.

In a superfluid, irrotational flow is a consequence of the macroscopic wave-

function, and usually evolves into the quantized vortex. The vorticity of a vortex
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Figure 7.2: The definition of the streamline for irrotational and rotational flow.
Here we plot b − a = 2 in Eq. (7.8) for a pure irrotational flow and b + a = 2 in
Eq. (7.7) for a pure rotational flow.

is zero everywhere except of the singularity of vortex core in cylindrical polar

coordinates (r, θ), where the voticity is localized and given by quantized values

$ =
nh

2m
δ(2)(r)ẑ. (7.9)

Here δ(2)(r) is a two-dimensional δ function. h is Planck’s constant and n is a

positive integer. By comparison, for a rotational fluid with v = ω×r, the vorticity

$ = 2ω is constant everywhere.

In the next section I will describe the experiment that we observe irrotational

flow in both the superfluid regime and in the normal fluid regime in a strongly

interacting Fermi gas by studying the hydrodynamic expansion of a rotating cloud.
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7.1.2 Preparation of a Rotating Strongly Interacting Fermi

Gas

In our experiments, a degenerate strongly interacting Fermi gas is prepared by

the same procedures described in Chapter 3. For the rotating experiment, we use

a trap depth about ten times deeper than we used in the entropy experiment. We

employ a 50:50 mixture of the two lowest hyperfine states of 6Li atoms in a bias

magnetic field near a broad Feshbach resonance at 834G [62]. After evaporation,

the trap depth is recompressed to U0/kB = 100 µK, which is much larger than

the energy per particle of the gas.

At the final trap depth U0, the measured oscillation frequencies in the trans-

verse directions are ωx = 2π × 2354(4) Hz and ωy = 2π × 1992(2) Hz while the

axial frequency is ωz = 2π× 71.1(.3) Hz, which produce a cigar-shaped trap with

ωz/ωx = 0.032. The total number of atoms N typically is 1.3 × 105. The cor-

responding Fermi energy EF at the trap center is EF /kB = ~(3Nωxωyωz)
1/3 =

2.4 µK.

Samples with energies well above the ground state are prepared either by

reducing the forced evaporation time, or starting from near the ground state and

adding energy using release and recapture scheme. Then the cloud is held for

0.5 s to assure equilibrium. The total energy E of the cloud is determined in

the strongly interacting regime from the axial (z) mean square cloud size, using

E = 3mω2
z 〈z2〉, where m is the atom mass [48,49].

Once the trapped gas has been prepared in a desired energy state, the trap is

suddenly rotated as shown in Fig. 7.3. Rotation of the CO2 laser beam is accom-

plished by changing the frequency of the acousto-optic modulator (AOM) that
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Figure 7.3: Scheme to rotate the optical trap by changing the frequency of an
acoustooptic modulator(AOM).

controls the trap laser intensity. When the frequency is changed from the initial

state 40.0 MHz to the final state between 40.1 and 40.2 MHz by a radio frequency

(RF) switch, the position of the beam on the final focusing lens translates. This

translation causes primarily a rotation of the cigar-shaped trap at the focal point

about an axis (y) perpendicular to the plane of the cigar-shaped trap.

A scissors mode in the x− z plane [101] is excited by this rotation. We note

that there is also a slosh mode in the transverse direction (x) accompanying the

scissors mode. In Fig. 7.4, we show the rotation angle in the x−z plane and radial

position in x direction of the cloud versus the evolution time, which is excited by

the RF frequency switching from 40.0 MHz to 40.1 MHz. The cloud is permitted

to oscillate in the trap for a chosen period. The oscillation time can be used to

choose the initial angular velocity of the cloud before release.

7.1.3 Observation and Characterization of Expansion Dy-

namics

Fig. 7.5 shows cloud images as a function of expansion time for the coldest samples,

with a typical energy E = 0.56EF near the ground state [49]. When the gas is
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Figure 7.4: Scissors mode excited by a trap rotation. The angle is fitted by
A(t) = a+b×Exp(t/τ)×Sin(ft+c), where f = 2360±6 Hz and τ = 1239±67µs.
The radial position is fitted by A(t) = a + b × Exp(−t/τ) × Sin(ft + c), where
f = 2292 ± 10 Hz and τ = 1975 ± 356µs. Note that the rotation angle slowly
damps out after the initial increase, which is not shown here.
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Figure 7.5: Expansion of a rotating, strongly interacting Fermi gas with different
expanding time and different initial angular velocity. Ω0, initial angular velocity;
ωz, trap axial frequency.

released without rotation of the trap, Fig. 7.5 (top), a strongly interacting Fermi

gas expands anisotropically, as previously predicted [102] and observed [12]. In

that case, the gas expands rapidly in the narrow (x, y) directions of the cigar

while remaining nearly stationary in the long (z) direction. In the end the aspect

ratio σx/σz is inverted as the cloud becomes elliptical in shape.

Quite different expansion dynamics occurs when the cloud is rotating prior to

release shown in Fig. 7.5 (middle) and (bottom). In this case, the aspect ratio

σx/σz initially increases toward unity. However, as the aspect ratio approaches

unity, the moment of inertia decreases and the angular velocity of the principal

axes increases to conserve angular momentum as previously predicted [98] and

observed [99,100] in a superfluid BEC. After the aspect ratio reaches a maximum

less than unity [98], it, as well as the angular velocity, begins to decrease when

the angle of the cigar shaped cloud approaches a maximum value less than 90◦.

Different from the case of a strongly interacting Fermi gas, at 528 G where
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the scattering length vanishes, we observe ballistic expansion of a rotating non-

interacting Fermi gas. In that case, the aspect ratio asymptotically approaches

unity, and there is no increase in angular velocity.

To determine the angle and aspect ratio, the measured density profiles are fit

with a two-dimensional Gaussian distribution, which takes the form

f(x̃, z̃) = A exp[−az̃2 − bz̃x̃− cx̃2], (7.10)

where z̃, x̃ are laboratory coordinates.

Accordingly, the two-dimensional Gaussian function in the coordinates of the

principle axis of the rotating frame of the cloud is given by

f(x, z) = A exp[−(
x

σx

)2 − (
z

σz

)2], (7.11)

where σx,z are defined as the Gaussian widths in the x and z direction.

From the values of a, b, c, the Gaussian widths σx,z, and the angle θ between

the long z-axis of the cloud and the laboratory z̃-axis (anticlockwise is defined as

the positive angle) are determined by

θ = Arctan

(
b

2(a− c)

)

σ2
x =





2

a+c+(a−c)

√
1+ b2

(a−c)2

θ ≤ π/4

2

a+c−(a−c)

√
1+ b2

(a−c)2

θ > π/4

σ2
y =





2

a+c−(a−c)

√
1+ b2

(a−c)2

θ ≤ π/4

2

a+c+(a−c)

√
1+ b2

(a−c)2

θ > π/4.
(7.12)
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Figure 7.6: Aspect ratio and angle of the principal axis versus expansion time.
Squares (aspect ratio for Ω0 = 0); Solid circles (Ω0/ωz = 0.40, E/EF = 0.56);
Open circles (Ω0/ωz = 0.40, E/EF = 2.1); Triangles (Ω0/ωz = 1.12, E/EF =
0.56). The dashed, solid, and dotted lines are theoretical calculations corre-
sponding to the measured initial conditions. The gray dot-dashed line shows
the energy-independent prediction for a ballistic gas with Ω0/ωz = 0.40.

Fig. 7.6 shows the measured aspect ratio and the angle of the principal axes

versus expansion time, which are determined from the cloud images.

7.1.4 Modeling the Expansion Dynamics of a Rotating

Cloud

We attempt to model the angle and aspect ratio data for a rotating cloud near

the ground state (solid circles and triangles in Fig. 7.6). The model is based on

a zero temperature hydrodynamic theory for the expansion of a rotating strongly

interacting superfluid Fermi gas. The details of modeling the expansion dynamics

are discussed in the dissertation of my colleague student Bason Clancy [39]. Here
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I only give a brief introduction of the basic equations that we used to model the

dynamics.

The similar hydrodynamic model was first used to describe the expansion

dynamics of a rotating, weakly interacting BEC [98,103]. For perfect irrotational

flow with ∇ × v = 0 and η = 0, the model of hydrodynamic expansion in free

space consists of the continuity and Euler equations in the lab frame, which are

given by

∂n(r, t)

∂t
+∇ · (nv) = 0, (7.13)

∂v(r, t)

∂t
+∇

(
v2

2
+ µ(n)

)
= 0. (7.14)

Here n(r, t) and v are the cloud density and the velocity field respectively. The

driving force for the expansion arises from the gradient of the chemical potential

µ(n), which we take to be the zero temperature value for a strongly interacting

Fermi gas [12,104] by

µ(n) = (1 + β)
~2(3π2)

2
3

2 m
n

2
3 . (7.15)

We find that the hydrodynamic equations with the zero temperature chemi-

cal potential turn out to be a good approximation for modeling our data up to

E0/EF = 2. We also include the force arising from the magnetic field curvature.

The magnetic potential changes the angular momentum by 10% for the release

time corresponding to the maximum aspect ratio, while changes the angle and

aspect ratio by a few percent for the longest release times.

To determine the initial conditions for our model, we determine the initial

angular velocity Ω0 from the measured rotation angle versus time data during

a short time just after release. The initial axial cloud radius σz0 is obtained

directly from the cloud images at the beginning of release, while assuming the
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initial transverse radius σx0 is given by the zero temperature values according to

the trap frequencies. The results yield excellent agreements with all the angle

and aspect ratio data, with no free parameters, as shown in Fig. 7.6.

7.1.5 Measurement of Moment of Inertia

Eq. (7.3) enables a model-independent measurement of the effective moment of

inertia I ≡ L/Ω, where Ω is the angular velocity of the principal axes of the cloud

after release. L = Ω0 I0 is the initial angular momentum, which is conserved

during the expansion. Note that we neglect the small change arising from the

magnetic potential. The angular velocity Ω is calculated from the time derivative

of a polynomial fit to the angle versus time data. The initial moment of inertia

I0 is for a cigar-shaped cloud with a large aspect ratio σz/σx ≈ 30. In that case,

the moment of inertia for the irrotational fluid is nearly equal to the rigid body

value according to Eq. (7.5) for 〈z2〉0 ¿ 〈x2〉0. For the clouds released from our

cigar shape trap, I0 ' Nm〈z2〉0 within 0.3% accuracy, where 〈z2〉0 is measured

from the cloud images. The measured effective moment of inertia after release is

then I(t) = I0 Ω0/Ω.

The corresponding rigid body moment of inertia is determined from the fit to

the cloud profile, Irig(t) = Nm〈x2 + z2〉. Hence, we obtain the ratio between the

effective moment of inertia in the expansion and that of the rigid body value by

I(Ω(t))

Irig

=
Ω0

Ω(t)

I0

Irig(t)
, (7.16)

where all the quantities on the right side of the equation are measurable.

We note that the measured I(Ω) in our experiment generally is not the equi-
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librium moment of inertia of the cloud with a constant rotation frequency Ω.

The equilibrium moment of inertia of the cloud requires that the velocity field of

the normal and superfluid components reaches steady state after the cloud rotates

enough time with a constant frequency [104]. However, in our highly cigar-shaped

trap, whether the system is in equilibrium or not, the initial angular momentum

is essentially equal to the rigid body value, independent of the superfluid and

normal fluid composition. To see this physically, note that for rotation about the

y-axis, the initial stream velocity for irrotatinal flow is v = Ω0zi+Ω0xk, while for

rotational flow, v = Ω0zi− Ω0xk. These differ only for the z-components, which

is negligible as the aspect ratio σx/σz tends to zero.

Fig. 7.7 shows the measured minimum value of Imin(Ωmax)/Irig as a function

of initial angular velocity Ω0. Fig. 7.7 indicates that the moment of inertia is

quenched to well below the rigid body value for energies both above and below

the superfluid transition.

For the coldest clouds (solid circles in Fig. 7.7), where the energy of the gas is

close to that of the ground state, the gas is believed to be in the superfluid regime

[24,45,49]. In this case, we observe values of Imin/Irig as small as 0.05 in Fig. 7.7,

smaller than those obtained from the scissors mode of a BEC of atoms [105,106].

The solid line shows Imin/Irig predicted by the superfluid hydrodynamic theory,

which is in very good agreement with our measurements. Such nearly perfect

irrotational flow usually arises only in the superfluid regime. For example, normal

weakly interacting Bose gases can not support irrotational flow above the critical

temperature.

In contrast, for a normal strongly interacting Fermi gas (open circles in Fig. 7.7),

we also observe significant quenching of the moment of inertia. To investigate the
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normal fluid regime, we increase E up to 2.1 EF , which is well above the transition

energy of Ec = 0.83 EF as estimated from the entropy experiment in Chapter 6.

At E = 2.1 EF , the gas is in the normal phase and the measured entropy nearly co-

incides with that of an ideal gas [49]. The open circles in Fig. 7.6 show the aspect

ratio and angle versus time for a cloud with Ω0/ωz = 0.4 and E = 2.1 EF . The

results for the normal fluid are nearly identical to those obtained for Ω0/ωz = 0.4

in the superfluid regime (solid circles in Fig. 7.6).

The minimum value of I/Irig occurs when the angular velocity Ω reaches its

maximum value in the expansion. We find that the smaller Ω0 is, the smaller

the value of Imin/Irig. This effect is a consequence of the conservation of both

the energy and the angular momentum in the expansion. I will show this in the

following: The initial energy of the gas has two parts E0 = Erot + Eexp, where

Erot = Ω2
0 I0/2 is the kinetic energy for the pure rotation and Eexp is the release

energy for pure expansion. When the gas expands, the aspect ratio approaches

unity. For a perfect irrotational fluid, Eq. (7.5) shows that the effective moment

of inertia decreases dramatically, which results in an increase of Ω to conserve the

angular momentum. This causes a transfer most of the energy into the rotational

energy when Ω reaches the maximum. From the conservation of the energy and

the angular momentum, we have

E0 =
Ω2

0 I0

2
+ Eexp =

Ω2
max Imin

2
, (7.17)

L0 = Ω0 I0 = Ωmax Imin. (7.18)
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By solving the above equations for Ωmax, we get

Ωmax = Ω0 +
2 Eexp

Ω0 I0

, (7.19)

Imin =
I0

1 + 2 Eexp

Ω2
0 I0

. (7.20)

Eq. (7.20) shows clearly that the smaller Ω0 is, the smaller the value of Imin will

be in the expansion.

We test Eq. (7.5) in a model-independent way, where the deformation pa-

rameter δ is measured with respect to the principal axes. Fig. 7.8 compares the

measured minimum values of Imin/Irigid with the values of δ2. From the measured

cloud radius σz,x of a Gaussian shape in Eq. (7.11), δ2 is directly obtained by

δ2 ≡ 〈z2 − x2〉2
〈z2 + x2〉2 =

(σ2
z − σ2

x)
2

(σ2
z + σ2

x)
2
. (7.21)

The measurement directly verifies that the fundamental relation between the ef-

fective moment of inertia and the deformation parameter for ideal irrotational

flow is valid in both the normal and superfluid regimes of a strongly interacting

Fermi gas.

We attribute the observed irrotational flow in the normal strongly interacting

fluid to low viscosity collisional hydrodynamics. After release from a harmonic

trap, the stream velocity v is linear in the laboratory coordinates x̃. For the
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rotation and expansion about the y-axis in free space, we have

vx̃ = αxx̃ + (α + Ω̂)z̃,

vỹ = αyỹ,

vz̃ = αz z̃ + (α− Ω̂)x̃. (7.22)

Here, αi(t) and α(t) describe the irrotational velocity field and ˆΩ(t) is the rota-

tional part. With zero viscosity, the hydrodynamic equations of motion yield the

result [39]

∂Ω̂

∂t
+ (αx + αz)Ω̂ = 0. (7.23)

After release, when the stream velocity increases, αx becomes the order of ωx.

Hence, Ω̂ decays rapidly on the time scale 1/ωx << 1/Ω̂. That means for negligi-

ble viscosity, the gas cannot maintain the rigid body rotation during expansion.

7.2 Measuring Quantum Viscosity by Collective

Oscillations

Our lab had measured the frequency and damping of a radial collective breathing

mode in a strongly interacting Fermi gas over a wide range of temperatures. At

temperatures both below and well above the superfluid transition, the frequency

of the mode is nearly constant and very close to the hydrodynamic value. Below

the transition temperature, this hydrodynamic behavior is explained by super-

fluidity [19, 20]. However, at temperatures well above the superfluid transition,

the observed hydrodynamic frequency and the damping rate are not consistent
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with a model of a collisional normal gas [50,107]. The microscopic mechanism for

hydrodynamic properties at high temperatures still remains as an open question.

In this chapter, I will present the damping rate as a function of the energy of

the gas instead of the empirical temperature used in our previous study. Then a

hydrodynamic equation with the quantum viscosity term is applied to estimate

an upper bound on the viscosity. Furthermore, using our measured entropy of the

gas, we estimate the ratio of the shear viscosity to the entropy density in strongly

interacting Fermi gases, and compare the result with the prediction from string

theory methods [3], which gives the lower bound of this ratio

η

s
≥ 1

4π

~
kB

. (7.24)

7.2.1 Hydrodynamic Breathing Mode

The breathing mode data we used to estimate the viscosity was obtained in our

previous measurements and described in Joseph Kinast’s dissertation [64]. Here

I only review it for the purpose of extracting the viscosity. Our breathing mode

experiments start by preparing a strongly interacting Fermi gas of 6Li. At the final

trap depth, the trap aspect ratio λ = ωz/ω⊥ = 0.045 (ω⊥ =
√

ωxωy) and the mean

oscillation frequency ω̄ = (ωxωyωz)
1/3 = 2π × 589(5) Hz including anharmonicity

corrections. The shape of the trap slightly departs from cylindrical symmetry

by ωx/ωy = 1.107(0.004). Typically, the total number of atoms after evaporative

cooling is N = 2.0(0.2)×105. The corresponding Fermi temperature TF ' 2.4 µK

at the trap center. After the preparation of the gas at nearly the ground state, the

energy of the gas is increased from the ground state value by abruptly releasing

the cloud and then recapturing it after a short expansion time theat, which is same

156



Figure 7.9: The gas after oscillating for a variable time thold, followed by release
and expansion for 1 ms. thold is increasing from left to right for a complete
oscillation period.

as the method we used in the entropy experiments. After waiting for the cloud

to reach equilibrium, the sample is ready for subsequent measurements.

In the experiments, the radial breathing mode is excited by releasing the

cloud and recapturing the atoms after 25 µs. After the excitation, we let the

cloud oscillate for a variable time thold. Then the gas is released and imaged after

' 1 ms of expansion [20]. The oscillating clouds are shown in Fig. 7.9.

The breathing mode of the gas has been investigated in our group [19,20,108].

The frequency and the damping rate is measured as functions of an empirical

temperature. However,equilibrium thermodynamic properties of the trapped gas,

as well as dynamical properties, can be measured as functions of either the tem-

perature or the total energy per particle. In the strongly interacting regime,

the temperature is difficult to obtain. In contrast, as described in Chapter 4,

the cloud energy can be directly measured in a model-independent way from the

mean square axial cloud size by

E = 3mω2
z〈z2〉, (7.25)

where z is the axial direction of the cigar-shaped cloud.

In this thesis, I represent the previous measurement on the frequency and
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damping rate in term of the total energy per particle in the trap. The frequency

and damping are obtained by fitting the oscillating cloud sizes by a+e−t/τCos(ωt+

φ), where τ is the damping time and ω is the angular frequency of the oscillation.

Corresponding to the temperature range of T = 0.12−1.1 TF we measured before

[19], the converted energy range is from nearly the ground state value ' 0.5 EF

to about 3.0 EF .

The frequency of a breathing mode versus the energy is shown in Fig. 7.10

while the damping rate versus the energy is shown in Fig. 7.11.

In Fig. 7.10, the frequency stays far below the frequency of a noninteracting

gas. No signatures of the superfluid transition are seen in the frequency de-
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per particle of a breathing mode in a strongly interacting Fermi gas.

pendence. Instead, in Fig. 7.11, the damping rate exhibits interesting features.

At Ec = 1.01 EF we observes a clear change in the damping versus energy de-

pendance. The monotonic rise switches to flat dependance, which might be a

signature of a phase transition.

In the next section, I will provide a hydrodynamic model to exact the viscosity

from the above breathing mode data.

7.2.2 Determining the Quantum Viscosity from the Breath-

ing Mode Damping

In this section, I will extract the the viscosity from the damping data based

on a hydrodynamic equation with the viscous relaxation. Then I will compare

this viscosity with that estimated by a kinetic model that uses a Boltzmann
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equation approach. This model takes into account strong coupling effects in

thermodynamics and gives rise to a pseudogap in the spectral density for single-

particle excitation [107].

In a strongly interacting Fermi gas, where the interparticle separation l ∝ 1/kF

sets the length scale, there is a natural unit of shear viscosity η that has dimension

of the momentum divided by the area. The relevant momentum is the Fermi

momentum, ~kF = ~/l. The relevant area is determined by the unitarity-limited

collision cross section 4π/k2
F ∝ l2. Hence, η ∝ ~/l3 = ~n [94], where n is the

local total density. We can write

η = α [T/TF (n)] ~n, (7.26)

where α is generally a dimensionless function of the local reduced temperature

T/TF (n), where TF (n) ≡ ~2(3π2n)2/3/(2mkB) is the local Fermi temperature.

Eq. (7.26) shows that viscosity has a natural quantum scale, ~n. If the coefficient

α is of order unity or smaller, the system is in the quantum viscosity regime [94].

For comparison, the normal fluid, such as water in room temperature has α of

about 300, and air in room temperature has α of about 6000.

This viscosity can be used to determine the damping rate of collective modes

of a trapped unitary Fermi gas. We begin with the equation for viscous flow

[109]. We assume a small viscosity, and also assume approximately isentropic

conditions for the gas oscillation. Then, the stream velocities of the normal and

superfluid components must be equal, since the entropy per particle is different

in the superfluid and normal components. We also assume that the local total

density n and the stream velocity u obey a simple hydrodynamic equation of
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motion.

The convective derivative of the stream velocity u is the local acceleration

which depends on the forces arising from the local pressure P and the trap po-

tential U . For irrotational flow, ∇× u = 0, we insert u · ∇u = ∇(u2/2) into the

Navier-Stokes equations [91] and obtain

m
∂u

∂t
= −∇

(m

2
u2 + U

)
− ∇P

n
+
∇

↔
P ′

n
, (7.27)

where m is the bare atom mass since the interaction is generally included in the

pressure term. P is the scalar pressure. For a unitary gas, according to Eq. (4.5),

the scalar pressure takes the form

P (x) =
~2

m
n5/3 fP [T/TF (n)], (7.28)

where fP is a dimensionless function and x is the position in the the cloud con-

tained in a harmonic trap.

The viscosity arises in the pressure tensor
↔
P ′, which takes the form [110]

P ′
ij = η

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij ∇ · u

)
+ δij ζ∇ · u, (7.29)

where η = η(x) is the shear viscosity, and ζ is the bulk viscosity that we neglect

here for simplicity.

Initially, the gas is in a harmonic trap at a uniform temperature T0 and has

a density n0 ≡ n0(x̃), where x̃ is the position in the initial distribution. Force
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balance in the equilibrium state requires

∇x̃P0(x̃)

n0(x̃)
= −∇x̃U(x̃), (7.30)

where P0(x̃) is the equilibrium pressure.

For small viscosity, we can solve Eq. (7.27) assuming a scaling ansatz [102,111],

where each dimension changes by a scale factor bi(t), i = x, y, z, and bi(0) = 1.

The position is given by x ≡ (x̃bx, ỹby, z̃bz). The density and stream velocity then

take the forms

n(x, t) =
n0(x̃)

Γ
,

ux = x
ḃx(t)

bx(t)
, uy = y

ḃy(t)

by(t)
, uz = z

ḃz(t)

bz(t)
. (7.31)

Here an atoms is at the position x̃ at time t = 0 while at position x at time t.

Γ ≡ bxbybz is the volume scale factor. The scaling ansatz is exact for η = 0 if the

gas is contained in a harmonic trap and the pressure takes the form P = c nγ,

where c and γ are constants [102,111].

For the breathing mode with small viscous relaxation, the gas flows under

locally isentropic conditions [48], then the local reduced temperature does not

change as the gas expands, which ensures fP [T/TF [n(x)]] = fP [T0/TF [n0(x̃)]].

Here T0 is the initial temperature. In this case that local equilibrium is main-

tained, the pressure P is simply related to P0 by

P (x) =
P0(x̃)

Γ5/3
. (7.32)
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From Eq. (7.32), we have

∇xP (x)

n(x)
=
∇xP0(x̃)

n(x) Γ5/3
. (7.33)

Using n0(x̃) = n(x)Γ in the above equation and applying the force balance relation

by replacing ∇x̃ → ∇x in Eq. (7.30), we obtain

∇xP (x)

n(x)
=
−∇xU(x̃)

Γ2/3
. (7.34)

Note that the spatial derivatives of the velocity field are diagonal and position

independent due to the scaling ansatz. Hence, the derivative of the pressure tensor

is simplified to a vector, whose effects arises only through the spatial variation of

the viscosity by

(∇
↔
P ′)i =

∂η

∂xi

(
2
ḃi

bi

− 2

3
Σj

ḃj

bj

)
. (7.35)

By using Eq. (7.34) and Eq. (7.35) in Eq. (7.27), we obtain

m
∂ui

∂t
= − ∂

∂xi

(
m

2
u2 + U(x)− U(x̃)

Γ2/3

)
+

1

n

∂η

∂xi

(
2
ḃi

bi

− 2

3
Σj

ḃj

bj

)
. (7.36)

Note that the damping term vanishes for an isotropic trap, where all of the ḃi/bi

are the same.

Now let us consider the radial breathing mode in a cylindrical trap U(x) =

mω2
⊥(x2 + y2)/2 + mω2

zz
2/2 with λ = ωz/ω⊥ << 1. In that case, we can take

bx = by = b⊥ and bz ' 1, with ḃz ' 0. Eq. (7.36) then yields the result for the
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cylindrical trap

mx̃b̈⊥ = −mω2
⊥x̃

(
b⊥ − 1

b
7/3
⊥

)
+

2

3

∂η

∂x̃

1

n

ḃ⊥
b2
⊥

. (7.37)

To calculate the average viscous effects for a trapped gas, we multiply Eq. (7.37)

by
∫

d3x̃ x̃n0(x̃)/N and use the definition of 〈x̃2〉 ' ∫
d3x̃ x̃2 n0(x̃)/N . Finally we

obtain

b̈⊥ + ω2
⊥

(
b⊥ − 1

b
7/3
⊥

)
+

2

3

∫
d3x η(x)

m〈x̃2〉N
ḃ⊥
b2
⊥

= 0. (7.38)

It is noting that to get the above equation I use the following result of the inte-

gration ∫
d3x

∂(ηx)

∂x
= 0, (7.39)

which is due to the viscosity disappearing at the boundary of the cloud.

For small vibrations, we take b⊥ = 1 + ε⊥ and bz = 1 = εz. Eq. (7.38) yields

the equation for radial breathing oscillation

ε̈⊥ +
10ω2

⊥
3

ε⊥ +
2

3

〈α〉~
m〈x̃2〉 ε̇⊥ = 0, (7.40)

where the oscillation frequency ω =
√

10/3 ω⊥, and the corresponding damping

rate 1/(ω⊥τ⊥) is given by

1

ω⊥τ⊥
=

1

3

〈α〉~
mω⊥〈x̃2〉 . (7.41)

Here we have used the trap average value of α by 〈α〉~ =
∫

d3x η(x)/N .

We determine the energy per particle according to the virial theorem by E =

3mω2
⊥〈x̃2〉. Using this equation in Eq. (7.41), we easily obtain the damping ratio
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Figure 7.12: Quantum viscosity in a strongly-interacting Fermi gas. The local
shear viscosity takes the form η = α ~n. In the figure, 〈α〉 is a trap-averaged value
of the dimensionless parameter α. The dashed line is the theoretical prediction
from Eq. (7.45).

1/(ω⊥τ⊥) as a function of energy and 〈α〉

1

ω⊥τ⊥
=
~ω⊥
E
〈α〉. (7.42)

Using this relation and the damping rate of the radial breathing mode shown

Fig. 7.11, we determine 〈α〉 as a function of the energy as shown in Fig. 7.12.

It is quite interesting to compare our result with the theoretical calculation of

α by Bruun and Smith [107]. In their prediction, α for the normal gas T > Tc is
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given by the temperature dependence by

α = −0.2 + 2.77(T/T ∗
F )3/2. (7.43)

Note that Eq. (7.43) is for a uniform gas, where T ∗
F is the Fermi temperature

corresponding to a noninteracting gas with a uniform density. By contrast, for

a trapped gas, we used TF , the Fermi temperature for a noninteracting gas at

the center of a harmonic trap. Now I use an approximate method to relate

T ∗
F with TF . I assume T ∗

F is the local Fermi temperature corresponding to the

local density of a strongly interacting Fermi gas in the center of our harmonic

trap. As we know from Chapter 4, the width of a strongly interacting Fermi gas

gas decrease a factor of (1 + β)1/4 comparing with a noninteracting Fermi gas.

Accordingly the volume decreases by (1 + β)3/4, and the density n increases by

1/(1 + β)3/4. Because the local Fermi temperature T ∗
F ∝ n2/3, T ∗

F increases by

1/(1 + β)1/2 compared to TF . Using β = −0.59 from our entropy measurement, I

have T ∗
F = TF /(1 + β)1/2 = 1.56 TF , so I rewrite Eq. (7.43) as

α = −0.2 + 2.77(0.64T/TF )3/2, (7.44)

where TF is the Fermi temperature for a harmonically trapped gas.

Using the relation of the reduced temperature T/TF versus the reduced energy

E/EF above the critical energy in Eq. (6.18) from the entropy measurement, the

energy dependence of α is given by

α = −0.2 + 0.14[5.84(E − 0.83) + 1]0.96; E ≥ Ec = 0.83EF . (7.45)
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Our measured trap average α is significant larger than the prediction from

the kinetic model with strong coupling effects. One possible reason for the higher

measured viscosity is that other sources of relaxation may contribute the damping,

such as anharmonicity of the trap potential and other effects due to the low density

of the gas at the cloud edge, where the cloud is not hydrodynamic. Thus, our

data from the breathing mode experiments only indicate the upper bound of

the viscosity in a strongly interacting Fermi gas. Recently, we have found that

viscosity can also be extracted from the expansion dynamics of a rotating strongly

interacting Fermi gas which provides much lower values of α [39] and is very close

to the prediction of the theoretical model.

7.2.3 η/s of a Strongly Interacting Fermi Gas

A string theory method has shown that for a wide class of strongly interact-

ing quantum fields, the ratio of the shear viscosity to the entropy density has a

universal minimum value [3], which gives η/s ≥ ~/(4πkB) = 6.08× 10−13K · s.
Based on the measurements on the shear viscosity and the entropy in this

dissertation, we should be able to answer the important question: How close does

η/s in a strongly interacting Fermi gas comes the quantum limit?

I separately integrate the numerator and denominator over the trap volume.

Note that I use
∫

d3xn = N , where N is the total number of atoms. Also I have
∫

d3xnα(x) ≡ N 〈α〉, where 〈α〉 is the trap average of the dimensionless universal

function α, and
∫

d3x s = NS, where S is the entropy per particle. Finally I get

η

s
'

∫
d3x η∫
d3x s

=
~
kB

〈α〉
S/kB

. (7.46)
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Using the values of 〈α〉(E) in Fig. 7.12 and the measured entropy S(E) in

Fig. 6.5, we estimate the ratio of the viscosity to entropy density shown in

Fig. 7.13. Note that the superfluid transition occurs near E = 0.83EF , above

which the gas is normal. We can make a comparison between the cold Fermi

gases with other quantum systems with very low viscosity. For example, 3He

and 4He near the λ-point have η/s ' 0.7~/kB, while for a quark-gluon plasma, a

current theoretical estimate [112] shows η/s = 0.16− 0.24~/kB.

In conclusion, in this chapter we have explored the perfect fluidity of a strongly

interacting Fermi gas. We found that nearly perfect irrotational flow arising

in both the superfluid and normal fluid regimes of a strongly interacting Fermi

gas. This observation not only demonstrates the zero viscosity behavior of the

superfluidity, but also indicates the nearly perfect fluidity of a normal system with

the extremely low viscosity close to the quantum limit. We extract the viscosity

from the measurements of the radial breathing mode. The measured viscosity

reveals an upper bound of the viscosity in a strongly interacting Fermi gas. By

combining the viscosity and entropy data, we estimate the viscosity over entropy

density ratio (η/s), which shows that strongly interacting Fermi gases enter into

the quantum viscosity regime.
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Figure 7.13: The ratio of the shear viscosity η to the entropy density s (in units
of ~/kB) for a strongly interacting Fermi gas as a function of energy E, red solid
circles. The lower dotted line shows the string theory prediction 1/(4π). The
light grey bar shows the estimate for a quark-gluon plasma (QGP) [112], while
the solid black bar shows the estimate for 3He and 4He, near the λ- point.
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Chapter 8

Building an All-Optical Cooling
and Trapping Apparatus

In this chapter, I will describe the techniques of building a new all optical cooling

and trapping apparatus for 6Li atoms. Our apparatus uses a Zeeman slower to

load a magneto-optical trap (MOT), then directly loads the atoms from the MOT

to a stable CO2 laser optical dipole trap for evaporative cooling. I will divide the

apparatus into several subsystems, and describe the design, building and function

of core components in each subsystem. My main effort is to explain how to build

a stable CO2 laser optical dipole trap, and describe the electronics, optics and

vacuum viewports required for this high power infrared optical trap.

8.1 Ultrahigh Vacuum Chamber

To create an ultracold degenerate Fermi gas, the vacuum for trapping atoms is

required to be 10−11 torr to reduce atoms heating and loss due to collisions with

background gases. There are two major difficulties for creating such ultrahigh

vacuum for the application of CO2 laser trapping of 6Li. First, 6Li is a solid at

room temperature with a melting point of 181 ◦C. To provide adequate atom flux,

we need to use an oven to heat 6Li up to 430 ◦C. So the vacuum for “experimental
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region” should be isolated with “oven region” to get the extremely high vacuum.

Second, CO2 laser beam needs viewports made of infrared optical materials, such

as crystalline zinc selenide (ZnSe), which is very soft material inappropriate for

standard sealing techniques used for ultrahigh vacuum.

Here we discuss the isolation problem first and describe making ZnSe viewports

in Section 8.6. The isolation between the “experimental region” and “oven region”

is achieved by the vacuum system design. The schematic diagram for the vacuum

system is shown in Fig. 8.1, where a Zeeman slower is inserted between an oven

and a main chamber. The zeeman slower also provides a differential pumping,

which makes the vacuum pressure in the main chamber much smaller than that in

the oven region. The main chamber is designed with a pancake geometry, which

allows us to reduce the vertical distance between a pair of high field magnets

above and below the chamber. This enables us to obtain high magnetic field with

smaller currents and lower power. The main chamber is designed by our group

and made by MDC Vacuum Products with a polish of the inside surface to reduce

outgassing. The actual dimension of the vacuum chamber is listed in Fig. 8.2

8.2 6Li Cold Atom Source

The 6Li cold atom source, which consists of an oven and a zeeman slower, provides

a slow atom beam with substantial amount of atoms at a speed of about 100 m/s.

8.2.1 Lithium Oven

The design of lithium oven is shown in Fig. 8.3. The lithium oven is operated

at the temperature of 300 ∼ 500 ◦C. The hottest part is the chamber and its
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Figure 8.1: The ultrahigh vacuum system (not to scale). The port labels will
be used throughout the thesis to describe the experimental setup.
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Figure 8.2: The design of the main vacuum chamber, which was sent to MDC
for manufacturing.
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vicinity. The 2.75 inch diameter flange is at room temperature. The required

vacuum sealing is for 10−10 torr when the oven is turned off. With cycling from

the room temperature to the operating temperature at least once a day, the

vacuum seals should be maintained at least for six months. For this requirement,

304 stainless steel is used as the building material.

To maintain adequate atom flux into the main trapping chamber, Lithium oven

is usually heated to about 400 ◦C. The heating system includes a DC power supply

(20V,20A), a current controller, and heater wires windings. The current controller

uses five parallel units of N-channel Power MOSFETs (Harris Semiconductor,

IRF243). The heater winding is made of five independent nichrome wires (Omega

PN NI80-020-50). Each wire carries about 2-3 A current provided by one of the

five units in the current controller.

The oven is enclosed by five layers placed from the inner to the outer side:

an isolation layer made from thermal cement (Omega CC High Temperature Ce-

ment), thermocouplers for monitoring the temperature, the second isolation layer,

nichrome heater wires, and the third isolation layer.

An appropriate temperature profile of the oven is the key to maximize the oven

life time and reduce the divergence angle of the atom beam. The most important

thing is to be sure that the vapor source is close to the joint place of the oven

chamber and the nozzle, which helps for both the recirculation the lithium liquids

and the reduction of the divergence angle. In Table 8.1, I list a temperature

profile that works in a typical oven. In the real experiments, the optimal profile

for each oven can be found by trial-and-error tests. When an oven gets older, the

temperature tends to be higher than the initial profile.
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1

4

3

2

5

Figure 8.3: The design of 6Li atoms oven (not to scale). There are two critical
dimensions in the oven: the inner diameters of the nozzle should be 0.141”±0.005”
and 0.188”±0.005” for the best efficiency of the oven. All other dimensions can be
slightly altered for the ease of manufacturing. The interior of the oven is lined with
316 stainless steel mesh with the fineness of 300 cell per inch, which recirculates
the liquid lithium from the exit of the nozzle back to the oven chamber.

Region No. 1 2 3 4 5

Temperature 370 380 410 370 260

Variation 10 10 20 20 20

Table 8.1: Temperature profiles for a typical atomic source oven. The region
numbers correspond to the numbers shown in Fig. 8.3. Temperatures are given
in ◦C.

175



8.2.2 Zeeman Slower

When an atomic beam is hit by a counterpropagating resonant laser beam, atoms

absorb photons whose momentum has the opposite direction with that of the

atoms. The atoms spontaneously emit photons in random directions. The net

effect is that the atomic velocity along the slowing beam decreases.

To make a laser beam resonant with moving atoms, the Doppler shift of reso-

nance frequency must be included. The shift frequency δω = ω v/c, where ω is the

laser frequency, v is the atom speed, and c is the light speed, depends the velocity

of the atoms. To make the final velocity small enough, we need to maintain this

slowing process as the atom speed decrease. There are two ways to do this: either

vary the laser frequency to cope with the change of atom speed, or tune the atom

energy level to compensate for the variation of the Doppler shift.

By applying the Zeeman shift of the atomic energy level in a magnetic field,

we can make the atoms continuously absorb the photons. For this application, a

Zeeman slower employs several wire coils coaxial with the slowing beam direction

to apply a spatially varying bias magnetic field to the atoms [113]. The bias

magnetic field provides larger Zeeman shifts of the resonance frequency near the

oven, which compensates for the larger Doppler shift of “faster atoms”. The

Zeeman shifts of the atoms decrease along the axis of the slower corresponding to

the smaller Doppler shift of the ”slower atoms”.

The Zeeman slower used for 6Li atoms in our lab is a compact air-cooled slower

including eight coils with different numbers of windings. The sketch diagram of

the slower is shown in Fig. 8.4. The first seven coils are connected in series

with the same current going through each coil. The current of the last coil is

controlled by a separate power supply for reversing the current direction, which
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Figure 8.4: The sketch diagram of the slower.

can be used to abruptly detune the zeeman shift of atomic beam. The number of

winding for each coils is chosen to produce the desired field. The total length of

the slower is about 30 cm, which was predicted to provide a loading rate 3×107

atoms/second [114]. The slower was made by an undergraduate researcher Ingrid

Kaldre in our group [115].

For a given initial velocity vi of the atom, the desired B-field is given by [114]

B(z) =
~k
µB

√
v2

i −
~kΓ

m
z, (8.1)

where k is the laser light wavevector, and Γ is the spontaneous emission and

absorption rate for the transition used for the slowing beam. For the oven tem-

perature between 600 ∼ 700 K, vi is about 1300 m/s. The designed and measured

magnetic field is shown in Fig. 8.5.

The transition we used for slowing the atoms is the Zeeman energy level

from |2 2S1/2, F = 3/2,mF = 3/2〉 to |2 2P3/2, F = 5/2,mF = 5/2〉, which can be

treated as a nearly ideal cycling transition. This transition requires a right circu-
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predicted by Eq. (8.1). The dot line is the designed value with the last reverse
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lar polarization light. We tested the Zeeman slower using the a ”slowing-probing”

scheme [115]. By setting the current of the first seven coils of the Zeeman slower

at 9.5 A and the last coil at 0.65 A, we find a slow atom peak about 100 m/s

arising from the broad peak of the fast atoms above 1000 m/s with a slowing

beam of about 120 mW and 350 MHz red detuning from the resonance of the

zero magnetic field.

8.3 Magneto-Optical Trap

8.3.1 Physics of 6Li MOT

The basic precooling method used in our apparatus is a 6Li MOT. MOT is a

three dimensional Doppler cooling plus the spacial confinements.

The interpretation of the forces and spacial confinements in a MOT is shown

in Fig. 8.6. For simplicity, we consider atoms that have a ground state with

the total angular momentum F = 0, and the excited state with the total angular

momentum F ′ = 1. We apply a spherical quadrupole magnetic field to the atoms,

where zero magnetic field exists. Away from the zero point in any direction, the

magnetic field increases nearly linearly. The excited state splits into three states

with mF = −1, 0, 1, which have the spacial dependence as shown in Fig. 8.6.

We apply two counterpropagating optical beams red detuned from the reso-

nance frequency at zero magnetic field. The moving atoms absorb more photons

from the beam propagating in the opposite direction to the atoms than that

propagating in the same direction as the atoms. The net effect is that the atoms

momentum decreases, which is Doppler cooling.

The spacial confinement is provided by the space varying Zeeman splitting
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Figure 8.6: The schematic diagram to interpret the physics of a MOT

as shown in Fig. 8.6. The optical beam travelling from right to left has σ−

circular polarization, while the beam travelling from left to right has σ+ circular

polarization. The atoms moving to the z > 0 region, where the laser frequency is

close to the mF ′ = −1 state, will absorb more photons form σ− beam and transfer

to the mF ′ = −1 state. For the same reason, the atoms moving to z < 0 region

will absorb more photons from σ+ beam and transfer to the mF ′ = +1 state. So

the resonance frequency detuning in the center of the trap are larger than that at

the edge, which provides a larger attracting force at the trap edge than that in

the trap center.

In Fig. 8.7, I show a schematic plot for a three dimension configuration of a

MOT.

The D2 line is used for a 6Li MOT. The excited state 2 2P3/2 in the D2 line has

three hyperfine levels with F ′ = 1/2, 3/2, 5/2 which have a maximum splitting
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Figure 8.7: The schematic diagram for a three dimension configuration of a
MOT from [59]. A pair of magnets coils has anti-Helmholtz configuration (the
coils are coaxial and the direction of current in the upper coil and the lower coil
is opposite.). The resulting zero magnetic field is at the midpoint of the axis of
the coils.

about 4.4 MHz. Since the splitting is smaller the natural linewidth of the D2 line

(about 5.9 MHz), we can ignore this splitting. For the ground state 2 2S1/2, where

the hyperfine splitting of F = 1/2, 3/2 is about 228.2 MHz much larger than the

linewidth of the D2 line. So we must use bichromatic beams for the 6Li MOT.

One of the frequencies is for F = 3/2 state and called as “MOT beam”, and the

other one is for F = 1/2 state and refereed as “repumper beam”.

Now I want to make an estimate of the trap depth of the 6Li MOT. For atoms

near the trap center with a small velocity, it is a good approximation that the net

force F reversely proportional to the the frequency detuning, which has a space

dependence of F = −Kz. The optimal K is given by [59]

K =
~k
2

∆µ

~
∂B

∂z
, (8.2)
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where k is the wavevector of laser photon, ∆µ is the change of the magnetic

moment from the lower level to the upper level, and ∂B
∂z

is the gradient of the

magnetic field. Suppose the MOT size zmax is determined by the maximum Zee-

man tuning, which is about the same scale of the natural linewidth γs = 5.9 MHz.

Then we have

∆µ

~
∂B

∂z
zmax ≈ 2πγs. (8.3)

From Eq. (8.2), the well depth of the MOT is given by

Umax ≈ 1

2
Koptz

2
max =

hγs

4
kzmax = kBTDoppler

kzmax

2
, (8.4)

where the kBTDoppler = ~γs/2 is the limit temperature of Doppler cooling due

to the heating from the finite spontaneous emission. For 6Li atoms, TDoppler ≈
140 µK. For a typical ∂B

∂z
= 25G/cm, the MOT size zmax is about 1.6 mm corre-

sponding to a trap depth of 1.1K. This trap depth is suitable for catching the

slow atoms after passing through the Zeeman slower.

8.3.2 Apparatus for 6Li MOT

Lasers for 6Li MOT

The wavelength of 6Li D2 line is approximately 671 nm. The total experimen-

tal setup needs about 500 mW power to generate the slowing beam, the MOT

beam, the repumper beam, and the imaging beam. To produce this power, we

use a Coherent 899-21 ring-cavity dye laser. The Coherent 899-21 has an au-

tolock active-stabilization system for stable operation at a single frequency with

linewidths less than 500 KHz rms. The dye used for 671 nm wavelength is 1.17
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grams Coherent LD-688 dissolved in 1.1 liters of 2-phenoxyethanol solvent, which

can cover the wavelength 640-710 nm. The pump laser for the Coherent 899 is a

Coherent Verdi V-10 diode-pumped solid state laser. The Verdi usually runs at

the wavelength of 532 nm with 5.5 W output power to avoid the saturation of the

dye. With a good alignment and cleaning of the optics inside the dye laser, the

dye laser output is more than 1.1 W for the broadband mode and about 800 mW

for a single-frequency mode near 671 nm. Usually the dye is changed in every 4-6

months.

Laser Frequency Locking

Our experiments require many cycles of operating MOTs. It is necessary to lock

the laser frequency within one MHz for several hours. The 899-21 dye laser has an

internal locking system to lock the laser frequency to the laser reference cavity.

However, the noise and thermal fluctuation in the environment may shift the

frequency of the laser reference cavity. So we need to employ a locking system to

keep the dye laser reference cavity locked to the optical transition line of 6Li.

This is done by an electronic servo system, which locks the dye laser to the

transition line of an atomic beam in a separate vacuum system. The vacuum and

the atomic beam for the locking system are similar to the atomic oven we used for

the main system. A small portion of the laser beam about 1-2 mW is upshifted

about 200 MHz by a double-passed AO and sent into the locking system. The DC

voltage for AO frequency shift is modulated by 10 KHz sine wave to provide a

reference frequency for a Stanford Research System SR510 lock-in amplifier. The

modulation depth is chosen less than 2 % of the amplitude of the carrier wave to

avoid the amplitude modulation of the laser power. The amplitude modulation
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can be caused by the efficiency variation of the AO when the AO driving frequency

changes.

The up-shifted probe beam passes through a λ/4 waveplate to produce a cir-

cular polarized light beam. The circular polarized light beam perpendicularly

intersects the atomic beam in the locking vacuum chamber. The resonance flu-

orescence signal is collected by a PMT. The current signal from the PMT is

converted into a voltage signal by a current-to-voltage converter and sent into

the lock-in amplifier. The lock-in amplifier outputs a linear error signal, which

is used as the error signal for a home-built electronic servo circuit. The circuit

of the servo electronics is shown in Fig. 8.8. The servo circuit drives the laser

reference cavity, which then locks the laser frequency to the required frequency

corresponding to the maximum fluorescence signal.

Optical Beam Generation

The optics layout for beam generation and routing is shown in Fig. 8.9. We

generate multiple frequency optical beams with different power from a single

frequency beam output by one laser. This is accomplished by using polarized

beam splitter cubes (PBS) and acousto-optic modulators (AO). By changing the

polarization of the optical beam using a half waveplate (Half WP), the power in

the vertical and horizontal polarization is distributed as needed. After passing

through the polarized beam splitter, the beams with different power are separated

in space according to their different polarizations. For each beam, we can use AOs

to tune its frequency and intensity, or use quarter waveplates (Quater WP) to

change its polarization. These kinds of methods are repeatedly used to generate

all the locking beam, imaging beam, slowing beam, MOT beam and repumper
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Figure 8.8: The circuit diagram for an electronic servo circuit used for laser
frequency locking.
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beam.

Typically the laser outputs a single frequency beam of about 600 mw. A thick

glass plate is used as a beam splitter, which reflects about 4% power on both the

front and rear surface. One reflected beam is used as the imaging beam and the

other is used as the locking beam. The frequency of the locking beam is up-shifted

about 200 MHz by a double-passed AO, and sent into the locking chamber. This

reason to choose the laser locked 200 MHz below the resonance is that we want

to directly use the high intensity beam output from the laser as the slowing beam

without any frequency shift. The slowing beam is required to run roughly 200

MHz below the resonance.

After the first beam splitter, a half waveplate and a polarizing beam splitting

cube directs about 120 mW laser power for the slowing beam. A telescope placed

in the slowing beam path expands the beam diameter, which make a cone-shaped

beam geometry. The focus of the slowing beam is put to the place near the exit

of the oven, which provides radial confinement for the atoms by the optical dipole

force and improves the loading rate of the MOT. A combination of a glan prism

and a quarter waveplate ensures a nearly perfect circular polarization as required

for the optical transition in the Zeeman slower.

Most of the laser power is transmitted through the PBS cube without being

reflected to the slowering beam. The transmitted beam is used to generate the

MOT beam and repumper beam. A telescope is used to collimate the beam,

which reduces the diverging angle of the beam. The beam first double passes

a AO called “MOT AO”, which up-shifts the laser frequency roughly 165 MHz

for the optical transition corresponding to the F=3/2 ground state. Then a half

waveplate and a polarizing beam splitting cube direct about 1/4 of the total power

186



Figure 8.9: The layout of optics for generating the optical beams for a 6Li MOT.
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of the MOT beam into another AO, called “ repumper AO”, where the light is

upshifted 228.2 MHz to produce the repumper beam for the optical transition

corresponding to the F=1/2 ground state. The ratio of the power between the

MOT beam and repumper beam is about 3 : 1 for the best loading performance.

The MOT and repumper beams are then recombined and co-propagate toward the

vacuum chamber. Before entering the vacuum chamber, the combined MOT and

repumper beam is split into three separate beams: two for the horizontal beam

of the MOT and the third one for the vertical beam of the MOT. The generation

of these beams is done by two units of the combination of a half waveplate and a

PBS cube. The first unit splits the horizontal beam and vertical beam with 1:1

ratio of the power. The second unit splits the two horizontal beam also with 1:1

ratio of the power.

In the end, the vertical beam has about 40 mW power and each horizontal

beam has about 20 mW power. These three beams make up three mutually or-

thogonal beams for three-dimensional MOT, where the optics for each beam are

nearly identical. Each beam is first expanded to 1.5 inch in diameter by a tele-

scope, then passes through an quarter waveplate in front of the vacuum viewports

to produce the required circular polarized light. After exiting the vacuum win-

dow, the beam passes through another quarter waveplate, then is retro-reflected

by a mirror. The retro-reflected beam passes through the quater waveplate again,

which ensures that the retro-reflected beam has required circular polarization for

the MOT.

Double pass acousto-optic modulators are used extensively throughout our

optical system to generate the beams with different frequencies. This scheme

is discussed extensively in the previous dissertations [53, 59, 64], one of which is
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Figure 8.10: The optics for a double pass acousto-optic modulator. This figure
is from [64]

shown in Fig. 8.10. A linearly polarized optical beam passes through a PBS cube,

and then is focused into an AO crystal, which is at the focus of two confocal

lenses. An iris placed behind the crystal blocks all refracted beams from the AO

except of the first order beam. The first order beam travels through a quarter

waveplate, then retro-reflected by a mirror. This retro-reflected beam has the

same propagating path as the incident beam so that it experiences an equal fre-

quency shifts from the AO. In the end, the retro-reflected beam hits the PBS

cube again with the orthogonal polarization to the incident beam. This resulting

outgoing beam is then reflected to another direction orthogonal to the incident

face. The double-pass AO configuration enables twice frequency shift compared

with a single-pass AO. It ensures that the direction of the outgoing beam remain

constant when the AO frequency varies. Finally, better performance in the rejec-

tion of leakage light in the double pass AO helps us to reduce the resonance light

heating in an optical trap.
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8.3.3 Loading a MOT into an Optical Trap

For our experiment, the cold atoms in the MOT are the precursor for evaporation

operated in a CO2 laser optical dipole trap. So the maximum atom number in

the MOT is not our ultimate goal. Instead we want to put as many atoms into

the CO2 laser trap as possible. To achieve this goal, we have three periods for

the MOT instead of just a simple “MOT loading”.

The first period of the MOT is “MOT loading”. In this period, we load the

as many atoms into the MOT as possible. For this purpose, the volume of the

MOT can not to be too small. From Eq. (8.3), we know that the size of the MOT

is proportional to the detuning of the MOT beam. Usually we set the detuning

of the MOT beam about 6 linewidth below the resonance frequency. The second

period is “MOT cooling”. In this period, we compress the volume of the MOT so

that trap depth of the MOT decreases according to Eq. (8.4). By doing that, only

the coldest atoms close to the Doppler limit temperature stay in the MOT, and

then are loaded into the optical trap. This stage is very sensitive to the frequency

detuning, the power of the MOT and repumper beams, and the overlapping of the

MOT and the optical trap. It is operated by a careful daily optimization of the

fluorescence signal of the atoms loaded into the optical trap. Following the “MOT

cooling”, we conduct an “optical pumping”, during which the repumper beams

are extinguished while the MOT beams pump all the atoms into the F = 1/2

ground state. After those three periods, we usually load about 2 million atoms

into the CO2 laser trap.

Here I list the typical beam frequency, power, time and atoms number in each

period in Table 8.2.
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Loading Cooling Pumping

Detuning -30 MHz(MOT) -5 MHz (MOT) on resonance (MOT)

-10 MHz(Repumper) -5 MHz(Repumber) Off (Repumber)

Intensity Full Decrease Full

Duration 10 s 5ms 200 µs

Atom Num 200× 106 N.A. 2× 106

Table 8.2: The parameters for the different periods of MOT

8.4 Magnets

To generate a strongly-interacting Fermi gas of 6Li atoms, a uniform high mag-

netic field about 834 gauss is required for the broad Feshbach resonance. In our

magnets, we integrated a MOT magnet coil and a high-field magnet coil into each

of two sealed units, which are water-cooled to dissipated the heat. A pair of mag-

nets is mounted around port 13 and port 14 of the main experimental chamber in

Fig. 8.1. The MOT magnet and high field magnet units are designed and built by

Bason Clancy as described in his thesis [39]. Here I will give a brief introduction

to the operation of these magnets.

The MOT magnet coils are in an anti-Helmholtz configuration and are en-

ergized by an Agilent 6651A power supply using the constant current mode at

approximately 14A. This current produces a magnetic field gradient of 28 G/cm

at the center of the trapping region.

The high field magnet coils are run in a Helmholtz configuration. The coil is

powered by an Agilent 6691A power supply. It provides currents as high as 250

A,and produces uniform magnetic fields up to 1300 gauss. For magnetic fields less

than 1100 gauss, the high field magnets coils can run continuously. At the 1200

gauss, the magnets can safely runs about 30 seconds without any overheating.
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To avoid overheating and electrical shorts, interlocks are implemented to monitor

the power consumption of the magnets as well as the flow of cooling water. An

analog external voltage from 0 to +5 V is used to control the output current

of the power supply. When we demand a magnetic field change by sending two

different command voltages in sequence, the Agilent power supply has an internal

delay, which makes the magnetic field exponentially increase or decrease from the

original magnetic to the desired field. The full time for changing the magnetic

field is about 0.5-0.7 second.

We also have three bias magnet coils to finely tune the zero point of the

magnetic field produced by the MOT magnets. The three small coils are mounted

around port 5, 8, 11 in Fig. 8.1. Each coils can provide a couple of gauss bias

magnetic field. With these three bias coils, we can move the position of the MOT

in horizontal plane, which helps us to overlap the center of the MOT and the

center of the optical trap almost perfectly, which enhances the loading from the

MOT to the FORT. Note that the center of optical trap is always aligned to

overlap the center of the magnetic potential of high field magnets, and the center

of the magnetic potential is almost fixed. So for loading the optical trap, we

always move the MOT position to overlap the optical trap.

We use another method to move the MOT in the vertical direction. Originally

the top MOT coils and the bottom MOT coils are in series and have the same

amount of current. By add a 2 ohm range variable resistor in parallel with the

bottom MOT coil, we make the current going though the top coil and bottom

coil different. This enable us to move the MOT up and down by adjusting the

variable resistor.
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8.5 Ultrastable CO2 Laser Trap

Magnetic traps can not be applied to trap 6Li atoms at the lowest hyperfine

states because they are high-magnetic-field seeking states. To study a strongly

interacting Fermi gas constituted by these two hyperfine states, an optical dipole

trap is required. In this chapter, first I will introduce the physics of CO2 laser

optical dipole traps. Then I will briefly describe loss and heating in optical dipole

traps. After that I will describe how we build optics and electronics of a CO2

laser trap, and discuss the storage time of our current trap.

8.5.1 Physics of a CO2 Laser Optical Dipole Trap

When a neutral atom is in a static electric field, the energy level of atom splits

because of interactions between the static dipole moment of the atoms and the

external electric field. This is know as Stark effect. Similar interactions arise

when an optical field is presented, where the oscillating electric field generates

an induced dipole moment d = αE, where α is the polarizability of the atoms.

Interactions between the induced dipole moment and the optical field is known

as AC Stark effect, which generates a potential for the atoms by

U = −1

2
d · E = −1

2
αE2. (8.5)

This potential can be written in terms of the intensity of the optical field

U = −1

4
αE2 = −2π

c
αI (cgs) = − 1

2ε0c
αI (mks), (8.6)

where the time averaging E2 is E2/2. E is the slowly-varying field amplitude of
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the optical field, and I is the optical field intensity.

To obtain the maximum optical intensity, we usually focus a laser beam to

create a potential in the focal point. To make atoms attracted to the region with

the highest intensity, α is required to be a positive value. The polarizability of

the atoms in the ground state is given by [59]

α =
1

~
∑

|g〉,|e〉
µ2

eg

[
1

ωeg − ω
+

1

ωeg + ω

]
, (8.7)

where µeg is the electric dipole moment transition matrix element between ground

state |g〉 and excited state |e〉, and ωeg is the associated transition frequency. From

Eq. (8.7), we see that the laser frequency should be red tuned to make α positive.

Next, I will discuss the spacial profile of this attractive optical potential. The

light intensity of a focused laser beam is nearly a Gaussian shape. In a cylindrical

coordinate, it is given by [116]

I(r, z) =
I0

1 + (z/zf )2
exp

(
−2 r2

a2
f

)
, (8.8)

where λ is the wavelength of the laser beam. I0 is the maximum beam intensity

at the focal point z = 0. zf = π a2
f/λ is the Rayleigh range, and af is the 1/e2

width of the intensity at the focal point. Accordingly, the optical potential also

has the same Gaussian shape

Ugauss(r, z) = − U0

1 + (z/zf )2
exp

(
−2r2

a2
f

)
(8.9)

with U0 =
α I0

2 ε0 c
. (8.10)
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In most experiments of trapping cold atoms, cold atoms stay in the deepest

portion of the optical trap by r << af . Under this condition the Gaussian shape

optical potential can be well approximated as a harmonic potential. The Taylor

expansion of Eq. (8.10) is

U(r, z) ' −U0 +
U0

z2
f

z2 + 2
U0

a2
f

r2 + . . . . (8.11)

By comparing the second and third terms with the harmonic oscillator potential

for a particle with mass m, we obtain

U0

z2
f

z2 ≡ 1

2
mω2

zz
2, 2

U0

a2
f

r2 ≡ 1

2
mω2

rr
2. (8.12)

The radial and axial harmonic frequencies are

ωz =

√
2U0

mz2
f

, ωr =

√
4U0

ma2
f

. (8.13)

I will explain why we choose CO2 laser to create optical dipole traps for cool-

ing and trapping 6Li atoms. An Optical dipole trap provides space confinement

for cold atoms, but it doesn’t mean it can cool the atoms. Laser beams actually

heat atoms by atom-photon scattering. To reduce the atom-photon scattering,

people usually tune the wavelength of the laser beam far away from the reso-

nance. This type of an optical dipole trap is known as a Far Off-Resonance Trap

(FORT). Specially when the laser wavelength is tuned to the extremely far from

the resonance, interactions between atoms and optical fields is quasi-electric. This

kind of FORT is called Quasi Electrostatic Trap (QUEST). Our CO2 laser trap is

a QUEST, which has unique advantages for the application of all-optical cooling
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and trapping because of its extremely low optical heating rate.

The optical heating from the atoms-photon scattering is given by Larmor

power, which describes the radiation power of the oscillating dipole d in a elec-

tromagnetical field by

P =
2d̈2

3 c3
=

1

3c3
ω4 α2 E2, (8.14)

where α is the polarizability of atoms, ω is the frequency of photon, and E is the

amplitude of the optical field. The atom-photon scattering rate Rsc is

Rsc =
P

~ω
=

σs I0

~ c k
, (8.15)

where σs = 8π α2 k4/3 is the atom-photon scattering crosssection.

When the resonance frequency ωeg is much larger than the CO2 laser frequency

ω, Eq. (8.7) gives α = αs ≡ 2µ2
eg/~ωeg, which is the static polarizability of a two-

level atom. In term of αs, the depth and the atom-photon scattering rate of a

CO2 laser trap are given by

U0 = 2παsI0/c, (8.16)

Rsc =
2 Γ

~ω0

(
ω

ω0

)3

U0, (8.17)

where Γ = 4µ2
egω

3
eg/3~c3 is the spontaneous emission rate (resonance linewidth)

for a two-level atom. Eq. (8.16) shows that the atom-photon scattering rate is

reduced by a factor of (ω/ωeg)
3. By using an infrared beam with large intensity,

we can get a reasonable trap depth and suppress the optical scattering rate to a

negligible value.

In our lab, a 65 watt CO2 laser laser beam is focused within a spot of the
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diameter of about 50 µ m. The trap potential is about 550 µ K. The wavelength

of CO2 laser is about 16 times larger than the wavelength of the resonance light

of 6Li atoms, which gives the scattering rate of about 4 × 10−4 Hz. This low

scattering rate makes CO2 laser traps very suitable for evaporative cooling and

long time storage of cold atoms.

8.5.2 Loss and Heating in an Optical Trap

In the above section, we present an analysis of an CO2 laser trap, and find that it

is ideal for the purpose of all-optical cooling and trapping of cold atoms. However,

there are still several loss and heating mechanisms arising in optical traps, which

prevent a CO2 laser trap from being an ideal conservative potential [117–119].

The first one is the heating due to the intensity and position noises of laser

beams. Second one is the background gas heating in the vacuum. The last one is

the optical heating from the resonant light. In principle resonant light should be

completely prevented from entering into the vacuum chamber when evaporative

cooling begins. But in the real setup, the leakage from the MOT beam path and

the random reflection will cause a finite background resonant light in the vacuum.

Laser Beam Intensity Noise

The beam intensity noise is mainly from the intensity fluctuation of the laser itself

as well as from that of an acousto-optical modulator used for controlling the CO2

laser power. In this section I only give the theoretical analysis of the intensity

noise. The real measurements of the beam noise are presented in the next section.

The fluctuation of the beam intensity can be treated as a perturbation on the

harmonic potential, which results atomic transitions between quantum states of
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the harmonic trap. The heating rate from this transition is given by [119],

〈Ė〉 =
ω2

tr

4
Sε[ωtr/π] 〈E〉, (8.18)

where 〈E〉 is the average energy of the trapped atoms, and ωtr is the angular

frequency of the trap. The heating rate is sensitive to the noise spectrum near

ωtr/π because the intensity heating is actually a parametric process.

The Sε[ω] is defined as one-sided power spectrum of the fractional intensity

noise ε(t) by

Sε[ω] =
2

π

∫ ∞

0

dτ cos ωτ 〈ε(t)ε(t + τ)〉, (8.19)

with 〈ε(t) ε(t + τ)〉 =
1

T

∫ T

0

dt ε(t) ε(t + τ), (8.20)

where the factional fluctuation in the laser intensity ε(t) = (I(t)− I0)/I0, and I0

is the density without fluctuation.

Laser Beam Position Noise

The heating rate of the laser beam position noise is given by

〈Ė〉 =
π

2
M ω4

tr Sx[ωtr]. (8.21)

Here Sx[ω] is the one-sided power spectrum of the position fluctuations in the

trap center, which has the same definition formula with Sε[ω] in Eq. (8.20) by

replacing the ε(t) with εx. εx = x(t)− x0 is the position fluctuation of the center

of an optical trap.

The one sided power spectrum of the position fluctuation Sx[ω] can be decided
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from the intensity noise of a half-side-blocked beam by [59]

Sx[ω] =
π

2
a2 Sε[ω]

4
, (8.22)

where a is the 1/e2 intensity radius of a Gaussian beam, and the factor 1/4 arises

from the fact that 1/2 beam is blocked when measuring the Sε[ω].

Background Gas Heating

The detailed analysis of the loss and heating of trapped atoms due to collisions

background gases can be found in [117]. The loss rate is given by

γC = 1.05 nb ub σ[ub], (8.23)

where the background gas density is nb, the background gas 1/e width of thermal

speed Maxwellian distribution is ub =
√

2 kB T/mb, mb is the mass of the atom

in the background gas, and σ[ub] is the total cross section of atom-atom collisions

between the background gas and the trapped gas,

The heating rate is given by

Q̇ = 0.37 γC [ub]
U2

0

εd[ub]
, (8.24)

where the U0 is the trap depth, and εd[ub] = 4π~2
maσ[ub]

is the diffraction energy

change of a trapped atom with the mass of ma.
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Optical Resonant Light Heating

The resonant optical cross-section of the two-level atoms is given by

σ0 =
6π

k2
. (8.25)

Inserting the above equation into Eq. (8.15), we get the optical resonant light

scattering rate

Rres =
6π I

k3 ~ c
. (8.26)

For each scattering, the absorption and emission of photon induce the recoil energy

heating by 2εrec = ~k2

m
. So the heating rate is given by

Q̇ = 2εrec Rres =
3~λ I

m c
. (8.27)

For 6Li atom the εrec is about 3.6 µK. When the resonance light intensity

is about the 1 nW/cm2, the optical resonance heating rate is about the 51µK/s.

In the period of evaporative cooling, we ensure the total resonant light into the

vacuum chamber less than 0.1pW/cm2, which is the limit of our photodiode de-

tector. The upper bound estimation of the resonance optical heating is 5nK/s,

which is much smaller than the coldest gas temperature of about the 100nK in

our experiments.

8.5.3 Ultrastable CO2 Laser

For the application of all-optical cooling and trapping, an ultrastable CO2 laser

with very low intensity and position noise is required. We choose a Coherent

GEM Select 100 CO2 laser, which has a maximum power of up to 120 W at the
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wavelength of 10.6µ m. The RF-charged CO2 tube has all-metal seals for long

life time. The RF source is from an external RF amplifier, which is powered

by a stable Agilent 6573A DC power supply. When the laser operates on the

continuous mode with full power, the required electrical power is 35 VDC and 55

A.

Our customized model has an external modulation input, which allows users

to operate the laser in the pulse mode via an eternal TTL input after an initial

5 seconds start-up delay. The external modulation signal is provided by a pulse

generator, which outputs TTL pulse trains with variable pulse duty factors. The

minimum CO2 laser output power in the pulsed mode is about 1 W, which is

obtained by using 1 KHz TTL pulses with duty factors less than 0.05. This low

power CO2 laser beam is used for alignments of CO2 laser beam optics. A home-

made switch box is built to switch operations between the continuous mode and

pulse mode. The CO2 laser the RF power amplifier, and the AO for controlling

the CO2 laser beam are required to be water-cooled. The cooling system is

introduced in the next section.

This CO2 laser is a commercial product from Coherent for general applica-

tions. So we need to measure the intensity and position noise spectrum of this

CO2 laser to ensure that it satisfies our requirements. The measurement setup

is shown in the CO2 beam optics layout (see in Fig. 8.13). A 0.5 W refracted

beam from AO is sent into a fast 10.6µm infrared photodetector(PD) from Boston

Electronics. With a blade blocking the half area of the laser beam, the PD detects

both the intensity and position noises of the laser beam. Without the blade, the

whole beam enters into the PD, and only the intensity noise is detected. The

output voltage signal is sent into an oscilloscope and the noise spectrum is di-
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Figure 8.11: CO2 laser intensity noise spectrum. The gray one is electronic
noise without laser beam. The lower black one is the intensity noise without
blade, and the upper black curve is the intensity noise with the blade

rectly obtained from fast fourier transform (FFT) operated by the oscilloscope.

The laser intensity noise is shown in Fig. 8.11. The position noise is shown in

Fig. 8.12

In the end, I list the specifications of our CO2 laser in Table 8.3.

8.5.4 The Cooling System for CO2 Laser

The Coherent GEM laser, the RF amplifier for the laser, and the IntraAction

AO require water-cooling. A closed-loop cooling system is operated by a NesLab

Merlin M75 chiller operates with a total 2.5 GPM coolant and the output pressure

at 85 Psi. The coolant is made of distilled water and DowFrost with a volume

ratio of 3:1. The cooling lines for the CO2 laser and RF amplifier are in series

having 2.2 GPM flow. The other 0.3 GPM flow is used for the AO, whose cooling
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Figure 8.12: CO2 laser position noise spectrum. The position noise is calculated
according to Eq. (8.22), where Sε[ω] is obtained by subtracting the intensity noise
without blade from the intensity noise with the blade.

Specification GEM Select 100

Standard Output Power 100 W

Wavelength 10.6µm

Mode Quality TEM00

Polarization Fixed Linear

1/e2 Beam Diameter 3.8± 0.4mm

Beam Divergence < 5mrad

Long Time Power Stability 2%

Electrical 35V DC < 55A

Cooling 20± 5◦C

Intensity Noise 1 ∼ 2× 10−12/Hz

Position Noise 10−10 ∼ 10−9µm2/Hz

Table 8.3: The specification of the CO2 laser.

203



line is in parallel with that for the laser. The laser temperature is well controlled

at 15.9◦C with the fluctuation less than 0.1◦C. The AO temperature is about

40◦C when it operates with the full CO2 laser power beam.

The piping and tubing parts for the cooling line are clean stainless components

from the Swagelok. Several important components are used to control the coolant

flow. One SS-1RF4 bonnet needle valve is used to control the total flow. Two

PGI-50M-PG100-LAOX Gauge are used to monitor the flow pressure. A SS-44F4

ball valve is used to divide the initial flow into two parallel flows for the laser and

the AO respectively. An Omega FTB2000 turbine flow rate sensor is inserted into

the cooling system to detect the returning flow. The sensor outputs TTL pulses,

whose frequency is proportional to the flow rate. An Omega DPF700 ratemeter

reads the output TTL signals from the flow sensor, monitoring the flow rate in

time and displaying it in a LED screen. When the flow rate drops below 2.0

GPM, the ratemeter generates interlock signals, which shut down the CO2 laser

automatically. When the flow rate comes back to the normal range, a manual

reset is required to cancel interlock signals in the ratemeter.

8.5.5 Beam Generation and Optics for CO2 Laser Trap

The optics layout to generate and control the CO2 laser beam is shown in

Fig. 8.13.

The CO2 laser beam output is first reflected by two mirrors to pass a zigzag

path. This setup increases the path length, which allows the beam to expand

before entering the AO. A larger beam diameter reduces the thermal fluctuation

in the interaction region of the AO crystal, and makes the beam power after the

AO more stable.
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Figure 8.13: The optics layout of the CO2 laser beam.
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The first-order refracted beam from an IntraAction Corporation AGM-4010BG1

AO is used to generate the optical trap. This AO is driven by a modified IntraAc-

tion GE-4050 RF modulator. By changing the amplitude and frequency of the

RF waves from the RF modulator, we control both the intensity and the direction

of the first-order refracted beam. This method is used to lower the trap depth

for evaporative cooling in Chapter 3, and also used to rotate the trap in Chap-

ter 7. When the first-order beam power decreases, the zeroth-order beam contains

significant power, which is reflected by a pick-up mirror into a 4-inch-diameter

Kentek water-cooled beam dump for safety issue.

The AO is precisely adjusted at the Bragg angle to obtain the maximum power

in the first-order beam. For the precise alignment, a pair of home-made co-axial

cylinders is used to mount the AO. One of those is a solid cylinder with smaller

diameter, which is inserted into a hollow cylinder with larger diameter. The AO

is mounted on the solid cylinder, which can rotate in the horizontal direction and

translate in the vertical direction inside the hollow cylinder. The relative position

between the solid and hollow cylinder can be locked by three set screws. In the

end, the hollow cylinder is fixed on a magnetic base.

As the CO2 laser beam passes through the germanium crystal of the AO, the

power deposited into the AO may cause the thermal lensing effect even we use

water-cooling. The heat source is the region where the laser beam propagates,

which is in the center of the crystal. However, the water-cooling is at the bottom

of the crystal. This configuration builds a temperature gradient in the germanium,

which results in a gradient of the index of refraction in the vertical direction. The

variation of the index of refraction makes the germanium crystal act as a lens,

which make the output beam from the AO have the different radii of curvature of
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the wavefront in the horizontal and vertical directions. After the beam propagates

a certain distance, the cross-section of the beam will become elliptic. When this

elliptic beam is focused, the horizontal and vertical focal points will separate.

This effect will cause a non-harmonic potential in the axial direction and reduce

the depth of optical trap. Such a loose confinement also reduces the loading

efficiency of the optical trap. So this thermal lensing effect should be avoid in our

experiments. In Fig. 8.13, a telescope of cylindrical lenses is placed after the AO

to compensate the thermal lensing effect. The telescope is adjusted to ensure that

the horizontal and vertical radii of curvatures of the wavefront are equal. Note

that the equal horizontal and vertical radii of curvatures of the wavefront does

not necessarily mean the beam shape is perfect round. Instead, we adjust the

telescope by directly confirming that the axial confinement of the trap is tightest.

After the cylindrical lens, the beam passes through a holographic beam sam-

pler, which splits an incoming beam and diffracts about 1% transmitted power

into two first-order beam. One of them with about 0.5% power is reflected by

a mirror and sent into the fast infrared photodiode, which is used to measure

the laser noise (see in Section 8.5.2) as well as for precision measurements of the

laser power to calibrate the trap lowering curve for evaporative cooling (see in

Chapter 3).

A thin-film polarizer is placed in our CO2 laser beam path to prevent the

retroreflected CO2 laser beam back into the CO2 laser. In the loading period,

we overlap the incoming beam and the retroreflected beam at the focal point to

increase the optical trap potential. This method increases the loaded atom num-

ber by an order of magnitude. The retroreflected beam is reflected by a rooftop

mirror, which flip the linear p-polarized incoming CO2 laser beam by 90 degrees.

207



The thin film polarizer is designed as the Brewster’s angle for the s-polarization,

which exactly reflects the retroreflected beam into the beam dump. There are two

major reasons for preventing the retroreflected beam into the laser: First, a high

power retroreflected beam backing into the laser would induce possible damages

in the optics insider the cavity. Second, even a small portion of the retroreflected

power feeding back into the laser cavity would cause additional noises of the laser,

which may fail our ultrastable optical trap.

After the thin-film polarizer, an approximate 10:1 ratio expanding telescope

is used to expand the beam. By expanding the beam close to the full aperture of

the viewports for the CO2 laser beam, we can achieve the tight focus on the order

of 50µm 1/e2 intensity radius, since the size of the focus is inversely proportional

to the size of the incoming beam before the focusing lens [116].

After the telescope, three mirrors raise the beam from the optical table to the

height of the CO2 laser beam port of the vacuum chamber, and align the beam

into the final focusing lens. The focusing lens is placed before a ZnSe viewport

of the main vacuum chamber. All these three mirrors and the final focusing

lens are placed on two-dimensional or three-dimensional translation stages for the

precision alignment of the CO2 laser trap position, which is required to overlap

the center of the magnetic potential. The precision of such alignments requires

the stages controlled by micrometers with 10 µm precision.

After exiting from the the vacuum chamber, the beam is recollimated by

another focusing lens which is exactly same as the first focusing lens. These

two focusing lens actually constitute a confocal cavity for overlaping the incoming

beam and retroreflected beam at the focal point. The overlap of two focus requires

a precision of 1µm compared with the radial trap diameter about 50µm. So the
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recollimating lens is mounted on an ultra-high resolution xyz-stage with 1µm

resolution. This xyz-stage is then mounted on a conventional translation stage

to provide enough travel range.

A mechanic “chopper” is inserted between the second focusing lens and the

rooftop mirror. The “chopper” is a deflecting copper mirror mounted to an elec-

tronic controlled translator moving in the vertical direction. When the chopper

moves down, the beam is blocked and directed into a power meter. When the

chopper moves up, the beam strikes the rooftop mirror and reflected with a 90

degree rotation of the linear polarization. In the period of MOT and loading

CO2 laser trap, the “chopper” stays up. It moves down only when and after

the free evaporation. Note that the beam shape at the rooftop mirror is the

Fourier-transformation to the beam shape at the focal point [116]. Hence, only

the low-frequency spatial component of the beam at the rooftop mirror can have

an effect on the shape of the optical trap. The perturbation of inserting a deflec-

tion mirror only has high-frequency spatial components, which does not disturb

the optical trapping potential near the focal point.

The roof top mirror is made by putting two truncated silicon reflector into 90

degree angle. Each silicon reflector is truncated in one side and enhanced gold

coated at 10.6µm shown in Fig. 8.14. The truncated side is about 2.5 inch long

and has a sharp edge without any bevel.

The rooftop mirror is placed to a home-made mount by a three-point support

provided by spherical bearing balls. The three-point support ensures the surface

of each mirror in a nearly perfect plane. The mount has six freedom adjustment,

where two translation adjustments in the horizontal plane, three angle adjust-

ments for the space orientation of the rooftop mirror, and one angle adjustment
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Figure 8.14: The truncated silicon reflector for making the rooftop mirror.
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for the angle between the two reflection surface.

The specification of the CO2 laser optics is listed below. Except for the spec-

ification, all these components are from II-VI Incorporated. Some abbreviations

are used below: PG-Plano, CX-Convex, EG-Enhanced gold, EFL- Effective focal

length, DIA-Diameter, THK-Thickness, CT-Center Thickness.

• Mirrors for zigzag path: Silcion Reflector 1.0 inch DIA, 0.12 inch THK,

PG/EG.

• Mirrors for picking up the beam from the AO and the holographic beam

splitter: Silcion Reflector 2.0 inch DIA, 0.12 inch THK, PG/EG.

• Cylindrical lens: ZnSe, 1.0 inch × 1.0 inch Dimension, 0.12 inch CT, 2.00

inch EFL.

• Thin film polarizer: ZnSe, coated at 10.6µm to reflect S-polarization and

transmit P-polarization, 0.90 Clear Aperture.

• Focusing lens for the photodiode: ZnSe, PO/CX lens coated at 10.6µm, 1.1

inch DIA, 3.75 inch EFL.

• Short focus lens for the beam expander: ZnSe, Aspheric lens coated at

10.6µm, 2.5 inch DIA, 0.25 inch CT, 11.496 inch EFL.

• Large focus lens for the beam expander: ZnSe, Aspheric lens coated at

10.6µm, 1.1 inch DIA, 0.12 inch CT, 1.255 inch EFL.

• Mirrors for the expanded beam: Silcion Reflector 3.85 inch DIA, 0.5 inch

THK, PG/EG.
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• Focusing lens for the optical trap: ZnSe, Aspheric lens coated at 10.6µm,

2.5 inch DIA, 0.25 inch CT, 7.50 inch EFL.

8.5.6 Electronic Controlling System for CO2 Laser Trap

The key method of producing a strongly interacting Fermi gas in our apparatus

is forced evaporative cooling of atoms in a CO2 laser trap. As discussed above,

it is done by lowering the intensity of the CO2 laser laser beam. The laser inten-

sity lowering should be continuous and quite to avoid heating the atoms by the

intensity and position fluctuation. This lowering process is realized by controlling

the power of the first-order diffraction beam from the IntraAction Corporation

AGM-4010BG1 AO. The laser power in the diffraction beam is proportional to the

power of the RF source sent into the AO. The RF source is a 40 MHz sinusoidal

wave provided by an IntraAction GE-4050 AO-driver. By varying the amplitude

of the RF source, we control the power in the diffraction beam.

In the real application, the decrease of 40 MHz RF power causes the AO

cool down. The temperature variation in the AO would cause the change of the

index of refraction, which makes the propagation direction of the CO2 laser beam

shift. This effect finally moves the optical trap position and causes the lowering

process very unstable. To overcome this problem, we input double frequency

component RF waves into the AO: 40 MHz and 32 MHz. 40 MHz one is for the

CO2 laser trap, while 32 MHz one is used for the temperature compensation.

The procedure is as the following: Before the optical trap lowering process, the

40 MHz RF component has the full power and the 32 MHz component has zero

power. When the lowering process begins, the RF power of 40 MHz decreases

and the power of 32 MHz increases so that the total power deposited into the

212



AO is nearly constant. Using this method, we can keep the temperature of the

AO nearly unchanged during the lowering process, which maintain the position

of the CO2 laser trap nearly unshifted during the evaporative cooling process.

The extra diffraction beam generated by the 32 MHz RF wave is sent into the

beam dump by the same pick-up mirror we used for the zero-order 40 MHz beam

(shown in Fig. 8.13).

To apply this method, we need to make modification to the commercial In-

traAction GE-4050 AO-driver. The commercial product can only generate an

internal single frequency RF power at 40 MHz. By bypassing the electronics of

the oscillation generation circuit in the AO-drive, we directly input the external

RF sources into the amplification circuit of the AO-drive.

Using the external RF source to drive the AO amplifier has five advantages:

First it allows us to implement the temperature compensation we discussed above.

Second it generates a modulation curve for the RF power by digital wavefunction

generators, which enables us apply complex lowering curves in the forced evapora-

tion. Third, the RF system can be used for parametric-resonance measurements

of the trap frequencies only by replacing the lowering curve with a sinusoidal am-

plitude modulation. Fourth, the external RF source can generate very precise RF

pules, which is used to suddenly turn the optical trap on and off. Fifth, it is easy

to do frequency modulation for the external RF diving source, which provides a

tool to change the orientation of the CO2 laser beam, thus rotate the optical trap.

To achieve all the advantages, I built a radio frequency electronic system to

control the refracted CO2 laser beam from the AO. The block diagram of this

radio frequency electronic system is shown in Fig. 8.15.

The 40 MHz and 32 MHz RF generators are Agilent E4423B and Marconi
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  AWG 1 for 32 MHz

    Lowering Curve 

AWG 3 for Parametric

Oscillation  Frequency 

 AWG 2 for 40 MHz

    Lowering Curve 

     Ultra-low Noise Low Pass Filter

   40 MHz RF Frequency

            Generator 

   Stanford Pulse

      Generator 1 

     4-In-1-Out OR Gate 

   Stanford Pulse

      Generator 2 

 Fast RF Switch

    for 40 MHZ 

   32 MHz RF Frequency

            Generator 

 Fast RF Switch

    for 32 MHZ 

      RF Amplitude

Modulator for 32 MHz

      RF Amplitude

Modulator for 40 MHz

AO RF Driver

      RF Frequency Mixer

 32 MHz Channel 

 40 MHz Channel 

Parametric Unit 

Figure 8.15: The block diagram of an electronic controlling system for the CO2

laser beam.
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Instrument 2024 respectively.

The fast RF switch is Mini Circuit ZYSWA-2-50DR. The on/off state of the

switch is controlled by a TTL logic input, which is connected to the output of the

OR gate.

The 4 input OR gate is a home-made electronics using the Fairchild Semicon-

ductor 74AC32 IC. 74AC32 IC has four units of 2-input OR gate. By connecting

two 2-input OR gates in parallel, then putting the third OR gate in series with the

first two, we implement the function of 4-input OR gate. The output of the OR

gate is always logic high as long as one of the input is the logic high. This logic

gate enables us to turn the optical trap on and off multiple times in a sequence

of pulses generated by Stanford pulse generators.

The RF amplitude modulator is Mini Circuit ZLW-1. In the initial application,

ZLW-1 mixes two input RF frequencies and generates the output wave as the

frequency difference between two input waves. By reversing the output port as

one of the input port, we input a DC lowering curve and a RF carrier wave into

this circuit. In the end, we obtain an amplitude modulated RF wave from the

third port. After that, the 40 MHz and 32 MHz RF sources are combined by the

power combiner circuit of Mini Circuit ZSC-2-1. Finally the combined RF power

is sent into the RF drive of the AO.

Agilent 33250A arbitrary wave function generators are used to generate the

lowering curve and parametric oscillation of the optical trap. The lowering curves

generated by the arbitrary wavefunction generator are digital signals, which are

constituted by a series of small voltage jumps of commanding digital voltages.

Those small jumps add additional noises into the RF source for the AO, thus

increase the final noises in the CO2 laser beam. Ideally, a smooth analog curve
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has much smaller noises than the digital one. But the complex function that we

need for the lowering curve is very difficult to be generated by analog circuits.

Here we put a low-pass filter to “wash out” the high frequency noise in the digital

signals. The circuit diagraph of the low pass filter is shown in Fig. 8.16. The

circuit is mainly based on the Analog Devices ultralow noise operational amplifier

AD797. In our experiment, only the frequencies above tens of Hz are harmful to

our optical trap, so we put the cut-off frequency of the low pass filter circuit at

about 20 Hz.

8.5.7 Storage Time of CO2 Laser Trap

The storage time of the atoms in the CO2 laser trap of our new apparatus is

measured by the atom number versus the holding time of a single forward beam.

The single exponential fit gives the 1/e time storage time of about 60 seconds,

which is shorter than the best record of about 300 seconds that we obtained in the

old system . Here I will explain the main reason for the reduction of the storage

time of the CO2 laser trap.

First, the measured laser intensity noise and position noise of our CO2 laser

beam are in the scale of 1×10−12/Hz and 5×10−10µm2/Hz respectively. Accord-

ing to Eq. (8.18) and Eq. (8.21), the intensity noise heating time is 3000 seconds,

and the position noise heating rate is about 100nK/s, which is unlikely to respond

to the reduction of the lifetime of the CO2 laser trap since the full depth of CO2

laser trap is 500 µK, and the cloud temperature before the evaporative cooling is

tens of microkelvins. So we can exclude the reasons due to the CO2 laser beam

noises.

Second, in Section 8.5.2 we find the upper bound resonant optical heating is

216



Figure 8.16: The circuit diagram of the ultralow noise low pass filter used for the
digital lowering curve. For parametric oscillation experiment, we need to couple
the modulating frequency close to the optical trap frequency into the RF source.
A parametric feed through circuit is added on the top-left corner after the main
low-pass circuit .
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5nK/s, which is also unlikely to respond to the reduction of the lifetime of the

CO2 laser trap.

Based on the above analysis, the most possible reason for the reduction of the

life time is the background gas collision. In our system, the measured vacuum in

the main chamber is well below 3× 10−11 Torr. According to Eq. (8.23) and the

cross section data σ[ub] listed in [117], we find only 6Li-6Li collisions at T = 300 K

has a cross section of about 9.2 (nm)2, which is large enough to support a loss

rate with time constant of about 100 seconds. Other collision mechanisms, such as

6Li-He and 6Li-H2, have very small collision cross section, which is not consistent

with the loss rate we observed.

Based on this conjecture, we compare the pumping rate of the main chamber

in our new vacuum system with that in the old system. We find the 20 liter

per second pumping rate in our new chamber is far less than the 400 liter pre

second pumping rate of the main chamber in the old system. So it is very likely

that the new system can not pump out the atomic beam of lithium very quickly,

which cause the untrapped hot 6Li atoms to stay in the vacuum chamber, and

then collide with the trapped 6Li atoms. It is an important lesson to apply a

higher pumping rate in the main vacuum chamber to avoid such background gas

collisions due to the atomic beam. This is extremely important for the case where

the long storage time of ultracold atoms is needed.

8.6 High Vacuum Infrared Viewport

One of the major challenges of applying CO2 laser beams for an optical dipole trap

is availability of high-quality infrared viewports for ultrahigh vacuum application.
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Crystalline zinc selenide (ZnSe) is transparent at wavelength of 10.6 µm. It is the

most idea optical material as windows for high power CO2 laser beams. However,

ZnSe is very soft material, which can not bear a high clamping force. The standard

hard sealing methods for BK7 glass, such as a knife edge cutting into copper, is

not suitable for crystalline ZnSe. The standard soft sealing methods, such as using

elastomer O rings and Vac-Seal resin, can not satisfy our requirement of ultrahigh

vacuum of less than 10−10 torr because O rings and resin have serious outgassing

and very low bakeout temperature. Currently the only applicable method of ZnSe

viewports is to use the soft-metal seal technique.

Our previous CO2 laser windows in the old apparatus are differentially pump-

ing ZnSe viewports made by Insulator Seal, Inc. These windows are custom built,

which are extremely expensive with the price about 10,000 USD per piece. Since

CO2 lasertrap is an ace-in-the-hole technique in our lab, it is much better for us

not to be limited by the availability of the commercial products. So we decide to

develop our own techniques for ultrahigh vacuum windows for CO2 laser beam.

Meanwhile, we found that a flux-free eutectic solder made by soft Pb-Ag-Sn alloy

was used to make seals for ZnSe viewports by Adams’s group in University of

Durham [120]. In their viewports, a single seal achieves 10−10 torr pressure in

vacuum system. This gives us a hope that by combining “soft-metal seal” and

“differentially pumping” techniques, we may build an ultrahigh vacuum ZnSe

viewport working in 10−11 torr vacuum.

In this section, I will explain the building and operation of ZnSe viewports step

by step, which includes several processes: designing and machining vacuum parts;

welding and cleaning vacuum parts; preparing tools and optical material; making

the seal; constructing a small vacuum system for testing; assembling viewports
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and leak testing; translating viewports to the main vacuum chamber and daily

maintenance.

8.6.1 ZnSe Viewport Design

A crystalline ZnSe optical window from II-VI Incorporated is used to make the

vacuum viewport. The home-made viewport consists: the clamping flange (Top

part), the blank flange (Bottom part), an inner seal ring and an outer seal ring,

a differentially pumping area between the inner and outer seals.

The cross-sectional view of an assembled viewport is show in Fig. 8.17. The

top-view with dimensions of the top and bottom part of flanges is shown in

Fig. 8.18. The cross-sectional view with dimensions of the top and bottom part

of flanges is shown in Fig. 8.19. The differential vacuum port of the viewport

is connected to a small differentially pump chamber through a brained vacuum

roughing hose. The blank flange has 1.6 inch diameter optical aperture. Eight

silver plated 10-32 hex screws couple the clamping flange to the blank flange.

The blank flange is weld to one end of a vacuum tube (1.5 inch diameter) called

“half nipple” from MDC. The other end of the “half nipple” is a standard 2.5

inch Del-Seal Conflat flange, which is directly connected to the port in the main

vacuum chamber.

8.6.2 Tools and Materials

To build an ultrahigh vacuum ZnSe viewport, the tool kits and required parts are

listed below.

• The top and bottom flanges show in Fig. 8.18 and Fig. 8.19 are fabricated in
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CS1

CS2

Figure 8.17: The structure diagram of an assembled ZnSe Viewport
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Figure 8.18: The top view of the clamping and blank flanges
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Figure 8.19: The cross-sectional view of the clamping and blank flanges
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Duke Physics machining shop. The building material is 304 stainless steel.

The required precision of machining is ±10 µm.

• Vacuum parts for the differential pumping region, including: VCR Braided

vacuum hose, Male VCR to Del-Seal Adaptor, 1/4 inch angle valve for

ultrahigh vacuum, VCR metal gasket face seal fittings etc. Most of those

parts are from MDC and Swagelok.

• Material for the seal is Indalloy 165 solder. This solder is an alloy with

97.5% Pb, 1.5% Ag, and 1% Sn, which has a melting point of 309◦C and

Young’s modulus of about 18 GPa. It is a soft metal compared with copper

of 117 GPa.

• Metcal 745 high temperature soldering tips for fabricating the rings of solder

seals.

• II-VI ZnSe window. This crystalline ZnSe window is anti-reflection coated

at 10.6µm wavelength with reflectivity less than 0.20%. The window is

plano in both surface with 2.5 inch diameter and 0.25 inch thickness. The

surface figure is about 1 fringe ∼ 1/2 fringe at 0.63 microns.

• SCHOTT BK-7 glass window with the same dimension with the ZnSe win-

dow. It is used for compressing and testing the seals.

• Silver plated 10-32 hex screws. These screw are used to couple the clamping

flange with the blank flange. Also 1/4-28 set screws, which are used to

connect the window with the vacuum chamber.

• Key Bellevilles disk spring washers for each 10-32 hex screws. They are
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used to compensate the toque loss induced by the thermal expansion during

bakeout.

• Precision 1/4 inch drive dial torque wrench. They are used to apply the

precise torque for the bolts when installing the viewport.

• Loctite 246 medium strength and high temperature threadlocking materials.

They are used to lock 1/4-28 set screws into the tapped hole in the main

vacuum chamber.

8.6.3 Welding and Cleaning

The first step of making window is to weld the home-made blank flange with

the “half nipple” from MDC. The welding of the ultrahigh vacuum parts needs

special technique to avoid the small leakage and outgassing. Duke FEL vacuum

workshop helped us to complete this project. After welding, the vacuum parts of

viewport are first cleaned by ultrasonic cleaner using methanal and distill water.

After that, the acetone and methanal is used several times to clean the surface of

each part.

8.6.4 Vacuum Chamber for Testing

A small vacuum chamber is built to test viewports. This small chamber is made

by a 2.75 inch diameter crossing tube with 5 ports. The top port is located in the

center of the crossing tube, and used for a ZnSe veiewport. The other four ports

are located at the four ends of the crossing tube. One port is just simple closed by

a blank flange. One port is used for a vacuum ion gauge. One port is connected to

a 20 liter/sec ion pump. The last one is coupled to an angle valve. The other end
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of the angle valve is connected to one end of a “T” shape VCR adaptor. The other

two ends of the “T” shape VCR adaptor have the following connections: One is

connected to a Varian turbo pump, and the other is connected to the differential

pumping hose of the viewport. When the angle valve is open, the turbo pump

works as a roughing pump to prepare preliminary vacuum required by running

the ion pump. After the ion pump begins to operate, the angle valve is closed

and the turbo pump plays the role of differentially pumping. After the viewport

is transferred to the main vacuum chamber, this small vacuum chamber is used

as the differentially pumping region operated only by the ion pump.

8.6.5 Making the Seal Ring

Making solder seal rings is a meticulous work. By practice, I find that 0.05 inch

diameter solder rings have the best performance in sealing for the seal gap of 0.04

inch width and 0.02 inch depth in our viewports. A high temperature soldering

tip with very sharp needlepoint shape is needed to weld a solder wire into a ring.

A good sealing requires critical quality of the welding of the ring. Based on my

experience, only the ring with a very smooth joint, which has a shining surface

without any protuberance, can be used to seal a vacuum to 1 × 10−9 torr. To

make seal rings with good quality, repeating practice is necessary.

8.6.6 Installation of ZnSe Viewport

A typical process to install a ZnSe viewport is given below. Before sealing a ZnSe

window, a BK-7 glass window is always placed into the viewport first to test the

seal rings. All the torques to the clamping flange are required to add uniformly

and slowly by tightening the eight 10-32 hex screws using a precise dial torque
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wrench. The maximum toque imbalance between screw to screw is prohibited up

to 1 in · lb in the whole tightening process. The maximum torque applied to the

screws for the ultimate vacuum pressure should be carefully controlled. I find,

for BK-7 glass, a 20 in · lb torque added to each screw will break the window.

For crystalline ZnSe, the failure of the window has not been observed by slowing

adding up to 10 in · lb toque to each screw. I also find that in all the successful

cases of sealing a ZnSe window, a vacuum pressure of about 1 × 10−9 torr is

reached when the torque is added up to 8 in · lb to each screw.

If a vacuum sealing of about 1×10−9 torr is not seen after adding a torque of 10

in·lb toque to a ZnSe window, the process of adding torque should be STOPPED.

I will treat 10 in · lb as the critical torque of crystalline ZnSe window. Above this

torque, ZnSe crystal may BREAK! I find that the most possible reason for an

unsuccessful sealing is the unqualified solder rings. The ZnSe window is about

2,000 USD per piece, so extremely carefulness should be paid to avoid breaking

the crystal. Readers can use the following record of installing a ZnSe viewports

as a reference.

1. The 0.05 inch diameter solder ring is placed into the seal gaps inside the

flange. Two rings are put into the blanking flange, and one ring is put into

the clamping flange. A BK-7 glass window is placed into the viewport for

testing the seal rings.

2. The initially distance between top and bottom flange is measured as 0.077

inch. After pre-compressing with 5-7 in · lb torque, the measured gap is

0.067 inch.

3. A 13-14 in · lb torque is applied to get preliminary sealing with a BK-7 glass
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window. The measured distance between top and bottom flange is 0.040

inch, which indicates the clearance distance between the window and the

bottom flange is 0.020 inch. This distance is the effective thickness of the

seal for sealing the vacuum.

4. After 12 hours relaxation of mechanic stress in the seal rings, a 11 in · lb
torque is reapplied to the clamping screws. Then a Turbo pump is turned

on to get 7.3× 10−6 torr after 2-hours operation.

5. Bake the ion pump to 180◦C for 24 hours. Then turn on the ion pump and

close the angle valve. A vacuum of 5×10−10 torr pressure is achieved, which

indicates the seals work normally.

6. Turn off the pump, and dissemble the viewport. Use a ZnSe window to

replace the glass window. A 2.5 in · lb torque is applied to each screw to get

preliminary seal.

7. Turn on Turbo pump again. A 7.0 × 10−5 torr vacuum is obtained. By

slowing adding the torque several times in one day period, a 7 in · lb torque

is finally applied to get 1× 10−5 torr pressure. The measured gap between

top and bottom parts is 0.040 inch.

8. Turn on ion pump and close the angle valve for the differentially pumping.

A vacuum of 1.4× 10−7 torr pressure is obtained after 20 minutes.

9. After baking the ion pump to 180◦C for 24 hours. A vacuum of 2.5× 10−10

torr is achieved.

10. Reapply 7 in · lb torque. The measured distance between top and bottom

parts are 0.038 inch, which indicates the clearance distance between the
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window and the bottom flange is 0.018 inch. The view port is operated the

ultimate pressure between 2 × 10−10 torr to 8 × 10−10 torr, which is only

limited by the small pumping rate in our testing chamber.

8.6.7 Translation and Maintenance

After a viewport reaches the 10−10 torr range in the testing chamber, the last

step is to transfer the ZnSe viewport to our main vacuum chamber. Before the

translation of ZnSe viewport, our main vacuum is baked to 350◦C and archives

an ultimate pressure less than 3× 10−11 torr, which is below the detectable value

of our ion vacuum gauge. We shut down the pump, and refill argon gas into

the vacuum chamber, then translate our ZnSe window from the test chamber to

the main vacuum chamber in a protection atmosphere of argon gas. When the

installation is completed, we pump the main vacuum chamber again and get an

ultimate pressure less than 3× 10−11 torr again without baking the system again.

The advantage of this translation method is that we avoid the risk of breaking

the ZnSe window or failing the solder seals, which may happen during the high

temperature baking.

A good maintenance of ZnSe viewports will reduce the risk of damaging this

critical part in our apparatus. By blowing the compressed gas, we can clean the

dusts accumulated on the surface of the window, which ensures the optical quality

of the window. An ion vacuum gauge located in the differentially pump region is

turned on to monitor the vacuum when intense CO2 laser beams go through ZnSe

viewports. An improper alignment of the CO2 laser beam will make the beam

hit the flange of the viewports thus heat the solder rings. For a couple of seconds

heating with the full power CO2 laser beam, the pressure in the differential pump
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region will double. A longer time heating from the CO2 laser beam should be

avoid, which may cause the failure of the seals. For three years, the pressure

of differentially pumping region keeps as below ≤ 1 × 10−7 torr read by the ion

gauge.

By the end of 2007, our home-made ZnSe viewports had been operated for

three years for the ultrahigh vacuum of 3 × 10−11 Torr and the differentially

pumping region of about 5 × 10−8 Torr. This shows our home-made ultrahigh

vacuum ZnSe viewport is a successful technique.

8.7 Imaging and Probing System

To extract physical information from cold atoms, the imaging and probing system

is required. In our apparatus, there are mainly three devices to detect cold atoms:

photomultiplier tube (PMT), CCD camera, and RF antenna. PMT is used to

collect the fluorescence of cold atoms, which help us to estimate the atom number

in the trap. CCD camera is our main tool to record the absorption images of

the atoms. RF antenna has a dual role: It not only provides a RF spectroscopy

measurement but also can be used as a tool to manipulate the spin states of the

atoms.

8.7.1 PMT Probing System

In our system, the PMT and the CCD camera share the same port, so we use

a folding mirror to pick-off the fluorescence and send it into the PMT, shown in

Fig. 8.20.

If we assume the atoms are fully saturated by resonant light, the atoms number
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can be approximately estimated from the output voltage V from the PMT by

n =
WMOT

Wsat

=
4V

αRΩhγsν
, (8.28)

where WMOT is the fluorescence power emitted by the MOT, while Wsat is the

saturation fluorescence power of a single atoms. α is the PMT amplifying coeffi-

cient beteen the current and photon power (Amps/watt). R is the output resistor

of the PMT. Ω is the spacial angle of the lens for collecting the fluorescence. γs

is the natural linewidth of the resonant light, and ν is the laser frequency.

8.7.2 Imaging Optics and CCD Camera

The generation of the imaging beams is shown in Fig. 8.9. In the imaging beam

path, a double passed AO provides the up-shifted frequency to compensate for

the frequency offset generated by the locking AO. For high field imaging, the

frequency detuning is generated by unlocking the dye laser and shifting the laser

frequency. The laser frequency shift is implemented by sending a commanding

voltage into the external scan of the dye laser electronic control box. The imaging

beam is coupled into an optical fiber, whose output is close to the imaging port

(port 10 in the main vacuum chamber).

After exiting the fiber, the imaging beam first passes through a polarizing

beam splitting cube to obtain a linear polarization orthogonal to the bias magnetic

field. After the cube, the beam is collimated by a converging achromatic lens and

enters into the vacuum chamber.

The optics for absorption imaging is shown inFig. 8.20. The light from the

incident beam as well as the scatter light from the atoms are collected by a
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Figure 8.20: The imaging optics for the CCD camera.

high quality achromatic lens, which is designed to compensate for the aperture

aberration due to the exit vacuum window. This lens makes a 1:1 image of the

trapped atoms at the place before a microscopic objective. An iris is put between

the image plane and the lens to block the unwanted incident beam beyond the

region of trapped atoms, which helps to improve the contrast of the image. When

we use the PMT to collect the fluorescence, this iris is full opened to get the

maximum fluorescence signal.

Real images are took by the microscope objective, which is mounted on the

front of a CCD camera, an Andor Technology DV434-BV. The image plane of the

microscopic objective is adjusted to be in the plane of the CCD chip. The CCD

chip provides a 1024 × 1024 array of pixels with each pixel size of 13 µm. The

CCD camera has several acquisition modes. We usually use the fast kinetics mode.

By enabling this mode, the CCD screen is divided into several stripes in vertical

direction and takes several images continually in a very short time. For each

image, there is only one strip exposed while other strips are blocked by a razor

blade in the imaging plane of the imaging lens. After exposure, the photoelectron

charges in the exposed strip are transferred to the unexposed stripes with a very
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Figure 8.21: The schematic diagram of the control circuit for the RF-antenna.

fast rate up to 16µs/row.

8.7.3 Radio-frequency Antenna

A RF-antenna is a powerful tool to manipulate the spins of the cold atoms. In the

thermodynamics and rotation experiments presented in this dissertation, the RF

antenna mainly works to make a balanced spin mixture in the two lowest hyperfine

states. In our recent coherent spin mixture experiments [121], the RF-antenna

works as a tool to measure the transition frequency between the hyperfine level.

The RF-antenna in our system is designed by James Joseph. The vacuum

seal of the electrical feedthrough is made by Insulator Seal. The seal can stand a

maximum of 3 A and 250 V DC, which enables us to provide enough RF power in

a broad RF range from several MHz up to several GHz into the RF transmission

line.

The schematic diagram of the control circuit for the RF-antenna is shown in

Fig. 8.21. The RF signal source is provided by an Angilent 33220A 20MHz and/or

an Angilent 33250A 80MHz arbitrary wavefunction generator. By using a Mini-
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Circuits ZYSWA-2-50DR (a 2-in-1-out logic gate), one of the input RF signals

is selected and directed to a Mini-Circuits ZAD-1 (a frequency mixture). The

ZAD-1 multiplies the RF signal with a DC signal, which is used to turn on/off

the RF. Finally the RF is amplified by a RF amplifier and coupled into the RF

antenna. The RF amplifier is a Mini-Circuits TIA-1000-1R8 providing a 35 dB

Gain for 0.5-1000 MHz RF signals with 4 W saturation power.

8.8 Computer and Electronic Control System

For cold atom experiments, all the optical, magnetic and electronic devices need

to work in a precise time sequence, which requires a computer control system

providing timing sequence for each component. There are two different precision

requirements for the timing: First, for the MOT stage and the free and forced

evaporation, a time precision of about 100 µs is necessary. Second, for imaging

cold atoms and studying dynamical behavior of cold atoms, the required precision

is about 1 µs.

To satisfy both requirements with minimum costs, we apply two timing sys-

tems: one is a computer-controlled 32-channel I/O system, the other is a network

of interlinked Stanford Research pulse generators. The I/O system is responsible

for the duty of 100 µs timing precision, and Stanford generators do the job for

1 µs timing precision. In addition, for the GPIB communication enabled equip-

ments, we send GPIB commands to store some timing sequences in the memory

of those equipments. To control some components that require analog signals, a

multiplexer is used to convert digital timing signals to the analog ones.

All the timing sequences are managed by a Labview program. End-users use
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a text file called “timing file” to set the timing sequences for each experiments.

The Labview program is developed by the previous students in our lab and also

described in several thesis [64,122]. Here I put my emphasis on the hardware part

of the computer control system, whose structure is quite different from that in

our old apparatus.

8.8.1 Architecture of Timing System

The block diagram of the architecture of the timing system is shown in Fig. 8.22.

The timing system is controlled by a Dell computer with 2.5 GHz Pentium-4 CPU

and at least 1 GB RAM. Fast CPU and large RAM are important for operating

the timing system because the timing sequences are stored in the RAM as the

form of a very large matrix. The actual timing signals are a series of digital pules

of 0V or 5V, which are generated by a National Instrument (NI) PCI-6534 high

speed Digital I/O card. This card is connected to a NI SCB-68 shield connector

box via a SH-68-68-D1 shield cable. From the connector box, 32 channel digital

signals transmit via a rainbow cable and enter into a home-made schottky diode

breakout panel. The schottky diode breakout panel connects to BNC cables,

which send 32 channel digital signals to different components.

The 32 Channel digital signals are used for several different applications. As

shown in Fig. 8.22, a portion of them are directly used as logic gates for some

components, such as PMT gate, RF pulse gate, dye laser frequency unlock/shift

gate, and camera shutter gate. Others are used as the TTL-logic inputs of the

multiplexer, where the digital signals are used to choose the different input analog

voltages for output. Those output voltages are mainly used as the control voltage

in the AO modulators. The last portion of the digital signals are used as the
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Figure 8.22: The block diagram of the architecture of the timing system.
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trigger signals for Stanford pulse generator and arbitrary wavefunction generator.

8.8.2 Multiplexer

The home-made multiplexer is a large electronics box that consists of about

20 circuit boards. The most important circuits in the multiplexer are analog

switches. We use three 8-channel switches, six 4-channel switches and four 2-

channel switches in the multiplexer. Those switches use ADG408/409/419 IC

from Analog Devices to implement the multiplexer function. As an example, for

a 8-channel switch with three TTL-logic inputs, we apply different logic inputs

form ”000” to ”111” to choose one of eight input voltages as the output. The

multiplexer has a maximum of 56 analog voltages. Those voltages can be provided

either by the external power supply or the internal power supply. The circuits of

the internal power supply, including transforms, National Semiconductor LM350

current regulators, and KBL02 bridge rectifier, provides 15V DC up to 3A. For

each internal voltage, a potentiometer is used to adjust the output voltage value.

A voltage probe circuit samples the input voltages in each channel and display

its value in a digital LCD.

8.8.3 Electronics for Imaging Pulse Generation

The block diagram of the electronics for image pulse generation is shown in

Fig. 8.23. The imaging pulses are mainly generated by Stanford pulse genera-

tors.

One important issue in the imaging pulse system is that we set the imaging

beam AO at the state of “on” for most of time during experiments to keep it

warm. By doing that, we keep the AO temperature constant and maintain the
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imaging beam direction. Meanwhile, the shutter for the imaging beam is closed to

block the beam into the vacuum chamber. When we are ready to take an image,

the AO is turned “off” for a small amount of time before the shutter is opened.

After the shutter is opened, the AO then is turned “on” for a precise time by a

voltage pulse from a Stanford pulse generator and generates the optical imaging

pulse. After this process, the shutter is closed, then the imaging beam is turn

“on” again to keep the AO warm. This scenario needs two control voltage for the

imaging beam AO. One is called “pulse voltage”, and the other is called “warming

voltage”. As shown in Fig. 8.23, the “pulse voltage” is from the Stanford pulse

generator, and “warming voltage” is from the multiplexer.
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Figure 8.23: The block diagram of the electronics for imaging pulses generation.
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Chapter 9

Conclusion

My dissertation provides experimental investigations of thermodynamics and low

viscosity hydrodynamics of a strongly interacting Fermi gas of ultracold degener-

ate 6Li atoms.

For the purpose of this research, a new all-optical cooling and trapping appara-

tus was built during the first stage of my Ph.D. work. The new apparatus adopts

several upgraded techniques: an air-cooling short Zeeman slower, a compact ul-

trahigh vacuum chamber, and home-made infrared ultrahigh vacuum viewports

etc. Using the new apparatus, we studied the unique evaporative cooling of a uni-

tary Fermi gas in an optical trap. By applying the optimal optical trap lowering

curve for the energy-dependent evaporative cross section, we obtain a runaway

evaporation in the unitary limit, which generates a degenerate Fermi gas of about

2× 105 atoms per spin state in a fraction of a second [63].

Our measurements of both the entropy and energy of a strongly interacting

Fermi gas provide the first model-independent thermodynamic measurements in

this system [49]. We observe a transition behavior in the entropy versus energy

curve near Ec/EF = 0.83(0.02) and Sc/kB = 2.2(0.1), which is interpreted as a

thermodynamic signature of a superfluid transition in a strongly interacting Fermi

gas. Our measured energy-entropy data is treated as a benchmark by many the-
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oretical groups to test the theoretical predictions, including pseudogap theory,

NSR theory, and QMC simulations etc [6, 8, 77]. The precision of our measure-

ment enables a careful examination of the validity of the above strong coupling

theories, which have no small parameters for estimating the calculation errors in

the strongly interacting regime. In this regime, the experimental measurement is

the only reliable method to justify the goodness of many-body quantum theories.

Recently an important achievement is to demonstrate universal thermodynamics

in strongly interacting Fermi gases, which is done by comparing our experimen-

tal data with the energy-entropy calculation based on a many-body quantum

theory [6].

Our studies of hydrodynamics of a strongly interacting Fermi gas reveals ex-

tremely low viscosity in this system. Both irrotational flow arising in a expanding,

rotating Fermi gas [51] and the damping ratio of a breathing mode [95] indicate

that the viscosity of strongly interacting Fermi gases is extraordinary low. Al-

though zero viscosity behavior is easy to understand in the superfluid regime, in

the normal regime the mechanism for such low viscosity is not clear yet. Recently

a string theory method predicted that the ratio of viscosity to the entropy density

has a lower bound of ~/(4πkB), which can be approached in a unitary strongly

interacting system [3]. From our entropy data and viscosity estimates, we find

that this ratio in strongly interacting Fermi gases enters into the quantum limited

regime.

In the remaining sections of this chapter, I will provide a brief summary of the

preceding chapters. I will also give my outlook for the possible improvements in

the current apparatus as well as some experiments can be operated for exploring

the physics of strongly interacting Fermi gasesin the future.
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9.1 Summary

Chapter 1 begins with the motivation for studying strongly interacting Fermi

gases. The significance of the work is also presented in that chapter as well as an

outline of this dissertation.

Chapter 2 describes the hyperfine energy levels and Feshbach resonance in a

strongly interacting Fermi gas of 6Li atoms.

Chapter 3 describes the general experimental methods we use to generate and

characterize a strongly interacting Fermi gas. I mainly present our studies on

evaporation cooling of a unitary Fermi gas in an optical trap.

Chapter 4 presents our methods of measuring the energy of a strongly inter-

acting Fermi gas. Following that, in Chapter 5, I explain how to measure the

entropy of a strongly interacting Fermi gas.

Chapter 6 presents a model-independent measurement of both the energy

and entropy in a strongly interacting Fermi gas as well as the analysis and

parametrization of the energy-entropy data. Also I compare the data with the

predictions of several strong coupling theories.

Chapter 7 presents my studies of expansion hydrodynamics a rotating strongly

interacting Fermi gas that exhibits a very low viscosity. Following that, by mod-

eling the damping of a breathing mode, I extract an estimate of the ratio of

viscosity to entropy density in a strongly interacting Fermi gas.

Chapter 8 describes technical details on building an all-optical cooling and

trapping apparatus for 6Li atoms.

The present chapter provides a summary of the work discussed in this disser-

tation, and also give my personal perspective on the future of the research in our

lab.
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There are two appendices in this dissertation.

Appendix A presents the Mathematica codes for calculating a number of ther-

modynamic properties for a noninteracting trapped degenerate Fermi gas.

Appendix B includes the updated Igor procedure functions written by myself

for the data analysis and imaging processing.

9.2 Upgrade of the Apparatus

In our current apparatus, a Coherent 899-21 dye laser pumped by a Verdi laser

produces the optical beams for the MOT and the imaging beam. Although our lab

has accumulated rich knowledge to operate and maintain dye lasers before, dye

lasers still require much time and many efforts to keep it stable. In the last several

years, progress in diode laser technology had made diode chips at a wavelength

of 6Li of about 671 nm commercially available.

Switching our laser system from dye lasers to diode lasers has several ad-

vantages: First, diode lasers are much easier to operate and maintain than dye

lasers. Diode lasers can work as key-switch instruments. Second, diode lasers

are easily home-made by buying a master diode laser chip and an amplifier chip.

This enables us to build multiple diode lasers for different applications, i.e. a

diode laser detuned several nanometers away from the transition line can be used

to preload an optical trap. Third, the maintenance cost for the diode laser is

much cheaper than the dye laser. Our lab already has some existing techniques

to build electronics and optics for diode lasers, such as electronics for current

regulation, circuits for temperature stability, and optical gratings for frequency

selection. There are no fundamental difficulties to make a diode laser system for
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6Li atoms, as that has already been accomplished by other groups. The major

technique needed to be developed in our lab is the amplification of diode laser

power to several hundred mW by an laser amplifier chip.

Another major improvement that can be done is our camera system. Our

current Andor camera uses a fast-kinetic mode to take multiple pictures continu-

ously. The fastest rate to take two consecutive images is about 20 ms. For some

applications, such as taking two images for atoms at the two different spin states

in the same cloud, this rate is too slow. We recently bought a new camera form

cooKe. The cooKe camera has two CCD arrays inside. One is for exposure while

the other is for data storage. This property supports a very fast data transfer rate,

which enables two consecutive pictures as fast as 5 µs. Installing this new camera

will help us to implement several new experiments that require fast continuous

imaging.

A third improvement can be a fast switching system for the magnets. Our

high field magnets turn on and off very slowly with a time scale of a fraction of a

second. Turning magnetic fields on and off or switching to other magnetic fields

quickly is a crucial technique for some cold atom experiments, such as experiments

on projection of Fermi condensates. So we may also develop such techniques in

our lab. The core technique for fast magnetic field switching is to use insulated-

gate bipolar transistors (IGBT), which are a power semiconductor device for fast

switching the electric power in many appliances. We have constructed part of the

needed electronics using IGBT, which can be finished by the new members in our

lab.

Finally, the software for the controlling system can be updated to a new level.

In our current software, a Labview program sends timing sequences and commands
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to the hardware of the control system while Andor software controls the camera

and obtains the images. After that, an Igor program analyzes the images and

data. By updating those programs, the updated Labview program can direct

control the cooKe camera and obtain the images. Meanwhile, the Igor program

can be implanted into the Labview program, which helps to enable real-time and

on-site data processing.

9.3 Outlook for the Future Experiment

The field of cold Fermi gases still keeps rolling even though substantial new physics

has already been found in the last several years. People now are more and more

interested in using strongly interacting Fermi gases as a paradigm to study the uni-

versal physics that is related to other strongly interacting Fermi systems. Among

of these studies, quantum viscosity is especially interesting and important. Stud-

ies of quantum viscosity can provide the first experimental test of a conjecture

based on sting theory methods. Also, the comparison of the measured quantum

viscosity in ultracold Fermi gases with that estimated from the high energy exper-

iments of ultrahot quark-gluon plasmas will provide a unique perspective to study

dynamics of these two systems, both of which represent extremes of temperature

in nature.

Other directions in this field are to study some novel quantum phases, which

includes spin polarized Fermi superfluids [31, 32], Bose-Fermi superfluid mix-

tures [123], and strongly interacting Fermi gases in reduced dimensions [124].

Thermodynamic studies of spin polarized Fermi gases is a missing piece in the

current research, which can be done by the same method presented in this disser-
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tation. Studies of strongly interacting Fermi gases in reduced dimensions will en-

able exploration of quantum-confined nonperturbative dynamics. Our CO2 laser

trap provides a convenient way to load cold atoms directly into a one-dimensional

optical lattice, which can be generated by a standing wave of CO2 beams. In our

apparatus, the standing wave can be readily formed by reflecting the forwarding

propagating CO2 beam using a flat mirror instead of the rooftop mirror.

Looking back over the past several years in John’s lab, I would like to say that

the journey of exploring the world of ultracold atoms let me experience many

challenges as well as having lots of fun. The most amazing thing for me is that

through this journey I peek into one of the most compelling quantum systems in

nature, then I am stunned by the beauty of physics.
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Appendix A

Mathematica Program for
Thermodynamic Properties of a
Trapped Ideal Fermi Gas

A.1 Thermodynamic Properties for an Ideal Fermi

Gas in a Harmonic Trap

PROGRAM DESCRIPTION: This Mathematica 5.0 program calculates the
thermodynamical parameters of the trapped gas in a harmonic trap.

The Chemical Potential,Energy and Entropy for Noninteracting Fermi Gas

in a harmonic profile trap.

Note that all energies and temperatures are in EF units.

1. Physcis constant and the basic parameters related to the Li6

c = 3*10^8;,

hbar = 1.055*10^(-34);

e = 1.60219*10^(-19);

h = 2 Pi hbar;

m = 6.015*1.66*10^(-27); (*Li6 mass, kg*)

AtomN = 130000;

k = 1.3806505*10^(-23);

Omegaz = 2 Pi 42; (*Measured trap angular frequency*)
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Omegax = 2 Pi 1050;

Omegay = 2 Pi 1200;

2.Fermi temperature

EF = (6*AtomN)^(1/3)*hbar*(Omegay*Omegax*Omegaz)^(1/3);

(*Fermi Energy,J*)

TF = EF/k ; (* Fermi Temperature, K *)

kF = (2*m*EF)^(1/2)/hbar; (* Fermi Wavevecter, 1/m *)

3. Chemical Potential vs T:

f1[x_, mu_, T_] : = x^2/(Exp[(x - mu)/T] + 1);

Integrate[f1[x, mu, T1], {x, 0, Infinity}];

g1[mu_, T_] = -2 T^3* PolyLog[3, -Exp[mu/T]];

j2[T_] := FindMinimum[(1 - 3*g1[z, T])^2, {z, {0.01, 1}}];

mu[T_] := {z /. Part[j2[T], 2]}[[1, 1]];

mulist = Table[{T, mu[T]}, {T, 0.01, 2.0, 0.01}];

4. Energy vs T:

f2[x_, mu_, T_] := x^3/(Exp[(x - mu)/T] + 1);

Integrate[f2[x, mu, T1], {x, 0, Infinity}];

g2[T_] := -6 T^4 PolyLog[4, -Exp[mu[T]/T]];

epsilon[T_] := 3*g2[T];

EoverEZero[T_] := epsilon[T]/(3/4);

5.Entropy vs T and Entropy vs Energy:

f[x_, mu1_, T_] := 1/(Exp[(x - mu1)/T] + 1);

s[x_, mu1_, T_] := f[x, mu1, T]*Log[f[x, mu1, T]] +

(1 - f[x, mu1, T])*Log[1 - f[x, mu1, T]];

g3[T_, mu1_] := NIntegrate[x^2*s[x, mu1, T], {x, 0, Infinity}];

SP[T_] := -3*g3[T, mu[T]];

SPlist = Table[{T, SP[T]}, {T, 0.03, 1.1, 0.01}];

epslist = Table[{epsilon[T], T}, {T, 0.01, 2.0, 0.01}];

Temp = Interpolation[epslist];

SvsE[En_] := SP[Temp[En]];

SvsElist = Table[{En, SvsE[En]}, {En, 0.76, 2.0, 0.01}];
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A.2 Thermodynamic Properties for an Ideal Fermi

Gas in a Gaussian Trap

PROGRAM DESCRIPTION: This Mathematica 5.0 program calculates the
thermodynamical parameters of the trapped gas in a Gaussian trap.

The Chemical Potential,Energy and Entropy for Noninteracting Fermi

Gas in a Gaussian Profile Trap.

Note that all energies and temperatures are in EF units.

1.Make integration g which is the factor of density of state in

Gaussian trap divided by a harmonic one

c[y_] := (-Log[1 - y])^(3/2)*Sqrt[1 - y]/y^2*(16/Pi);

g[y_] := c[y]*NIntegrate[u^2*Sqrt[(1 - y)^(u^2 - 1) - 1], {u, 0, 1}];

gtable = Table[{y, g[y]}, {y, 0.001, 0.999, 0.001}];

ginterp = Interpolation[gtable];

2.Deciding Chemical Potential from T/TF and U/EF.

(Let UF=U/EF is the well depth in units of the Fermi energy of

Harmonic Trap.T is the temperature and mu is the chemical potential.)

f1[x_,mu_,T_]:=1/(Exp[(x-mu)/T]+1);

g1Gaussian[mu_,T_,UF_]:=NIntegrate[ginterp[x/UF]*x^2*f1[x,mu,T],

{x,0.001,0.999*UF}];

j2Gaussian[T_,UF_]:=FindMinimum[(1-3*g1Gaussian[z,T,UF])^2,{z,-2,1}];

muGaussian[T_,UF_]:=Part[{z/.Part[j2Gaussian[T,UF],2]},1];

mulistGaussian=Table[{T,muGaussian[T,10]},{T,0.01,2.0,0.01}];

muGaussianinterp=Interpolation[mulistGaussian];

3.Deciding Energy from T/TF and U/EF.

EGaussian[mu_,T_,UF_]:=3*NIntegrate[ginterp[x/UF]*x^3*f1[x,mu,T],

{x,0.001,0.999*UF}]

EnergyGaussian[T_,UF_]:=EGaussian[muGaussian[T,UF],T,UF]

EnergyGaussian[0.001,100]; (* Note this should be 3/4 *)

GaussianEnergyTable=Table[{T,EnergyGaussian[T,10]},{T,0.01,2.0,0.01}]
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(*Comparing with a harmonic trap result.*)

g1[mu_, T_] = -2 T^3*PolyLog[3, -Exp[mu/T]];

j2[T_] := FindMinimum[(1 - 3*g1[z, T])^2, {z, {0.01, 1}}]

mu[T_] := {z /. Part[j2[T], 2]}[[1, 1]]

g2[T_] := -6 T^4* PolyLog[4, -Exp[mu[T]/T]]

epsilon[T_] := 3*g2[T]

4.Deciding Entropy from T/TF and U/EF.

s[x_,mu1_,T_]:=f1[x,mu1,T]*Log[f1[x,mu1,T]]+(1-f1[x,mu1,T])

*Log[1-f1[x,mu1,T]]

g3[T_,mu1_,UF_]:=NIntegrate[x^2*ginterp[x/UF]*s[x,mu1,T],

{x,0.001,0.999*UF}]

SP[T_,UF_]:=-3*g3[T,muGaussian[T,UF],UF]

SPlistlong=Table[{T,SP[T,10]},{T,0.01,2.00,0.01}]

SPInterp=Interpolation[SPlistlong];

(*Comparing with low Tenperature approxiamtion.*)

SPanalyt[T_]:=Pi^2T;

SPanalytplot=Plot[SPanalyt[T],{T,0,1}];

5.Now using the A.3 to calculate the mean square size of the

cloud in Gaussian trap and making Entropy-Size relation for

a Gaussian Trap.

(we want E/EF units for z^2/zF^2, so multiply IZSQ by 3/4.

IZSQ is normalized to 1 for mean squre size of T=0).

ZSQlistlong[UF_]:=Table[{T,(3/4)*IZSQ[T, UF]},{T, 0.03, 2.03, 0.01}];

ZSQlistlong[10];

ZSQInterp = Interpolation[ZSQlistlong[10]];

SetDirectory["E:\Entropy-Size Calculation"];

(*The directory that the mean square size data saved*)

EntropyGaussian=Range[200];

Do[EntropyGaussian[[j]]=SPInterp[0.03+j*0.01]; ,{j,200}];

ZSQGaussian=Range[200];

Do[ZSQGaussian[[j]]=ZSQInterp[0.03+j*0.01]; ,{j,200}];

Export[EntropyGaussian.dat,EntropyGaussian,List];

Export[ZSQGaussian.dat,ZSQGaussian,List];
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6.Now make Entropy-Energy relation for a Gaussian Trap

Entropy2NG=Range[200];

Do[Entropy2NG[[j]]=SP[j*0.01,10]; ,{j,200}];

Energy2NG=Range[200];

Do[Energy2NG[[j]]=EnergyGaussian[j*0.01,10]; ,{j,200}];

Export[Entropy2NG.dat,Entropy2NG,List];

Export[Energy2NG.dat,Energy2NG,List];

A.3 Mean Square Sizes for an Ideal Fermi Gas

in a Gaussian Trap

PROGRAM DESCRIPTION: This Mathematica 5.0 program calculates the
mean square cloud size of the trapped gas in a Gaussian trap.

Mean Square Width versus kT/EF and U/EF for Noninteracting Fermi

Gas in a Gaussian Trap.

1.Make interpolators for integration function f0 which relating to

chemical potential.

g0[u_, x_] := u^2*Sqrt[(1 - x)^(u^2) - (1 - x)];

f0[x_] := (16/Pi)*(-Log[1 - x])^(3/2)*NIntegrate[

g0[u, x], {u, 0, 1}, Compiled -> True]/x^2;

V0 = Table[{x, f0[x]}, {x, 0.0001, 0.9999, 0.0001}];

VT0 = Interpolation[V0];

2.Make interpolators for integration function f2 which relating to

mean square size.

g2[u_, x_] := u^4*Sqrt[(1 - x)^(u^2) - (1 - x)];

f2[x_] := (32/Pi)*(-Log[1 - x])^(5/2)*NIntegrate[

g2[u, x], {u, 0, 1}, Compiled -> True]/x^3;

V2 = Table[{x, f2[x]}, {x, 0.0001, 0.9999, 0.0001}];

VT2 = Interpolation[V2];

3.Deciding Chemical Potential from T/TF and U/EF.
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(Note that UF=U/EF is the well depth in units of the HO Fermi

energy, T is the temperature and mu is the chemical potential)

f1[y_, mu_, T_] := 1/(Exp[(y - mu)/T] + 1);

f12[y_, mu_, T_, UF_] := y^2*f1[y, mu, T]*VT0[y/UF];

INUM[mu_, UF_, T_] := 3*NIntegrate[f12[y,

mu, T, UF], {y, 0.0001*UF, 0.9999*UF}, Compiled -> True];

j2[T_, UF_] := FindMinimum[(1 - INUM[z, UF, T])^2, {z, 0}];

mu[T_, UF_] := z /. Part[j2[T, UF], 2];

4.Deciding MeanSquareSize from T/TF , U/EF and mu.

(<z^2> in units of sigzF^2/8, where sigzF is the Fermi radius.)

f22[y_, mu_, T_, UF_] := y^3*f1[y, mu, T]*VT2[y/UF];

IZSQ1[T_, UF_, mu1_] := 4*NIntegrate[f22[y, mu1, T,

UF], {y, 0.0001*UF, 0.9999*UF}, Compiled -> True];

IZSQ[T_, UF_] := IZSQ1[T, UF, mu[T, UF]];

(* The mean square size as a funtion of temperature and trap depth)

A.4 The Ground State Properties for a Weakly

Interacting Fermi Gas in a Gaussian Trap

PROGRAM DESCRIPTION: This Mathematica 5.0 program calculates the
ground state thermodynamic parameters of the trapped gas in a Gaussian
trap, which is weakly interacting and in the BEC-BCS crossover region. The
calculation for the uniform gas follows the method in [78].

The Chemical Potential,Energy and Entropy for BEC-BCS Crossover

Fermi Gas of the ground state in a Gaussian profile trap.

Note that all energies and temperatures are in EF units

1.Physcis constant and the basic parameters related to the Li6

c = 3*10^8;,

hbar = 1.055*10^(-34);

e = 1.60219*10^(-19);

h = 2 Pi hbar;
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m = 6.015*1.66*10^(-27); (*Li6 mass, kg*)

AtomN = 130000;

k = 1.3806505*10^(-23);

a0 = 5.29177*10^(-11); (*Bohr radius, m*)

2.Chemical Potential from BCSMF, BECMF and ChengChinMF

kF = (6*Pi^2*n)^(1/3);

EF = (hbar*kF)^2/(2*m); (* Thomas-Fermi Energy, J*)

muBCS[IC_]:=(hbar^2/(2*m)*(6*Pi^2*n)^(2/3)+(4*Pi*hbar^2)

/(m*IC*kF)*n))/EF;

(*Atom Chemical Potential from BCS theory,

IC in unit of 1/(kF*a) *)

muBCSStrinati[IC_]:= 1+4/(3*Pi*IC)+4/(15*Pi^2)*(11-2*Log[2])

/IC^2;

(*Atom Chemical Potential from Strinatis’s theory *)

aM = 0.6*a; (*Molecules scattering length*)

nM = n/2; (*Molecules density*)

muMolecule[IC_]:=(2*hbar^2)/m*aM/(a*kF*IC)*nM*

(1 + 32/(3*Pi^(1/2))*(nM*aM^3/(a*kF*IC)^3)^(1/2))/EF;

(*Molecule Chemical Potential for BEC gas*)

EBinding[IC_] := If[IC >= 0, hbar^2*kF^2*IC^2/(2*m*EF), 0];

(*Binding Energy per atom*)

muBEC[IC_] := muMolecule[IC]/2 - EBinding[IC];

(*chemical potential substact Binding Energy per atom*)

j1CCMF[IC_] := If[IC >= 0,

FindMinimum[

(1 + AiryAi[-2.338*z]/AiryAiPrime[-2.338*z]*IC*2.338^(1/2))^2,

{z, -4, 1}],

FindMinimum[

(1 + AiryAi[-2.338*z]/AiryAiPrime[-2.338*z]*IC*2.338^(1/2))^2,

{z, 1, -4}]];

muCCMF[IC_] := Part[{z /. Part[j1CCMF[IC], 2]}, 1];

(*Atom Chemical Potential from Chin’s Mean Field theory *)

muCCMFAtomic[IC_] := muCCMF[IC] + EBinding[IC];
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(*Atomic Chemical Potential substract molecule binding energy.*)

TmuCCMFAtomic = Table[{x, muCCMFAtomic[x]},

{x, -4.05, 4.05, 0.02}];

ImuCCMFAtomic = Interpolation[TmuCCMFAtomic];

3.The MeanSquareSize for Harmonic Trap using the chemical potential

from Chin’s mean field thoery.

3.1 Calulate the mean cloud size for kF*a=-0.75.

ICSweep = -1/0.75;

muScaled[Sdens_,IC_]:=(Sdens)^(2/3)*ImuCCMFAtomic[IC*Sdens^(-1/3)]

muScaled[1, ICSweep]

TmuScaled = Table[{x, muScaled[x, ICSweep]}, {x, 0.01, 1, 0.01}];

ImuScaled = Interpolation[TmuScaled];

TdnsScaled = Table[{muScaled[x, ICSweep], x}, {x, 0.01, 1, 0.01}];

IdensScaled = Interpolation[TdnsScaled];

g0[mu_, q_] := IdensScaled[q]*Sqrt[mu-q];

f0[mu_] := (16/Pi)*NIntegrate[g0[mu,q],{q,0,mu},Compiled->True];

j0 = FindMinimum[(1 - f0[mu])^2, {mu, 1}];

muGlobe = mu/.Part[j0, 2];

g1[mu_, q_] := IdensScaled[q]*(mu - q)^(3/2);

MSSHO[mu_]:=2*(16/Pi)*NIntegrate[g1[mu,q],{q,0,mu},Compiled->True];

MSSHO[muGlobe];

3.2 Calulate the mean cloud size for variable kF*a.

Do[

ICSweep = i;

TdnsScaled = Table[{muScaled[x, ICSweep], x}, {x,0.01,1,0.01}];

IdensScaled = Interpolation[TdnsScaled];

g0[mu_, q_] := IdensScaled[q]*Sqrt[mu - q];

f0[mu_]:=(16/Pi)*NIntegrate[g0[mu, q],{q,0,mu},Compiled->True];

j0 = FindMinimum[(1 - f0[mu])^2, {mu, 1}];

muGlobe = mu /. Part[j0, 2];

g1[mu_, q_] := IdensScaled[q]*(mu - q)^(3/2);

MSSHO[mu_]:=2*(16/Pi)*NIntegrate[g1[mu,q],{q,0,mu},Compiled->True];

If[MSSHO[muGlobe] >=0, MSSHOIC[i] = MSSHO[muGlobe], MSSHOIC[i] = 0];

ICData[i] = i;

, {i, -2.0, 1.0, 0.1}];

TMSSHOIC = Table[{ICData[i], MSSHOIC[i]}, {i, -2.0, 0.7, 0.1}]
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IMSSHOIC = Interpolation[TMSSHOIC];

(*IMSSHOIC gives the mean square size for kF*a from -2.0 to 0.7.*)

4. The MeanSquareSize for Gaussian Trap using the chemical potential

from Chin’s mean field thoery.

4.1 Calulate the mean cloud size for kF*a=-0.75.

muScaled[Sdens_,IC_]:=(Sdens)^(2/3)*ImuCCMFAtomic[IC*Sdens^(-1/3)];

ICSweep = -1/0.75;

muScaled[1, ICSweep];

TmuScaled = Table[{x, muScaled[x, ICSweep]}, {x, 0.01, 1, 0.01}];

ImuScaled = Interpolation[TmuScaled];

TdnsScaled = Table[{muScaled[x, ICSweep], x}, {x, 0.01, 1, 0.01}];

IdensScaled = Interpolation[TdnsScaled];

g2[mu_,q_,U0_]:=IdensScaled[q]/(q-mu+U0)*(Log[U0/(q-mu+U0)])^(1/2);

f2[mu_,U0_]:=(16/Pi)*U0^(3/2)*NIntegrate[g2[mu,q,U0],{q,0,mu}

,Compiled -> True];

j2[U0_]:= FindMinimum[(1 - f2[mu, U0])^2, {mu, 1}];

muGaussian[U0_]:= mu /. Part[j2[U0], 2];

g3[mu_, q_, U0_]:= IdensScaled[q]/(q-mu+U0)*(Log[U0/(q-mu+U0)])^(3/2);

MSSGA[mu_,U0_]:= 2*(16/Pi)*U0^(5/2)*NIntegrate[

g3[mu, q, U0], {q, 0, mu}, Compiled -> True];

MSSGA[muGaussian[10], 10];

4.2 Calulate the mean cloud size for variable kF*a.

Do[

ICSweep = i;

UTrap = 10;

TdnsScaled = Table[{muScaled[x, ICSweep], x}, {x, 0.01, 1, 0.01}];

IdensScaled = Interpolation[TdnsScaled];

g2[mu_,q_,U0_]:=IdensScaled[q]/(q-mu+U0)*(Log[U0/(q-mu+U0)])^(1/2);

f2[mu_,U0_]:=(16/Pi)*U0^(3/2)*NIntegrate[g2[mu,q,U0],{q,0,mu},

Compiled -> True];

j2[U0_] := FindMinimum[(1 - f2[mu, U0])^2, {mu, 1}];

muGaussian[U0_] := mu /. Part[j2[U0], 2];

g3[mu_,q_,U0_]:=IdensScaled[q]/(q-mu+U0)*(Log[U0/(q-mu+U0)])^(3/2);

MSSGA[mu_,U0_]:=2*(16/Pi)*U0^(5/2)*NIntegrate[

g3[mu, q, U0], {q, 0, mu}, Compiled -> True];

If[MSSGA[muGaussian[UTrap], UTrap] >= 0,
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MSSGAIC[i]= MSSGA[muGaussian[UTrap],UTrap], MSSGAIC[i] = 0];

GAICData[i] = i;

, {i, -2.0, 1.0, 0.1}];

TMSSGAIC = Table[{GAICData[i], MSSGAIC[i]}, {i, -2.0, 0.7, 0.1}]

IMSSGAIC = Interpolation[TMSSGAIC];

(* IMSSHOIC gives the mean square size for kF*a from -2.0 to 0.7. *)
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Appendix B

Igor Program for Data Analysis
and Image Processing

In our lab, the data analysis and image processing are done by the Igor program.

For different tasks, we wrote the procedure files in Igor to implement the different

functions. Previously, Stephen Granade and Joe Kinast wrote the core parts for

calculation of column density of the absorption images and fitting the 1D profile

of the cloud. The file was named as “ProcessingImage v1.0” in our lab. For

the experiment presented in these dissertation, I added the data analysis for the

entropy and 2D cloud profile fit for the rotating gas. The corresponding file was

named “ProcessingImage v2.0”. Furthermore, for the experiment required the

double spin imaging, I wrote a new section for this application, and named the

new file as “ProcessingImage v3.0”, which had almost 300 pages. This procedure

file can be obtained by inquiring of John Thomas by Email jet@phy.duke.edu.

Here I list the added functions since ”ProcessingImage v1.0”, and a brief

introduction will be given if the annotation is not included in the procedure file.

#############################################################

Basic Data File Processing

#############################################################
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StatisticalGraphAverage(WavetoAvg)

This function averages the data Y for the same X, and excludes

any individual point that is beyond 3 stand deviation of of

the average value.

FindXYPeak(xwave, ywave, ymin, avgedpoint)

This function find the local maximum whihc is larger than YMIN.

#############################################################

Measure Position and Width

#############################################################

BatchAverageRadia(saveAverage)

This function first produces the integrated radial density,then

averages the radial profiles that belong to the same data set.

BatchAverageAxial(saveAverage)

#############################################################

CURVE FITTING ROUTINES

#############################################################

LinearPlusPower(w,x)

ShiftPower(w,x)

JointTwoPower(w,x)

ShiftJointTwoPower(w,x)

LowEneTwoPower(w,x)

OriginFixTwoPower(w,x)

OriginShiftTwoPower(w,x)

BiasOriginFixTwoPower(w,x)

OneDerConOriginFixTwoPower(w,x)

CriticalExpansionTwoPower(w,x)

Lorentz(w,h)

IncreasedSine(w,t)

BiasDampedSine(w,t)

DualDampedSine(w,t)

SimGauss2D(w,x,y)

#############################################################

Entropy Measurement Section

#############################################################
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MeanSquareSizeTFFits(TFWidthNum, ToverTFNum)

BatchMeanSquareSizeTFFits(TFWidth, ToverTF)

These two functions calculate the mean square size

form the finite temperature Thomas-Fermi fit of the 1D

cloud profile.

EntropyAverage( )

This function averages entropy data by binning in a

certain energy range.

AFSAverage( )

This function averages MeanSuareSize data by binning

in a certain energy range, and treats the standard

deviaton of single shot equally.

AFSAverage2( )

This function averages MeanSuareSize data by binning in a

certain energy range, and treats the standard deviaton of

single data point and the standard deviation of the binning

data set seperately.

ViscosityEntropyRatioCal(Alpha, AlphaStdDev,EoverEf,EoverEfStdDev)

This function gives the estimation of the viscosity and

entropy ratio.

ChemicalPotentialPlot( )

ChemicalPotentialCal_PL(S, SStdDev,E,EStdDev)

ChemicalPotentialCal_DualPL(S, SStdDev,E,EStdDev)

These three function give the chemical potential versus energy

according to the different parametrization.

TvsEPlot( )

TvsEHeatCapaPlot( )

These two function compares the temperature versus energy

according to the entropy and heat comapcity experiment

respectively.

#############################################################

Rotation Mode Section

#############################################################
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Center(nameoffile)

BatchCenter()

These two function use 1D Gaussian fit for the axial and radial

profile, then anlyze the center of 2D rotating cloud.

AngleCenter(nameoffile)

BatchAngleCenter( )

These two function use 1D Gaussian fit for the axial and radial

profile, then anlyze the angle and center of 2D rotating cloud.

AngleCenterWidth(nameoffile)

BatchAngleCenterWidth()

These two function use 1D Gaussian fit for the axial and radial

profile, then anlyze the angle, center and Gaussian width

of the principle axis of 2D rotating cloud.

INTAngleCenterWidth(nameoffile)

BatchINTAngleCenterWidth( )

These two functions use 1D Gaussian fit for the axial and raidal

profile, then integrate the 1D cloud profiles belong to the same

data set, and analyze the angle, center and Gaussian width

of the principle axis of 2D rotating cloud.

CenterOverlapCD(saveIntegration)

This function integrates the 2D column densities belonging to

the same data set by overlapping the centers of each cloud

profile together.

INT2DGaussian(nameoffile)

BatchINT2DGaussian( )

These two functions make 2D Gaussian fit for the integrated

column density generated by "CenterOverlapCD", then provide

the center, rotating angle and Gusssian width of the primary

axis of 2D rotating cloud.

TWODGaussian(nameoffile,displaygraph)

BatchTWODGaussian(displaygraph)

These two functions make 2D Gaussian fit for the origin data file,

then provide the center, rotating angle and Gusssian width of the

primary axis of 2D rotating cloud.
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#############################################################

Two Spins Imaging Section

#############################################################

SRSR2SSRR(nameoffile)

BatchSRSR2SSRR( )

These two function convert the 4-fast kinetic images from the

Andor camera with the time sequnce of

"signal-reference-signal-reference"

to "signal-signal-reference-reference’’.This helps us apply

the exsisted function for 4-images processing without rewritting

the whole set of new functions.

CalculateAbsorptionSSRR(nameoffile,crop)

This function caluclate the absorption images for the

’’SSRR’’ images.

ViewROISSRR(nameoffile)

This function shows the pseudo color images for the

’’SSRR’’ images.

CalculateColumnDensitySpin2(nameoffile,crop,bin)

This function calculate the coulumn density of spin2.

AtomNumberSSRR(nameoffile)

BatchAtomNumberSSRR()

These two functions calculate the atom numbers for the

’’SSRR’’ images.

BatchWidthSSRR(fittype,dimension,displaygraph)

This function calculates the number independent Thomas-Fermi

width of the cloud for the ’’SSRR’’ images.

BatchWidthSSRRCoherent(fittype,dimension,displaygraph)

This function calculates the number-independent Thomas-Fermi

width of the cloud in the coherent two-spin superposition.

Noted that the cloud in coherent superposition state has the

different from of the number-independent width withthe spin

mixture cloud.
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BatchTemperatureSSRR(fittype,dimension,holdwidth,displaygraph)

This function obtains the Thomas-Fermi temperature of the cloud

for the ’’SSRR’’ images.

WaveABSDensity(wvname,displaygraph)

This function fits a gausssian to a 1-D profile and finds the

center to be used in the BatchProfileSubtract function.

DensitySubstract(Position1,Density1,Position2,Density2,displaygraph)

Batch1DDensityDifference(dimension,displaygraph)

These two functions show the difference of 1D density profile

between spin 1 and spin 2.

Batch2DAxialCentralDensityDif(displaygraph)

Batch2DRadialCentralDensity(displaygraph)

These two functions show the spin 1 and spin 2 difference of 1D

density profile integrated from the central 2D slice.

TwoSpinCenter(nameoffile, spin)

This function obtains the cloud center for the ’’SSRR’’ images.

BatchCDDifference(SaveDifference)

This function shows the difference of 2D column density of two spins.

CDSelfAverage(initialcd, savechoice)

This function self-averages the of 2D column density by applying the

symmetry of the principle axis.

BatchCDDifferenceSelfAverage(SaveDifference)

This function shows the difference of 2D column density generated by

"CDSelfAverage".
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One. John Wiley & Sons, New York, 1977.

[59] K. M. O’Hara. Optical Trapping and Evaporative Cooling of Fermionic
Atoms. PhD thesis, Duke University, 2000.

[60] M. Houbiers, H. T. C. Stoof, W. I. McAlexander, and R. G. Hulet. Elastic
and inelastic collisions of 6Li atoms in magnetic and optical traps.
Phys. Rev. A, 57:R1497, 1998.

[61] K. M. O’Hara, S. L. Hemmer, S. R. Granade, M. E. Gehm, J. E. Thomas,
V. Venturi, E. Tiesinga, and C. J. Williams. Measurement of the
zero crossing in a Feshbach resonance of fermionic 6Li. Phys. Rev. A,
66:041401(R), 2002.

267



[62] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. H.
Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C.J. Williams, and P.S.
Julienne. Precise determination of 6Li cold collision parameters by
radio-frequency spectroscopy on weakly bound molecules. Phys. Rev.
Lett., 94:103201, 2005.

[63] L. Luo, B. Clancy, J. Joseph, J. Kinast, and and J. E. Thomas A.Turlapov.
Evaporative cooling of unitary fermi gas mixtures in optical traps. New
Journal of Physics, 8:213, 2006.

[64] J. M. Kinast. Thermodynamics and Superfluidity of A Strongly Interacting
Fermi Gas. PhD thesis, Duke University, 2006.

[65] K. E. Strecker, G. B. Partridge, and R. G. Hulet. Conversion of an
atomic Fermi gas to a long-lived molecular Bose gas. Phys. Rev. Lett.,
91:080406, 2003.

[66] K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas. Scaling laws
for evaporative cooling in time-dependent optical traps. Phys. Rev. A,
64:051403(R), 2001.

[67] M.W.Reynolds O.J.Luiten and J.T.M. Walraven. Kinetic theory of the
evaporative cooling of a trapped gas. Phys. Rev. A, 53:381, 1996.

[68] W. Ketterle and N. J. Van Druten. Evaporative cooling of trapped atoms.
Adv. At. Mol. Opt. Phys., 37:181, 1996.

[69] G.Zerza L.Windholz, M.Musso and H.Jäger. Precise Stark-effect investiga-
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