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Abstract

This dissertation explores classical analogs of one particle wave mechanics and multi-

particle quantum entanglement by using classical wave optics. We develop classical

measurement techniques to simulate one particle wave mechanics and quantum

entanglement for up to four particles. Classical simulation of multi-particle entan-

glement is useful for quantum information processing (QIP) because much of the

QIP does not require collapse and decoherence is readily avoided for classical fields.

The simulation also allows us to explore the similarities and differences between

quantum optics and classical wave optics.

We demonstrate the simulation of one particle wave mechanics by measuring

the transverse position-momentum (Wigner) phase-space distribution function for a

classical field. We measure the Wigner function of a classical analog of a Schrödinger

cat state. This Wigner phase-space distribution function exhibits oscillatory behav-

ior in phase space and negativity arising from interference of two spatially separated

wave-packets in the cat state. The measurement of Wigner functions for classical

fields has practical applications in developing new coherence tomography methods

for biomedical imaging.

We develop a classical method to simulate projection measurement in coinci-

dence detection of two entangled photons. This is accomplished by using an analog

multiplier and a band pass filter. We measure the classical analog of the joint prob-

ability of detection of two photons for the entangled states 1√
2
[|H1V2〉 ± |V1H2〉]

and 1√
2
[|H1H2〉 ± |V1V2〉], where H is horizontal polarization and V is vertical
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ABSTRACT v

polarization. Our measurement method reproduces nonlocal Einstein-Podolsky-

Rosen (EPR) correlations for four polarization-entangled Bell states of two par-

ticles and violates Bell’s inequality. A most interesting result of our measure-

ments is the experimental simulation of three and four particle Greenberger-Horne-

Zeilinger (GHZ) entanglement for the entangled states 1√
2
[|H1H2H3〉 + |V1V2V3〉]

and 1√
2
[|H1H2H3H4〉 + |V1V2V3V4〉] respectively. We are able to reproduce the 32

elements of the GHZ polarization correlations between three spatially separated

superposition beams which leads to a conflict with local realism for nonstatistical

predictions of quantum mechanics. That is in contrast to the two entangled par-

ticles test of Bell’s inequalities, where the conflict arises for statistical predictions

of quantum mechanics. In addition, our classical wave system can be extended to

demonstrate a type of entanglement swapping in a four-particle basis. We are able

to show that the fundamental technical limitations on distinguishing between all

four Bell states in the quantum entanglement swapping experiments is similarly

encountered in our classical wave optics experiments.

In our first classical experiments, the joint detection signals are stable oscilla-

tory sinusoidal waves so that probability language is not applicable. To simulate

a test of Bell’s inequality in a probabilistic way, such as the mean of the product

of two observables, we use a classical random noise field which interferes with a

classical stable wave field. We develop a classical noise system to reproduce an

EPR nonlocal correlation function of two observers A and B. Our setup is able to

reproduce measurements of the correlation function and also is able to simulate in

part the wave-particle duality property of a two-particle quantum system. We also

demonstrate the ability of our optical noise system to reproduce the violation of

Bell’s inequality.
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We believe that the techniques we have developed will provide a foundation

for future experiments which simulate simple quantum networks. Implementation

of Shor’s algorithm, for example, may enable rapid factorization of large numbers

using classical wave methods.
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Chapter 1

Introduction

Quantum mechanics has been applied to develop quantum information technology

by exploiting the fundamental features of quantum mechanics such as superposition

and entanglement. In this dissertation, I present optical methods for classical wave

simulation of these two fundamental quantum features. Simulation has become

an important topic because of similarities between quantum and classical wave in-

terference. The potential of classical wave optics to simulate multi-particle state

superposition and entanglement is the primary motivation and objective for the

current work. As an introduction, I discuss the basic concepts of the linear su-

perposition principle and entanglement. Then, I outline some recent developments

in quantum information technology and the classical wave simulation of this tech-

nology. Finally, I schematically outline the organization of this thesis chapter by

chapter. I will begin by describing the motivation of this work.

1.1 Motivation

Classical wave simulation of the linear superposition principle and entanglement is

an initial step to develop an alternative tool to implement quantum information

processing. The study is motivated by the knowledge that much of quantum infor-

mation processing does not require collapse, and particle properties of a quantum

system are not required. Since classical fields are able to simulate superposition and

1
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entanglement, it is important to explore these simulations for quantum information

processing. Classical simulation of multi-particle entanglement is useful to study

the similarities and differences between quantum optics and classical wave optics es-

pecially in quantum applications such as quantum cryptography and teleportation,

quantum computation, and also development of quantum sensor devices.

Quantum interference features of a single particle such as an electron in the two-

slit Young experiment can be reproduced by using a classical beam. In addition, the

wave equation of an optical field in a lens-like medium is identical in structure to

the Schrödinger wave equation of a quantum harmonic oscillator. The phase-space

representation of a quantum harmonic oscillator, where its trajectory is represented

by position x and momentum p coordinates, can be simulated by classical spatial

transverse modes. However, classical fields normally lack of the wave-particle duality

properties. Hence, it is important to explore the possibility of simulation of wave-

particle duality properties of a quantum system by using classical fields.

Most of the nonclassical features of quantum mechanics such as nonlocality and

entanglement are best exhibited by systems containing more than one particle.

Quantum entanglement has been applied to information processing and communi-

cation [1–5]. It is a consequence of correlations in second order coherence theory

of quantum interferences exhibited by two spatially separated particles. A pair of

entangled particles which exhibits quantum entanglement always shows nonlocality

features: A measurement of one particle will reveal a property of its entangled pair

even though they are initially separated in space. Before a quantum system is used

for quantum information processing, the nonlocal character of the system is tested,

such as a test of Bell’s inequalities for two entangled particles or a Greenberger-

Horne-Zeilinger (GHZ) test of local realism for three entangled particles. Classical
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wave simulation of nonlocal entanglement analogs of second or higher order coher-

ence, i.e., multi-particle states, have been relatively unexplored.

In quantum information processing, an quantum system is subjected to imper-

fections of preparation and measurement of the state, and also the imperfection of

evolution in the Hamiltonian of the system. Decoherence is a primary problem in

quantum information processing, because a quantum state might interact with its

environment and randomize its relative phase with all possible states in the quan-

tum system. However, this will not be the case if classical wave optics is used to

implement quantum information processing.

In addition, applications such as quantum computing requires engineering of

very large entangled states in a reasonable amount of time and using a reasonable

amount of resources. The preparation of entanglement involving many particles

remains an experimental challenge. Thus, the studies of classical wave simulation

of linear superposition and entanglement will provide us with alternative resources

in quantum information processing.

In the following, I will describe two fundamental features of quantum mechanics

in quantum information technology.

1.2 Fundamental Features of Quantum

Mechanics

Two features of the quantum world are superposition and entanglement. I would

like to illustrate each idea by giving a brief introduction to the linear superposition

principle and entanglement from both particle and wave viewpoints.
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1.2.1 Superposition Principle

The principle of superposition is the first principle of quantum mechanics. The

properties of this principle in both particle and wave viewpoints have been dis-

cussed in detail in the popular Feynman lectures on physics vol.III [6]. They can be

summarized by three statements. First, the probability of an event P in an ideal

experiment is given by the absolute square of a complex number or wave function

φ which is also called a probability amplitude. Second, when the same event can

occur in several alternative ways, the probability amplitude for the event is the

sum of the probability amplitudes for each way, that is φ=φ1+φ2+.. . Then the

probability exhibits interference since P=|φ1 + φ2 + ...|2. Third, if an experiment

is performed which is capable of determining whether one or another alternative is

actually taken, such as to determine which path an electron follows in a two-slit

experiment, the probability of the event is the sum of the probabilities for each

alternative, that is P=|φ1|2 + |φ2|2 + ..., so the interference terms are lost. Quantum

information processing, such as quantum computation and quantum communica-

tion, requires operations on quantum bits, or qubits. A qubit is a superposition of

two orthogonal quantum states |0〉 and |1〉.

1.2.2 Quantum Entanglement

Entanglement is a consequence of quantum interference of two particles. A two-

particle entangled state is a product state that cannot be factorized such as |ψ−〉 =

1√
2

(|H1V2〉 − |V1H2〉), where H and V are horizontal and vertical polarizations for

particles 1 and 2. Entanglement of these two particles can then be described as

follows: Before particle 1 is measured, it has 50% to be |H1〉 and 50% to be |V1〉,
and similarly for particle 2. Suppose now that particle 1 is measured to have
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horizontal polarization, H1. Then the state |ψ−〉 collapses into the product state

|H1V2〉. This implies that particle 2 will have vertical polarization even though

it hasn’t been measured. A similar situation holds for the collapse of the state

|ψ−〉 into the state |V1H2〉. In addition, contributions from these two amplitudes

|H1V2〉 and |V1H2〉 for a joint probability measurement in coincidence detection

with arbitrary polarizations leads to two particle in interference and the violation

of Bell’s inequalities. From an experimental point of view, the significance of the

entangled state |ψ−〉 is exhibited by coincidence detection of two particles. The

duality properties of the two-photon entangled system |ψ−〉 can be described as

follows: First, the particle character of the two photons is exhibited in coincidence

detection, that is a ‘click′ in one detector and a ‘click′ in another detector. Second,

the wave character of the two photons is exhibited in quantum interference that

arises from interfering contributions from |H1V2〉 and |V1H2〉.

1.3 Quantum Information Technology

Since the seminal paper describing the Einstein-Podolsky-Rosen (EPR) paradox [7],

countless discussions on interpretation of quantum mechanics have given rise to the

invention of Bell’s theorem, concepts of nonlocality, and interpretation of measure-

ments in quantum physics. In recent years, however, the foundations of quantum

mechanics have been applied to information technology. Bell’s theorem [8, 9] has

shown that two spatially separated particles in a system described by a entangled

state exhibit a strong quantum correlation for a measurement made on one of the

particles. According to Bell’s theorem, these bipartite correlation measurements

cannot be simulated by any classical system or predicted by any hidden variable

theory. It is this nonlocality behavior of these two particles that make quantum
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mechanics so unique for certain applications [10] such as quantum teleportation,

quantum cryptography and quantum computation.

Quantum information processing can be implemented by using single particle en-

tanglement and multi-particle entanglement. The Deutsch-Jozsa algorithm [11, 12]

and Shor’s quantum algorithm for factoring large numbers [13] show that quantum

physics enriches our computation possibilities far beyond classical computers. Clas-

sical computers perform operations on information stored as classical bits (1 or 0).

Quantum computers perform operations on quantum bits, or qubits, each of which

is in a superposition of two orthogonal quantum states. Quantum search algorithms

in a database of N objects allows a speed up of
√
N over classical devices [14].

Linear optics devices and single photon sources can be used in quantum in-

formation processing. In single photon interferometry experiments, “which path”

variables can be substituted for a quantum bit. Linear optics simulation of quan-

tum logic using single photon experiments that exhibit local entanglement, such

as polarization and position, have been proposed [15]. A linear optics circuit in-

volving n qubits requires in general n successive splitting stages of the incoming

beam, that is 2n optical paths are obtained via 2n − 1 beam splitters. Hence, for a

single-photon optical setup, it is difficult to avoid an exponential increase in the size

of the apparatus as n increases. Linear optics techniques employing single photon

representation are thus limited to the simulation of quantum networks involving a

relatively small number of qubits. This is in contrast with traditional optical models

of quantum logic, where in general n photons interacting through nonlinear devices

(acting as two-bit quantum gates) are required to represent n qubits. Such models

typically make use of the Kerr nonlinearity [16, 17] to produce intensity-dependent

phase shifts, so that the presence of a photon in one path induces a phase shift to
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a second photon. However, a scheme has been proposed to exhibit efficient quan-

tum computation in a single photon model by using linear optics with conditional

feedback [18], where the exponential expansion of physical system can be avoided.

Similarly, it has been shown theoretically that linear optics and projective measure-

ments are able to create large photon number path entanglement [19].

Recently, a hybrid approach has been suggested employing single photon im-

plementations using quantum nondemolition measurement (QND) to entangle sep-

arated one-photon interferometers [20]. A controlled Not gate has been proposed

by employing QND and linear integrated optics. Two single photon input bits are

required, one is control bit and another one is target bit. When the control bit is

|0〉, the target bit is left alone. When the control bit is |1〉, the target bit is changed

from initial |0〉 to final |1〉 and vice versa.

Quantum cryptography employing single photon sources for key distributions

has been proposed. The scheme is called BB84 [21] named after Bennet and Bras-

sard for their paper on quantum key distributions. In this scheme, single photons

are prepared at random in four partly orthogonal polarization states: 0◦, 45◦, 90◦

and 135◦, where they are transmitted from observer A to observer B. If the eaves-

dropper, Eve, interrupts the channel, she will inevitably introduce errors, which

observers A and B can detect by comparing a random subset of the generated keys.

Instead of using the four polarization states, a novel method based on single photon

interference in the sidebands of phase modulated light has been demonstrated for

key distributions [22].

Quantum information processing involving multi-particle entanglement is more

efficient than a single particle system. In general, the more particles that can be

entangled, the more clearly nonclassical effects are exhibited and the more useful
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the states are for quantum applications.

Quantum key distributions employing two entangled photons have been pro-

posed by Ekert [23]. The Ekert scheme uses Bell’s inequality to establish security

of a quantum communication channel between observers A and B. Alternatively,

a novel key distribution scheme using Bell’s inequality has been experimentally

demonstrated to test the security of the quantum channel [24]. Any attempt by

the eavesdropper, Eve, to steal the information by replacing the entangled photon

by another photon from another source will be detected by two observers A and B,

because the interruption reduces the degree of violation of Bell’s inequality. This

fact is substantiated by the quantum no-cloning theorem [25].

Nuclear magnetic resonance (NMR) quantum computation has been demon-

strated to be a promising idea to realize quantum algorithms such as to implement

the Deutsch-Jozsa (D-J) algorithm [12] in a bulk nuclear magnetic technique [26].

However, the technique is complicated to implement because it involves nuclear

spins of complex systems such as chloroform molecules. Further, it does not pre-

pare pure states, only mixtures.

Teleportation of a photon with an arbitrary quantum state was proposed by

Bennet [27]. Quantum teleportation of a photon with an arbitrary quantum state

has been experimentally demonstrated in Zeilinger’s group [28] by using two entan-

gled photons. In this experiment, observers A and B each possesses one entangled

photon. Observer A performs a joint measurement on the entangled photon and

the photon from an arbitrary quantum state which is going to be teleported. After

this measurement is performed, the second photon of the two entangled photons

is projected onto a state which is identical to the teleported state. According to

Bennet’s scheme, the teleportation efficiency is 25%. In addition, experimental
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demonstration of entanglement swapping or teleportation in a four photon basis

has been observed by using two independently created photon pairs [29].

Quantum information processing with continuous quantum variables by using

correlated nonclassical fields has become important [30]. Theories for quantum

teleportation of continuous variables have been developed for broad bandwidth tele-

portation [31] and for teleportation of atomic wave packets [32]. Teleportation of a

quantum state by using two-particle Einstein-Podolsky-Rosen (EPR) correlations is

also proposed [33]. Experimental verification of the teleportation scheme with con-

tinuous variables has been implemented by Kimble’s group [34,35], where the arbi-

trary teleported state is represented by a Wigner phase-space distribution. In this

teleportation experiment, nonclassical correlations between the quadrature-phase

amplitudes of two spatially separated optical fields are exploited.

1.3.1 Problems in Quantum Information Processing

In an ideal quantum computer, a qubit is assumed to be perfectly isolated from its

environment. In other words, the logical qubit is supposed to evolve unitarily in

accordance with Schrödinger’s equation. Frequently, this is unattainable because

of unavoidable decoherence of a quantum system with its environment. The logical

qubit no longer evolves in accordance with Schrödinger’s equation. However, this

can be readily avoided if the qubits representing the computation basis are simulated

by classical fields.

The weak point of nuclear magnetic resonance (NMR) computing is that the

computation results are always given by an average over a large number of quan-

tum systems, so projection measurement cannot be implemented. In addition, the

input qubits in NMR processing are prepared in incoherent entangled states. Even
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though the NMR technique is able to demonstrate multi-particle entanglement, the

incoherent mixture and inability to perform projection measurement have increased

the complexity of the technique. Projection measurements in a nonlinear optical

system are ideal for creating multi-particle entanglement. However, until recently,

the preparation of entanglement between three or more particles has been an ex-

perimental challenge. Quantum computation by using linear optics devices which

allow projection measurement has become an alternate testing ground for quantum

algorithms.

Another problem in quantum information processing is that current two-particle

quantum teleportation experiments have encountered fundamental technical limi-

tations on distinguishing between all four Bell states. This restriction reduces tele-

portation efficiency to 25%. It is worth illustrating this problem in detail because it

is one of the goals of this dissertation to show that similar problems are encountered

in classical wave systems.

The problem can be described as follows: In a two-photon system, the four Bell

states are given by

|Ψ±〉12 =
1√
2

(|H1V2〉 ± |V1H2〉)

|Φ±〉12 =
1√
2

(|H1H2〉 ± |V1V2〉) (1.1)

where |H〉 and |V 〉 are vertical and horizontal polarizations. As shown in Figure 1.1,

beam 1 consists of a superposition state 1√
2
(|H1〉 + |V1〉, and similarly, beam 2 is

in the state 1√
2
(|H2〉 + |V2〉. These two beams are mixed on a beamsplitter and

then measured by coincidence detection with two detectors 1 and 2. When the

polarizers 1 and 2 are orthogonal to each other [36], the coincidence detection of
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Figure 1.1: The detection scheme of coincidence detection of two photons in a
50-50 beamsplitter.

two photons identifies only the state |Ψ−〉12. This is because of the π-phase shift

introduced by the beamsplitter. Thus, with the orthogonal setting of polarizers 1

and 2, the state |Ψ+〉12 cannot be identified by looking at the coincidence detection

of two photons. Similarly, the remaining two states |Φ±〉12 are identified together by

detecting two photons at either one detector when the polarizers 1 and 2 are parallel

to each other. Then, coincidence detection is only able to identify the state |Ψ−〉12.
This restriction has reduced quantum teleportation efficiency to 25% [37]. This

technical problem encountered by quantum measurements in quantum entanglement

swapping or teleportation scheme is also encountered in our classical scheme, as

described in a later chapter.
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1.4 Previous Study of Classical Wave Simulation

of Quantum Entanglement

The previous study of classical wave simulation of quantum entanglement has been

limited for a single particle entanglement. As mentioned in Section 1.2, a funda-

mental principle of quantum mechanics is the linear superposition principle, that

is a summation of quantum mechanical amplitudes, which leads to a wide range of

quantum interference phenomena. Similarly, wave theory based on Maxwell’s equa-

tions leads to a linear superposition principle for the electric field amplitudes that

produces all classical interference phenomena. The linear superposition principle

in classical and quantum mechanics arises from the linearity of their corresponding

wave equations. The fundamental conceptual difference between quantum and clas-

sical interference is that the wave-particle duality exhibited by quantum systems

leads to interference between probability amplitudes rather than between measur-

able classical fields such as the electromagnetic waves.

In the paraxial approximation, the transverse mode of an electromagnetic field

obeys a propagation equation which is formally identical to the Schrödinger equation

with the time replaced by the axial coordinate. Hence, the transverse modes of the

field in a lens-like medium are identical in structure to harmonic oscillator wave

functions in two dimensions. This has given rise to the study of a number of classical-

wave analogs of quantum wave mechanics, including analogs of Fock states [38] and

measurement of Wigner functions for an optical gaussian beam [39]. The exploration

of classical mode concepts has been limited principally to measurement of first order

coherence, i.e., single particle states. It has also been shown that single photon

quantum interference can be fully reproduced by classical wave interference [40,41].
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Currently, there is great interest in classical wave simulation of quantum logic

and quantum measurement. Classical wave simulation of quantum entanglement

has been receiving considerable attraction [42–44] because some of the essential

properties of quantum information processing are wave mechanical, such as in a

single photon implementation of quantum logic [20, 40]. The simulation is equiva-

lent to an analog electronic computer which reproduces the interferences that arise

in a quantum system. Analogous to quantum systems, classical wave fields obey

a superposition principle, enabling operations with superposition states on which

much of quantum information processing is based. Since decoherence is readily

avoided, classical fields are well suited for simulating the unitary evolution of a

quantum system.

The reversibility of the optical matrix transformation method for classical wave

propagating through linear optical devices such as beam splitters, polarizers and

phase shifters (half and quarter-wave plates) can be used to simulate the unitary

operations in quantum information processing. In search algorithms without entan-

glement, it is possible to construct quantum and classical wave devices that provide

a
√
N speed up over classical search devices that use particles [45]. Recently, a

Grover’s quantum search algorithm has been implemented as by using classical

Fourier optics [46]. This work also demonstrated that classical wave simulation

of Grover’s algorithm can search a N-item database as efficiently as a quantum

system. The exploration of these analogs is necessary to develop a classical wave

analog of quantum algorithms in quantum computation, quantum teleportation and

cryptography.

Classical simulation of properties of a single particle entanglement has been dis-

cussed in detail by Spreeuw [44], including quantum information processing and
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violation of generalized Bell’s inequalities where the proposal scheme depends only

on sums of single particle detection signals. It has also shown theoretically that

classical wave systems which simulate single particle interference fail to simulate

quantum nonlocality because a single particle cannot be sent to two spatially sep-

arated observers. In addition to potential practical applications, study of classical

wave systems will help to elucidate the fundamental similarities and differences

between classical wave and quantum systems.

1.5 Organization of the Thesis

This thesis contains seven chapters. This section provides a brief introduction to

the subjects that will be discussed in each chapter.

Chapter 2 presents the linear superposition principle and quantum entanglement

from classical and quantum viewpoints. Similarities between first order classical

and quantum interferences are illustrated theoretically by plotting a Wigner func-

tion for an classical wave analog of a Schrödinger cat state. Entanglement, which

is the main topic of the classical simulation work in this thesis, is discussed in de-

tail together with non-quantum and quantum formulations of Bell’s Inequalities.

The “bracket” notation for a quantum state is represented in classical simulation

notation as “parenthesis” notation [44].

In Chapter 3, measurement of Wigner phase space distributions for an optical

classical field is used to study the similarities between quantum and classical in-

terference. This measurement shows an interesting analog between quantum and

classical fields, such as Wigner distributions with a negative region. A novel two-

window heterodyne imaging technique is developed for these measurements [39]. In

this technique, a local oscillator beam is comprised of a phase-locked superposi-
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Figure 1.2: The experimentally measured Wigner phase space distribution for an
optical classical field analog to the Schrödinger’s cat state.

tion of a large collimated gaussian beam and a small focused gaussian beam. This

scheme permits independent control of the position x and momentum p resolution.

The technique measures the x− p cross correlation, 〈E∗(x)E(p)〉, of an optical field

E in transverse position x and transverse momentum p. A simple linear trans-

form of the x − p correlation function yields the Wigner phase space distribution.

For example, a gaussian beam blocked by a wire produces a classical analog of a

Schrödinger cat state, which has a negative Wigner distribution as shown in Fig-

ure 1.2. The oscillatory behavior in the phase-space distributions and negative

values of the measured Wigner phase space distributions are also observed. In ad-

dition, measurement of a product state EH1(x1)EV 2(x2) for two spatially separated

and orthogonally polarized fields is also implemented by using dual heterodyne de-

tection and an analog multiplier. Measurement in a product basis is our initial step

for simulating quantum entanglement using classical fields.

In Chapter 4, the experimental simulation of two-particle quantum entangle-

ment using classical fields is demonstrated. We simulate entanglement of two quan-
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tum particles using classical fields of two frequencies and two polarizations. The

two fields are combined on a beam splitter and the two spatially separated out-

puts beams are measured by heterodyne detection with two local oscillators of

variable polarizations. Multiplication of optical heterodyne beat signals from two

spatially separated regions simulates coincidence detection of two particles. The

product signal so obtained contains several frequency components, one of which

can be selected by band pass frequency filtering. The band passed signal con-

tains two indistinguishable, interfering contributions, permitting simulation of four

polarization-entangled Bell-like states. The absolute square of the band passed

signal amplitude is analogous to the joint probability P (θ1, θ2) of detecting two

particles with polarization angles θ1 and θ2 respectively. The success of reproduc-

ing joint probability measurements analogous to quantum predictions encouraged

our measurement of violation of Bell’s inequalities. Bell’s inequality is given as

F (a, b, c)=P (a, b)+P (b, c)−P (a, c) ≥ 0, where a, b and c are polarization angles of

two observers. Local realism theory predicts that F (a, b, c) ≥ 0. Quantum theory

predicts that F (a, b, c) ≤ 0, and so violates the inequality. The classical analog

of violation of the Bell’s inequality for one of the four Bell states is shown in Fig-

ure 1.3. The classical analog of the inequality is given as Fcl(θ, 0, θ) ≥ 0, where the

Fcl(a, b, c)=Pcl(a, b) +Pcl(b, c)−Pcl(a, c) and the subscript cl denotes classical. The

maximum violation, Fcl(θ, 0, θ) = −0.25, occurs when θ = 30◦. These classical field

methods may be useful in small scale simulations of quantum logic operations that

require multi-particle entanglement without collapse.

Chapter 5 demonstrates simulation of three-particle Greenberger-Horne-Zeilinger

(GHZ) entanglement [29] by using classical fields. Our experimental scheme pro-

duces four spatially separated superposition beams, each consisting of two orthogo-
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Figure 1.3: Classical violation of Bell’s inequality for the classical analog Bell state
1/
√

2[|H1V2) + |V1H2)]. A classical analog of the inequality is Fcl(θ, 0, θ) ≥ 0, where
the Fcl(a, b, c)=Pcl(a, b)+Pcl(b, c)−Pcl(a, c). The maximum violation, Fcl(θ, 0, θ) =
−0.25, occurs when θ = 30◦.

nally polarized fields with different frequencies. Multiplication of optical heterodyne

beat signals from the four spatially separated regions simulates the fourfold coinci-

dence detection of four particles. Three analog multipliers are used to multiply the

signals from the four detectors, where after each multiplication the desired product

signal is selected by using band pass frequency filtering. The band passed signal so

obtained contains two indistinguishable and interfering contributions, proportional

to the projections of |H1)|H2)|H3)|H4) + |V1)|V2)|V3)|V4) onto the four LO po-

larizations, where the subscripts 1, 2, 3 and 4 denote beams 1, 2, 3 and 4. By

using three of the four spatially separated beams, our classical system simulates the

three-particle GHZ entanglement.

Three particle GHZ entanglement predicts that the three particle element of

reality X1X2X3 of three photons is equal to +1, where the element of reality X

has value ±1 when the detected photon has polarization state at ±45◦ respectively.

The +45◦ and −45◦ polarization states are denoted as H ′ and V ′ respectively. Lo-
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Figure 1.4: (a) X1X2X3 = 1. Quantum GHZ entanglement predicts the ele-
ments of reality V ′

1H
′
2V

′
3 , H ′

1V
′
2V

′
3 ,V ′

1V
′
2H

′
3 and H ′

1H
′
2H

′
3 yield nonzero joint prob-

ability. (b)XXX = -1, local realism theory predicts elements of reality H ′
1H

′
2V

′
3 ,

V ′
1V

′
2V

′
3 ,H ′

1V
′
2H

′
3 and V ′

1H
′
2H

′
3. (c) Classical wave optics experiment reproduces

X1X2X3 = 1 analogous to the prediction of quantum theory.

cal realism theory predicts that X1X2X3 = -1, in contradiction to the quantum

mechanical prediction X1X2X3 = +1. Our classical wave optics experiment re-

produces the measurement X1X2X3 = +1 as shown in Figure 1.4. The classical

wave system is able to reproduce measurements analogous to the quantum mechan-

ical predictions and in contradiction with the measurements as predicted by local

realism theory. The measurement demonstrates that we can reproduce quantum

mechanical three-particle correlations.

Chapter 6 employs the measurement methods developed in Chapter 5 to simu-

late a type of entanglement swapping in a projection measurement of four photon
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entanglement. The measurement method shows that similar problems occur in the

classical wave system and quantum systems, that is, inability to distinguish between

all four Bell states in the process of teleportation or entanglement swapping. In the

demonstration of entanglement swapping by using classical fields, the measurement

method simulates the projection measurement for a four photon entangled state

|Ψ)1234 = |H1)|H2)|H3)|H4) + |V1)|V2)|V3)|V4). Observer A possesses beams 1

and 2 and observer B possesses beams 3 and 4. Beams 1 and 2 never interact

with one another before measurement and similarly for beams 3 and 4. The four

photon entangled state |Ψ)1234 obtained from separate projection measurements of

A and B can be viewed as follows: A’s measurement on beams 1 and 2 yields

the classical entangled state |φ+
cl)12 = 1√

2
[|H1H2) + |V1V2)]. Then, the projection

12(φ
+
cl|Ψ)1234 ∝ 1√

2
[|H3H4) + |V3V4)], showing that observer B will measure the clas-

sical entangled state |φ+
cl)34. One may notice that measurements of A and B have

entangled the beams 1 and 2 and beams 3 and 4 in the same Bell states |φ+
cl)12

and |φ+
cl)34 respectively. This is the interesting property of entanglement swap-

ping. In this experiment, the projection measurement of the four photon entangled

state |Ψ)1234 exhibits the entanglement swapping for product pair |φ+
cl)12|φ+

cl)34. The

advantages of the above version of entanglement swapping are also outlined. Fig-

ure 1.5(a) and (b) shows the classical wave simulation of entanglement swapping

for the product pair |φ+
cl)12|φ+

cl)34 and not the |φ+
cl)12|φ−cl)34 respectively.

The classical wave optics experiments of Chapter 4 and 5 are able to reproduce

the wave character of a quantum system, but not the particle character of a quantum

system. In addition, the classical wave interference signal is a stable oscillatory

signal, so the probabilistic nature of quantum mechanics is not applicable in the

classical system. The measurement methods discussed in Chapters 4 and 5, and 6
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Figure 1.5: Entanglement swapping with classical fields. Observer A selects the
Bell state |φ+

cl)12. Observer B’s signal are then proportional to the projections of
the corresponding the classical analog Bell state (a) |φ+

cl)34 gives a large signal (b)
|φ−cl)34 gives zero signal.
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do not exhibit wave-particle duality properties.

In Chapter 7, a noise classical field and a stable classical field with orthogonal

polarization are used to simulate in part the particle character and probabilistic na-

ture of a quantum system. The detection schemes of two quantum observers A and

B in a two-photon entangled system are simulated in this classical noise experiment.

First, polarization correlation of two spatially separated particles is reproduced by

mixing these two fields. These two fields are combined in a beamsplitter and the

outputs of the beamsplitter are sent to observers A and B. The interference of these

two fields in each detector is a random noise signal. The random noise amplitudes in

detectors A and B are anti-correlated. These noise amplitudes are used to simulate

the particle-like behavior of two entangled photons. These signals are then multi-

plied by using an analog multiplier. The mean value of the multiplied anti-correlated

noise amplitude is found to be equivalent to the quantum nonlocal polarization cor-

relation function, C(a, b)=〈AB〉 = − cos 2(θa− θb), that is the expectation value of

the signals for two observers with their analyzers oriented along directions θa and

θb respectively. Since the measurement method in this noise experiment is able to

reproduce the correlation function of two entangled particles, then a similar method

can be used to reproduce the measurement of violation of a Bell’s inequality. The

Bell’s inequality is given by F (a, b, c)=|C(a, b) − C(a, c)| − 1 − C(b, c) ≤ 0. Local

realism theory predicts F (a, b, c) ≤ 0. Quantum theory predicts F (a, b, c) ≥ 0 and

hence the violation of Bell’s inequality. Figure 1.6 shows that the measurement

method in this classical noise experiment is able to reproduce the violation of Bell’s

inequality for the classical analog Bell state |ψ−
cl) = 1/

√
2 (|H1)|V2) − |V1)|H2)). The

figure shows that the maximum violation, F (a = 0, b = 30◦, c = θ2) 
≤ 0, occurs at

θ2 = 60◦. In this experiment, the classical noise field and detection scheme are able
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Figure 1.6: Classical violation of Bell’s inequality, F (a = 0, b = 30◦, c = θ2) as
a function of θ2 for the classical analog Bell state 1√

2
(|H1)|V2) − |V1)|H2)). The

maximum violation occurs at θ2= 60◦.

to simulate in part the wave-particle duality properties and probabilistic nature of

a quantum observer. The difference between our classical system and a quantum

system is that we measure the random beat signal amplitude of the correlated fields,

not the coincidences of the correlated particles.

In the conclusions, Chapter 8, our work is summarized and suggestions for future

work are given.



Chapter 2

Theory of Wave and Particle
Interference

2.1 Overview

In the Introduction, we mentioned that the objective of this thesis is to simulate

the linear superposition principle and quantum entanglement using classical wave

optics. Here, in this chapter, we will discuss both concepts in relation to our classical

wave optics experiments which are demonstrated in the next chapters.

We first present the linear superposition principle in quantum and classical wave

systems where the Wigner phase space distribution is used to illustrate the simi-

larities between single-particle quantum interference and single field classical wave

interferences. Then, we discuss the properties of the Schrödinger cat state proposed

by Erwin Schrödinger. The cat state is analogous to an even coherent state in posi-

tion space. Since the even coherent state is identical in structure with two spatially

separated TEM00 gaussian mode wave packets, then their Wigner functions have

the same properties. The most interesting feature exhibited by these Wigner func-

tions are negative values in some regions of the phase space distributions. Some

workers believe that the negative value is a unique property of quantum mechan-

ics because it implies that a particle cannot have definite position and momentum

values at the same time. However, this is not true. The negative values in the

23
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phase-space distribution can be attributed to interference of a single particle or a

single classical wave field.

We then describe the concept of entanglement in a two-particle system. We also

layout two fundamental types of entanglement, nonlocal and local entanglement.

The nonlocal quantum entanglement between two-particles exhibits behavior which

contradicts Einstein’s local realism theory. The proof that nonlocality is a true quan-

tum effect was given by J. S. Bell in 1964. We present a standard proof of Bell’s

theorem in two different models, non-quantum and quantum models. Understand-

ing of these conceptual tests of entanglement is important since our experiments

reproduce quantum observations by using classical wave fields.

2.2 Wigner Function

The Wigner function is named after E. P. Wigner as a result of his famous paper

“On the Quantum Correction for Thermodynamic Equilibrium” [47]. Since then,

the Wigner function has been used in quantum optics to represent the phase-space

distribution of a quantum particle [48]. It was later applied to classical optical

beams [49] and biomedical imaging [50, 51]. Wigner distribution functions can be

used to provide a complete description of the coherence properties of the wave

function ψ(x) and classical wave fields E(x) [41]. For a classical field varying in one

spatial dimension, E(x), the Wigner phase space distribution is Fourier transform

related to the mutual coherence function [52]

W (x, p) =

∫
dε

2π
exp(iεp) 〈E∗(x+ ε/2)E(x− ε/2)〉 . (2.1)
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The above definition of the Wigner function is identical to that of a wave function

ψ(x). Here x is a transverse position, p is a transverse wave vector (momentum) in

the x direction, and < .. > denotes a statistical average. Hence, similarities of wave

functions and classical wave fields are reflected in the similarities of the quantum

and classical Wigner functions.

It is well-known that in the paraxial approximation [53], the transverse mode

of an optical field of frequency ω obeys an equation which is formally identical in

structure to the Schrödinger wave equation of quantum mechanics,

i
∂E(x, y, z)

∂z
= −∇2

trE(x, y, z)

2k
− 2πk�χ(x, y) E(x, y, z) (2.2)

Here, k = now/c is the wave vector in the medium, no is the background index

of refraction, and �χ(x, y) is the spatially varying part of the susceptibility, which

determines the effective potential. The role of the time is played by the axial position

z. For a lens-like medium, where �χ ∝ x2, the paraxial wave equation is identical

in form to the Schrödinger equation for a harmonic oscillator. From Eq. (2.2), it is

evident that in a lens-like medium, the lowest gaussian TEM00 mode is analogous

to the ground state of a quantum oscillator, while higher order Hermite-Gaussian

modes correspond to excited states. Then, it is interesting to notice that W (x, p)

for a quantum particle bound in a harmonic well has the same properties asW (x, p)

for a gaussian beam in a lens-like medium.

The Heisenberg uncertainty principle applies to two variables whose associated

operators do not commute, such as the position and momentum of a quantum par-

ticle. In the second quantized field theory, the in- and out-of phase quadratures of

a quantum field are analogous to the canonical position and momentum of an har-

monic oscillator. Hence, the in-phase and out-of-phase components of a quantized
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electric field are subject to the uncertainty principle. Normally, the in- and out-of

phase quadratures noise exhibits Poisson statistics called shot noise. According to

the relation �2P̂ ∝ 1

�2X̂
, one could squeeze the variance of in-phase quadrature

�2X̂ to zero, and extend the variance of out-of-phase quadrature �2P̂ to infinity

and vice versa. Light which exhibits this property is called squeezed light. Such

nonclassical light can be produced by parametric down conversion processes.

The terminology of squeezing in quantum optics can be represented by the trans-

verse mode of an optical beam. A coherent state is obtained by the displacement of

the position and momentum in a vacuum state. A gaussian beam of the same size as

the lowest mode in a lens-like medium, but displaced in transverse position and mo-

mentum corresponds to a coherent state, whereas gaussian beams of smaller (larger)

size than the lowest mode correspond to position (momentum) squeezed states. The

Wigner function for an optical gaussian beam is W (x, p)= 1
π
exp(−x2

a2
− a2p2), where

a is the beam waist. Figure 2.1 shows the Wigner function for a focused beam

where a = 0.5 is analogous to an in-phase quadrature squeezed field in a medium

where a = 1 is the lowest TEM00 mode. Figure 2.2 shows the Wigner function for a

collimated beam where a = 1.5 is analogous to an out-of-phase quadrature squeezed

field. These figures are plotted by using dimensionless units for x and p in terms of

a and 1
a
, respectively.

The Wigner distribution function plays a role that is closely analogous to a

classical phase-space distribution in position and momentum, permitting an intu-

itive particle-like description of the underlying wave propagation. The wave-particle

duality property is inherent in the Wigner function as shown by its definition in

Eq. (2.1). The particle character is the particle property of the variables position x

and momentum p used in the Wigner function. This is analogous to Hamiltonian
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optics representing light in x − p representation as a ray in free space. The wave

character is the wave property of the wave function used in Wigner function. This is

described by the first order mutual coherence function 〈E∗(x)E(x′)〉 in the definition

of Wigner function of Eq. (2.1).

For a linear superposition of two quantum states of a particle system such as

ψa+ψb, the corresponding Wigner function is Wa+Wb+Wint, where the last term

describes the phase-space interference between the two wave functions. This phase

space interference is analogous to the interference of two possible paths for which

particle can be detected, that is |ψa+ψb|2. These interferences exhibit oscillatory

behavior in the phase space representation and also nonpositive values. It has been

shown that the Wigner function of an atomic matter wave passing through a double

slit exhibits strong oscillations and negative regions [54]. It has been suggested by

several authors [55] that negative values of the Wigner function for a quantum state

is a nonclassical effect which has no classical counterpart. That is, it implies the

impossibility of a particle simultaneously having a precise position and momentum.

However, it is not true that negative values in the phase space distribution are a

unique property of quantum theory. We will illustrate this idea by measuring a

classical field analog of a Schrödinger cat state in the following section.

2.2.1 Schrödinger Cat State

The cat state is described in an imaginary experiment by Erwin Schrödinger [56].

A box, which is closed from the outside observer, contains a cat and a glass of poi-

sonous gas. A mechanism can release a hammer which destroys the glass. This kills

the cat. The mechanism for the release of the hammer is triggered by a radioactive

decay and is hence determined by chance. As time elapses, the whole system, as it
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Figure 2.1: The Wigner function for a focussed gaussian beam, W (x, p) with
a=0.5.
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Figure 2.2: The Wigner function for a collimated gaussian beam, W (x, p) with
a=1.5.
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represented in quantum theory, will evolve into a system that is a superposition of

two parts: (i) when the hammer has not fallen down and the glass is still intact,

the cat is still alive. This is denoted by a two system state vector |a, i〉 where a

denotes the alive state of the cat and i the intact glass. In the other alternative

the hammer has broken the glass and the cat is dead. This state is described by

the vector |d, b〉 where d represents the dead cat and b the broken glass. Then, the

whole system can be represented as the state,

|φ〉 =
1√
2

(|a, i〉 + |d, b〉) . (2.3)

However, the state |φ〉 in Eq. (2.3) given by Schrödinger is not a one-particle state,

but a two-particle state, where the alive cat is correlated with the intact glass and

the dead cat with the broken glass. The state is a two-particle entangled state.

Most important, the cat is a superposition of two macroscopically distinguishable

states, namely dead and alive, which we can write as,

|φ〉cat =
1√
2

(|a〉 + |d〉) . (2.4)

Now, the paradox is not that the cat can be dead or alive. Eq. (2.4) shows that

the state consists of a superposition of two states, dead |d〉 and alive |a〉, which

indicates the interference between these two states.

In quantum optics, the simplest case of such as a superposition is given by a

linear combination of two “mirror-like” coherent states [41]

|φ〉cat =
1√
2N

(|α〉 + | − α〉) (2.5)
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where the normalization constant N = 1 + exp(−2α2) due to the over-completeness

of the coherent state |α〉. Eq. (2.5) is called the even coherent state (ECS).

The natural classical analog of the state |φ〉cat is a linear superposition of two

spatially separated mutually coherent gaussian beams,

E(x) = E◦(x−D/2) + E◦(x+D/2) (2.6)

where D is the spatial distance between these two gaussian beams and E◦(x) =

exp(− x2

2a2
) is one dimension complex electric field amplitude. This linear superpo-

sition of two or more electric fields exhibits classical interference very similar to

the interference of coherent states. The classical Wigner function for such a linear

superposition of two gaussian beams is given as,

Wcl(x, p) ∝ W◦(x+D/2, p) +W◦(x−D/2, p) + 2W◦(x, p) cos(Dp) (2.7)

where W◦(x, p) is the Wigner function for E◦(x). The Wigner function for two

gaussian beams is shown in Figure 2.3. This figure is plotted using dimensionless

units of x
a

and ap and the distance D = 4.5a.

The quantum version of the Wigner function for the even coherent state is

similar to Wcl(x, p) because the 〈x|α〉 is identical in structure with the field of a

displaced gaussian beam. Note that the minimum-uncertainty wave packet is a

gaussian, 〈x|α〉∝ e−A
(x−<x>)2

2h̄ ei
<p>x

h̄ , where A is a real constant [57]. The quantum

and classical Wigner functions are non-positive, with the negative contributions

arising from the interference terms. The oscillation in momentum p has a frequency

inversely proportional to the spatial separation D. In the next chapter, we place a

wire in the center of a gaussian beam to obtain a field similar to Eq. (2.6), where
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Figure 2.3: The Wigner function for the Schrödinger cat state

D is the thickness of the wire. We measure a Wigner function which is exactly the

same form as in Figure 2.3.

2.3 Entanglement

Quantum entanglement was appreciated by Schrödinger in his famous discussion

of the Schrödinger cat as shown in Eq. (2.3). The concept of nonlocality in a two

particle system is related to the EPR paradox: The initials refer to Albert Einstein,

Boris Podolsky and Nathan Rosen, the authors of a famous 1935 scientific paper

entitled “ Can a Quantum Mechanical Description of Physical Reality Be Consid-

ered Complete? ” [7]. Within the mathematical structure of quantum theory the

position and the velocity of an electron cannot both be well defined simultaneously:

If one of these quantities has a definite value the other cannot. The EPR paper

noted that within quantum theory one can set up an experimental situation that

in principle allows one to predict with certainty either the position or the velocity

of one electron by measuring either the position or the velocity of a second corre-

lated electron. EPR argued that measurements performed on the second electron
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cannot disturb the properties of the first electron, and hence that the first electron

must have, simultaneously, a well defined value position and a well defined value

of velocity. This is not allowed by the quantum Heisenberg uncertainty principle.

In a two-photon entangled system, the detection of the first photon in one detector

will disturb the outcome of the measurements of the second photon in a spatially

separated region even though it hasn’t been measured. This is called nonlocality

which is attributed to the entanglement of the two photons.

Entanglement is one of the central concepts in quantum information processing

such as quantum teleportation and cryptography, and quantum computation. There

are two types of entanglement: (i) entanglement between different properties of a

single particle and (ii) entanglement between separate particles. Here, we illustrate

the properties of these two types of entanglement in detail.

An example of type (i) entanglement is provided by the polarization and position

of a single polarized photon. A 45◦ polarized photon is incident on a cube polarized

beamsplitter and the outputs of the cube polarizer have the horizontal component

of the photon in one port and vertical component of the photon in another port.

Since it is a single photon experiment, then the photon is in an entangled state

|H, x1〉 + |V, x2〉, where x1 and x2 denoted the positions at ports 1 and 2. This

entangled state exhibits local entanglement as follows: if the photon is detected at

port 1, the entangled state collapses to |H, x1〉. This means that the photon must

be horizontally polarized at position x1. It is obvious that the correlation exhibited

by the photon in |H, x1〉 is local. And similarly, if the photon is detected at port 2,

then the entangled state collapses to |V, x2〉 indicating that the photon is vertically

polarized at position x2. The component |V, x2〉 also shows the local correlation of

the photon. Even though the components |H, x1〉 and |V, x2〉 are spatially separated
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product states, they exhibit local correlation between the position and polarization.

Type (ii) entanglement is a central concept for the realization of the EPR para-

dox and hence the discussions on interpretation of quantum mechanics. The type

(ii) entangled state is used to study the nonlocality of quantum theory such as

Bell’s theorem and three-particle GHZ correlations. This type of entanglement is

always exhibited by a quantum system that is associated with at least two quantum

particles. These two particles have to be entangled or correlated in an entangled

state. An entangled state is a product state that cannot be factorized such as

|ψ+〉 = 1√
2
[|H1V2〉 + |V1H2〉] for a pair of photons produced from the parametric

down-conversion process. These two photons are called signal and idler. The signal

photon is horizontally polarized and the idler photon is vertically polarized. They

are then combined through a beamsplitter. The outputs of the beamsplitter are

two spatially separated beams, beams 1 and 2. If photon in beam 1 is measured to

have the polarization state |H1〉, the entangled state is collapsed to |H1V2〉. Thus,

the photon in beam 2 is known to be in the polarization state V2 even though it

hasn’t been measured. This behavior is called nonlocality. Another possibility is

the collapse of the entangled state to |V1H2〉. Then, the contributions from these

two possibilities exhibit quantum wave interferences in this two-photon system. One

may notice that the horizontal components |H1〉 and |H2〉 in two spatially separated

beams 1 and 2 are due to the wave character of the signal photon in the beamsplit-

ter. And similarly, for the vertical components |V1〉 and |V2〉 are from the idler

photon. Hence, the duality property of this system is observed as a photon takes

two possible paths at the same time. This is the interesting feature of nonlocal

entanglement.

The type (i) entanglement is not as useful as the type (ii) because it is lo-



CHAPTER 2. THEORY OF WAVE AND PARTICLE INTERFERENCE 34

cally entangled and doesn’t exhibit nonlocality as required by most of quantum

applications such as teleportation. Since a single photon quantum interference can

be fully described by a classical wave field, then classical analog of type (i) en-

tanglement by using a classical beam can be implemented. It has been proposed

by Spreeuw [44] that classical analog of type (ii) entanglement can be achieved

by adding product states of type (i) for two spatially separated classical beams,

that is, |upper beam 1, H)+|lower beam 2, V ). However, this classical state fails to

exhibit non-locality as exhibited by the example given in the discussion of type

(i) entanglement because a single beam cannot be sent to two spatially separated

detectors.

In the next chapters, we are able to experimentally demonstrate the simulation of

two-, three- and four-particle nonlocal entanglement by using classical wave fields.

Our measurement method is able to reproduce measurements of the violation of

Bell’s inequality as predicted by quantum mechanics [58]. So, it is interesting to

discuss Bell’s theorem in the following section.

2.3.1 Bell’s Theorem

According to quantum theory, a two-photon entangled state is given by the state

|ψ−〉= 1√
2
(|H1V2〉 − |V1H2〉) where the two photons are spatially separated. When

a measurement on one of the photon pair yields a horizontally polarized photon in

detector 1, then the state |ψ−〉 is immediately collapsed to |H1V2〉 providing the

information that the second photon will be in the vertical polarization state even

though it hasn’t been measured. Einstein called this “spooky action-at-a-distance”

unacceptable because no influence can propagate faster than the speed of light. EPR

claimed that quantum mechanics is therefore an incomplete description of physical
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reality. The wave function is not enough and some other quantity, λ, a hidden

variable which is local, is needed in addition to |ψ−〉 to describe the state of the

system fully. Until 1964 it was believed that one could always construct a hidden-

variable theory that would give all the same results as quantum mechanics. But

in that year J. S. Bell proved that any local hidden variable theory is incompatible

with quantum mechanics. Below, we discuss two methods of formulating Bell’s

inequality.

A Non-quantum Model of the Bell’s Inequalities

For two spin-1
2

particles system in the singlet state, |ψ−〉= 1√
2
(| ↑1↓2〉 − | ↓1↑2〉),

particles 1 and 2 are sent to observers A and B respectively, where each of them has

an analyzer (Stern-Gerlach apparatus). Observable A is said to have eigenvalue +1

(-1) which corresponds to particle 1 parallel (anti-parallel) to the analyzer oriented

at a. Similarly for particle 2 with observable B with the analyzer oriented at b,

the eigenvalues are ±1. Suppose now that A and B agree to make measurements

along one of three polarization angles, in general, nonorthogonal, coplanar directions

specified by the vectors a, b and c. In order to understand the formulation of Bell’s

Inequalities by a non-quantum model [59], we first need to explain the meaning of a

particle belonging to a type {+a,−b,+c}. A measurement by A or B on a particle

of this type would yield +1 if the analyzer is oriented along the direction specified

by a or c respectively, but would yield -1 if the analyzer in B is oriented along the

direction specified by b. Since the state |ψ−〉 exhibits perfect anti-correlation for

spin polarization measurements along parallel axes, then if particle 1 is of the type

{+a,−b,+c}, then particle 2 must be of the type {−a,+b,−c}. Now, there are
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eight different groups that the two particles might belong in:

Population Observer A Observer B

N1 {+a,+b,+c} {-a,-b,-c}
N2 {+a,+b,-c} {-a,-b,+c}
N3 {+a,-b,+c} {-a,+b,-c}
N4 {+a,-b,-c} {-a,+b,+c}
N5 {-a,+b,+c} {+a,-b,-c}
N6 {-a,+b,-c} {+a,-b,+c}
N7 {-a,-b,+c} {+a,+b,-c}
N8 {-a,-b,-c} {+a,+b,+c}

Before we use the table to obtain Bell’s inequality, let’s discuss an experiment

in which A and B orient their analyzers along different axes. In particular, let’s

see what fraction of their measurements yield values for the two particles that have

opposite signs, for example, if A finds particle 1 along a to have eigenvalue +1 and

B finds particle 2 along c to have eigenvalue -1. Clearly, all measurements made on

particles in populations N1 and N8 will yield opposite signs for the polarizations of

the two particles. On the other hand, for population N2, when A measures along a

and obtains +1, B’s measurement along b yields the result -1 (with opposite sign),

but if instead B’s analyzer is oriented along c axis, B obtains +1 (with the same

sign). Similarly, if A’s analyzer is oriented along b axis, A obtains +1 while B

obtains -1 along b or +1 along c. Finally, for population N2, if A’s analyzer is
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oriented along the c axis, A obtains -1, while B obtains -1 along a or -1 along b.

Thus, overall for population N2, 2/6 = 1/3 of the measurements yield results with

opposite signs when their analyzers are oriented along different axes. This ratio

holds for all of the populations N2 through N7, yielding (3/4) of the eight different

populations. And similarly, for populations N1 and N8 (that is (2/8)=(1/4) of the

eight different populations), (6/6) of their measurements yield results with opposite

signs when their analyzers are oriented along different axes. Hence, overall that is

1/3(3/4) + (1/4)(6/6) = 1/2 of the measurements will find the particles with their

polarizations anti-correlated when the two experimentalists orient their analyzers

along different axes.

Interestingly, we can extract a variety of inequalities from the table. We may

quickly see, for example, that

N3 +N4 ≤ (N2 +N4) + (N3 +N7) (2.8)

must hold since N2, N7 ≥ 0. But

N3 +N4∑
iNi

= P (+a; +b) (2.9)

is the probability that a measurement by A yields +1 along axis a for particle 1

and a measurement by B yields +1 along axis b for particle 2. Only populations

N3 and N4 contain particle types satisfying both these conditions. Similarly,

N2 +N4∑
iNi

= P (+a; +c) (2.10)

is the probability that a measurement by A yields +1 along axis a for particle 1
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and a measurement by B yields +1 along axis c for particle 2. Also,

N3 +N7∑
iNi

= P (+c; +b) (2.11)

Thus the inequality Eq. (2.8) may be expressed as

P (+a,+b) ≤ P (+a,+c) + P (+c,+b)

or,

P (+a,+c) + P (+c,+b) − P (+a,+b) ≥ 0 (2.12)

which is known as a Bell’s inequality. The joint probability P (+a,+c) is obtained

from the coincidence counting of two particles when the A and B have their ana-

lyzers oriented at directions a and c respectively, and similarly for P (+a,+b) and

P (+c,+b). The mathematical form of the joint probability is dependent on the

experimental setup of the quantum system. For the entangled state, |ψ−〉, the joint

probability P (+a,+c) is given as (1/2) sin2(θa − θc) [24]. The analyzer settings

a = −30◦, c = 0◦, and b = 30◦ lead to a maximum violation of Bell’s inequality

Eq. (2.12) as,

P (+a = −30◦,+c = 0◦) + P (+c = 0◦,+b = 30◦) − P (+a = −30◦,+b = 30◦)

= 1/8 + 1/8 − 3/8 = −1/8 
≥ 0 . (2.13)
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Deterministic Local Hidden-Variables Theories in

Bell’s Theorem

Bell’s inequalities can have different forms. Besides the approach discussed above,

a different formulation of Bell’s inequalities can be obtained by considering the de-

terministic local hidden variables theory of the correlation function for polarization

measurements by two observers A and B [9]. The Bell’s inequalities derived in 1965

by Bell were for two spin-1
2

particles where the two spins are entangled in a singlet

state. In this section, we discuss a two particle system where the two photons are

entangled in a polarization-entangled state |ψ−〉= 1√
2
(|H1V2〉 − |V1H2〉). Observer

A has his analyzer oriented along the a axis and projects out polarization state |a〉,
where |a〉 is expressed in terms of vertical V̂ and horizontal Ĥ unit vectors as;

|a〉 = cos θaV̂ + sin θaĤ . (2.14)

Similarly the orthogonal photon polarization state is

|a⊥〉 = − sin θaV̂ + sin θaĤ (2.15)

Then the analyzer (measuring apparatus) for observer A is represented by the

projector

Pa = |a〉〈a| . (2.16)

where Pa has eigenvalues 1 and 0. For a parallel discussion of Bell’s theorem with

the previous section, it is convenient to introduce an operator for A which has

eigenvalue ±1. We introduce an operator Aa to represent the measuring apparatus
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for observer A as,

Aa = 2Pa − 1 = Pa −Pa⊥

= 2


 cos2 θa sin θa cos θa

sin θa cos θa sin2 θa


 −


 1 0

0 1




= cos 2θa(|V 〉〈V | − |H〉〈H|) + sin 2θa(|V 〉〈H| + |H〉〈V |) . (2.17)

where Pa⊥ is the projection operator for the polarization orthogonal to a. The

operator Aa will be called a spin projection operator, since its eigenvalues ±1 cor-

respond to the eigenvalues 1 and 0 of Pa and 0 and 1 of Pa⊥ respectively. Similarly

for the observer B, the operator Bb is given as a function of θb. We can immediately

verify that for the photon pair in the state |ψ−〉 the product (AaBb) has eigenval-

ues ±1, which correspond respectively to identical and opposite results for the two

measuring systems.

The average value of the observable (AaBb) is the so-called correlation function

E(a, b) of the outcomes of the two measuring devices. One obtains,

E(a, b) = 〈ψ−|AaBb|ψ−〉 = − cos 2(θa − θb) (2.18)

For θa = θb, the correlation function E(a, b) in Eq. (2.18) implies that the two

photons are anti-correlated, that is if A obtains a H(V ) polarized photon and B

obtains a V (H) polarized photon. If θa − θb = ±π/2, then the correlation function

has value 1 which means that the two photons are perfectly correlated and A obtains

an H(V ) polarized photon and B obtains an H(V ) polarized photon. Thus, when

θa = θb or θa−θb = ±π/2 in the correlation function, one can predict with certainty

the result obtained for B, by previously obtaining the result for A.
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In the EPR argument, the result for observer B is predetermined, since there

exists a more complete specification of the state in which this determinism is man-

ifest. Then this state is denoted by a symbol λ, although it may well have many

dimensions and different parts of it interacting with either apparatus, etc. The

distribution function ρ(λ) for the states λ in the Λ space has the norm

∫
Λ

ρ(λ)dλ = 1 . (2.19)

In a deterministic hidden variables theory the observable (AaBb) has a define value

(AaBb)(λ) for the state λ. For the theory, Bell defines locality as follows: A de-

terministic hidden variables theory is local if for all a and b and all λ ∈ Λ we

have

(AaBb)(λ) = Aa(λ)Bb(λ) . (2.20)

This means that as the state λ is specified and the particles are spatially separated,

then measurements of A depend only on λ and a but not b. Similarly, measurements

of B depend only on λ and b. Then, any reasonable physical theory that purports

realism, determinism, and denies the existence of action-at-a-distance is local in this

sense. Thus, the expectation value of (AaBb) is given by

E(a, b) =

∫
Λ

Aa(λ)Bb(λ)ρ(λ)dλ (2.21)

By using this expectation value, a Bell’s inequality can be obtained. Eq. (2.18)

for polarization b = a can hold if and only if

Aa(λ) = −Ba(λ) . (2.22)
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holds for all λ ∈ Λ. Then using Eq. (2.21) and Eq. (2.22) to evaluate the function

F (a, b, c) =E(a, b) − E(a, c) which involves three different possible orientations of

the analyzers,

F (a, b, c) = −
∫

Λ

[Aa(λ)Ab(λ) −Aa(λ)Ac(λ)]ρ(λ)dλ

= −
∫

Λ

Aa(λ)Ab(λ)[1 −Ab(λ)Ac(λ)]ρ(λ)dλ (2.23)

where Ab(λ)2 = 1 is used. Since the maximum obtainable values for Aa(λ)Ab(λ)

are ±1, the last expression in Eq. (2.23) can be written

|F (a, b, c)| ≤
∫

Λ

[1 −Ab(λ)Ac(λ)]ρ(λ)dλ (2.24)

Finally, using Eq. (2.19), Eq. (2.21) and Eq. (2.22) with Ac(λ)= −Bc(λ), one

obtains the Bell’s inequality as,

|E(a, b) − E(a, c)| ≤ 1 + E(b, c) (2.25)

The inequality in Eq. (2.25)is violated by taking a, b and c to be coplanar, with c

making an angle of π/3 with a, and b making an angle of π/6 with both a and c.

Using the correlation function in Eq. (2.18) for the state |ψ−〉, we obtain

|E(a, b) − E(a, c)| − (1 + E(b, c)) = | − cos 2(0 − 30◦) + cos 2(0 − 60◦)|

− 1 + cos 2(30◦ − 60◦)

= | − 1/2 − 1/2| − 1 + 1/2 = 1/2 
≤ 0

(2.26)
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showing the violation of Bell’s inequality.



Chapter 3

Wigner function and Product
States

3.1 Overview

In this chapter, two experiments are described: First, we demonstrate measurement

of the Wigner function for a classical field analog of a Schrödinger cat state to study

the similarity between quantum and classical first order coherence theory. The

Wigner function for a classical field E(x) is given byW (x, p) =
∫
dε
2π
exp(iεp) 〈E∗(x+

ε/2)E(x− ε/2)〉. Second, we describe heterodyne measurements of classical analog

of product states for two spatially separated gaussian beams.

In the first experiment, we show that Wigner distributions for classical opti-

cal fields can be determined by use of a novel two-window heterodyne detection

scheme [39]. Measurement of Wigner phase space distributions is a joint intensity

measurement for transverse position x and momentum p coordinates of a classical

field. The two-window heterodyne technique was originally designed for biomedical

imaging, that is for optical phase space coherence tomography of the light trans-

mitted through or reflected from biological tissue. Now, we use this measurement

to reproduce the properties of one particle wave mechanics. In this heterodyne de-

tection, we use a local oscillator (LO) field comprising a coherent superposition of

a tightly focused beam and a highly collimated beam. This scheme permits inde-

44
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pendent control of the x and p resolution, permitting concurrent localization of x

and p with a variance product that surpasses the minimum uncertainty limit asso-

ciated with Fourier-transform pairs. The method allows us to measure the x − p
cross correlation, 〈E∗(x)E(p)〉, of an optical field E for transverse position x and

transverse momentum p. A simple linear transform of the x−p correlation function

yields the required Wigner function. We observe the non-positive properties of the

Wigner function for a superposition of two spatially separated gaussian fields anal-

ogous to a Schrödinger cat state. We also show that an interesting analogy exists

between our choice of LO field and that employed in a recent quantum-teleportation

experiment [34]. We also point out that similar problems are encountered in our

experiments and in the quantum teleportation experiments which teleport an arbi-

trary state as a Wigner function via EPR beams [34].

In the second experiment, we demonstrate classical wave methods for simulat-

ing two-mode quantum states by using heterodyne detection to directly measure

products of the transverse modes of bichromatic fields, i.e, EH1(x1)EV 2(x2). This is

accomplished by taking advantage of the fact that beamsplitters preserve the trans-

verse mode and polarization of a classical field. Field product states are measured

by two-port heterodyne detection with pinholes. Analog multiplication followed

by detection of the in-phase and out-of-phase voltage components at specific fre-

quencies enables determination of the product state. The success of this technique

motivated our experimental study of classical simulation of multi-particle quantum

entanglement as described in later chapters.
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3.1.1 Brief Description of Two-Window Heterodyne

Measurement

We include a brief description of two-window heterodyne measurement of Wigner

functions as shown in Figure 3.1. In a balanced heterodyne detection scheme, a

local oscillator (LO) beam is mixed with a signal beam. The LO beam comprises

a focused gaussian beam and a collimated gaussian beam. The focussed gaussian

beam is frequency shifted at 110 MHz and the collimated gaussian beam is frequency

shifted at 110 MHz plus 5 kHz. These two LO beams are overlapped with each other

and phase locked at 5 kHz. The signal beam is frequency shifted at 120 MHz. Two

imaging lenses L1 and L2 are used to overlap the dual LO beam with the signal

beam at two detectors. The position distribution of the signal beam is measured by

moving the position of the dual LO beam relative to the lens L1. The momentum

distribution of the signal beam is measured by moving the position of the lens L2.

The interference beat signal between the signal beam and the dual LO beam is

obtained at detectors 1 and 2 and consists of 10 MHz and 10 MHz plus 5 kHz

components. These signals are sent to a spectrum analyzer. The output of the

analyzer is then squared by using an analog multiplier. The mean square signal

has components at 5 kHz. A lock-in amplifier is used to measure the in- and out-

of phase components of the multiplier output at 5 kHz. The measurements of the

quadrature amplitudes at 5 kHz yield the real and imaginary parts of the x−p cross

correlation function, 〈E∗(x)E(p)〉 of the signal beam. Then, the Wigner function of

the signal is obtained by a simple linear transform of the x− p correlation function.

In the following section, we will discuss the detection apparatus used in measur-

ing the Wigner function.



CHAPTER 3. WIGNER FUNCTION AND PRODUCT STATES 47

d p

D1

D2

L2

d x

L1

BS
signal beam

collimated beam
focused
beam

LO
beam

Figure 3.1: Wigner function of a signal beam is measured with the dual LO beam
in a balanced heterodyne detection scheme.

3.2 Detection Apparatus

In this experiment, two LO beams are frequency shifted at 110 MHz and 110 MHz +

5 kHz and phase-locked at 5 kHz using acousto-optic modulators. The signal beam

is frequency shifted at 120 MHz. Then, we obtain two heterodyne beat signals

at 10 MHz and 10 MHz +5 kHz from the balanced heterodyne detection scheme.

Figure 3.2 is the detection diagram for the two-window heterodyne method. It

shows a schematic which traces the heterodyne beat signals from the point where

they are detected by the photodiodes, D1 and D2, through the transimpedence

amplifier to the spectrum analyzer. The signal is then squared using a low noise

multiplier and finally fed to a lock-in amplifier.

For convenience in aligning two LO beams with a single signal beam, the hetero-

dyne beat signal VB from the interference of the signal beam with each independent
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Figure 3.2: Detection Diagram for the two window technique.

LO beam is measured and compared with the calculated value VB. The calcula-

tion to obtain the VB from the heterodyne beat signal at the detectors through our

detection apparatus in Figure 3.2 is given in Appendix A.

3.2.1 Photodetectors and Transimpedence Amplifier

Two EGG FFD-040B photodiodes are used and each reverse-biased by 22.5 V bat-

teries to decrease their response time. They are connected as shown in Figure 3.2 so

that their outputs subtract (i = i1− i2). The photocurrent is converted to a voltage

by a wide bandwidth operational amplifier (model:CLC425) as a transimpedence

amplifier.
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Figure 3.3: The squarer.

3.2.2 Spectrum Analyzer and Lock-in Amplifier

The transimpedence amplifier output VB is then fed to a spectrum analyzer (Hewlett

Packard model ESA − L1500A). An analog video output V0 of the analyzer is

squared by using a low noise multiplier (Analog Devices AD534) to yield a signal

that measures the x − p cross correlation function. Squaring the signal yields the

power spectrum, allowing us to subtract electronic noise in real time by using a lock-

in amplifier. The multiplication circuit in Figure 3.3 shows that the signal from the

spectrum analyzer is feed into the both inputs of the multiplier. The multiplier thus

produces a signal proportional to the square of its input. The output of the squarer

is low pass filtered at 40 kHz before being sent to a lock-in amplifier, EGG Princeton

Applied Research Model 124A, where the in-phase and out-of-phase components of

the |V0|2 are measured.
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Figure 3.5: The schematic for the PLL.

3.2.3 Phase Locked Loop

The phase locked loop (PLL) is used to lock the phase of two LO beams which

differ in frequency by 5 kHz. The first LO beam is frequency shifted at 110 MHz

plus 5 kHz by using a tunable AO modulator and the second LO beam is shifted by

a fixed acousto-optic (AO) modulator at 110 MHz. The circuit diagram is shown

in Figure 3.4. The schematic operation of the PLL can be illustrated in a feedback

system as shown in Figure 3.5. It contains three basic components: (A), a voltage-

controlled oscillator (VCO), (B), a multiplier functioning as phase detector or a

phase comparator, (C), a loop filter H(s).

In a typical feedback system, the beat signal from the two LO beams follows

the reference signal obtained from a reference channel of a lock-in amplifier. If the

beat signal is not equal in frequency to the reference signal, the difference (known

as the error) will change the signal fed back until it is close to the reference signal.

The VCO in the AO driver adjusts its own frequency or phase until the beat signal

is equal to that of the reference sinusoid. At this point, the frequency and phase of
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the two signals are in synchronism with constant phase offset of 90◦.

A VCO in the tunable acousto-optic modulator has a frequency that can be

controlled by an external voltage comprised of a DC voltage and error signal. Its

oscillation frequency varies linearly with the input voltage that is 4 MHz/V. If the

input external voltage is Vdc + eo(t), it produces a sinusoid of frequency ω,

ω(t) = ω◦ + 4
MHz

V
e◦(t) (3.1)

where ωo is 110 MHz + 5 kHz due to DC voltage supply Vdc. The first LO beam

modulated by this tunable AO is beat with the second LO beam at 110 MHz, then

the beat signal ωB at 5 kHz is fed into the input of the analog multiplier. Let’s

denote the sinusoid beat signal as B cos(ωBt + θo) and the reference sinusoid as

A sin(ωB + θi). The output of the multiplier x(t) is given by,

x(t) = AB sin(ωBt+ θi) cos(ωBt+ θo)

=
AB

2
[sin(θi − θo) + sin(2ωBt+ θi + θo) (3.2)

The last term on the right-hand side is a high frequency signal and is suppressed by

the loop filter, which is low-pass narrow-band filter. Hence, the error signal eo(t),

e◦ =
AB

2
sin θe , θe = θi − θo (3.3)

where θe is the phase error (θi − θo). Figure 3.6 shows the plot of eo vs θe. Using

this plot, we can explain the locking mechanism. If the loop is locked, then the

frequencies of both the reference and the beat sinusoids are identical. Then, the

loop is in a steady state, and θe, θi and θo are constant. The Figure 3.6 shows a
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Figure 3.6: The error signal diagram

typical operating point a and the corresponding values of eo and θe.

Now, if the reference sinusoid frequency suddenly increases from ωB to ωB + k.

This means the incoming beat signal is Acos[(ωB + k)t + θi] = Acos(ωBt + θ′i),

where θ′i = kt + θi. Thus, the increase in the incoming beat frequency causes θi

to increase to θi + kt, thereby increasing θe. The operating point a now shifts

upward. This increases e◦, which, in turn, increases the frequency of the tunable

AO output to match the increase in the reference frequency. This also means that

if the reference sinusoid frequency decreases, the loop output frequency will also

decrease correspondingly. Thus, the loop locks the reference sinusoid. The two

signals are said to be mutually phase coherent or in phase lock. The VCO (tunable

AO) thus locks the frequency and the phase of the incoming beat signal. A PLL

can lock the incoming beat frequency only over a finite range of frequency shift.

This range is called the hold-in or lock range. Also if the reference or beat signal

frequency changes too rapidly, the loop may not lock. In order to have the loop

stays locked, the difference θe = θi − θ◦ is a small number → 0.
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Figure 3.7: Experimental setup for the two window technique.

3.3 Two-Window Heterodyne Method

3.3.1 Experimental Analysis

In 1932, E.P.Wigner introduced a wave mechanical phase space distribution function

that plays a role closely analogous to that of a classical phase space distribution in

position and momentum. For a wave field varying in one spatial dimension, E(x),

the Wigner phase space distribution is given by

W (x, p) =

∫
dε

2π
exp(iεp)〈E∗(x+ ε/2)E(x− ε/2)〉 (3.4)
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where x is the position, p is a wave vector (momentum), and the angle brackets

denote a statistical average.

In our previous work [60], we described the measurement of smoothed Wigner

phase space distributions for classical fields by use of balanced heterodyne measure-

ment of the mean-square beat amplitude 〈|VB|2〉. The mean-square beat amplitude

is proportional to the square of the magnitude of the spatial overlap integral of the

LO and signal fields in the detector planes, D1 and D2, which can be written in

terms of the overlap of the Wigner functions for the LO and signal beams

〈|VB(dx, dp)|2〉 ∝
∫
dx dpWLO(x− dx, p+ kdp/f)WS(x, p) . (3.5)

The detailed derivation of Eq. (3.5) is given in Appendix B. HereWS(x, p)[WLO(x, p)]

is the Wigner distribution of the signal (LO) field in the input planes of lenses L2

(L1). The variables dx and dp respectively indicate the positions of a mirror M1

and a lens L2 as in Figure 3.7. The y integration is suppressed for simplicity.

Eq. (3.5) shows that the mean-square beat signal yields a phase-space contour plot

of WS(x, p) with phase space resolution determined by WLO(x, p). For a gaussian

LO beam the position resolution is determined by the diameter of the LO beam,

whereas the momentum resolution is determined by the corresponding diffraction

angle. Hence the phase space resolution is minimum uncertainty limited, and the

measured Wigner distribution is smoothed. The measurement of phase space dis-

tributions is accomplished by translation of optical elements. These elements are

all mounted on translation stages driven by computer controlled linear actuators.

The motion control system is based on the MotionMaster 2000 (MM2000) system

from Newport Research Corporation (NRC). The MM2000 system can be controlled

using Labview software from National Instruments with drivers downloaded from
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Figure 3.8: The overlapping area is the position and momentum resolutions of the
combined LO beams. The uncertainty is proportional to a

A
less than 1.

the world wide web (http://www.natinst.com). The system scans the LO position

over a distance dx = ±1 cm by translating mirror M1 in the LO path. The LO

momentum is scanned over ±0.3 k, where k = 2π/λ is an optical wave vector, by

translation of the signal-beam input lens L2 (focal length f = 6 cm) by a distance

dp.

To obtain independent control of the x and p resolution in heterodyne measure-

ment, we employ a slowly varying LO field containing a focused and a collimated

field with a well defined relative phase θ

ELO(x) = E◦[ exp(− x
2

2a2
) + β exp(− x2

2A2
) exp(iθ)] (3.6)

Here a is chosen to be small compared with the distance scales of interest and 1/A is

chosen to be small compared with the momentum scales of interest in the signal field.



CHAPTER 3. WIGNER FUNCTION AND PRODUCT STATES 57

The schematic picture of the overlapping of the LO beam with the spatial width a

and another LO beam with the spatial width A is shown in Figure 3.8. One can see

that the overlapping area is determined by the position and momentum resolutions

for the LO fields in Eq. (3.6). The Wigner function for the LO field is obtained by

substituting Eq. (3.6) into Eq. (3.4). We take A2�a2. In this case the phase-(θ-)

dependent part of the Wigner function for the LO takes the form

WLO(x, p) ∝ exp(−2x2

A2
− 2a2p2) cos(2xp+ θ)

� cos(2xp+ θ), (3.7)

where the last form assumes that the range of the momentum and position integra-

tion in relation (3.5) is limited by the signal field.

In the experiments, as illustrated in Figure 3.7, the LO beam is obtained by

combination of two fields that differ in frequency by 5 kHz, so that θ =(2π×5kHz)t.

Lens L3 focuses beam LO1 to a waist of width a, and lenses L4 and L5 expand beam

LO2 to width A. We combine these two components at beam splitter BS3 to obtain

an LO field of the form given in Eq. (3.6). We monitor one output of the beam

splitter with detectorD3 to phase lock the 5 kHz beat signal to the reference channel

of the lock-in amplifier. Each component of the LO beam is shaped so that it is at

a beam waist at the input plane of the heterodyne imaging system (lens L1). The

dual LO and signal fields are mixed at BS2, and the rms beat amplitude at 10 MHz

is measured with an analog spectrum analyzer. The spectrum analyzer bandwidth,

100 kHz, is chosen to be large compared with 5 kHz difference frequency. The

output of the spectrum analyzer is squared in real time with a low-noise multiplier,

the output of which is sent to the lock-in amplifier as described above. The lock-in

outputs for in- and out-of-phase quadratures then directly determine the real and
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the imaginary parts of the quantity

S(x◦, p◦) =

∫
dx′dp′

π
exp[2i(x′ − x◦) × (p′ − p◦)]WS(x′, p′)

= 〈E∗(x◦)E(p◦)〉 exp(ix◦p◦) (3.8)

where the WLO(x, p) in Eq. (3.7) is replaced by ei(2xp+θ) in Eq. (3.5) yielding the

in-phase and out-of-phase contributions from θ. Here x◦ = dx is the center position

of the LO fields and p◦ = −kdp/f is the center momentum. Appendix C shows

the calculation for the amplitude of real and imaginary parts of S(x◦, p◦) from the

heterodyne beat signal at detectors D1 and D2.

As the position of mirror M1 is scanned a distance dx, the optical path lengths

of the LO fields change. For the current experiments, the HeNe laser is a source, the

change in path lengths is small compared with the Raleigh length and the coherence

length of the beams, so translating M1 simply changes the center position of the

LO fields.

We can readily invert the detected signal given in Eq. (3.8) to obtain the Wigner

function by a linear transformation. Using the reality of WS(x, p), we obtain

WS(x, p) =

∫
dx◦dp◦
π

cos[2(x− x◦)(p− p◦)] × SR(x◦ − p◦)

+

∫
dx◦dp◦
π

sin[2(x− x◦)(p− p◦)] × SI(x◦ − P◦) (3.9)

where SR and SI are the real and the imaginary parts of Eq. (3.8), i.e. the in- and

out-of-phase lock-in signals.



CHAPTER 3. WIGNER FUNCTION AND PRODUCT STATES 59

Figure 3.9: The optical phase space distribution of the signal beam using the
tightly focused LO1 beam.

3.4 Experimental Results

3.4.1 The Alignment of Two LO Beams

It is important to ensure that two LO beams are overlapping with the signal beam

exactly at the same origin, that is at x=0 and p=0, so that the reference phase

of lock-in amplifier at 5 kHz can be set at the right phase angle, which will be a

reference phase for the measurement of in-phase SR and out-of-phase SI compo-

nents. The alignment procedure can be accomplished as follows: First, we align the

tightly focused LO1 parallel with the signal beam and obtain the smoothed Wigner

function as shown in Figure 3.9. One can see that the smoothed Wigner function

has the origin at x=0 and p=0. Then, we fix the locations of the position lens L1

and momentum lens L2. Secondly, we use two mirrors for beam steering to align

the collimated LO2 parallel with the signal beam and obtain the smoothed Wigner

function as shown in Figure 3.10. One can see that the smoothed Wigner functions

in Figure 3.10 and Figure 3.9 are located at the same origin that is at x=0 and p=0.
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Figure 3.10: The optical phase space distribution of the signal beam using the
collimated beam.

Finally, two LO beams are overlapped and phase locked at 5 kHz. Note that the

smoothed Wigner function is obtained by using a single LO beam with a mechanical

chopper in the signal beam to give a reference frequency of 500 Hz for the lock-in

amplifier.

It is interesting to notice that Figure 3.9 contains the position distribution of

the signal beam because of the position resolution of the tightly focussed LO beam.

Similarly, the Figure 3.10 contains the momentum distribution of the signal beam

because of the momentum resolution of the collimated LO beam.

3.4.2 Measurement of Wigner Functions

Gaussian Beam

As an initial demonstration of the capability of this system, we measure the Wigner

function for an ordinary gaussian beam. The signal beam is shaped by a telescope

so that its waist coincides with input plane L2 of the heterodyne imaging system.
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For a gaussian beam at its waist, Eq. (3.4) gives the Wigner distribution as,

WS(x, p) =
1

π
exp(− x

2

w2
− w2p2) (3.10)

where w=0.85 mm is the 1/e-intensity width. The x−p correlation function for the

signal field is measured by use of the LO beam of the form given by Eq. (3.6) with

a =81 µm, A = 2.6 mm, and β =1. The measurement result for a gaussian beam is

shown in Figure 3.11. The top row is our experimental results and the bottom row

is a theoretical prediction obtained by using Eq. (3.10) in Eq. (3.8). The real and

the imaginary parts of the detected signal, Eq. (3.8), are shown in Figure 3.11(a)

and (b). These two measurements are used in Eq. (3.9) to recover the Wigner

distribution of the signal field in Figure 3.11(c). We χ2 fit the width of the measured

in-phase signal in position for p = 0 to obtain a spatial width w =0.87 mm, whereas

the corresponding momentum distribution for x = 0 yields w =0.83 mm. Both

results are in excellent agreement with the measured width w=0.85 mm obtained

by use of a diode array, demonstrating that high position and momentum resolution

can be jointly obtained.

A Classical Analog of A Schrödinger Cat State

A more interesting example is the Wigner function for the same gaussian beam with

a wire placed at its center in the input plane L2. Then, the electric field Es(x) as

a function of position is shown in Figure 3.12. It is analogous to a Schrödinger cat

state. In this case the slowly varying field is gaussian as before but multiplied by a

split function that sets the field equal to zero for |x| ≤ 0.5 mm. Figure 3.13 shows

contour plots of the real and the imaginary parts of the detected signal and the

Wigner function (top row) and the corresponding predicted distributions for the
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Figure 3.11: The Wigner function for a gaussian beam. Top row is experimental
results and bottom row is theoretical prediction for a gaussian beam. (a) is in-phase
component of S(x◦, p◦) and (b) is out-of-phase component of S(x◦, p◦). (c) is the
recovered Wigner function for a gaussian beam with spatial width = 0.87 mm.

field (bottom row). The coherence between these two wave packets in the signal

field leads to an interference pattern in the momentum distribution. The signature

of this coherence in the Wigner distribution is the oscillating positive and negative

values between the main lobes. An interesting feature of this Wigner distribution

is the oscillation in momentum at x =0, the position of the wire. We observe the

negative values which is analogous to quantum interference in phase space. This

feature can be seen in Figure 3.13(d), in which the inverted data are shown as a

three dimensional plot (top) and compared with the predicted distribution (bot-

tom). The negative values highlight the impossibility of a particle simultaneously

having a precise position and momentum, and also to make sure the sum over mo-

mentum along x = 0 in Wigner phase space distribution has zero intensity at the

center. The negative and positive parts of the Wigner phase space distribution are

important features to obtain full information about the field. The position distri-

bution, |ES(x)|2, and momentum distribution, |ES(p)|2, of the signal field, can be
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Figure 3.12: The classical analog of Schrödinger cat state.

obtained by integration.

From the obtained Wigner function, one can obtain the position and momen-

tum distribution of the Es(x) by using the formulas |ES(p)|2=∫ ∞
−∞WS(x, p) dx and

|ES(x)|2=∫ ∞
−∞WS(x, p) dp as shown in Figure 3.14(b) and (d) respectively. The

measurements are in agreement with the theoretical predictions as shown in Fig-

ure 3.14(a) and (c) respectively. The dashed-line in Figure 3.14(c) is obtained by

using the theoretical Wigner function in Figure 3.13(c)(bottom). The momentum

distribution contains the interference features of two spatially separated wave pack-

ets of ES(x) as shown in Figure 3.14(b).

3.4.3 Discussion

In this first experiment, we have demonstrated the similarities between quantum

and classical interference via the measurement of the Wigner function for a classical

analog of Schrödinger cat state. We also note that an interesting analog exists

between the small and the large beams of our two-window LO and the superposition
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Figure 3.13: The Wigner function for the Schrödinger cat state. Top row shows
experimental results and bottom row shows theoretical predictions for a gaussian
beam blocked by a wire. (a) in-phase component of the S(x◦, p◦) and (b) out-
of-phase component of the S(x◦, p◦). (c) Wigner distribution (d) 3D plot of the
recovered Wigner function for classical analog of the cat state. The negative values
are also observed.

of the position (in-phase) and the momentum (out-of-phase) squeezed fields. This

analogy is expected from the discussion in Chapter 2, since the transverse modes in

a lens-like medium provide a natural harmonic oscillator basis. A TEM00 gaussian

beam is the lowest mode and analogous to a coherent state. Gaussian beams of

smaller (larger) size than the lowest mode correspond to position (momentum)

squeezed states. The two window technique here can only be used if we know the

nominal size of the signal beam. The focussed and collimated LO beams must be

chosen to achieve sufficient x− and p− resolution for the given signal beam.

3.5 Measurement of Product States

In the second experiment, we made a measurement of a product stateEH1(x1)EV 2(x2)

by using an analog multiplier (AD 633). Here, H is the horizontal polarization of
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Figure 3.14: The momentum and position distribution for the Schrödinger cat
state. (a) and (c) are theoretical prediction of momentum and position distribu-
tions of the cat state. (b) and (d) are the corresponding experimental results of
momentum and position distribution of the cat state obtained by integrating the
measured Wigner distribution over p and x respectively.
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Figure 3.15: The experimental setup for product state measurement.

optical beam 1 and V is the vertical polarization of optical beam 2. The spatial

profiles of two spatially separated and orthogonally polarized classical beams 1 and

2 are measured by placing a pinhole of 200 µm at each beam. The heterodyne beat

signals from these two detectors 1 and 2 are then multiplied. The in-phase and

out-of-phase components of the product signal are measured in a lock-in amplifier,

yielding to the real and imaginary parts of the product state EH1(x1)EV 2(x2).

3.5.1 Experimental Setup

The experimental setup for the measurement of product states is shown in Fig-

ure 3.15. The signal beam with the polarization at 45◦ is modulated by a tunable

acoustic-optic modulator at frequency 110 MHz + 10 kHz. The beam is phase

locked at 10 kHz with a local oscillator beam which is shifted by a fixed frequency

acoustic-optic modulator at frequency 110 MHz. The local oscillator beam has a

beam waist 20 times larger than the signal beam and also polarized at 45◦. It is

obtained by using a beam expander with the magnification of f1
f2

= 50cm
2.5cm

= 20. The
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local oscillator beam and the signal beam are combined with a beamsplitter. One

of the output fields from of the beamsplitter is used as a feedback signal to the

phase locking loop where the input reference frequency is provided by a function

generator. Another output field of the beam splitter is incident on a cube polarizing

beamsplitter (CPBS) and produces two beams; beams 1 and 2. Beam 1 contains

horizontal polarization components of the local oscillator beam ELO1 and the signal

beam EH1(x1). The ELO1 beam is spatially constant compared to the transverse

position dependence of EH1(x1) because of the size of the LO beam. Similarly,

beam 2 contains vertical polarization components of the local oscillator beam ELO2

and the signal beam EV 2(x2). The ELO2 beam is spatially constant compared to

the transverse position of EV 2(x2). Then, the fields in beam 1, E1(t), and in beam

2, E2(t), are given by,

E1(t) = ELO1e
−i(ω+ΩLO)t + EH1(x1)e

−i(ω+ΩS)t

E2(t) = ELO2e
−i(ω+ΩLO)t + EV 2(x2)e

−i(ω+ΩS)t (3.11)

where ω and Ω are optical and modulated frequencies respectively. Then, interfer-

ence beat signals at beams 1 and 2 are written as;

V1(t) ∝ E∗
LO1EH1(x1)e

−i(ΩS−ΩLO)t + ELO1E
∗
H1(x1)e

i(ΩS−ΩLO)t

V2(t) ∝ E∗
LO2EV 2(x2)e

−i(ΩS−ΩLO)t + ELO2EV 2(x2)
∗ei(ΩS−ΩLO)t , (3.12)

where,

E(x) = exp(−x
2

2a
) exp(ik

x2

2R
) (3.13)
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and ΩS − ΩLO = 10 kHz. We neglect the constant terms that are the intensities of

the local oscillator and signal beams. The beat signals V1(t) and V2(t) at detectors

D1 and D2 are multiplied by using an analog multiplier. The multiplication beat

signal at 20 kHz is proportional to

V1(t)V2(t) ∝ E∗
LO1E

∗
LO2EH1(x1)EV 2(x2)e

−i2(ΩS−ΩLO)t + cc (3.14)

The beat signal at 20 kHz is then fed to the lock-in amplifier. The in-phase and

out-of-phase components of the beat signal V1(t)V2(t) determine the product state,

that is the real and imaginary parts of EH1(x1)EV 2(x2) as,

Re[EH1(x1)EV 2(x2)] ∝ e−
x2
1

2a1 e
− x2

2
2a2 cos[k

x2
1

2R1

+
x2

2

2R2

]

Im[EH1(x1)EV 2(x2)] ∝ e−
x2
1

2a1 e
− x2

2
2a2 sin[k

x2
1

2R1

+
x2

2

2R2

] (3.15)

where a and R are beam waist and radii of curvature for the corresponding gaussian

beam.

Position information for the horizontally polarized signal field EH1(x1) and ver-

tically polarized signal field EV 2(x2) is measured by translating pinhole 1 and 2

respectively as shown in Figure 3.15. The diameter of the pin hole is 200 µm. A

lens is placed behind the pinhole to collect the optical power on the detector which

is located at its focal point.

3.5.2 Measurement of EH1(x1)EV 2(x2)

In view of symmetry property of the spatial profile of a gaussian beam, the mea-

surement of product state EH1(x1)EV 2(x2) can be simplified in the ideal case by
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Figure 3.16: The measurement of the product state.(a) and (b) are in-and out-of
phase components of EH1(x1)EV 2(x2 = 0). (c) and (d) are in- and out-of phases
components of EH1(x1 = 0)EV 2(x2). Data = dotted line. Theory = solid line.

measuring the product components EH1(x1)EV 2(x2 = 0) and EH1(x1 = 0)EV 2(x2)

respectively. Figure 3.16(a) and (b) are the in-phase and out-of-phase components

of the product optical fields EH1(x1)EV 2(x2 = 0). The solid lines in the figures are

plotted by using Eq. (3.15) with x2=0, a1=0.5 mm and R1=1700 mm. Figure 3.16(c)

and (d) are the in-phase and out-of-phase components of the product optical fields

EH1(x1 = 0)EV 2(x2). Similarly, the solid lines in the figures are plotted by using

Eq. (3.15) with x1=0, a2=0.52 mm and R2=1800 mm. The parameters a1, a2, R1

and R2 obtained from the measurements of in-phase and out-of-phase components

of EH1(x1)EV 2(x2 = 0) and EH1(x1 = 0)EV 2(x2) are then used to plot the 3-D of

the product state EH1(x1)EV 2(x2).

Figure 3.17(a) and (b) are the 3-D plot of the in-phase and out-of-phase com-

ponents of the product state EH1(x1)EV 2(x2) that determined from Eq. (3.15) with
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Figure 3.17: The measurement and theoretical prediction of the 3D plot of the
product state. (a) and (b) are the measured in- and out-of phase components of
EH1(x1)EV 2(x2). (c) and (d) are the theoretical predictions for in- and out-of phase
components of EH1(x1)EV 2(x2)



CHAPTER 3. WIGNER FUNCTION AND PRODUCT STATES 71

a1 = 0.5 mm, a2 = 0.52 mm, R1 = 1700 mm and R2 = 1800 mm. Figure 3.17(c)

and (d) are the theoretical prediction for the product state of two optical Gaussian

fields with beam waist, a1 = a2 = 0.5 mm and R1 = R2 = 1800 mm. The beam

waists a1 and a2 are obtained by use of a diode array and the radii of curvature

R1 = R2=1800 mm is chosen from the previous measurements Figure 3.16(c) and

(d).

3.6 Discussion

The success in using the multiplication technique to obtain the product state mo-

tivated the possibility of simulation of quantum entanglement for more than one

particle by using classical fields. The multiplication beat signal from two spatially

separated fields followed by band pass filtering is analogous to coincidence detection

of two particles. It is discussed in detail in the following chapters.



Chapter 4

Two-Field Correlations

4.1 Overview

In this chapter, we demonstrate classical wave simulation of nonlocal entanglement

of two-photons. We reproduce the measurement of classical analogs of four Bell

polarization-entangled states which are 1√
2
[|H1V2)±|V1H2)] and 1√

2
[|H1H2)±|V1V2)],

where a parenthesis | ) is used to denote a classical state. The simulations employ

optical heterodyne detection of two fields of different frequencies with orthogonal

polarizations. Essential to the method is the use of analog multiplication of the

heterodyne signals from two spatially separated detectors to simulate coincidence

measurement of two photons. The product signal so obtained contains several fre-

quency components, one of which can be selected by band pass frequency filtering.

The band passed signal generally contains two indistinguishable, interfering con-

tributions, permitting simulation of the classical analog of four Bell polarization-

entangled states. Our classical method reproduces measurements of violation of

Bell’s inequality as predicted by quantum mechanics.

We first give a brief description of the experimental setup to reproduce the

measurement of the classical entangled state 1√
2
[|H1V2) − |V1H2)]. Then, we show

our experimental apparatus, including phase locking loops, analog multiplier and

biquad band pass filter in our signal detection scheme. We also give a detailed

72
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Figure 4.1: Two spatially separated classical beams are mixed with local oscillator
beams in heterodyne detection systems.

analysis of the setup which can be extended to measure other Bell states. We discuss

the experimental results as predicted by quantum theory. Finally, we discuss the

achievement of this classical wave system.

4.1.1 Description of Two-Field Correlations

We give a brief description of our experimental setup as shown in Figure 4.1. Two

spatially separated classical beams are obtained as follows: A beam of frequency

ωV = ω + 2π × 100 kHz with vertical polarization is combined on a 50-50 beam-

splitter with a beam of frequency ωH = ω + 2π × 25 kHz with horizontal polariza-

tion. By using “parenthesis” notation [44] for classical state, |E), the two output

fields of the beamsplitter can be represented as states |E1) = [|H1) exp(−iωHt) +

|V1) exp(−iωV t)]/
√

2 and |E2) = [|H2) exp(−iωHt) − |V2) exp(−iωV t)]/
√

2. These
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output beams are sent to two spatially separated measurement systems, D1 and

D2, each of which employs heterodyne detection with an independent local oscilla-

tor (LO) of frequency ω and a variable polarization êθ1 and êθ2 , respectively. For

arbitrary polarizations, each heterodyne signal contains two frequency components,

at 25 and 100 kHz. These signals are multiplied together in an analog multiplier,

and the product signal is band passed at 125 kHz to obtain a signal containing two

indistinguishable contributions, one from |V1)|H2) which is ∝ cos θ1 sin θ2 and one

from −|H1)|V2) which is ∝ − sin θ1 cos θ2. The 125 kHz component of the product

signal is ∝ (êθ1 , êθ2 |Ψ−
cl) where the state |Ψ−

cl) = 1√
2
[|H1V2) − |V1H2)]. The squared

magnitude of the product signal at 125 kHz is then ∝ sin2(θ1 − θ2), independent

of the phases of the independent LO fields. The sin2(θ1 − θ2) is the polarization

correlation function of the two spatially separated classical fields. This function is

used to study the classical analog of four polarization entangled Bell states and to

reproduce the measurements of violation of Bell’s inequality in order to demonstrate

that the classical field system reproduces the correlations of the quantum mechanics

system.

We will discuss in detail the detection apparatus for this experiment including

the phase locking loop, analog multiplier and band pass filter.

4.2 Detection Apparatus

As mentioned previously, we use two spatially separated fields to simulate two-

particle entanglement. Each of these beams consists of two orthogonally polarized

fields with different frequencies which are sent to optical heterodyne detection re-

gions. The heterodyne beat signals from the two spatially separated detectors are

multiplied and then band pass filtered to select the desired frequency component.
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Figure 4.2: The diagram to generate 4f from a function generator f .

The use of an analog multiplier to obtain the multiplication beat signals from two

detectors is analogous to coincidence detection of two particles. A few biquad ac-

tive filters are cascaded to obtain a narrower full half width maximum (FHWM)

frequency bandwidth. The combination of an analog multiplier and a band pass fil-

ter in this experiment provides post projection measurement of a specified entangled

state. Two orthogonally polarized optical beams are used to simulate two-particle

entanglement. These beams are frequency shifted by using tunable acousto-optic

(AO) modulator and phase-locked at frequencies 25 kHz and 100 kHz.

4.2.1 Phase Locked Loops

The working principle of the phase locked loop has been discussed in Chapter 3.

For classical wave simulation experiments on two-particle entanglement, two phase-

locked loops are built to lock the two orthogonally polarized fields. The horizontally

polarized beam is phase-locked at frequency 110 MHz + 25 kHz and similarly the

vertically polarized beam is phase-locked at frequency 110 MHz + 100 kHz. The
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frequency of the local oscillator beam is shifted at 110 MHz by using a fixed AO.

The circuit diagram for the phase-locked loop is similar to that of in Chapter 3.

The reference frequency at 25 kHz for the first phase-locked loop is obtained from

the function generator. The reference frequency at 100 kHz for the second phase-

locked loop is obtained by using two analog multipliers as shown in Figure 4.2. The

circuit diagram is shown in Figure 4.3. As shown in the figure, two cascaded biquad

active filters centered at 100 kHz after the second analog multiplier are used to

filter out the fundamental harmonic 25 kHz and second harmonic 50 kHz from the

first analog multiplier. The two phase locked loops are completed as follows; As

shown in Figure 4.4, 50% of the local oscillator beam is polarized at 45o and then

mixed with 50% of the superposition beams made of the horizontally and vertically

polarized fields. These three fields are incident on a cube polarized beamsplitter

(CPBS) and produce two independently and orthogonally polarized output beams.

The beat signal at 100 kHz from the vertical component is fed to the first phase

locked loop and similarly the beat signal at 25 kHz from the horizontal component

is fed to the second phase locked loop.

4.2.2 Signal Detection Diagram

The detection diagram is shown in Figure 4.5. There are two spatially separated

beams, each of them containing a superposition of horizontal and vertical polariza-

tions. The heterodyne beat signals are obtained at detectorsD1 andD2 respectively.

At each detector, the beat signals contain two frequencies i.e. 25 kHz and 100 kHz.

The 25 kHz is obtained from the interference between the local oscillator beam and

the horizontally polarized beam. And similarly, the 100 kHz is obtained from the

interference between the local oscillator beam and the vertically polarized beam.
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Figure 4.3: The circuit diagram for generating 4f from a function generator f .
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cal components in the simulation of two photon entanglement. BS, beamsplitter.
CPBS, cube polarizing beamsplitter.
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Figure 4.6: The circuit diagram for AC amplifier and high pass filter.

The beat signals are then amplified by using a AC amplifier. The amplitude of 25

kHz is usually higher than the 100 kHz because of the frequency response of the

amplifier. Hence a high pass filter is used to equalize slight differences in amplitude

between these two beat frequencies. Large attenuation in one of these frequencies

will introduce phase shift between them and this should be avoided in this experi-

ment. The equalized amplitudes of 25 kHz and 100 kHz from the detector D1 are

then multiplied with the equalized amplitudes of 25 and 100 kHz from the detector

D2. The product signal is band passed at 125 kHz by using two cascaded biquad

active filters. The amplitude at 125 kHz corresponds to the contributions from

two components that are H1V2 (25+100) kHz and V1H2 (100+25) kHz. The circuit

diagrams for blocks A and B are shown in Figure 4.6 and Figure 4.7 respectively.

4.2.3 Analog Multiplier

An analog devices AD633 analog multiplier is used in this experiment. The circuit

for connecting the analog multiplier to the beat signals from detectors D1 and D2 is
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Figure 4.8: The circuit diagram for an analog multiplier

shown in Figure 4.8. The power supply for the multiplier is ±15 volts. This analog

multiplier is needed to multiply the beat signals from the two spatially separated

detectors. The multiplication provides coincidence detection of two particles. The

input signal is AC coupled before it is connected to the multiplier. The reason is to

avoid the multiplication of the beat signals with the DC voltage offsets produced

by the amplifier and the intensities of the incident beams. The input signals cannot

exceed ±5 volts and there is no nonlinearity in operating the input frequencies at

25 and 100 kHz. The circuit for the multiplier has to be grounded properly so that

the phase of the product signal can be stabilized.

4.2.4 Biquad Band Pass Filter

After the multiplication of the beat signals in an analog multiplier, a band pass filter

is used to select the desired frequency. The band pass filter used in this experiment is

a biquad active filter as shown in Figure 4.9 (from the Art of Electronics by Horowitz

and Hill [61]). This circuit uses three op-amps. The interesting property about this
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filter is its center frequency can be tuned while maintaining constant bandwidth.

Two filters can be cascaded to obtain a narrower bandwidth at the center frequency.

The desired frequency in this experiment is at 125 kHz and the nearest frequency

component is at 75 kHz. This cascaded filter provides the ratio 1/20 for these two

frequencies, that is the amplitude at frequency 75 kHz is attenuated and is a factor

20 smaller than the amplitude at 125 kHz.

4.3 Experimental Setup and Analysis

In our experiments, Figure 4.10, a HeNe laser beam is split and sent through two

fixed-frequency acousto-optic modulators to produce a beam of frequency ωH =

ω + δH with horizontal polarization and a beam of frequency ωV = ω + δV with

vertical polarization, where δH = 2π × 25 kHz and δV = 2π × 100 kHz. These

two beams are combined on beamsplitter BS1. The output of this beamsplitter is
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mixed with a local oscillator of frequency ω to obtain beat signals at frequencies δH

and δV . The beat signal at frequency δH is phase locked to a signal generator of

frequency f = 25 kHz, while the signal at frequency δV is phase locked to the fourth

harmonic, 4f = 100 kHz, generated using analog multipliers from f as described

above.

Note that the relative phase between the 25 kHz and 100 kHz fields is the same

for each port of BS1, except for a π phase shift which arises from the beamsplitter.

The total output field from each port 1 and 2, denoted E1 and E2, is sent to

heterodyne detection systems at beamsplitters BS2 and BS3 respectively. The fields

E1 and E2 at detectors D1 and D2 respectively are given by

E1 = E1e
−i(ω+δH)t Ĥ + E1e

−i(ω+δV )t V̂

E2 = E2e
−i(ω+δH)t Ĥ + E2e

−i(ω+δV )t V̂ , (4.1)

where E is amplitude of the field and H(V) denote the horizontal(vertical) direction.

They are mixed with independent local oscillator beams LO1 and LO2 of variable

polarizations and equal frequencies. The LO polarizations are given by

êLO1 = cos θ1 V̂ + sin θ1 Ĥ

êLO2 = cos θ2 V̂ + sin θ2 Ĥ. (4.2)

The polarization configurations of the local oscillator beams LO1 and LO2 with

respect to beams 1 and 2 are shown in Figure 4.11.

The beat signal amplitudes A1 and A2, at the outputs of BS2 and BS3 respec-



CHAPTER 4. TWO-FIELD CORRELATIONS 84

A2 A1

A1 X A2

EH(ω +  25 kHz)

V +   100 kHz)

=  E + EEH2+ EV2 =  

EELO2

θθ

1  E2 E

LO1

V1H1

BS1

BS2

BS3

Digital 
Oscilloscope

Filter at
125 kHz

Figure 4.10: The experimental setup for measuring polarization correlations of
two spatially separated classical fields.
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Figure 4.11: Polarization Configuration of the LO beams with respect to beams
1 and 2.

tively, can be represented as inner products in the parenthesis notation of Ref. [44],

A1 = (ELO1|1)

≡
∫
dxdy E∗

LO1(x, y, t) ê
∗
LO1 · E1(x, y, t) (4.3)

and similarly for LO2. Here, ELO1(x, y, t) = ELO1(x, y) exp(iωt) is the LO1 field in

the plane of a photodiode detector and E1 is the vector field amplitude from port

1 of BS1. By using Eq. (4.1) for E1 and E2 and the polarizations of the LO beam

2 in Eq. (4.2), the beat signal amplitudes A1 and A2 at detectors D1 and D2 are

given as

A1 = (ELO1|E1)e
−iδH t(êLO1 · Ĥ) + (ELO1|E1)e

−iδV t(êLO1 · V̂ )

A2 = (ELO2|E2)e
−iδH t(êLO2 · Ĥ) + (ELO2|E2)e

−iδV t(êLO2 · V̂ ) (4.4)

The beat signals are sent to an analog multiplier which yields a product signal

proportional to the real part of the amplitude A1A2 + A∗
1A2.
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To select a particular classically entangled state, we take advantage of the fact

that the product signal contains four different frequencies: The fields E1 and E2

contain frequencies ω + δH and ω + δV . Hence, for arbitrary LO polarizations, the

beat amplitudes A1 and A2 each contain two beat frequencies δH and δV , yielding

four nonzero frequency components in the product signal: δH ± δV , 2δH and 2δV . A

band pass filter is used to select the product signal at frequency ∆+ ≡ δH+δV = 125

kHz. In this case, we measure only the signal corresponding to the real part of the

amplitude A1A2 which contains two contributions,

γ(θ1, θ2) ∝ sin θ1 cos θ2(ELO1|E1)(ELO2|E2) ± cos θ1 sin θ2(ELO1|E1)(ELO2|E2). (4.5)

Here, (ELO1|E1) denotes the spatial overlap integral of LO1 and the field from

port 1 of BS1, and similarly for the other overlap integrals. The relative sign

± is controlled by placing a half-wave plate oriented at a zero degree angle in

one output of BS1. The two terms in Eq. (4.5) arise because there are two ways

to obtain a product signal at frequency 125 kHz. Note that the products of the

spatial overlap integrals have the same amplitude and phase in both terms, i.e.,

(ELO1|E1)(ELO2|E2) = (ELO1|E1)(ELO2|E2), which factors out in the signal amplitude.

Hence, the overall phases of LO1 and LO2 cancel in the measurements and the signal

can be normalized by finding the maximum value with θ1 = 45◦ = ±θ2. Dividing by

the maximum value yields the normalized signal amplitude γN(θ1, θ2) = sin(θ1±θ2).
The signal amplitude at ∆+ = 125 kHz can be rewritten in the form, γ(θ1, θ2) ∝

(êLO1, êLO2|Ψ±
cl)∆+ where |Ψ±

cl)∆+ are the classical analogs of the entangled states

|Ψ±
cl)∆+ ≡ 1√

2
[|H1)|V2) ± |V1)|H2)] . (4.6)
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Here, |H1) arises from the 25 kHz horizontally polarized field from port 1, etc.

Eq. (4.6) shows that classical analogs of two different Bell states can be measured.

The other two Bell states can be obtained by inserting a half-wave plate oriented at

45◦ in one output of BS1. This interchanges the horizontal and vertical polarizations

in one port so that the product signal at frequency ∆+ contains the polarization

states |H1)|H2) and |V1)|V2),

|ϕ±
cl)∆+ ≡ 1√

2
[|H1)|H2) ± |V1)|V2)] . (4.7)

Here, the relative sign is again controlled by using an additional half-wave plate

oriented along the output V axis of one port.

By measuring the magnitude of γ(θ1, θ2) using a digital oscilloscope (or lock-in

detection at the frequency ∆+), we obtain |γN(θ1, θ2)|2. Hence, after normalization

to the maximum signal, we measure the classical joint intensity Pcl(êLO1, êLO2) =

|γN(θ1, θ2)|2 = sin2(θ1 ± θ2).
Note that if Eq. (4.6) were a true, normalized quantum state, then the joint

probability for coincidence detection of two photons with polarizations ê(θ1) and

ê(θ2) would be sin2(θ1 ± θ2)/2. This differs from our classical result only by a

multiplicative factor of 1/2, arising from our choice of normalization.

4.4 Experimental Results

4.4.1 Definition of Projection Angles

It is important to understand the definitions of the polarization angle of the LO fields

with respect to the horizontal and vertical fields in beams 1 and 2. The positive and
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Figure 4.12: Measurement of the joint intensity sin2(θ1 + θ2) for the state |Ψ+
cl)

where the θ1 = |θ2|.

negative polarization angles of the LO1 and LO2 for the state |Ψ+
cl) of Eq. (4.6) are

shown in Figure 4.11. That is, looking along the propagation direction of the beams,

the clockwise polarization angle is defined positive, +θ, and the counter-clockwise

is negative, −θ. Our first measurement is to verify the sin2(θ1 + θ2) dependence of

the projections of state |Ψ+
cl). In this measurement, we rotate the polarization angle

of the LO1 in the positive direction +θ1 from 0◦ to 90◦ and the polarization angle

of the LO2 in the positive and negative directions in such a way that θ2 = ±θ1. The

result of this measurement is shown in Figure 4.12. The solid line is a theoretical

prediction of sin2(θ1 + θ2) for the state |Ψ+
cl) where θ1 = |θ2|.

Now, by inserting a half-wave plate at 0o into beam 1 and using the same rotation

procedure above for the LO1 and LO2, our measurements verify the sin2(θ1 − θ2)
dependence for the state |Ψ−

cl). It is shown in Figure 4.13 where the solid line is a

theoretical prediction of sin2(θ1 − θ2) for the state |Ψ−
cl) where θ1 = |θ2|.
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Figure 4.13: Measurement of the joint intensity sin2(θ1 − θ2) for the state |Ψ−
cl)

where the θ1 = |θ2|.

4.4.2 Polarization Correlation Measurement of Four Bell

States

In Figure 4.14, we measure the quantity |γN(θ1 = 30◦, θ2)|2 for the state |Ψ−
cl) of

Eq. (4.6) as a function of θ2 between −90◦ and 90◦. The solid line is the theoretical

prediction with |γN(θ1, θ2)|2 = sin2(θ1 − θ2). By inserting a half-wave plate in one

port, we have measured |γN |2 for the state |Ψ+
cl), where |γN(θ1, θ2)|2 = sin2(θ1 + θ2)

as shown in Figure 4.15.

We also measure the other two Bell states, |ϕ±
cl), of Eq. (4.7). We insert a

half-wave plate oriented at 45◦ in one output of BS1. A second half-wave plate

oriented at 0◦ selects the relative phase ±. In this case, |γN(θ1, θ2)|2 = cos2(θ1∓θ2).
Normalization is accomplished by measuring the maximum product signal with

θ1 = 45◦ = ±θ2. For the |ϕ+
cl) state, measurements of the quantity |γN(60◦, θ2)|2

are shown in Figure 4.16. We have also measured |γN(60◦, θ2)|2 for the state |ϕ−
cl)

as shown in the Figure 4.17.
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Figure 4.14: The correlation measurement for the state |Ψ−
cl).
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Figure 4.15: The correlation measurement for the state |Ψ+
cl).
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Figure 4.16: The correlation measurement for the state |ϕ+
cl).
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Figure 4.17: The correlation measurement for the state |ϕ−
cl).
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4.4.3 Classical Wave Violation of Bell’s Inequality

For each of the four Bell states, the measured joint intensities take the same form as

in a quantum joint-probability measurement. Hence, it is possible to violate formally

a classical analog of the Bell’s inequality used in recent quantum measurements of

the joint detection probability for entangled photon pairs [24],

Fcl(a,b, c) ≡ Pcl( a,b) + Pcl(b, c) − Pcl( a, c) ≥ 0, (4.8)

where Pcl(a,b) = |γN(θa, θb)|2 is the joint intensity when the local oscillators have

linear polarizations a and b respectively.

By proper choice of angles for the polarizations a,b, c in Eq. (4.8), the classical

joint intensity exhibits a maximum violation of the Bell’s inequality Fcl ≥ 0. To

demonstrate the violation for the state |Ψ+
cl) of Eq. (4.6), we take b = V̂ , i.e.,

θb = 0◦, a = c and measure Fcl(a,b, c) of Eq. (4.8) as a function of θa = θc = θ for

θ between 0◦ and 90◦. We obtain the data shown in Figure 4.18. The maximum

violation occurs at θ = 30◦, as in a quantum joint probability measurement, and

has the value Fcl = −0.25. The solid line shows the prediction Fcl(θ, 0
◦, θ) =

|γN(θ, 0◦)|2 + |γN(0◦, θ)|2 − |γN(θ, θ)|2 where |γN(θ1, θ2)|2 = sin2(θ1 + θ2). Similarly,

for the state |Ψ−
cl〉 of Eq. (4.6), where we set a = −c, then we measure Fcl(a,b, c) of

Eq. (4.8) as a function of θa = θ and θc = −θ for θ between 0◦ and 90◦. We obtain

the data shown in Figure 4.19.

4.5 Discussion

We have demonstrated the classical wave simulation of projection measurement for

coincidence detection of two photons by using analog multipliers and band pass
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Figure 4.18: The classical analog of the violation of Bell inequality Fcl(a = θ, b =
0◦, c = θ) ≥ 0 for the |Ψ+

cl) as a function of angle c. The maximum violation occurs
for c = 30◦ where Fcl = −0.25.
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Figure 4.19: The classical analog of the violation of Bell inequality Fcl(a = θ, b =
0◦, c = −θ) ≥ 0 for the |Ψ−

cl) as a function of angle c. The maximum violation
occurs for c = −30◦ where Fcl = −0.25.
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filters. The correlated polarization measurements for our polarization entangled

Bell states demonstrate a violation of Bell’s inequality very similar to that obtained

using polarization-entangled photons from a parametric down-converter, where co-

incidence detection performs a post-projection of the entangled state [62]. Further,

the joint intensities depend only on θ1 ± θ2, so that the results do not depend on a

particular orientation of either LO. However, the system does not exhibit particle-

like behavior or collapse and is deterministic, so that Bell’s inequalities are not

strictly applicable. Hence, if our experiments were done using polarizing beamsplit-

ters in the two detection regions (and LO’s with 45◦ polarization), all outputs would

contain signals simultaneously. By contrast, in a true two-photon experiment, if a

photon is detected in the horizontal port for beam 1, the polarization of the photon

detected in beam 2 must be vertical. In our classical wave system, this corresponds

to setting the LO in port 1 to project out the horizontal component, so that signal

from detector 1 is at 25 kHz. If the product of this signal and that obtained at port

2 is obtained and band pass filtered at 125 kHz as before, then the maximum signal

is obtained when the LO in port 2 is vertically polarized.



Chapter 5

Three-Field Correlations

5.1 Overview

For quantum information processing, it is necessary to entangle more than two

qubits or particles. In this Chapter, we use the methods developed in the previous

chapter to simulate three particle Greenberger-Horne-Zeilinger (GHZ) entanglement

using classical wave fields. We are interested in demonstrating the GHZ entangle-

ment because the three-particle nonlocal polarization correlation leads to a conflict

with local realism for nonstatistical predictions of quantum mechanics. That is in

contrast to the two entangled particles test of Bell’s inequalities, where the conflict

arises for statistical predictions of quantum mechanics.

We extend the previous measurement method and prepare four spatially sepa-

rated classical beams, each consisting of two orthogonally polarized fields with differ-

ent frequencies. We are able to simulate four-photon entanglement with the classical

analog of four-particle entangled state |Ψ4
GHZ)cl = 1√

2
[|H1H2H3H4) + |V1V2V3V4)].

By using three of the four spatially separated beams, we are able to simulate three-

particle GHZ entanglement with a classical analog of the three-particle entangled

state |Ψ3
GHZ)cl = 1√

2
[|H1H2H3) + |V1V2V3)]. The correlation properties of our clas-

sical state are demonstrated by reproducing the 32 elements of the truth table

obtained in the GHZ quantum entanglement experiments.

95
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In the following sections of this chapter, it is important for us first to discuss

the concept of GHZ entanglement in the violation of local realism theory. Then,

we outline a brief description of our experimental simulation of reproducing the

three-particle entangled state from the four-particle entangled state. We outline

our detection diagram for the experiment, which consists of analog multipliers and

band pass filters including notch filters and biquad band pass filters. Also, we de-

scribe the details of the experimental analysis and results for the simulation of GHZ

entanglement. Our measurements are in agreement with the quantum prediction as

reported in the quantum GHZ experiment [29].

We begin by introducing the concepts of GHZ entanglement and the violation

of local realism theory in quantum mechanical experiments.

5.1.1 The Quantum Test of Nonlocality in GHZ

Entanglement

In the quantum three particle entanglement experiment demonstrated by Zeilinger’s

group [29,63], two pairs of polarization entangled photons are transformed into three

entangled photons and a fourth independent photon. The fourfold coincidence de-

tection of these four photons provides a projection measurement onto the desired

GHZ state |ψ〉 = 1√
2

(|H1〉|H2〉|V3〉 + |V1〉|V2〉|H3〉) |H4〉. The fourth photon |H4〉 is

used as a trigger photon and the remaining three entangled photons are used to

observe the GHZ entanglement. The fourth photon is always horizontally polarized

and hence can be neglected in our discussion. By rotating the third photon polariza-

tion state to interchange the vertical and horizontal polarizations V⇀↽H, any mea-

surement on the first three particles in the state |ψ〉 can be regarded as an measure-

ment on the three-particle GHZ entangled state, 1√
2

(|H1〉|H2〉|H3〉 + |V1〉|V2〉|V3〉).
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The measurements of polarization correlations between the three particles leads to a

conflict with local realism for nonstatistical predictions of quantum mechanics [29].

As shown below, local realism predicts that certain correlations can be observed and

others cannot. Quantum mechanics predicts the exact opposite, producing strong

correlation where local realism predicts zero and vice-versa. That is in contrast

to the two entangled particles test of Bell’s inequality, where the conflict arises for

statistical predictions of quantum mechanics.

The three-particle entangled state that used to describe GHZ entanglement in

the violation of local realism theory is given by

|Ψ3
GHZ〉 =

1√
2

(|H1〉|H2〉|H3〉 + |V1〉|V2〉|V3〉) . (5.1)

Here the superscript 3 indicates three-photon. Eq. (5.1) is also called the GHZ

state [29,63]. GHZ arguments about physical reality are based on the measurements

of polarization correlations on three particles in this GHZ state. We demonstrate

the GHZ argument for a three-particle test of local realism as follows: A photon i is

said to possess the element of reality Xi with value +1 or -1 when its polarization

state is H ′ or V ′, where H ′ and V ′ are at angles 45◦ and −45◦ with respect to the

original vertical direction V . Similarly, the photon is said to possess the element of

reality Yi with value +1 or -1 when its circular polarization state is right-handed,

R, or left-handed, L. The elements of reality for three photons in the GHZ state
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can be represented in terms of their polarization states, given by

|H ′〉 =
1√
2

(|H〉 + |V 〉)

|V ′〉 =
1√
2

(|H〉 − |V 〉)

|R〉 =
1√
2

(|H〉 + i|V 〉)

|L〉 =
1√
2

(|H〉 − i|V 〉) (5.2)

where H(V ) denotes the original horizontal (vertical) polarization state of the three

photons.

One can define elements of reality for joint measurement of three particles as

the product of the elements of reality for each particle. For example, a measure-

ment Y1Y2X3 on the GHZ state means that the first and second photons are each

projected onto the polarization state |R〉 or |L〉, and the third photon is projected

onto the polarization state |H ′〉 or |V ′〉. Since each of the photons has two orthog-

onal polarizations in the chosen basis, there is a complete set of 23 = 8 orthogonal

three-photon product states in this measurement. There are also eight possible

combinations for measuring either circular Y or linear X polarization on three par-

ticles, and 8 possible three photon states for each combination. In the following, we

consider four types of measurements for the GHZ state of Eq. (5.1), namely Y1Y2X3,

Y1X2Y3 and X1Y2Y3, and X1X2X3.

In order to determine which elements of reality for three photon coincidences

are also realizations predicted by quantum mechanics, we conduct measurements

on polarization correlations of three photons in the GHZ state. Suppose now that

certain measurements of Y1Y2X3, Y1X2Y3 and X1Y2Y3 are predicted to be nonzero

for the GHZ state. Then for an X1X2X3 experiment, the expectations using a local
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realistic theory are exactly the opposite of the expectations using quantum physics,

as we now show, following the arguments of Ref. [63].

To see why, let’s demonstrate the argument with an example for the measure-

ment Y1Y2X3 in the GHZ state. We write Eq. (5.1) in a form which explicitly shows

the possible outcomes of Y1Y2X3 measurements.

For the three photons, the polarizations |R1〉, |L1〉, |R2〉, |L2〉, |H ′
3〉 and |V ′

3〉 are

obtained from Eq. (5.2),

|R1〉 =
1√
2

(|H1〉 + i|V1〉)

|L1〉 =
1√
2

(|H1〉 − i|V1〉)

|R2〉 =
1√
2

(|H2〉 + i|V2〉)

|L2〉 =
1√
2

(|H2〉 − i|V2〉)

|H ′
3〉 =

1√
2

(|H3〉 + |V3〉)

|V ′
3〉 =

1√
2

(|H3〉 − |V3〉) . (5.3)

Then, from the Eq. (5.3), the states |Hi〉 and |Vi〉 where i = 1, 2, 3, are obtained as

|H1〉 =
1√
2

(|R1〉 + |L1〉)

|V1〉 =
1

i
√

2
(|R1〉 − |L1〉)

|H2〉 =
1√
2

(|R2〉 + |L2〉)

|V2〉 =
1

i
√

2
(|R2〉 − |L2〉)

|H3〉 =
1√
2

(|H ′
3〉 + |V ′

3〉)

|V3〉 =
1√
2

(|H ′
3〉 − |V ′

3〉) . (5.4)



CHAPTER 5. THREE-FIELD CORRELATIONS 100

Now, by using Eq. (5.4) for the three photons in the GHZ state |Ψ3
GHZ〉 of Eq. (5.1),

the |Ψ3
GHZ〉 can be rewritten in the complete basis for the YYX measurements as

|ΨGHZ〉Y Y X =
1

2
(|R1L2H

′
3〉 + |L1R2H

′
3〉 + |R1R2V

′
3〉 + |L1L2V

′
3〉) . (5.5)

One can see that each three photon element of reality in Eq. (5.5) for in the configu-

ration Y1Y2X3 has the product value of -1. Note that the R1L2H
′
3 = −1 means that

if the photon 1 is R-polarized and photon 2 is also L-polarized, then, the photon 3

must be H ′-polarized. The existence of the component |R1〉|L2〉|H ′
3〉 instead of its

complementary component |R1〉|L2〉|V ′
3〉 can be verified by their projections on the

GHZ state |Ψ3
GHZ〉, i.e., 〈R1|〈L2|〈H ′

3|Ψ3
GHZ〉=1

2
and 〈R1|〈L2|〈V ′

3 |Ψ3
GHZ〉=0. Thus,

four of eight possible components of three-photon product states in the measure-

ment Y1Y2X3 are nonzero for the GHZ state. Similarly, by using the same procedure

as discussed above for the YYX configuration, the GHZ state can be written in dif-

ferent complete bases to display the YXY, XYY and XXX configurations of reality,

|ΨGHZ〉Y XY =
1

2
(|L1H

′
2R3〉 + |R1V

′
2R3〉 + |R1H

′
2L3〉 + |L1V

′
2L3〉) (5.6)

|ΨGHZ〉XY Y =
1

2
(|H ′

1L2R3〉 + |V ′
1R2R3〉 + |H ′

1R2L3〉 + |V ′
1L2L3〉) (5.7)

|ΨGHZ〉XXX =
1

2
(|H ′

1H
′
2H

′
3〉 + |V ′

1V
′
2H

′
3〉 + |H ′

1V
′
2V

′
3〉 + |V ′

1H
′
2V

′
3〉) . (5.8)

Each element of reality for the three photons in the configurations X1Y2Y3 of

Eq. (5.6) and Y1X2Y3 of Eq. (5.7) has the product value of -1. According to

the local realism theory, since YiYi = +1, the product of three configurations
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Figure 5.1: Four spatially-separated correlated classical beams are produced using
three beamsplitters, where two independent classical beams are combined in the
first beamsplitter. Each of the four outputs is mixed with a local oscillator beam
in heterodyne detection.

((X1Y2Y3)(Y1X2Y3)(Y1Y2X3)) = X1X2X3 will lead to the prediction that X1X2X3

=-1. However, this is in contradiction with the quantum results obtained in Eq. (5.8)

for the GHZ state in the X1X2X3 basis, where X1X2X3 =+1.

In the following section, we give a brief description of the classical experiment

which simulates the four particle entangled state [|H1H2H3H4〉 + |V1V2V3V4〉]
√

2.

Analogous to the quantum experiments, we use this state to measure a classical

analog of the three-particle GHZ state of Eq. (5.1). To verify the polarization

correlations in the classical analog state, we reproduce the 32 elements of the truth

table predicted by quantum mechanics in the test of local realism theory.
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5.1.2 Description of Three-Field Correlations

We give a brief description of the current experiment to simulate three-particle

entangled state |Ψ3
GHZ)cl from the four-photon entangled state |Ψ4

GHZ)cl by using

classical fields. We first prepare the four spatially separated classical beams by using

three beamsplitters so that the phases and polarizations of these four classical beams

are correlated. As shown in Figure 5.1, four spatially separated classical beams

are prepared as follows: An optical beam of frequency ωV = ω + 2π × 120 kHz

with vertical polarization and an optical beam of frequency ωH = ω + 2π × 30

kHz with horizontal polarization are combined through a 50/50 beamsplitter. The

beamsplitter produces two spatially separated beams, beam 1 and beam 2. Beam 1

consists of the superposition state |1) = [|H1)exp(−iωHt)+|V1)exp(−iωV t)]/
√

2 and

similarly for beam 2, |2) = [|H2)exp(−iωHt)+ |V2)exp(−iωV t)]/
√

2. Beam 1 is then

cloned by using a beamsplitter to obtain an identical copy, beam 3, where a half wave

plate is used to rotate |H)(|V )) to |V )(|H)), yielding state |3) = [|V3)exp(−iωHt) +

|H3)exp(−iωV t)]/
√

2. By using the same method, beam 2 is cloned by using another

beamsplitter to obtain an identical copy, beam 4, which is also rotated by a half

wave plate, so that |4) = [|V4)exp(−iωHt) + |H4)exp(−iωV t)]/
√

2.

These output beams are sent to four spatially separated measurement systems,

each of which employs heterodyne detection with an independent local oscillator

(LO) of frequency ω and at arbitrary polarization angle. The heterodyne signal at

each detector contains two frequency components, at 30 kHz and 120 kHz. The

beat signal from the detectors 1 and 2 are multiplied and then band pass filtered at

two frequencies, 60 kHz to obtain a signal ∝ |H1)|H2) and at 240 kHz to obtain a

signal ∝ |V1)|V2). The signals are added together and multiplied with the beat sig-

nal components from detector 3 by using a second analog multiplier. This product



CHAPTER 5. THREE-FIELD CORRELATIONS 103

signal is band passed at 180 kHz to obtain a signal ∝ |H1)|H2)|H3) and at 270 kHz

to obtain a signal ∝ |V1)|V2)|V3). Similarly, these signals are added and then mul-

tiplied with the beat signal from detector 4 by using a third analog multiplier. The

final product signal is band passed at 300 kHz, and contains two indistinguishable,

interfering contributions, ∝ |H1)|H2)|H3)|H4) + |V1)|V2)|V3|V4). The local oscillator

at detector 4 is fixed at a 45o polarization angle. The remaining three local os-

cillator beams are then subjected to arbitrary polarization projections by rotating

the polarizations of the respective LO beams to reproduce the measurements of

polarization correlations of three particle GHZ entanglement.

In the following section, we first discuss the detection apparatus used in this

experiment.

5.2 Detection Apparatus

Using the above scheme, we are able to simulate four-photon entanglement by ex-

panding the experimental arrangement that was used to simulate two-photon en-

tanglement as discussed in Chapter 4. Since a beamsplitter can be used to clone

an identical copy of the transverse mode of a classical beam, we add two extra

beamsplitters to the previous experiment setup of Chapter 4 to produce two extra

spatially separated beams. There are in total four spatially separated beams, each

consisting of two orthogonally polarized fields i.e., Ĥ and V̂ and two frequencies i.e.,

30 and 120 kHz. As before, we use a heterodyne detection scheme for each beam.

The photodetectors are obtained from Hamamatsu (model: S1223-01). Three ana-

log multipliers are used to multiply the beat signals from the four detectors. Band

pass frequency filtering is achieved by building a notch filter. Multiplication and

band pass filtering are essential to obtain the desired product signal from the four
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detectors. The desired multiplication beat signal that simulates the four-photon

entanglement is recorded and saved in a computer by using a LabView program.

5.2.1 Detection Diagram

The detection diagram is shown in Figure 5.2. The circuit diagram for the detection

system is shown three parts in Figure 5.3, Figure 5.4 and Figure 5.5. The circuit

is designed in such a way that the final band passed product signal is analogous to

the fourfold coincidence detection of four particles. In this experiment, there are

four spatially separated beams and each of them is sent to an optical heterodyne

detection region. The beat signal A1 from the detector D1 has two frequency com-

ponents i.e., 30 (H1) kHz and 120 (V1) kHz. The parenthesis is used to indicate that

the 30 kHz signal is from the horizontally polarized beam and the 120 kHz signal is

from the vertically polarized beam. Similarly, the beat signal A2 from detector D2

has frequencies 30 (H2) kHz and 120 (V2) kHz. The beat signals from the detectors

D1 and D2 are multiplied in the analog multiplier AD835 as shown in the circuit

diagram. Then, a band pass filter made of two cascaded notch filters centered at

frequency 60 kHz is used to obtain the 60 kHz component of the product signal

H1H2 of detectors D1 and D2. Similarly, an identical band pass filter centered at

240 kHz is used to obtain the product signal V1V2. These two product signals are

added by using a summing amplifier. The amplifier is a model TL071A. The sum-

mation signal is then multiplied with the beat signal A3 from the detector D3. The

beat signal A3 has two frequency components i.e., 30 (V3) kHz and 120 (H3) kHz.

One can see that the beat frequencies for the horizontal and vertical components

have been interchanged. After the multiplication of the beat signals A3 with the

summation signal, two cascaded band pass notch filters centered at 180 and 270
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kHz are used to obtain the product signal components V1V2V3 and H1H2H3 respec-

tively. Then, these two signals are added using another summing amplifier. The

summation signal is then multiplied with the beat signal A4 by using a third analog

multiplier. The beat signals A4 obtained in detector D4 have the same property as

the beat signals A3, that is the beat frequencies at 30 and 120 kHz are associated

with the horizontal V4 and vertical H4 components respectively. We use another

cascaded band pass notch filter centered at frequency 300 kHz to obtain the final

band passed product signal which contains two indistinguishable and interfering

contributions ∝ H1H2H3H4 + V1V2V3V4. The product signal at 300 kHz is denoted

as γ300kHz in the later sections. The detection diagram in this classical simulation

experiment acts as a projection measurement on the desired GHZ state and filters

out the other undesired components. Note that a more symmetrical scheme using

only 60 kHz and 240 kHz filters can be used to obtain the same result. This scheme

is described in Chapter 6 where it is used for entanglement swapping.

5.2.2 Notch Filter

The circuit diagram for the notch filter is shown in Figure 5.6. It has been used as

outputs in Figure 5.4 and Figure 5.5. In this experiment, the notch filter is used

together with the biquad active filters described in Chapter 4. The reason is that

the former needs only one amplifier compared to the latter where three amplifiers

are needed. Two or three notch filters are cascaded to narrow down the band pass

frequency ranges. The variable resistors R1 and R2 are adjusted to vary the center

frequency of the filter. When the circuit resonates at its center frequency, then the

band passed signal is not phase shifted or distorted. As explained in the detection

diagram of Figure 5.2, the band pass filter is essential to this experiment because
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240 kHz
Filter
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300 kHz

180 kHz
Filter
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30 kHz (H2) + 120 kHz (V2)

30 kHz (H1) + 120 kHz (V1)

120 kHz (H3) + 30 kHz (V3)

120 kHz (H4) + 30 kHz (V4)

Figure 5.2: The detection diagram for simulation of four-particle GHZ entangle-
ment.
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Figure 5.3: The circuit diagram for detecting beat signals from detectors 1 and 2.
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Figure 5.4: The circuit diagram for detecting beat signals from detectors 3 and 4.
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Figure 5.6: The notch filter at 300 kHz with C1 = 150 pF and R1 = 3.5 kΩ.

it selects the correct frequency component that contains the desired product states

after the multiplication has taken place.

5.2.3 Analog Multiplier

The task of the analog multiplier in this experiment is to multiply the beat signals

from the two spatially separated regions to simulate the coincidence detection of two

particles. The type of analog multiplier used in this experiment is a model AD835.

It is 4-quadrant multiplier. It is manufactured by Analog Devices. This multiplier

has less noise than the analog multiplier (model:AD633) used in Chapter 4. The

power supply for the multiplier is ±5 volts. The input signal for the multiplier is

AC coupled before it is connected. This can be achieved by connecting a capacitor

to each input port of the multiplier. The multiplier has low nonlinearity in the

frequency operating region. The lower frequency used in this experiment is 30 kHz

and the higher frequency is 120 kHz. The input signal amplitude cannot exceed ±1

volt. We avoid this problem by controlling the gain of a voltage amplifier for the
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beat signals from the photodetector. To simulate four-particle entanglement, three

analog multipliers are used to multiply the beat signals from four detectors.

5.3 Experimental Setup and Analysis

In our experiments, in Figure 5.7, a HeNe laser beam is split and sent through two

fixed-frequency acousto-optic modulators to produce a beam of frequency ωH =

ω + δH with horizontal polarization and a beam of frequency ωV = ω + δV with

vertical polarization, where δH = 2π × 30 kHz and δV = 2π × 120 kHz. These two

beams are combined on beam splitter BS1. Note that the relative phase between

the 30 and 120 kHz fields is the same for each port of BS1, except for a π phase shift

which arises from the beam splitter. Beam splitter BS2 in one of the outputs of

the BS1 produces two identical copies of the transverse mode of one of the output

fields of BS1 that are beam 1 (reflected) and beam 3 (transmitted). Similarly,

beam splitter BS3 produces two identical copies, beam 2 (reflected) and beam 4

(transmitted). Half-wave plates oriented at 0o in beams 1 and 2 induce a π phase

shift between the horizontal and vertical components. Then, the total fields E1 and

E2 in beams 1 and 2 respectively are given by

E1 = E1 exp(−iωV t)V̂1 + E1 exp(−iωHt)Ĥ1 , (5.9)

E2 = E2 exp(−iωV t)V̂2 + E2 exp(−iωHt)Ĥ2 . (5.10)
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Input

Input

Figure 5.7: The experimental setup for reproducing the polarization correlations
of four photon entanglement.
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Half-wave plates oriented at 45o in beams 3 and 4 interchange the horizontal and

vertical components. Their optical fields E3 and E4 are given by

E3 = E3 exp(−iωHt)V̂3 + E3 exp(−iωV t)Ĥ3, (5.11)

E4 = E4 exp(−iωHt)V̂4 + E4 exp(−iωV t)Ĥ4 . (5.12)

Each of the four beams is sent to a heterodyne detector and mixed with a local

oscillator beam of frequency ω. The polarization state of each local oscillator beam

is chosen to be in one of the four polarizations H′, V′, R and L by using a λ/2 plate

and λ/4 plate independently.

Now, in order to demonstrate that our classical system can simulate a projection

measurement on the GHZ state of Eq. (5.1), we choose the four local oscillator

beams at a arbitrary polarization angles with unit vectors denoted by êLOi, where

i = 1, 2, 3, 4. The heterodyne beat signal is detected as shown in the detection

diagram of Figure 5.2. In detector D1, the heterodyne beat signal obtained from

the interference between local oscillator LO1 and the field E1 can be written in the

parenthesis notation of [44],

A1 = (ELO1|E1)

≡
∫
dxdy E∗

LO1(x, y, t) ê
∗
LO1 · E1(x, y, t) (5.13)

and similarly for LO2, LO3 and LO4. Here, ELO1(x, y, t) = ELO1(x, y) exp(−iωt)
is the LO1 field amplitude in the plane of a photodiode detector and E1 is the

vector field amplitude along beam 1. By using Eq. (5.9), the beat signal A1 is then
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rewritten as

A1 = (êLO1|V̂1)(ELO1|E1) exp(−iδV t) + ( êLO1|Ĥ1)(ELO1|E1) exp(−iδHt) ,

(5.14)

where (ELO1|E1) denotes the spatial overlap integral of LO1 and the field of beam

1. The beat signal amplitudes in detectors D2, D3 and D4 are then given by

A2 = (ELO2|E2)

∝ (êLO2|V̂2)(ELO2|E2) exp(−iδV t) + (êLO2|Ĥ2)(ELO2|E2) exp(−iδHt)

A3 = (ELO3|E3)

∝ (êLO3|V̂3)(ELO3|E3) exp(−iδHt) + (êLO3|Ĥ2)(ELO3|E3) exp(−iδV t)

A4 = (ELO4|E4)

∝ (êLO4|V̂4)(ELO4|E4) exp(−iδHt) + (êLO4|Ĥ4)(ELO4|E4) exp(−iδV t) .

(5.15)

As shown in the detection diagram from Figure 5.2, the beat signals from detectors

D1 and D2 are sent to an analog multiplier which yields a product signal propor-

tional to the real part of the amplitude A1A2+A
∗
1A2. The beat amplitudes A1 and

A2 each contain two beat frequencies δH and δV , yielding nonzero frequency com-

ponents in the product signal: δH ± δV , 2δH =60 kHz and 2δV =240 kHz. Band

pass filters are used to select the product signals at frequency 2δH and 2δV . The

corresponding beat signal amplitudes are respectively,

γ60kHz(A1, A2) ∝ (ELO1|E1)(ELO2|E2)(êLO1| Ĥ1)(êLO2|Ĥ2) (5.16)
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and

γ240kHz(A1, A2) ∝ (ELO1|E1)(ELO2|E2)( êLO1|V̂1)(êLO2| V̂2) . (5.17)

The product signals at 60 kHz and at 240 kHz are added by using a summing

amplifier and then multiplied with the beat signal from detector D3, A3 +A∗
3. The

resulting product signal is then band pass filtered at frequencies 180 kHz and 270

kHz, yielding two signals with the amplitudes

γ180kHz(A1, A2, A3) ∝ (ELO1|E1)(ELO2|E2)(ELO3|E3)(êLO1|Ĥ1)(êLO2|Ĥ2)(êLO3|Ĥ3)

(5.18)

and

γ270kHz(A1, A2, A3) ∝ (ELO1|E1)(ELO2|E2)(ELO3|E3)(êLO1|V̂1)(êLO2|V̂2)(êLO3|V̂3) .

(5.19)

Similarly, these product signals are added and then multiplied with the beat signal

from detector 4, A4 +A∗
4. Finally, using a band pass filter at 300 kHz, the resulting

product signal amplitude is

γ300kHz(A1, A2, A3, A4) ∝ (ELO1|E1)(ELO2|E2)(ELO3|E3)(ELO4|E4)

×
(

(êLO1|V̂1)(êLO2|V̂2)(êLO3|V̂3)(êLO4|V̂4)

+ (êLO1|Ĥ1)(êLO2|Ĥ2)(êLO3|Ĥ3)(êLO4|Ĥ4)
)
.(5.20)

The amplitude (ELO1|E1)(ELO2|E2)(ELO3|E3)(ELO4|E4) is a common factor in each

path and it is controlled by a gain amplifier after each band pass filter. Hence, the
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product amplitude γ300kHz in Eq. (5.20) is analogous to the projection

(êLO1|(êLO2|(êLO3||(êLO4|Ψ4
GHZ)cl , (5.21)

where the |Ψ4
GHZ)cl is given by

|Ψ4
GHZ)cl =

1√
2

(|H1H2H3H4) + |V1V2V3V4)) . (5.22)

Here, for simplicity Ĥ and V̂ are denoted as H and V respectively. The superscript

4 denotes a four field state. The field here is classical. The detection technique

discussed above is analogous to fourfold coincidence detection in the quantum ex-

periment to project out the desired four-particle GHZ state.

Now, in order to simulate the polarization correlations of GHZ entanglement by

using the three-particle GHZ state, the polarization of LO4 is fixed at 45o,

êLO4 =
1√
2

[|H4) + |V4)] , (5.23)

so that the beat signal A4 at detector D4 is the analog of a trigger photon in the

quantum GHZ experiment. Then, the beat signal amplitude at 300 kHz can be

rewritten as

γ300kHz(A1, A2, A3, A4) ∝ (êLO1, êLO2, êLO1, ê
45◦
LO1|Ψ4

GHZ)cl

= (êLO1|V1)(êLO2|V2)(êLO3|V3)(ê
45◦
LO4|V4)

+ (êLO1|H1)(êLO2|H2)(êLO3|H3)(ê
45◦
LO4|H4)

∝ (êLO1, êLO2, êLO1|Ψ3
GHZ)cl, (5.24)
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where we can leave out the contribution from the LO4 in the simulation of the three

particle GHZ entanglement i.e. (ê45◦
LO4|V4) = 1√

2
and (ê45◦

LO4|H4) = 1√
2
. The state

|Ψ3
GHZ)cl = 1√

2
[|H1H2H3) + |V1V2V3)]. The superscript 3 of |Ψ3

GHZ)cl indicates the

three-field state. Thus, in the following sections, the product amplitude at 300 kHz

can be used to simulate three-particle GHZ entanglement where the polarizations

of LO1, LO2 and LO3 are subjected to one of the four projections, H ′, V ′, R and

L.

5.4 Experimental Results

Measurement of YYX Configuration

As a first demonstration of our classical system, we simulate the Y1Y2X3 configu-

ration for three-particle GHZ entanglement. The polarization states of the local

oscillator beams LO1, LO2 and LO3 are given by

êR,LLO1 =
1√
2

(Ĥ1 ± iV̂1)

êR,LLO2 =
1√
2

(Ĥ2 ± iV̂2)

êH
′,V ′

LO3 =
1√
2

(Ĥ3 ± V̂3). (5.25)

For the classical analog of the measurement of the element of reality R1L2H
′
3 in

the Y1Y2X3 configuration, the polarizations of the LO1, LO2 and LO3 beams are

given accordingly as êRLO1, ê
L
LO2, and êH

′
LO3. Now, from the above discussion, the

magnitude of the beat signal γ300kHz is

γ300kHz(A1, A2, A3, A4) ∝ (êRLO1, ê
L
LO2, ê

H′
LO1|Ψ3

GHZ)cl . (5.26)
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This γ300kHz amplitude is analogous to the projection of 〈R1L2H
′
3|Ψ3

GHZ〉 of Eq. (5.5)

which determines the existence of the element of reality R1L2H
′
3 in the Y1Y2X3

configuration. When the LO3 polarization state is changed to V ′, this induces

a minus sign in Eq. (5.26), hence the magnitude of the γ300kHz for the projection

(êRLO1, ê
L
LO2, ê

V ′
LO1|Ψ3

GHZ)cl is zero. This is analogous to the projection 〈R1L2V
′
3 |Ψ3

GHZ〉
= 0 and so indicates that the elements R1L2V

′
3 in YYX configuration is not pre-

dicted by GHZ entanglement. The projection measurement analog of 8 possible

components of element of reality in the YYX configuration are given by

(êRLO1, ê
L
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ 〈R1L2H
′
3|Ψ3

GHZ〉 =
1

2

(êRLO1, ê
L
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ 〈R1L2V
′
3 |Ψ3

GHZ〉 = 0

(êRLO1, ê
R
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ (R1R2V
′
3 |Ψ3

GHZ〉 =
1

2

(êRLO1, ê
R
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ (R1R2H
′
3|Ψ3

GHZ〉 = 0

(êLLO1, ê
R
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ 〈L1R2H
′
3|Ψ3

GHZ〉 =
1

2

(êLLO1, ê
R
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ 〈L1R2V
′
3 |Ψ3

GHZ〉 = 0

(êLLO1, ê
L
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ 〈L1L2V
′
3 |Ψ3

GHZ〉 =
1

2

(êLLO1, ê
L
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ 〈L1L2H
′
3|Ψ3

GHZ〉 = 0. (5.27)

As shown in Figure 5.8, the γ300kHz produces nonzero and zero amplitudes ac-

cording to Eq. (5.27). For each element in this configuration, the normalization

of the classical joint intensity is obtained from dividing the absolute square of the

signal amplitude γ300kHz of each element of reality by the sum of the absolute square

of γ300kHz for all the elements.

The classical field measurements then yield the joint probability representation

of the YYX configuration which is shown in Figure 5.8(i). Note, for comparison, that
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the predictions of quantum mechanics would yield a probability of 1/4 = 0.25 for

each large signal and zero for each small signal, showing that the classical simulation

is in good agreement.

Measurement of YXY Configuration

For the Y1X2Y3 configuration, the polarization states of the local oscillator beams

LO1, LO2 and LO3 are given by

êR,LLO1 =
1√
2

(Ĥ1 ± iV̂1)

êH
′,V ′

LO2 =
1√
2

(Ĥ2 ± V̂2)

êR,LLO3 =
1√
2

(Ĥ3 ± iV̂3). (5.28)

For the classical analog of the measurement of the elements of reality R1H
′
2L3,

L1H
′
2R3, R1V

′
2R3 and L1V

′
2L3 in the Y1X2Y3 configuration, the nonzero and zero

classical analog projections are given by

(êLLO1, ê
V ′
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈L1V
′
2L3|Ψ3

GHZ〉 =
1

2

(êLLO1, ê
H′
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈L1H
′
2L3|Ψ3

GHZ〉 = 0 .

(êRLO1, ê
H′
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈R1H
′
2L3|Ψ3

GHZ〉 =
1

2

(êRLO1, ê
V ′
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈R1V
′
2L3|Ψ3

GHZ〉 = 0

(êRLO1, ê
V ′
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈R1V
′
2R3|Ψ3

GHZ〉 =
1

2

(êRLO1, ê
H′
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈R1H
′
2R3|Ψ3

GHZ〉 = 0

(êLLO1, ê
H′
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈L1H
′
2R3|Ψ3

GHZ〉 =
1

2

(êLLO1, ê
V ′
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈L1V
′
2R3|Ψ3

GHZ〉 = 0. (5.29)
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Figure 5.8: The YYX configuration.
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The existence of each element of reality as predicted and not predicted by GHZ en-

tanglement of Eq. (5.29) is shown in Figure 5.9. The joint probability representation

of the YXY configuration is also shown in Figure 5.9(i).

Measurement of XYY Configuration

Similarly, we simulate the X1Y2Y3 configuration on the three-particle GHZ entan-

glement, the polarization states of the local oscillator beams LO1, LO2 and LO3

are then given by

êH
′,V ′

LO1 =
1√
2

(Ĥ1 ± V̂1)

êR,LLO2 =
1√
2

(Ĥ2 ± iV̂2)

êR,LLO3 =
1√
2

(Ĥ3 ± iV̂3). (5.30)

We measure V ′
1L2L3, H

′
1L2R3, V

′
1R2R3 and H ′

1R2L3 in the XYY configuration as

predicted by GHZ entanglement of Eq. (5.7), the equivalent nonzero and zero clas-
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Figure 5.9: The YXY configuration.
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sical analog projections are given by

(êV
′
LO1, ê

R
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1R2R3|Ψ3

GHZ〉 =
1

2

(êH
′

LO1, ê
R
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1R2R3|Ψ3

GHZ〉 = 0

(êH
′

LO1, ê
R
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1R2L3|Ψ3

GHZ〉 =
1

2

êV
′
LO1, ê

R
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1R2L3|Ψ3

GHZ〉 = 0 .

(êV
′
LO1, ê

L
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1L2L3|Ψ3

GHZ〉 =
1

2

(êH
′

LO1, ê
L
LO2, ê

L
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1L2L3|Ψ3

GHZ〉 = 0

(êH
′

LO1, ê
L
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1L2R3|Ψ3

GHZ〉 =
1

2

(êV
′
LO1, ê

L
LO2, ê

R
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1L2R3|Ψ3

GHZ〉 = 0. (5.31)

As shown in Figure 5.10, the γ300kHz produces zero and nonzero amplitudes accord-

ing to Eq (5.31). The joint probability representation of the XYY configuration as

predicted by the GHZ entanglement is shown in Figure 5.10(i).

Measurement of XXX Configuration

Finally, we simulate the measurements X1X2X3 configuration on the three-particle

GHZ entanglement of Eq. (5.8). The polarization states of the local oscillator beams

LO1, LO2 and LO3 are then given by

êH
′,V ′

LO1 =
1√
2

(Ĥ1 ± V̂1)

êH
′,V ′

LO2 =
1√
2

(Ĥ2 ± V̂2)

êH
′,V ′

LO3 =
1√
2

(Ĥ3 ± V̂3). (5.32)
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Figure 5.10: The XYY configuration
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We demonstrate the classical analog of the measurement of the elements of reality

H ′
1H

′
2H

′
3, V

′
1V

′
2H

′
3, H

′
1V

′
2V

′
3 and V ′

1H
′
2V

′
3 in the XXX configuration as predicted by

GHZ entanglement of Eq. (5.8). For these polarizations, the nonzero and zero

classical analog projections are given by

(êV
′
LO1, ê

H′
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1H

′
2V

′
3 |Ψ3

GHZ〉 =
1

2

(êH
′

LO1, ê
H′
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1H

′
2V

′
3 |Ψ3

GHZ〉 = 0 .

(êH
′

LO1, ê
V ′
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1V

′
2V

′
3 |Ψ3

GHZ〉 =
1

2

(êV
′
LO1, ê

V ′
LO2, ê

V ′
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1V

′
2V

′
3 |Ψ3

GHZ〉 = 0

(êV
′
LO1, ê

V ′
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1V

′
2H

′
3|Ψ3

GHZ〉 =
1

2

(êH
′

LO1, ê
V ′
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1V

′
2H

′
3|Ψ3

GHZ〉 = 0

(êH
′

LO1, ê
H′
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ 〈H ′
1H

′
2H

′
3|Ψ3

GHZ〉 =
1

2

(êV
′
LO1, ê

H′
LO2, ê

H′
LO3|Ψ3

GHZ)cl ∝ 〈V ′
1H

′
2H

′
3|Ψ3

GHZ〉 = 0. (5.33)

For the 8 possible measurements in the XXX configuration, the zero and nonzero

signal amplitudes γ300kHz for each element of reality with X1X2X3 = ±1 is shown

in Figure 5.11. For the elements of reality withX1X2X3 = −1, i.e.,H ′
1H

′
2V

′
3 , V ′

1V
′
2V

′
3 ,

H ′
1V

′
2H

′
3, and V ′

1H
′
2H

′
3, the signal amplitude γ300kHz is small. For the elements of

reality with X1X2X3 = +1, i.e., V ′
1H

′
2V

′
3 , H ′

1V
′
2V

′
3 , V ′

1V
′
2H

′
3, and H ′

1H
′
2H

′
3, the signal

amplitude γ300kHz is large. The normalized joint intensity representation of the

classical signals for the XXX configuration is also shown in Figure 5.11(i).

Figure 5.12 shows the probability representation of the measurement XXX con-

figuration. The experimental observations for the X1X2X3 configuration produced

by our classical-wave system are in agreement with the quantum predictions of

GHZ entanglement, giving strong signals only when X1X2X3 = +1. This is in con-
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trast to the predictions of local realism, where strong signals are predicted only if

X1X2X3 = −1. Of course, even though the classical system is able to reproduce

the nonlocal correlation measurements exhibited by three quantum particles in the

GHZ entanglement, the system lacks the particle-wave duality properties of a true

quantum system. The complexity of our classical scheme is similar to that of the

optical system employed in the quantum GHZ experiment, and can be simplified

further by using the symmetrical detection scheme of Chapter 6.

5.5 Discussion

We have shown that the nonlocal correlations of a four-particle entangled state can

be successfully reproduced by using a simple scheme employing heterodyne detec-

tion of classical fields, yielding large robust signals which are independent of the

phases of the local oscillators. We use three analog multipliers and few band pass

filters in order to simulate four-particle coincidence detection. The correlations for

the classically entangled four field state are demonstrated by formally reproducing

the 32 elements of the truth table obtained in a three-particle quantum GHZ ex-

periment on the violation of local realism. Analogous to the quantum experiments,

the simulation of four particle entanglement is easier than for three particles: To

directly simulate a three particle entangled state, three frequencies are required. By

contrast, only two frequencies and three beam splitters are required to generate an

output that simulates four particle entanglement, because the polarizations can be

interchanged in pairs. This is similar to the use of two pairs of parametric down con-

verters in the corresponding quantum mechanical experiments. As in this classical

experiments, it is easier to demonstrate three particle quantum GHZ entanglement

starting from a four particle entangled state by using the fourth photon as a trigger.
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Figure 5.11: The XXX configuration
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Figure 5.12: The probability representation of the XXX measurement. Elements
of reality in the XXX configuration predicted by (a) quantum theory, XXX =+1
and (b) local realistic theory, XXX = -1. (c) the classical wave optics experiment
reproduce measurements XXX =+1 in agreement with quantum theory.



Chapter 6

Entanglement Swapping With
Classical Fields

6.1 Overview

In the previous chapter, we have demonstrated classical wave simulation of three

particle GHZ entanglement by using a measurement method based on simulation

of four photon entanglement.

In this chapter, we use the same experimental arrangement as in chapter 5 to

discuss a type of entanglement swapping in a four photon basis. A symmetrical

detection diagram is used for the demonstration of entanglement swapping, and

could also have been employed in the simulation of GHZ entanglement.

In the following sections, we first give a brief discussion of quantum entanglement

swapping for projection measurement in a four-photon basis. Then, we give a

description of the experimental setup used to simulate entanglement swapping. We

compare the properties of our classical analog of entanglement swapping with the

predictions of quantum mechanics. We also discuss the problems in our experiment

which are similar to the problems encountered in quantum entanglement swapping

or teleportation, i.e., limitation in the basis of Bell states which can be swapped in

a given experimental setup.

127



CHAPTER 6. ENTANGLEMENT SWAPPING WITH CLASSICAL. . . 128

6.1.1 Description of Quantum Entanglement Swapping

In order to understand our simulation work in quantum entanglement swapping, we

first need to describe the general concepts of the measuring process which is involved

in quantum entanglement swapping. Entanglement swapping experiments require

two independent measurement processes for two spatially separated observers A

and B. A arranges to project out a given two-particle Bell state and sends trigger

information to B. Then, B measures the correlations corresponding to the same

state as A. The final state measured by these two observers in the entanglement

swapping process is the product of the state |ψ〉A measured by observer A with the

state |ψ〉B measured by observer B, that is |ψ〉A×|ψ〉B. However, there is a different

scheme for entanglement swapping which involves the measurement of a final state

which is entangled, not a product state. The entanglement swapping scheme which

involves projection measurement of an entangled state (discussed below) has higher

fidelity compared to the scheme which involves the measurement of product state.

We are interested in simulating the entanglement swapping in a projection mea-

surement of a four-photon GHZ entangled state as demonstrated by Zeilinger’s

group [64]. In the quantum mechanics experiments, two entangled photon pairs are

separately generated from parametric down-conversion processes. The separate here

means that these two pairs are obtained from two independent nonlinear interac-

tions. The first pair consists of two entangled photons, denoted as photons 1 and

4. The second pair consists of the other two entangled photons denoted as photons

2 and 3. These two pairs form a product state, which is referred as initial state of
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the system. The initial state is given as

|Ψi〉1234 =
1√
2

[|H1V4〉 − |V1H4〉]

× 1√
2

[|H2V3〉 − |V2H3〉] . (6.1)

Suppose now that photon 1 from the first pair and photon 2 from the second pair

are sent to observer A and similarly, photon 4 from the first pair and photon 3 from

the second pair are sent to observer B. Then, the initial state can be rewritten as,

|Ψi〉1234 =
1

2

(|ϕ+〉12|ϕ+〉34 + |φ+〉12|φ+〉34
− |ϕ−〉12|ϕ−〉34 + |φ−〉12|φ−〉34

)
, (6.2)

where

|ϕ±〉ij =
1√
2

(|HiVj〉 ± |ViHj〉)

|φ±〉ij =
1√
2

(|HiHj〉 ± |Vi)Vj〉) (i, j = 1, 2, 3, 4) (6.3)

are the four orthogonal Bell states.

Now, observer A makes a joint measurement on photons 1 and 2, and configures

his measurements to project them onto one of the four Bell states, for example

|φ+〉12= 1√
2

(|H1H2〉 + |V1V2〉). The result of this measurement is then sent to ob-

server B as a trigger signal. This trigger signal, together with signals from B’s two

detectors for photons 3 and 4 form a fourfold coincidence detection. Using the trig-

ger signal from A, B finds that photons 3 and 4 are entangled in the same Bell state

as A chooses for photons 1 and 2, that is, B measures |φ+〉34 = 1√
2

(|H3H4〉 + |V3V4〉).
This is called entanglement swapping. In other words, after projection measurement
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of photons 1 and 2, photons 3 and 4 emerge entangled although they never inter-

acted with one another in the past. This is the interesting feature of entanglement

swapping. Eq. (6.2) implies that the projection measurement of photons 1 and 2

onto one of the four Bell states also projects photons 3 and 4 onto the same state.

In the entanglement swapping experiment demonstrated by Zeilinger’s group [64],

the four-fold coincidence detection projected out the four-photon entangled state

|Ψf〉 = 1√
2

(|H1H2H3H4〉 + |V1V2V3V4〉) not the product state |φ+〉12|φ+〉34. Note

that the product pair |φ+〉12|φ+〉34 has four components in the four photon product

basis while the final state |Ψf〉 is the four photon entangled state with only two

components.

The above entanglement swapping scheme is totally different from the general

concept of entanglement swapping [65], where the product pair |φ+〉12|φ+〉34 is mea-

sured. The advantage of the above version of entanglement swapping is that it

achieves high fidelity in swapping, that is about 89% compared to 65% when the

product pair is measured.

As shown in Ref [64], the projection measurement of the four-photon entangled

state

|Ψf〉 =
1√
2

(|H1H2H3H4〉 + |V1V2V3V4〉) (6.4)

can also be viewed as entanglement swapping: After observer A performs the joint

Bell state measurement |φ+〉12, the projection 〈φ+
12|Ψf〉 ∝ 1√

2
(|H3H4〉 + |V3V4〉),

showing that observer B will measure the entangled state |φ+〉34. In other words,

the state of photon 2, H(V ), is swapped to photon 4, H(V ), and the state of

photon 1, H(V ), is swapped to photon 3, H(V ). This can be easily seen from the

four photon entangled state |Ψf〉.
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Figure 6.1: The experimental setup for simulation of entanglement swapping by
using classical wave fields.

The entangled state |Ψf〉 demonstrates the working principle of entanglement

swapping for the product pair |φ+〉12|φ+〉34.
In the following, an experimental simulation of the above version of entanglement

swapping in a four field basis is given.

6.2 Entanglement SwappingWith Classical Fields

6.2.1 Experimental Setup and Results

The experimental setup for demonstrating the process of entanglement swapping is

shown in Figure 6.1. It is just a rearrangement of the experimental setup of Chapter
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beam 1 beam 2 beam 3 beam 4

Figure 6.2: Beams 1 and 2 are detected by observer A and beams 3 and 4 are
detected by observer B.
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Figure 6.3: The detection diagram for simulation of entanglement swapping
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5. Without frequency selection, beams 1, 2, 3 and 4 are all independent in the sense

that the product of all four heterodyne signals factors.

We send beams 1 and 2 to observer A and beams 3 and 4 to observer B. As

shown in Figure 6.2, observer A measures both beams 1 and 2, each consisting

of superpositions of two orthogonally polarized fields with different frequencies.

Similarly, observer B measures beams 3 and 4.

In this experiment, we modify the detection diagram used in Chapter 5 and

use the symmetrical detection diagram as shown in Figure 6.3 to obtain a 300 kHz

signal.

The detection diagram simulates entanglement swapping as follows: Suppose

observer A orients the polarizations of local oscillator 1 (ELO1) and local oscillator

2 (ELO2) at arbitrary angles with unit vectors êLO1 and êLO2 respectively. The LO

beams 1 and 2 mix with beams 1 and 2 and obtain beat signal amplitudes A1 and

A2 as,

A1 = (êLO1|V̂1) exp(−iδV t) + ( êLO1|Ĥ1) exp(−iδHt)

A2 = (êLO2|V̂2) exp(−iδV t) + (êLO2|Ĥ2) exp(−iδHt) . (6.5)

where δH = 2π × 30 kHz and δV = 2π × 120 kHz. These signals are multiplied

together and band pass filtered at 60 kHz and 240 kHz producing amplitudes given

as

γ60kHz(A1, A2) ∝ (êLO1| Ĥ1)(êLO2|Ĥ2)

γ240kHz(A1, A2) ∝ ( êLO1|V̂1)(êLO2| V̂2) . (6.6)

These two beat signal amplitudes denoted as γ60kHz (∝ H1H2) and γ240kHz (∝ V1V2)
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are then added by using a summing amplifier as shown in the detection diagram.

Note that the sum signal S12(t) is proportional to the projection

S12(t) = (êLO1, êLO2|φ+
cl(t))12 (6.7)

where

|φ+
cl(t))12 =

1√
2

[|H1H2)e
i2δH t + |V1V2)e

i2δV t] (6.8)

is a time-dependent Bell state. Observer A sends the sum signal S12(t) to observer

B.

Observer B, by using the same procedure as observer A and as shown in the

detection diagram obtains the sum signal S34(t) which is proportional to the pro-

jection

S34(t) = (êLO3, êLO4|φ+
cl(t))34 (6.9)

where

|φ+
cl(t))34 =

1√
2

[|V3V4)e
i2δH t + |H3H4)e

i2δV t] (6.10)

is a time-dependent Bell state. Note that the vertical and horizontal polarizations

for observer B are interchanged with respect to those of observer A.

Observer B then uses the signal sent by observer A, S12(t), and multiplies this

signal with the outcome of his projection measurement on beams 3 and 4, S34(t).

This yields a signal amplitude at 300 kHz denoted as γ300kHz, which is proportional
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to the projection

γ300kHz ∝ (êLO1, êLO2, êLO3, êLO4|Ψfcl) (6.11)

where

|Ψfcl) =
1√
2

(|H1)|H2)|H3)|H4) + |V1)|V2)|V3)|V4)) . (6.12)

Note that γ300kHz has a time independent amplitude. The above equations are

similar to Eq.(5.20) and Eq.(5.22) in Chapter 5. As discussed above, the detection

diagram in Figure 6.3 functions similarly to the detection diagram used in chapter

5. However, the detection diagram in Figure 6.3 is more suitable for discussing

classical simulation of entanglement swapping, and is more symmetrical than the

scheme of Chapter 5.

It is clear that the classical entangled state |Ψfcl) of Eq. (6.12) can demonstrate

the simulation of entanglement swapping for the product pair |φ+
cl)12|φ+

cl)34. From

the 300 kHz signal of Eq. (6.11) and the state of Eq. (6.12), the process of en-

tanglement swapping can be viewed as follows: Suppose that observer A sets his

polarization angles for LO1 and LO2 at +45◦ and +45◦ respectively. The projections

(ê45
◦

LO1|V1)(ê
45◦
LO2|V2) and (ê45

◦
LO1|H1)(ê

45◦
LO2|H2) of Eq. (6.11) are obtained in Eq. (6.12).

Analogous to the quantum projection 〈φ+
12|Ψf〉, after A’s projection measurement

(ê45
◦

LO1|(ê45◦LO2|Ψfcl) ∝ 1√
2
[|H3H4) + |V3V4)], showing that observer B will measure the

time independent entangled state |φ+
cl)34. This also implies that the remaining pro-

jections (êLO3, êLO4|φ+
cl)34 at 300 kHz of Eq. (6.11) by observer B will yield signals

for beams 3 and 4 which are in a classical analog of the entangled state |φ+
cl)34. The

maximum projection of this time-dependent Bell state |φ+
cl)34 is obtained by using



CHAPTER 6. ENTANGLEMENT SWAPPING WITH CLASSICAL. . . 136

the polarization angles of the LO3 and LO4 at 45◦ and 45◦ respectively.

Suppose now that the polarizations of LO3 and LO4 in observer B are at −45◦

and 45◦ respectively, then the beat signal amplitude γ60kHz is proportional to -

V3V4 and the γ240kHz is proportional to H3H4. The minus sign is due to the -45

polarization angle of the LO3. The summation of these two signals is proportional

to the projection

(ê−45o

LO3 , ê
45◦
LO4|φ+

cl(t))34 . (6.13)

Hence, by multiplying the summation signal of Eq. (6.13) with the summation signal

from observer A, the beat signal γ300kHz is proportional to

γ300kHz ∝ (ê45◦
LO1, ê

45◦
LO2, ê

−45◦
LO3 , ê

45◦
LO4|Ψfcl)

∝
(

(ê45◦
LO1|Ĥ1)(ê

45◦
LO2|Ĥ2)(ê

45◦
LO3|Ĥ3)(ê

45◦
LO4|Ĥ4)

− (ê45◦
LO1|V̂1)(ê

45◦
LO2|V̂2)(ê

45◦
LO3|V̂3)(ê

45◦
LO4|V̂4)

)
= 0 (6.14)

where for the vertical component of beam 3 (ê−45◦
LO3 |V̂3) is replaced by -(ê45◦

LO3|V̂3).

The magnitude of horizontal components is equal to the magnitude of vertical com-

ponents and so γ300kHz is zero. This is obvious since (ê−45◦
LO3 , ê

−45◦
LO4 |φ+

cl)34 = 0.

Figure 6.4(a) and (b) show the projection measurements of observer B corre-

sponds to the classical analog of the Bell-state |φ+
cl)34. Since beams 3 and 4 are in a

classical analog of the entangled state, |φ+
cl)34, then γ300kHz =0 due to a minus sign

of the −45o polarization angle of the LO3 as shown in Eq. (6.14). By contrast, if

beams 3 and 4 are in a classical analog of the entangled state, |φ−cl)34, a nonzero

signal amplitude at γ300kHz can only be measured when the polarizations of LO3
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and LO4 are at −45o and 45o respectively. If A sets his polarizations to −45◦, 45◦,

then B would measure |φ−cl)34 and the strong and weak signals would be reversed.

As shown in the Figure 6.5, the signal amplitude at 300 kHz in Eq. (6.12) also

implies that the state of beam 2, H(V), was swapped or teleported to beam 4, H(V)

respectively, and similarly for the state of beam 1 to beam 3.

The classical simulation of entanglement swapping in this experimental arrange-

ment can be attributed to the fact that the beam splitters BS2 and BS3 can produce

identical copies of a classical light beam respectively. That is beam 1 copies to beam

3 through the BS2 and beam 2 copies to beam 4 through BS3.

Suppose now that we label a qubit by the frequency of an optical beam. Then the

process of entanglement swapping can be viewed as swapping a qubit (for example

an optical beam of frequency 120 kHz). The information of the polarization state in

beam 2, V is swapped or teleported to another qubit (an optical beam of frequency

30 kHz) in beam 4, that is polarization state V.

6.3 Fundamental Technical Limitations of Full

Entanglement Swapping

As discussed in [36] and also in Section 1.3.1, the use of a beamsplitter in co-

incidence detection schemes has restricted Bell state analysis to one Bell state

|ϕ−
cl)ij = 1√

2
(|Hi)|Vj) − |Vi)|Hj)) and hence reduces teleportation or swapping effi-

ciency to 25%. The restriction of Bell state analysis is due to fundamental technical

limitations of detection system which acts as a projective measurement on the de-

sired state in the process of entanglement swapping or teleportation [28,37,64].

From the experimental setup in Figure 6.1 and detection diagram in Figure 6.3,
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Figure 6.4: Entanglement swapping with classical fields. Observer A sets his local
oscillator (LO) 1 and 2 polarizations at 45◦ and 45◦, respectively, to select the Bell
state |φ+

cl)12. Observer B’s signal are then proportional to the projections of the
corresponding Bell state |φ+

cl)34 (a) Observer B sets his LO3 and 4 polarizations at
45◦ and 45◦, respectively, yielding a nonzero signal at 300 kHz. (b) Observer B sets
his LO3 and 4 polarizations at −45◦ and 45◦, respectively, yielding a zero signal at
300 kHz.
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Observer A Observer B

Figure 6.5: The polarization configurations of beams 1 and 2 for observer A and
beams 3 and 4 for observer B. The polarization state in beam 1 is swapped to beam
3. Similarly for beam 2 to beam 4.
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we are able to demonstrate classical analog of entanglement swapping for |φ+
cl)12|φ+

cl)34.

We face the same technical problems as in the quantum optics experiment. So, the

entanglement swapping or teleportation efficiency of our system is 25%. However,

one can demonstrate entanglement swapping for the classical analog of the product

pair |φ−cl)12|φ−cl)34 by applying a π phase shift electronically after the band pass fil-

tering at 240 kHz for observers A and B or by changing the polarizations of the LO1

and LO3 to -45◦ (anti-clockwise direction referred to the polarization configurations

in the setup).

In the following section, we simulate the type of entanglement swapping for

others product pairs such as |φ−cl)12|φ−cl)34, |ϕ+
cl)12|ϕ+

cl)34 and |ϕ−
cl)12|ϕ−

cl)34.

6.3.1 Entanglement Swapping for the Product Pair

|φ−cl)12|φ−cl)34 with Classical Fields

For the product pairs |φ−cl)12|φ−cl)34, the polarizations of the LO1 and LO2 beams are

at −45o and 45o respectively and also the LO3 and LO4 beams are at −45o and 45o

respectively. Thus, the signal amplitude γ300kHz is proportional to the projection

γ300kHz ∝ (ê−45◦
LO1 , ê

+45◦
LO2 , ê

−45◦
LO3 , ê

+45◦
LO4 |Ψfcl) (6.15)

Eq. (6.15) shows that after A’s projection measurement on the Bell state |φ−cl)12,

the projection (ê−45◦
LO1 |(ê+45◦

LO2 |Ψfcl) ∝ 1√
2
[|H3H4) − |V3V4)], showing that observer B

will measure the entangled state |φ−cl)34. This corresponds to projection measure-

ments of (ê−45o

LO1 , ê
+45◦
LO2 |φ−cl(t))12 of observer A followed by the (ê−45◦

LO3 , ê
+45◦
LO4 |φ−cl(t))23

of observer B , yielding a nonzero signal amplitude γ300kHz of Eq. (6.15) as shown

in Figure 6.6(a). The zero amplitude of γ300kHz for the projection measurements of
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(ê−45◦
LO1 , ê

+45◦
LO2 |φ+

cl(t))12 of observer A followed by the (ê+45◦
LO3 , ê

+45◦
LO4 |φ−cl(t))34 of observer

B are due to the minus sign introduced by the projection (ê+45◦
LO3 , ê

+45◦
LO4 |φ−cl(t))34 as

shown in Figure 6.6(b). This also indicates that beams 3 and 4 are in the state

|φ−cl)34 not the state |φ+
cl)34.

6.3.2 Entanglement Swapping for the Product Pair

|ϕ+
cl)12|ϕ+

cl)34 with Classical Fields

By using a similar technique, entanglement swapping for the pair |ϕ+
cl)12|ϕ+

cl)34 can

be implemented. Inserting a half-wave plate at 45o in the lower arm of the outputs

of the BS1 to interchange the H(V)⇀↽ V(H) of beams 1 and 3, the signal amplitude

γ300kHz is given by

γ300kHz ∝ (êLO1, êLO2, êLO3, êLO4|Ψ′f
cl ) (6.16)

where now the final state is

|Ψ′f
cl ) =

1√
2

(|H1)|V2)|H3)|V4) + |V1)|H2)|V3)|H4) .) (6.17)

Suppose A sets the polarization angles of the LO1 and LO2 at 45◦. Eq. (6.17)

shows that A’s projection measurement is equivalent to selecting the Bell state

|ϕ+
cl)12. The projection (ê+45◦

LO1 |(ê+45◦
LO2 |Ψ′f

cl ) ∝ 1√
2
[|H3V4)+|V3H4)], shows that observer

B will measure the entangled state |ϕ+
cl)34.

Figure 6.7(a) shows that the projection measurements of the (ê+45◦
LO1 , ê

+45◦
LO2 |ϕ+

cl(t))12

of observer A followed by (ê+45◦
LO3 , ê

+45◦
LO4 |ϕ+

cl(t))34 for observer B yields nonzero sig-

nal amplitude at 300 kHz as expected from Eq. (6.16). The nonzero signal for

(ê+45◦
LO3 , ê

+45◦
LO4 |ϕ+

cl(t))34 shows that beams 3 and 4 are in the state |ϕ+
cl)34. Fig-
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Figure 6.6: Entanglement swapping with classical fields. Observer A sets his local
oscillator (LO) 1 and 2 polarizations at −45◦ and 45◦, respectively, to select the
Bell state |φ−cl)12. Observer B’s signal are then proportional to the projections of
the corresponding Bell state |φ−cl)34 (a) Observer B sets his LO3 and 4 polarizations
at −45◦ and 45◦, respectively, yielding a nonzero signal at 300 kHz. (b) Observer B
sets his LO3 and 4 polarizations at 45◦ and 45◦, respectively, yielding a zero signal
at 300 kHz.
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ure 6.7(b) shows that the projection measurements (ê+45◦
LO1 , ê

+45◦
LO2 |ϕ+

cl(t))12 of observer

A followed by the (ê−45◦
LO3 , ê

+45◦
LO4 |ϕ+

cl(t))34 of observer B yields a zero signal amplitude

at 300 kHz, because of the minus sign introduced by the polarization of the LO3

in Eq. (6.16). Note that this will not be the case if beams 3 and 4 are in the state

|ϕ−
cl)34 not |ϕ+

cl)34.

6.3.3 Entanglement Swapping for the Product Pair

|ϕ−
cl)12|ϕ−

cl)34 with Classical Fields

Finally, for the pairs |ϕ−
cl)12|ϕ−

cl)34, a half-wave plate at 45o is again inserted in the

lower arm of BS1 to interchange the H and V polarizations of beams 1 and 3. In

this case, as before the signal amplitude γ300kHz is proportional to the projection

γ300kHz ∝ (êLO1, êLO2, êLO3, êLO4|Ψ′f
cl ) . (6.18)

Then, the polarizations of the LO1 and LO2 beams are rotated at −45o and 45o

respectively. Eq. (6.18) shows that after A’s projection measurement on the Bell

state |ϕ−
cl)12, the projection (ê−45◦

LO1 |(ê+45◦
LO2 |Ψ′f ) ∝ 1√

2
[|H3V4) − |V3H4)], showing that

observer B will measure the entangled state |ϕ−
cl)34.

Figure 6.8(a) shows that the projection measurement (ê−45o

LO1 , ê
+45◦
LO2 | of observer

A followed by the (ê−45◦
LO3 , ê

+45o

LO4 | of observer B, yielding nonzero signal amplitude at

300 kHz of Eq. (6.18). Figure 6.8(b) shows that beams 3 and 4 are not in the state

|ϕ+
cl)34. The projection measurements (ê−45◦

LO1 , ê
+45◦
LO2 | of observer A followed by the

(ê+45◦
LO3 , ê

+45◦
LO4 | of observer B yields a zero signal amplitude at 300 kHz of Eq. (6.18)

because of the minus sign introduced by the projection (ê+45◦
LO3 , ê

+45◦
LO4 |ϕ−

cl(t))34.
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Figure 6.7: Entanglement swapping with classical fields. Observer A sets his local
oscillator (LO) 1 and 2 polarizations at 45◦ and 45◦, respectively, to select the Bell
state |ϕ+

cl)12. Observer B’s signal are then proportional to the projections of the
corresponding Bell state |ϕ+

cl)34 (a) Observer B sets his LO3 and 4 polarizations at
45◦ and 45◦, respectively, yielding a nonzero signal at 300 kHz. (b) Observer B sets
his LO3 and 4 polarizations at −45◦ and 45◦, respectively, yielding a zero signal at
300 kHz.
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Figure 6.8: Entanglement swapping with classical fields. Observer A sets his local
oscillator (LO) 1 and 2 polarizations at −45◦ and 45◦, respectively, to select the
Bell state |ϕ−

cl)12. Observer B’s signal are then proportional to the projections of
the corresponding Bell state |ϕ−

cl)34 (a) Observer B sets his LO3 and 4 polarizations
at −45◦ and 45◦, respectively, yielding a nonzero signal at 300 kHz. (b) Observer B
sets his LO3 and 4 polarizations at 45◦ and 45◦, respectively, yielding a zero signal
at 300 kHz.
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6.4 Discussion

In this chapter, we have demonstrated an analog of nonlocal teleportation of entan-

glement using a type of entanglement swapping based on classical wave optics. We

are able to demonstrate entanglement swapping in a projection measurement of four-

photon entanglement by using classical fields. Even though the classical wave system

does not exhibit wave-particle duality properties, the technique demonstrates a type

of entanglement swapping which is similar to generalized lock-in detection with two

frequencies. In simulating entanglement swapping, we find a limitation in the basis

of Bell states that can be swapped without changing the experimental configura-

tion. This is similar to the limitation encountered in the quantum experiments [64].

However, by changing the configuration of the experiment and the polarizations of

the LO beams, we are able to simulate entanglement swapping for all four product

pairs which includes the projection measurements of four Bell states.



Chapter 7

Two-Field Correlations With
Noise

7.1 Overview

In the previous Chapters 4 and 5, we simulated the quantum entanglement of up to

four-particles by using stable classical fields. We have demonstrated that the tech-

niques can formally reproduce the quantum correlations arising from multi-particle

interferences including the violation of Bell’s inequality and GHZ entanglement.

However, for Bell’s theorem to be applicable and for demonstrating violation of

local hidden variable theory, the wave-particle duality is essential. Further, our

multiplication signals are a stable oscillatory sinusoidal waves so that probability

language is not applicable.

In this chapter, we develop a classical noise system to simulate in part particle-

like behavior. We first mix a noise field and a classical stable field with parallel

optical polarizations to produce an anti-correlated random interference signal. This

anti-correlated signal in two spatially separated detectors is used to simulate the

particle character of single photon experiments.

Following the single particle simulations, we extend this method to a two-particle

system by using a noise field and a stable field with orthogonal polarizations. We

measure an EPR nonlocal correlation function 〈A1B2〉 = − cos 2(θ1 − θ2) of two

147
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observers A and B with their analyzers oriented along directions θ1 and θ2 respec-

tively. Our setup is able to reproduce the measurement of the quantum mechanical

correlation function as well as the random noise in each detector. Our classical sys-

tem is able to simulate in part the wave-particle duality properties of a two-particle

quantum system. We also demonstrate the ability of our optical noise system to

reproduce the violation of Bell’s Inequality(1965) [9].

First, we will discuss the derivation of the quantum mechanical correlation func-

tion of two spatially separated measuring devices in a two-photon system.

7.1.1 Derivation of the Correlation Function of Two

Observers

In a quantum mechanical treatment of Bell’s theorem for a two-photon system

in an polarization-entangled state |ψ±〉= 1√
2

(|H1V2〉 ± |V1H2〉), the two entangled

photons are sent to two spatially separated measuring devices A and B. Device A is

an analyzer to test the linear polarization of the incoming photon. When analyzer

A is oriented along the polarization angle θ1, the polarization state of the incoming

photon is projected onto the state

|θ1//〉 = cos θ1|H1〉 + sin θ1|V1〉 (7.1)

where H, V are the horizontal and vertical axes. The corresponding orthogonal

polarization state is given by

|θ1⊥〉 = − sin θ1|H1〉 + cos θ1|V1〉 (7.2)
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Figure 7.1: The detection scheme for measuring the quantum operator A or B . The
detectors D// and D⊥ are placed at each port of the cube polarizing beamsplitter
and their signals are subtracted from each other

We take the operator associated with analyzer A to be represented as A1 which is

written in the form [66]

A1 = 2|θ1//〉〈θ1//| −
(|θ1//〉〈θ1//| + |θ1⊥〉〈θ1⊥|

)
= |θ1//〉〈θ1//| − |θ1⊥〉〈θ1⊥| . (7.3)

The operator A1 then has eigenvalues ±1, i.e.,

A1|θ1//〉 = 1 |θ1//〉

A1|θ1⊥〉 = −1 |θ1⊥〉 . (7.4)

depending on whether the photon is transmitted (//) or rejected (⊥) by the an-

alyzer. Similarly, we define the operator B2 for the analyzer B oriented along

polarization angle θ2.

One should note that the operator A1 with eigenvalues ±1 can be measured
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by using the detection scheme shown in Figure 7.1. Two detectors are placed at

the two output ports of a cube polarizer beamsplitter. The output currents are

subtracted from each other. The arrangement of this detection scheme corresponds

to the measurement of operator A1, that is the subtraction of the transmitted signal

with projection |θ1//〉〈θ1//| and the reflected signal with projection |θ1⊥〉〈θ1⊥|.
For a beam of photons incident on the polarizer, a photon goes through the

polarizer and registers a ‘click’ or produces signal at detector D// and zero signal at

detector D⊥, then the subtractor yields positive signal as D//−D⊥ > 0. If a second

photon reflects from the polarizer and goes to the detector D⊥, producing nonzero

signal in detector D⊥ and zero signal in detector D//, then the subtractor yields

negative signal as D// − D⊥ < 0. For a certain amount of time, the subtractor

records the random positive and negative spikes corresponding to the eigenvalues

± 1 of operator A1 as shown in Figure 7.1. The incoming photon can be in the

superposition |θ1//〉 and |θ1⊥〉 corresponding to the operator A1 with eigenvalues

+1 and -1 respectively. Hence, as the time elapses, device A records a series of

discrete random values +1 and -1. Then, for a state with equal probability of //

and ⊥ photons, the mean value of 〈A1〉 is zero and similarly 〈B2〉 = 0. The wave

character of the operator A1 is recognized as interference of the outcomes ±1 due

to the linear superposition of the projected states |θ1//〉 and |θ1⊥〉. The particle

character of the operator A1 is the discreteness of random values +1 and -1. The

correlation functions of the product of two operators A1 and B2 can be measured

by using the same detection schemes for observers A and B and multiplying the

output signals together.

The correlation functions for the state |ψ±〉= 1√
2

(|H1V2〉 ± |V1H2〉) are measured
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for A and B and are given by

Cq(θ1, θ2) = 〈ψ±|A1B2|ψ±〉 = − cos 2(θ1 ± θ2) . (7.5)

Eq. (7.5) is sometimes referred to as the expectation value of the product of oper-

ators A1 and B2. For the other two Bell states, |ϕ±〉 = 1√
2

(|H1H2〉 ± |V1V2〉), the

correlation functions are given by

Cq(θ1, θ2) = 〈ϕ±|A1B2|ϕ±〉 = cos 2(θ1 ∓ θ2) . (7.6)

Classical simulation models of wave particle duality have been attempted before

by mixing a stable field and a noise field. The randomness of the eigenvalues of

operators A1 and B2 were demonstrated by using radio frequency model [67] in

an attempt to simulate nonlocal correlation of EPR experiment. However, this

model only demonstrated the particle-like features of the operators A1 and B2, and

obtained the expectation value in the form

〈A1B2〉 = 1 − 2
θ1 − θ2
π

, (7.7)

as predicted from a non-quantum model of EPR correlation [67]. The reason is

this model digitized the random noise signals in A1 and B2 and hence erased the

phase information which is in the wave interference character of the system. This is

predicted by the complementary principle in quantum interference; once the particle

character of a quantum system is revealed, the wave character of the system is lost.

In the following section, we give a discussion of the experimental simulation of

the particle character of single photon experiment by using a noise field and a stable
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field. Then, we extend the method to two particle correlations.

7.1.2 Single-Field Experiments

In a single photon experiment, when a photon is incident on a 50-50 beamsplitter,

it will be reflected or transmitted. If a detector is placed on each output port of the

beamsplitter, the signal in the two detectors D1 and D2 are anti-correlated. This

means that if one detector ‘clicks′ then the other one is silent and does not ‘click′.

In this section, we can simulate single photon experiments by measuring the

anti-correlated noise amplitudes from two spatially separated detectors. As shown

in Figure 7.2, a vertically polarized noise field and a vertically polarized stable

field are used to simulate the particle-like behaviour of a single photon. We use

a beamsplitter to combine the noise field EN(t) = En(t)e
−i(ω+Ω)t−iφ(t) and a stable

field ES(t) = Ese
−i(ω+Ω)t where ω is optical frequency and Ω is modulation frequency

at 110 MHz of acoustic-optic (AO) modulator and φ(t) is the random phase noise

obtained from a tunable AO. The interference of these two fields in one detector,

D1(t), yields the beat signal as,

A1(t) = |Ese−i(ω+Ω)t + En(t)e
−i(ω+Ω)t−iφ(t)|2

∝ 2�[E∗
nEs] cos(φ(t)) (7.8)

and similarly for the beat signal at the second detector, D2(t), is,

A2(t) ∝ −2�[E∗
nEs] cos(φ(t)) (7.9)

where the minus sign is due to the π-phase shifted of the beamsplitter caused by

a electromagnetic field reflected from the medium of higher refractive index to the
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Figure 7.2: The setup for simulating single photon experiment by using a stable
vertically polarized field and a noise vertically polarized field.

medium of lower refractive index.

The correlation C(τ)=〈A1(t)A2(t + τ)〉 between these two detectors is anti-

correlated as shown in Figure 7.3. The product of these two detectors is always

negative value when τ=0. This result is proportional to the intensity of the noise

field |En|2 and analogous to the δ−correlation function for shot noise in quantum

optics experiments. The negative sign shows that the ports of the beamsplitter are

anti-correlated as expected.

7.1.3 Two-Field Correlations With Noise

In this section, we give a description of the experimental simulation of two-particle

entanglement with noise as shown in Figure 7.4. We use a noise field and a stable

field as in the previous section, but employ orthogonal polarizations. As shown

below, the two beams are correlated as in two particles quantum mechanical exper-

iments.

We use a beamsplitter to combine a noise field with horizontal polarization HN
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Figure 7.3: The correlation function C(τ)= 〈A1(t)A2(t+τ)〉
〈A1(t)A2(t)〉 of the beat signals in

detectors 1 and 2.

and a stable field with vertical polarization VS. The output ports of the beamsplitter

produce two spatially separated beams 1 and 2 with each consisting of superposition

of horizontal and vertical components. A λ/2 wave plate at 0◦ is inserted in beam

2 to induce a π-phase shift between V and H components. The noise field and the

stable field in beam 1 are transformed by the λ/4 plate 1 at 45◦ to left and right

circular polarized fields respectively,

HN1 → EL =
1√
2

(ĤN1 − iV̂N1)e
−i(ω+Ω)t−iφ(t)

VS1 → ER =
1√
2

(−iĤS1 + V̂S1)e
−i(ω+Ω)t . (7.10)

Suppose now we use the same detection diagram for measuring the quantum opera-

tor A as shown in Figure 7.1 for our classical system. Then the field E1 = (ER±EL)

is projected onto ê1 = cos θ1 Ĥ+sin θ1 V̂ of the analyzer 1 and yields the interference
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Figure 7.4: The experimental setup for noise simulation of two-particle entangle-
ment. Measurement devices in each beam consist of a λ/4 plate and an analyzer
placed before a detector. The two spatially separated beams consist of a superposi-
tion of a classical stable field with vertical polarization VS and a classical noise field
with horizontal polarization HN .
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of these two fields in detector D1// as

D1// = |(ER + EL) · ê1|2

∝ 1

2
|HN1|2 +

1

2
|VS1|2 + �[H∗

N1VS1] sin(2θ1 + φ(t)) (7.11)

where the first two terms are intensities of the noise field and stable field so con-

tributes the DC terms of Eq. (7.11) and the last term is the interference term with

the random noise φ(t) so contributes the AC term of Eq. (7.11).

Similarly, for the detector D1⊥ where θ1 changes to θ1 + π
2
, the interference beat

signal is

D1⊥ ∝ 1

2
|HN1|2 +

1

2
|VS1|2 −�[H∗

N1VS1] sin(2θ1 + φ(t)) . (7.12)

where the first two terms are DC terms and the last term is the AC term. Then,

the subtractor yields the beat signal

D1// −D1⊥ ∝ 2 sin(2θ1 + φ(t)) (7.13)

where the intensities of the noise field |HN1|2 and the stable field |VS1|2 are sub-

tracted. Similarly for the observer B measures D2// −D2⊥ ∝ −2 sin(2θ2 + φ(t)).

One can see that the positive signal in detector D1// of Eq. (7.11) will yield

negative signal with the same amplitude in detector D1⊥ of Eq. (7.12) and vice

versa, so the AC part of the subtracted signal D1// − D1⊥ is just twice the beat

signal from one detector sin(2θ1 + φ(t)). The beat signal in the subtractor shows a

striking similarity to the subtractor in the quantum version of the detection scheme

for operator A1 as discussed in Section 7.1.1. For arbitrary random phase φ(t), the
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signal sin(2θ1 +φ(t)) produces a positive amplitude corresponding to the eigenvalue

+1 of operator A1 of detecting a photon with projection |θ1//〉〈θ1//| and similarly a

negative amplitude of the signal sin(2θ1 + φ(t)) corresponding to the eigenvalue -1

of operator A1 of detecting a photon with projection |θ1⊥〉〈θ1⊥|. Hence, the average

value of the signal sin(2θ1+φ(t)) is zero as expected for operator A1 where 〈A1〉 = 0.

In our classical setup, one detector is used to simulate operator A1. Detector

1 is ac coupled to obtain a beat signal proportional to sin(2θ1 + φ(t)). This beat

signal in detector 1 is anti-correlated to the beam 2 interference in detector 2 which is

∝ − sin(2θ2 +φ(t)) where the minus sign is due to the π-phase shift of the λ/2 wave

plate at 0◦. The random and anti-correlated noise amplitudes from detectors 1 and

2 are multiplied by using an analog multiplier. We measure the mean value of this

multiplied anti-correlation signal and obtain the correlation function Ccl(θ1, θ2) =

− cos 2(θ1 − θ2) analogous to the predictions of quantum mechanics.

In this classical model, we are able to reproduce the measurement of 〈A1B2〉
as predicted by quantum mechanics because our system does not erase the phase

information of 2θ1 + φ(t) but instead multiplies or correlates it with the another

spatially separated beam containing the phase information of 2θ2+φ(t). The success

of this measurement can be attributed to our detection system being able to keep

both duality properties of random noise amplitudes that simulate the positive or

negative values of the operators A1 and B2, and the phase information.

In order to simulate a Bell’s theorem argument on two observers A1 and B2 in

an anti-correlated polarization entangled state |ψ−〉, the random noise amplitudes

in detectors A and B can be interpreted as follows: When both analyzers are in

parallel, the high (low) of the beat noise amplitude in detector A corresponds to

eigenvalues A1 = +1(-1) and hence simulates detection of a polarized photon with
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Figure 7.5: The circuit diagram for noise diode D101.

polarization H1(V1). Simultaneously the low (high) in detector B corresponds to

eigenvalues B2 = -1(+1) and hence simulates detection of a polarized photon with

polarization V2(H2).

In the following sections, we show how the noise generator is built and tested in

an optical system, and then describe our results.

7.2 Detection Apparatus

In this chapter, we use a noise generator and a DC voltage supply to modulate the

frequency of an acoustic optic modulator(AO). The DC offset provides the frequency

shift of a optical beam at 110 MHz. The noise amplitude ±0.5 V is added to the

DC offset through a summing amplifier. The noise causes the AO to randomly

modulate the phase of the optical field. Two photo-detectors are used to detect the

interference noise signals in two regions. The detectors used are the same as in the

previous experiments. The noise signals from the two detectors are multiplied by

using an analog multiplier. The output of the analog multiplier is amplified and then
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Figure 7.6: The random electronic noise from the noise circuit.

read by a oscilloscope. In this experiment, the analog multiplier is not connected

through any band pass filters. The multiplied interference noise amplitude from

both detectors is then recorded by using a LabView program interfaced with the

oscilloscope.

7.2.1 Random Noise Generator

Figure 7.5 shows the circuit diagram of a noise generator based on the D101 noise

diode. It is fed from ±5 volt supply lines. The total supply potential of 10 volts

is sufficient to cause the D101 to break down and avalanche like a zener diode.

A certain amount of noise is generated across the diode and then is coupled by a

capacitor to a high gain amplifier. With the parameters given in the figure, the

amplifier provides a voltage gain of about 100. The electronic noise generated by

this circuit is measured as shown in Figure 7.6. The output is AC coupled with a

capacitor. The peak to peak noise amplitude is about 1 volt. The horizontal time

axis is 2 ms in full scale. It is taken from a Tektronix digital oscilloscope (model:TDS
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Figure 7.7: The electronic noise spectrum from the noise generator.

220 ) which is interfaced with the computer by using a LabView program. There

are 2500 points along the time axis. The data is fourier transformed by using

Mathematica to obtain the noise spectrum as shown in Figure 7.7. The noise

spectrum shows that the circuit produces zero DC component and has its peak at

about 750 kHz, and then drops to zero at about 3.0 MHz.

7.2.2 Optical Test of the Noise Generator

The noise generator is used to modulate the optical field via a tunable AO. The AO

has a frequency to voltage scale factor about 4 MHz/V. Now, in order to measure

the optical noise spectrum generated by this circuit, we interfere the noise field with

a stable optical field which is frequency shifted by a fixed AO at 110 MHz. The

optical power for the noise field is 25 µW and for the stable optical field is 87 µW.

The interference of the noise field, EN(t) and the stable field, ES(t), can be written
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Figure 7.8: The random beat signal noise from the interference of a noise field and
a stable field.

for parallel polarizations as,

|EN(t) + ES(t)|2 = |Ene−i(Ωt+φ(t)) + Ese
−iΩt|2

= |En|2 + |Es|2 + 2�[E∗
nEs] cos(φ(t)) (7.14)

where Ω is the AO modulated frequency and φ(t) is the random phase of noise

field. The optical frequency is neglected here for simplicity. The interference signal

with a random noise amplitude is shown in Figure 7.8. The randomness of the

beat amplitude looks similar to the electronic noise generated by this circuit. The

optical noise spectrum is obtained by fourier transforming the noise signal. It is

shown in Figure 7.9. The nonzero amplitude of the optical noise spectrum ranges

from 0 →±2.25 MHz and is centered at 110 MHz. This is in agreement with the

calculation done by multiplying the peak to peak electronic noise amplitude ±0.5

volts with the scale factor 4 MHz/V of the tunable AO. By comparing the frequency

range with the cutoff frequency of the photodetector (Hamamatsu S1223-01) used
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Figure 7.9: The spectrum of the optical beat noise where the 110 MHz is at the
center zero.

in this experiment which is 20 MHz, our detectors are fast enough to detect the

randomness of the optical noise and so to achieve the goal of this experiment, that

is, to simulate the duality behavior of two polarization-entangled photons.

To determine whether the observed interference noise is not produced by the

noise generator alone, first, we switch off the noise generator and send only the

DC offset into the tunable AO. By blocking the noise beam or the stable beam, we

can check the other optical and electronic noise sources in our experiment, such as

the intensity noise from the laser, the electronic noise from the DC power supply

or the amplifier in the photo-detector. Then, we switch on the noise generator

and block out the stable optical field. This allows us to ensure that the tunable

AO has negligible amplitude noise as shown in Figure 7.10. It is obvious that the

amplitude shown in the noise beam alone is much smaller than the interference

noise amplitude shown in Figure 7.8. The ratio of the intensity of the noise beam

and the interference noise amplitude, E∗
nEn/2E∗

sEn = 1
2

√
Pn/

√
Ps, is about 1/200.

Since the ratio of the optical power of the noise field and the stable field is 1/4
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Figure 7.10: The residual random noise amplitude of the noise beam.

corresponding to the ratio
√
Pn/

√
Ps ∼ 1/2, then it is obvious that the noise field

is phase modulated and not amplitude modulated.

7.3 Particle Character in Two-Field Correlations

7.3.1 Experimental Analysis

Our experimental setup is shown in Figure 7.4. The source is a HeNe laser operated

at 632 nm. The vertically polarized beam is a stable classical field VS which is

frequency shifted by 110 MHz. The horizontally polarized beam is a random phase-

modulated field HN produced by an acoustic optic modulator which is externally

modulated by a random noise generator as described above. These two beams are

then combined through a beamsplitter BS1. The beam 1 from the output port 1 of

the beamsplitter BS1 contains a superposition of the horizontally polarized stable

field and the vertically polarized noise field. Similarly for beam 2 from the output

port 2 of the beamsplitter. A half wave plate at 0o is inserted in beam 2 to induce a
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π- phase shift between the horizontally and vertically polarized beams. The relative

phases between VS1 and HN1 fields in beam 1 is 180◦ out of phase with that of

VS2 and HN2 in beam 2. A quarter wave plate at 45o is inserted at beams 1 and 2

to transform the linearly polarized states to circularly polarized states. By using a

quarter wave plate transformation matrix [53], the field amplitudes VS1, HN1, VS2

and HN2 are transformed as,

VS1 → −iĤS1 + V̂S1

HN1 → ĤN1 − iV̂N1

VS2 → −iĤS2 + V̂S2

HN2 → −ĤN2 + iV̂N2 . (7.15)

For simplicity we use unit vector notation and drop the field amplitude notation.

The factor 1√
2

for each transformation is also neglected for simplicity.

The signals are analyzed in detail as follows: Analyzer A in beam 1 will expe-

rience a homogeneous superposition of a right circularly polarized stable field and

a left circularly polarized noise field, and similarly for analyzer B in beam 2. An

analyzer A(B) is placed before the detector 1(2) to project out the polarization

state θ1(θ2) as,

ê1 = cos θ1 Ĥ + sin θ1 V̂

ê2 = cos θ2 Ĥ + sin θ2 V̂ . (7.16)
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The field amplitude in beam 1 after the λ/4 plate and the analyzer is, then,

E1(t) = [(ĤN1 − iV̂N1)e
−i(ω+Ω)t−iφ(t) + (−iĤS1 + V̂S1)e

−i(ω+Ω)t] · ê1

= (cos θ1 − i sin θ1)e−i(ω+Ω)t−iφ(t) + (−i cos θ1 + sin θ1)e
−i(ω+Ω)t

(7.17)

and similarly for the field in beam 2,

E2(t) = [(−ĤN2 + iV̂N2)e
−i(ω+Ω)t−iφ(t) + (−iĤS2 + V̂S2)e

−i(ω+Ω)t] · ê2

= (− cos θ2 + i sin θ2)e
−i(ω+Ω)t−iφ(t) + (−i cos θ2 + sin θ2)e

−i(ω+Ω)t

(7.18)

where ω is the optical frequency and Ω is the 110 MHz modulation frequency. φ(t)

is the random phase of the noise field. Thus, the random noise beat amplitudes

obtained in detectors 1 and 2 can be written as,

A1(φ(t)) = |E1(t)|2

= −iei(2θ1+φ(t)) + c.c

∝ sin(2θ1 + φ(t))

B2(φ(t)) = |E2(t)|2

= iei(2θ2+φ(t)) + c.c

∝ − sin(2θ2 + φ(t)), (7.19)

where we only use the real parts of the signals in detectors A1 and B2. The noise

signal in detector 2 is anti-correlated to detector 1 because of the π phase shift by
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the λ/2 plate in beam 2.

The random noise beat amplitude obtained in detector 1 can be written as,

A1(φ(t)) ∝ cos(2θ1) sin(φ(t)) + sin(2θ1) cos(φ(t)) , (7.20)

and similarly for B2. Eq. (7.20) is identical in structure with the quantum mechan-

ical spin projection operator A1 for a polarization angle θ1 as in Eq. (7.3),

A1 = cos 2θ1(|V1〉〈V1| − |H1〉〈H1|) + sin 2θ1(|V1〉〈H1| + |H1〉〈V1|) . (7.21)

Note that the polarization quantum projectors (|V1〉〈V1|−|H1〉〈H1|) and (|V1〉〈H1|+
|H1〉〈V1|) in Eq. (7.21) yields discrete eigenvalues ±1 compared to continue variables

of in-phase (cosine) and out-of-phase (sine) components of the noise field. For

arbitrary random phase φ(t), the beat signal A1 exhibits striking similarity of the

output signal from the subtractor in the quantum version of the detection scheme

for operator A1 as shown in Figure 7.1. This is because the signal sin(2θ1 + φ(t))

in detector D1 can have positive amplitude corresponding to the eigenvalue +1 of

operator A1 of detecting a photon with projection |θ1//〉〈θ1//| and also negative

amplitude corresponding to the eigenvalue -1 of operator A1 of detecting a photon

with projection |θ1⊥〉〈θ1⊥|. Hence, the average value of the signal sin(2θ1 + φ(t)) in

A1 is zero as expected for operator A1 where 〈A1〉 = 0.

The random noise amplitudes in detectors 1 and 2 are then multiplied to obtain

the anti-correlated random noise amplitude as,

A1 × B2 ∝ − sin(2θ1 + φ(t)) sin(2θ2 + φ(t))

∝ − cos(2(θ1 − θ2)) − cos(2(θ1 + θ2 + φ(t))) (7.22)
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Then, the mean value of this multiplied anti-correlation signal is obtained by aver-

aging 10 shots with each shot in 2 ms scale, and hence, we obtain the correlation

function Ccl(θ1, θ2),

A1 × B2 ∝ Ccl(θ1, θ2) ∝ − cos(2(θ1 − θ2)) (7.23)

where the noise term in Eq. (7.22) averages to zero.

Note that our classical system measures the classical analog of the correlation

function Ccl(θ1, θ2) directly by only using two photo-detectors. We can normalize the

correlation function with measuring the mean values of the square beat signals A2
1

and B2
2 that is A1×B2√

A2
1

√
B2

2

. However, we normalize the correlation function Ccl(θ1, θ2)

by its maximum obtainable value that is for θ1 = θ2. Thus, with the analyzers set so

that θ1 = θ2, the normalized correlation function CNcl (θ1, θ2) = −1. This shows that

the two beams are anti-correlated corresponding to the projection of the classical

analog of the entangled state |ψ−
cl) = 1√

2
[|H1|V2) − |V1|H2)].

If now the λ/4 wave plate at beam 2 is rotated at -45◦, then the beat signal B2

of Eq. (7.19) is given by

B2(φ(t)) ∝ − sin(2θ2 − φ(t)) . (7.24)

Hence, the correlation function of Eq. (7.23) is

Ccl(θ1, θ2) ∝ − cos 2(θ1 + θ2) (7.25)

corresponding to the projections of the classical analog of the entangled state |ψ+
cl) =

1√
2
[|H1|V2) + |V1|H2)]
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When the λ/2 plate in beam 2 is removed, the minus sign of the beat noise

amplitude B2 of Eq. (7.19) is changed to positive sign, and then the correlation

function of Eq. (7.23) is ∝ cos 2(θ1−θ2). Thus, the CNcl (θ1, θ2) = +1 for θ1 = θ2, and

the projections of the classical analog of the entangled state is perfectly correlated,

that is |ϕ+
cl) = 1√

2
[|H1|H2) + |V1|V2)].

Similarly without the λ/2 wave plate, by rotating the λ/4 wave plate in beam 2

to -45◦, the beat noise amplitude B2 of Eq. (7.19) is ∝ sin(2θ2 − φ), and hence the

correlation function of Eq. (7.23) is ∝ cos 2(θ1 +θ2) corresponding to the projections

of the classical analog of the entangled state |ϕ−
cl) = 1√

2
[|H1|H2) − |V1|V2).

7.4 Experimental Results

7.4.1 Characteristics of the Optical Noise System

As an illustration of our experimental observation for the correlation function Ccl(θ1,

θ2) = − cos 2(θ1 − θ2), we take a single shot of the anti-correlated random noise

amplitude at detectors 1 and 2 for θ1 = θ2 as shown in Figure 7.11(a) and (b)

respectively. One may note that the mean value of beat signals 〈A1〉 and 〈B2〉 are

zero as expected. The multiplied anti-correlated signal is shown in Figure 7.11(c)

which has the maximum obtainable mean value in the experiment.

Figure 7.12 shows the case θ1 = 0 and θ2 = 45. The noise amplitudes in

detectors 1 and 2 are shown in Figure 7.12(a) and (b) respectively. For this case,

the multiplied anti-correlated signal is shown in Figure 7.12(c), where its mean value

C(θ1 = 0o, θ2 = 45o) is approximately zero.
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Figure 7.11: The experimental observation of the correlation function -cos 2(θ1 −
θ2) for the case θ1 = θ2. The observed random noise beat signal in (a) detector 1
and (b) detector 2. (c) The multiplication of the noise amplitudes in detectors 1
and 2 for their analyzers in parallel.
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Figure 7.12: The experimental observation of the correlation function -cos 2(θ1 −
θ2) for the case θ1 − θ2 = 45◦. The random noise beat signal in (a) detector 1 and
(b) detector 2. (c) The multiplication of the noise amplitudes in detectors 1 and 2
for their analyzers at a relative angle of 45o.
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7.4.2 Classical Noise Violation of Bell’s Inequality

We measure the classical correlation function CNcl (θ1, θ2) = − cos 2(θ1 − θ2) of the

entangled state |ψ−
cl) = 1√

2
[|H1V2) − |V1H2)] for the analyzers A and B along direc-

tions a, b and c respectively. The measurement allows us to reproduce the violation

of Bell’s Inequality (1965) for this case, which is given by,

|CNcl (a, b) − CNcl (a, c)| ≤ 1 + CNcl (b, c) (7.26)

or,

F (a, b, c) = |CNcl (a, b) − CNcl (a, c)| − 1 − CNcl (b, c)| ≤ 0 . (7.27)

Maximum violation of Bell’s inequality of Eq. (7.27) can be demonstrated when

analyzer A chooses between two polarization measurements along the axes a=0o and

b=30o and analyzer B chooses between b=30o and c=60o. First, we fix a = θ1 = 0,

then vary c = θ2 from 0o to 90o to obtain the correlation function CNcl (a = 0o, c = θ2)

as shown in Figure 7.13(a). Second, we fix θ1 = 30o and vary θ2 from 0o to 90o. The

correlation function CNcl (b = 30o, c = θ2) is measured and shown in Figure 7.13(b).

By using the above measurement, we plot F (a, b, c) = |CNcl (a = 0o, b = 30o) −
CNcl (a = 0o, c)| − 1 − CNcl (b = 30o, c) as a function of c = θ2 as shown in Fig-

ure 7.13(c). The solid lines in the figures are theoretical predictions obtained by

using CNcl (θ1, θ2) = − cos 2(θ1 − θ2). The experimental results show that the maxi-

mum violation value +0.5 occurs at the c = θ2 = 60o, so that F (a, b, c) 
≤ 0.

For the entangled state |ϕ+
cl) = 1√

2
[|H1H2) + |V1V2)] obtained by removing the

λ/2-plate in beam 2, where CNcl (θ1, θ2) = cos 2(θ1 − θ2) for the perfectly corre-

lated pairs. The right side of the Eq. (7.26) is changed to 1-CNcl (a, b). This
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Figure 7.13: Violation of Bell’s inequality, F (a, b, c)=|C(a, b) − C(a, c)| −
1 − C(b, c) ≤ 0, where C(a, b) = −cos(2(θa − θb)) for the state |ψ−) =
1√
2

(|H1)|V2) − |V1)|H2)). (a) The experimental observation of the correlation func-

tion CNcl (a = 0o, c = θ2). (b) The experimental observation of the correlation
function CNcl (b = 30o, c = θ2). (c) The inequality is plotted as F (a = 0, b = 30◦, c =
θ2)=|C(a = 0, b = 30◦) − C(a = 0, c = θ2)| − 1 − C(b = 30◦, c = θ2) ≤ 0. The
maximum violation occurs at θ2= 60◦.
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can be realized in the discussion of Section 2.3.1 for the perfect correlation func-

tion. The measurements on the correlation functions for CNcl (a = 0o, c = θ2) and

CNcl (b = 30o, c = θ2) are shown in Figure 7.14(a) and (b) respectively. We measure

F (a, b, c) = |CNcl (a = 0o, b = 30o) − CNcl (a = 0o, c)| − 1 + CNcl (b = 30o, c) as a func-

tion of c = θ2 as in Figure 7.14(c) and observe the maximum violation occurs at

c = θ2=60o with the value F (a, b, c) = +0.5 
≤ 0.

7.5 Discussion

In this experiment, we have developed a scheme to reproduce the correlated mea-

surement of two quantum observables A1 and B2 for two entangled particles based

on classical wave optics with noise. We are able to show that the detection schemes

for quantum operators A1 and B2 are conceptually identical to the detection scheme

for the classical noise experiment where the detectors are ac-coupled. In the classical

detection scheme, the random and anti-correlated noise amplitudes in two spatially

separated detectors created by the interferences of the noise field and the stable field

can be used to simulate the wave-particle duality properties of operators A1 and B2,

and hence reproduce the quantum correlations of two entangled photons. We use

a signal multiplication technique to reproduce coincidence counting measurements

and hence to obtain the nonlocal correlation function of two spatially separated

beams.

In this experiment, the stable classical field is arranged to be orthogonal to the

noise field, so that these two fields will not interfere before the measurement is made

by observer A or B. Our scheme suggests that two-particle quantum mechanical

correlations can be considered to arise from correlated field noise. This scheme may

be useful in simulating quantum networks where a random positive signal is desired



CHAPTER 7. TWO-FIELD CORRELATIONS WITH NOISE 174

20 40 60 80

-1.5

-1

-0.5

0.5

1

1.5

20 40 60 80

-1.5

-1

-0.5

0.5

1

1.5

20 40 60 80

-1.5

-1

-0.5

0.5

1

1.5

(a)

(b)

(c)

2

2

2

oooo

o o o o

oooo

Figure 7.14: The violation of Bell’s inequality, F (a, b, c)=|C(a, b) − C(a, c)| −
1 + C(b, c) ≤ 0, where C(a, b) = cos(2(θa − θb)) for the state |ϕ+) =
1√
2

(|H1)|H2) + |V1)|V2)). (a) The experimental observation of the correlation func-

tions for CNcl (a = 0o, c = θ2) and (b) CNcl (b = 30o, c = θ2). (c) The inequality is plot-
ted as F (a = 0, b = 30◦, c = θ2)=|C(a = 0, b = 30◦)−C(a = 0, c = θ2)| − 1 +C(b =
30◦, c = θ2) ≤ 0. The maximum violation occurs at θ2= 60◦.
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rather than stable signals.



Chapter 8

Conclusions

In this Chapter, we summarize this thesis and outline the future direction of this

work. We have successfully simulated one particle wave mechanics and quantum

entanglement for up to four particles by using classical fields. The reason we want

to reproduce these features is to develop practical methods for producing correla-

tions which are essential in quantum information processing. We have developed

two-window heterodyne detection technique to measure Wigner phase-space distri-

butions for classical fields. This measurement involves a single field optical analog

of one particle wave mechanics. Then, we extend this single field measurement to

many field-optical information processing to simulate projection measurement for

up to four particles. This classical wave method makes use of analog multipliers

as a nonlinear process to simulate coincidence detection techniques. In order to

show that we can obtain the correct classical correlations, we reproduce violation of

Bell’s inequality and the truth table of GHZ test of local realism. Using noise fields,

we are also able to simulate in part the wave and particle character of a quantum

system. The simulation studies in this thesis illustrate some of the similarities and

differences between classical wave and quantum systems. We also discuss the quan-

tum properties that cannot be reproduced by our measurement method and the

future direction of the measurement methods in quantum information processing.

We summarize the achievements of our work in the following, chapter by chapter.

176
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8.1 Summary

In Chapter 3, we measure the Wigner phase space distribution for a classical field

by two-window heterodyne detection. A dual local oscillator beam comprising a

focused beam and a collimated beam enables measure of the Wigner phase space

distribution as a function of transverse position x and momentum p. We originally

proposed the two-window heterodyne imaging technique for application in biomedi-

cal imaging, to develop new optical phase space coherence tomography methods for

a light field scattered from the tissue surface. However, in this thesis we use this

technique to measure the Wigner distribution for a classical analog of Schrödinger

cat state. The practical interest of this measurement is to demonstrate the similar-

ities the transverse mode of a single classical field and one particle wave mechanics.

We observe negative values of this Wigner function as discussed in Chapter 2. This

contradicts the belief that negative values of the Wigner phase space distributions

denote quantum mechanical behavior.

The LO beam in the two-window heterodyne detection technique is made of a

phase-locked superposition of a large collimated gaussian beam and a small focused

gaussian beam. In quantum optics terminology, a quantized harmonic field with

an in-phase squeezed amplitude has an x − p representation similar to a focussed

gaussian beam. A quantized harmonic field with an out-of phase squeezed amplitude

has a x−p representation similar to a collimated gaussian beam. Thus, this LO beam

is analogous to the EPR beams (the superposition of in-phase and out-of-phase

squeezed fields) used in the teleportation experiment by Kimble’ group [34]. We

believe that the two-window technique is an excellent method to measure the Wigner

phase-space distribution for classical fields. This measurement simply demonstrates

single field optical processing which is similar to the one particle wave mechanics of
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a single photon experiment in quantum information processing.

In the second experiment of Chapter 3, we have shown that two local oscillator

beams enable the measurement of the product field EH(x1)EV (x2). This can be

done by using an analog multiplier and lock-in detection. Even though we are

not measuring the entangled state of two spatially separated classical fields, the

technique suggest a method to simulate a projection measurement of entangled

states as demonstrated in Chapter 4.

In Chapter 4, we have simulated the entanglement of two particles which is be-

lieved by some workers to be impossible by using classical fields. Most of quantum

information processing (QIP) such as quantum teleportation and computations re-

quire at least two entangled particles. We have developed a classical method to

simulate the measurement of two correlated classical fields instead of two correlated

quantum particles. This may provide practical robust methods for simulating QIP.

We have shown that analog multiplication and frequency selection of heterodyne

signals arising from two spatially separated classical fields leads to measurement

in a product basis and permits simulation of two-particle entanglement. We are

able to simulate the measurements of polarization correlations for classical analogs

of four Bell states, namely, |Ψ±
cl)∆+ ≡ 1√

2
[|H1)|V 2) ± |V 1)|H2)] and |ϕ±

cl)∆+ ≡
1√
2

[|H1)|H2) ± |V 1)|V 2)]. The violation of Bell’s inequality is observed for each of

them as tabulated below.
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State Correlation Function Violation

|Ψ+
cl) sin2(θ1 + θ2) -0.2507

|Ψ−
cl) sin2(θ1 − θ2) -0.2523

|ϕ+
cl〉) cos2(θ1 − θ2) -0.2531

|ϕ−
cl〉) cos2(θ1 + θ2) -0.2518

Bell’s inequality predicts the last column must be ≥ 0. The maximum violation

value is -0.25 analogous to the predictions from quantum mechanics. The results

imply that we can study quantum entanglement of two particles by simulating the

wave character of a two-particle entangled state. The particle character of the sys-

tem can be neglected. In addition, the classical simulation experiment can be used

to simulate quantum information processing. The field at each frequency is con-

sidered to be a classical analog (c-bit) of a quantum bit (qu-bit) which can be in

an arbitrary polarization state, i.e, a superposition of two orthogonal polarizations.

It is also possible to reproduce the behavior of two-photon interferometers [68] for

which the fringe frequency is twice that of a one-photon interferometer. The mea-

surement techniques employed in Chapter 4 can be further developed to study the

entanglement of more than two particles such as three-particle GHZ entanglement

in Chapter 5.

In Chapter 5, we use classical fields to simulate three and four particle GHZ

entanglement. The simulation demonstrated in this chapter is a first step to demon-

strate a simple quantum network by using classical fields. In the quantum exper-

iments, the measurements of polarization correlations between the three particles

leads to a conflict with local realism for nonstatistical predictions of quantum me-
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chanics. That is in contrast to the two entangled particles test of Bell’s inequality

where the conflict arises for statistical predictions of quantum mechanics.

We extend the measurement method of Chapter 4 to simulate three and four-

photon Greenberger-Horne-Zeilinger (GHZ) entanglement. In the simulation of

GHZ entanglement by using classical fields, we reproduce the 32 elements in the

measurements of the quantum mechanics truth table. Field polarization correlations

are measured. The measured polarizations for each field are right (R) or left (L)

circular Y-type or ±45◦ linear X-type. The choices for three fields are taken to be

YYX, YXY, XYY and XXX. Local realism assigns +1(−1) for the field with R(L)

circular Y-type and ±1 for the field with ±45◦ linear X-type. The classical ana-

log of the three-particle GHZ entangled state yield the choices YYX=-1, YXY=-1,

XYY=-1 and XXX=+1 respectively. The final measurement XXX=+1 obtained in

our classical system is analogous to the result predicted by GHZ entanglement and

hence in contrast with local realism theory which predicts XXX=-1. The success

of these tests in our classical system is due to the fact that the signal amplitude at

a particular frequency is proportional to the projection (êLO1, êLO2, êLO3|Ψ3
GHZ)cl,

which has the same degrees of freedom and interference properties as the quantum

GHZ state |Ψ3
GHZ〉 prepared by Zeilinger’s group [29,63].

Of practical interest is that the experiments demonstrate nonlocal correlations

of the four fields which simulate an optical communication system. The classical

system employs four independent, spatially-separated local oscillator (LO) fields. In

principle, the signal from each heterodyne detector can be recorded and at a later

time, the signals can be correlated. This is possible since the relative phases of all of

the pairs of superimposed fields are preserved in propagation to the detectors and

the local oscillator phases appear only as a multi-factor in the signal amplitude.
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The signals can then be analyzed numerically, using multiplication and appropriate

frequency selection. For this system to work, it is necessary that the four observers

synchronize their time origins with a precision small compared to the inverse of

the frequency differences employed in the system. This can be accomplished with

a light pulse from the source region to all observers. A similar problem arises in

quantum experiments-observer must measure correlated photons produced in the

same event.

In Chapter 6, we use the experimental setup in Chapter 5 to simulate entan-

glement swapping which is related to quantum teleportation. The ability to swap

entangled states of many particles is essential to the development of quantum in-

formation processing methods. Generation of such states through entanglement

swapping can be very challenging in real quantum systems, where loss and deco-

herence easily destroy the state and coincidence count rates tend to be low when

the number of particles is large. We classically simulate a type of the entanglement

swapping in a projection measurement of four-photon GHZ entanglement. Our clas-

sical system is not really swapping or teleporting an arbitrary quantum state, but is

more like a generalized lock-in detection scheme. Our classical system exhibits sim-

ilar problems to those encountered in teleportation of entanglement experiments,

such as fundamental technical limitations on distinguishing between all four Bell

states. The demonstration of a classical form of entanglement swapping in the four

field basis is already a type of information processing, as it enables the correla-

tion measurements of one observer to determine the correlation measurements for

another observer.

From the simulation work in Chapters 4, 5 and 6, we believe that our measure-

ment methods consisting analog multipliers and band pass filters can be utilized
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to produce generalized multi-particle entanglement in the development of quantum

network.

One may note that our measurement method is not linear because we use analog

multiplier to obtain the product signals from two spatially separated regions. Since

the product signal is a stable oscillatory sinusoidal wave, probability language is

not applicable especially in our simulation works in Chapters 4 and 5. In order to

simulate probabilistic quantum systems, such as the mean of the product of two

quantum observables 〈A1B2〉, we mix a classical stable wave field with a classical

random noise field. As shown in Chapter 7, this produces beams with correlated

noise.

In Chapter 7, first, we simulate the particle character of single photon experiment

with a noise field. We are able to reproduce the δ-correlated shot noise that is

proportional to the intensity of the noise field. Second, we are able to simulate the

detection of the quantum correlation function of two observers A1(θ1) and B2(θ2)

with the function operator in the form |θ//〉〈θ//| − |θ⊥〉〈θ⊥|. Operator A with its

eigenvalue ±1 can be detected and simulated by a cube polarizer beamsplitter with

two detectors placed at each port and subtracted to each other. Similarly for the

observable B. In the classical noise experiment, a stable classical field and a noise

classical field with orthogonal polarization creates anti-correlated noise amplitudes

between two separated detectors. The mean value obtained from the product of

these random noise signals in the two spatially separated detectors A1 and B2 is

analogous to the quantum correlation function of two observers.

We have also demonstrated that the violation of Bell’s inequality by using

noise field for the state |ψ−
cl) = 1√

2
(|H1)|V2) − |V1)|H2)) and for the state |ϕ+

cl) =

1√
2

(|H1)|H2) + |V1)|V2)). The product of the anti-correlated noise amplitudes or
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spikes appearing in two spatially separated detectors simulates the wave-particle

duality properties of two entangled photons in the measurement of violation of

Bell’s inequality. The wave character of our classical system, such as state of polar-

ization, leads interference between a stable field and a noise field in two spatially

separated detectors that yields correlated noise fields. The particle character of the

system is the random spikes of noise in the interference amplitude of each detector.

However, these spikes do not correspond to the intensity of the photons as the spike

has a random amplitude.

In conclusion, classical wave systems are able to simulate the wave-particle dual-

ity properties in the sense as discussed above, where the measurement quantity does

not require particle behavior as in quantum systems. The ability of classical fields

to reproduce the nonlocal correlations as predicted by quantum mechanics suggests

an alternative approach to implement quantum information processing which does

not require the collapse of the wave function. Our current communication systems

are mostly based on fiber optics communication with classical light sources. Since

the employment of quantum particles in current communication systems have many

obstacles such as decoherence, then measurement methods based on the classical

simulation of quantum entanglement may be an alternative tool to improve the ef-

ficiency of information processing. In view of the stability and high signal-to-noise

ratio obtainable using classical optical waves, the study of classical-wave analogs of

quantum measurements appears to be a worthwhile goal.
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8.2 Similarities and Differences between

Classical Wave and Quantum Systems

It is worth to discussing the properties of quantum systems that cannot be simulated

by classical wave optics. In the simulation of two photon entanglement in Chapter

4, the beat amplitude at 125 kHz does not scale as the intensity of a particle and

hence the joint probability obtained in the two-photon simulation experiment does

not correspond to detecting of two entangled photons. In the quantum counterpart,

one entangled photon will ‘click′ or register on one photo-detector which produces

a single electric pulse proportional to the intensity of the photon. Similarly, the

second entangled photon will register on the second photo-detector and produces

single electric pulse. A correlator is then used to obtain the product photo-count

signals of two entangled photons, not the multiplication of two classical correlated

fields. Similarly for the classical noise experiment in Chapter 7, we are able to simu-

late particle properties of two-particle entangled system by creating anti-correlated

random noise amplitude in two spatially separated detectors, but the interference

amplitude in either detector corresponds to two correlated classical fields not to two

correlated photons. It will be challenging to develop a measurement method based

on classical wave optics to simulate multi-particle entanglement by measuring the

intensity rather than amplitudes of multi-classical beams. Note that single particle

entanglement such as polarization-position entanglement can be simulated by using

classical beam where the intensity of the classical beam is measured to simulate the

detection of the particle [44].

Another fundamental feature of quantum mechanics which classical wave op-

tics fails to simulate is quantum non-cloning principle. The quantum non-cloning
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principle prevents the information of two communicating parties to leak to a third

party. The entangled photon which is used in the quantum cryptography process

cannot be replaced by another photon generated from another independent source.

In classical wave simulation of entanglement, classical fields are reflected and trans-

mitted through a beamsplitter at the same time. The reflected and transmitted

beams have identical spatial transverse mode and polarizations. The beamsplitter

acts as a copying device for the transverse mode of a classical field, but not for a

quantum field. Hence, classical wave optics is unable to improve the security of

optical communication channels in the same way as a true quantum system.

8.3 Future Directions

In the future, we believe that the simulation method developed in this thesis can be

extended for quantum information processing. The measurement methods devel-

oped in our simulation work employ local oscillator fields which are similar to het-

erodyne detection in phase sensitive experiments such as measurement of squeezed

light. Hence, it will be intriguing to look at the quantum counterpart of the mea-

surement methods developed in this thesis. We believe that the heterodyne mea-

surement methods can be implemented by using quantum fields. If the quantum

counterpart of the measurement method is successful, then it will provide us with

a deeper insight into the fundamental concepts of violation of Bell’s inequality and

nonlocality tests of GHZ entanglement.

The classical method cannot simulate collapse of the wave function. However,

much of the quantum information processing does not require collapse. The su-

perposition principle obeyed by classical fields, is adequate to reproduce only the

interferences of the multi-particle quantum states.
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The next step will be toward the simulation of quantum algorithms such as

Deutsch-Jozsa algorithms and Shor’s quantum algorithm for factoring large num-

bers. The Deustch-Jozsa algorithm (D-J) [11,12] can be implemented as a controlled-

Not gate. In this gate, two input bits are a control bit and target bit. When the

control bit is in the state |1〉, the state in the target is flipped from |1〉 to |0〉 and

vice versa. Similarly, if the control bit is in the state |0〉, then the state in the

target is unchanged. If the target bit is in the superposition state of |0〉 + |1〉, and

the control bit is in the state |0〉, then the two output bits will have the product

state |0〉(|1〉 + |0〉). If the control bit is in the state |1〉, then the two output bits

will have the product state |1〉(|1〉 + |0〉). One can see that when the control bit

is |0〉 or |1〉, the target bit is still in a superposition state of |0〉 + |1〉. From the

above argument, the D-J algorithm can be reproduced by the multiplication of the

state of the control bit and the superposition state of the target bit. This can be

readily accomplished using the simulation method developed in this thesis. How-

ever, if the target bit is in the superposition state of |0〉 − |1〉, then our simulation

method will fail to reproduce the phase of the product basis as predicted by D-J

algorithm. In order to simulate D-J algorithm by using classical wave optics, one

may use continuous variables such as in-phase and out-of-phase components of an

optical interference beat signal instead of bits |1〉 and |0〉.
Shor’s algorithm in factoring large numbers requires the understanding of quan-

tum finite Fourier transforms and also large amount of resources. We have not yet

determined whether the classical simulation methods discussed in this thesis can

reproduce Shor’s algorithm. However, we suggest that the functions of analog mul-

tipliers and band pass filters in our measurement methods will have to be described

as operators or functions before they can be used to implement Shor’s algorithm.



Appendix A

Heterodyne Beat VB

For a given signal beam with optical power PS and a LO beam with optical power

PLO, the power of the heterodyne beat signal PB can be obtained for the balanced

heterodyne detection scheme as,

〈ELOE∗
S〉 + c.c = 〈

√
PLOe

−i(ω+δ)t
√
PSe

iωt〉 + c.c

= 2
√
PLOPS cos δt

= PB cos δt

(A.1)

where ω is the optical frequency and δ is a 10 MHz frequency shift. The power

of the heterodyne beat signal PB is defined as 2
√
PLOPS. The power PB of the

heterodyne beat signal produces a photocurrent

i = ηDPB (A.2)

where ηD is the responsivity of the photodiodes and is experimentally found to

be 0.32 A/W at λ = 633 nm. The output of the transimpedence amplifier yields

F (υ)Ri, where R =10 kΩ is the feedback resistance and F (υ) = 0.722 is the fre-

quency response of the amplifier at υ = 10 MHz. Finally an efficiency nhet must be

included to account for wavefront alignment such as the mismatch of the diameters
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of the signal and LO beams. Thus, the output of the transimpedence amplifier is

given by

VB = ηD × PB ×R× F (υ) × ηhet (A.3)

The heterodyne beat signal VB is measured with an oscilloscope.

In the spectrum analyzer, the voltage is divided by 2 due to its 50Ω input

impedance in parallel with the 50Ω resistor at the output of the transimpedance

amplifier and again by
√

2 because it measures the root mean square of the sinusoidal

heterodyne beat. Hence, the maximum voltage of the beat signal in the spectrum

analyzer is read as VSA= VB

2
√

2
.



Appendix B

Heterodyne Imaging system

The heterodyne experiment for obtaining smoothed Wigner functions is shown

in Figure B.1. The LO and the signal beam are frequency shifted by acousto-

optic modulators that differ in frequency by 10 MHz. The signal beam is combined

with the LO beam at a 50-50 beam splitter (BS1). The heterodyne beat signals

are then detected by a balanced heterodyne detection scheme. The beat signal VB

at 10 MHz is amplified and then measured with an analog spectrum analyzer. The

analog output of the spectrum analyzer, which is proportional to
√
V 2
B, is squared

using a low noise multiplier. The multiplier output is fed to a lock-in amplifier.

The signal beam is chopped on and off at 500 Hz. In this way, electronic noise

and LO shot noise are subtracted in real time, and the lock-in output is directly

proportional to |VB|2. The mean square beat signal is directly proportional to the

overlap of the Wigner phase space distributions for the local oscillator and signal

fields at the input lenses L1 and L2.

Let’s derive the measurement of smoothed Wigner function from the paraxial

ray approximation. The beat amplitude VB is determined by the spatial overlap of

the local oscillator (LO) and signal (S) fields in the plane of the detector at Z = ZD

as,

VB =

∫
dx′E∗

LO(x′, zD)ES(x′, zD) (B.1)

where x′ denotes the transverse position in the detector plane. When M1 is scanned
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Figure B.1: The experimental setup for measuring the smoothed Wigner function.
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by a distance dx, the LO field has shifted accordingly to give

VB(dx) =

∫
dx′E∗

LO(x′ − dx, zD)ES(x′, zD) (B.2)

The fields in the detector plane are related to the fields in the source planes

(z = 0) of lenses L1 and L2, which have equal focal lengths f = 6 cm. The LO and

signal fields at z = 0 after the lenses, L1 and L2, are

E ′
LO(x− dx, z = 0) = exp[−i k

2f
x2]ELO(x− dx, z = 0)

E ′
S(x, z = 0) = exp[−i k

2f
x2]ES(x, z = 0)

(B.3)

When the lens L2 is scanned by a distance dp, the signal field (B.3) is altered

as

E ′
S(x, z = 0) = exp[−i k

2f
(x− dp)2]ES(x, z = 0)

The fields propagating a distance d = f to the planes of the detectors can now be

obtained by using Fresnel’s diffraction integrals as,

ELO(x′ − dx, zD) =

√
k

i2πf

∫
dx exp[i

k

2f
(x− x′)2]

× exp[−i k
2f
x2] ELO(x− dx, z = 0)

ES(x′, zD) =

√
k

i2πf

∫
dx exp[i

k

2f
(x− x′)2]

× exp[−i k
2f

(x− dp)2] ES(x, z = 0)

(B.4)
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The quadratic phases that depend on x2 cancel in these expressions because the

detector plane is in the focal plane of the lenses, L1 and L2. Leaving the above

equations as,

ELO(x′ − dx, zD) =

√
k

i2πf
exp[−i k

2f
x′2]

×
∫
dx exp[i

k

2f
xx′]ELO(x− dx, z = 0)

ES(x′, zD) =

√
k

i2πf
exp[i

k

2f
(x′2 − d2

p)]

×
∫
dx exp[i

k

2f
x(x′ − dp)]ES(x, z = 0)

(B.5)

By substituting the above equations into Eq. (B.2), the quadratic phases in x′

cancel, as,

VB(dx, dp) =
k

2πf
exp[−i k

2f
d2
p]

∫
dx′

∫
dx1 exp[−ik

f
x1x

′] E∗
LO(x− dx, z = 0)

×
∫
dx2 exp[i

k

f
x2(x

′ − dp)] ES(x2, z = 0)

(B.6)

Integrating over x′ yields a delta function as

∫
dx′ exp[−ik

f
x′(x1 − x2)] = 2πδ(x1 − x2) (B.7)
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Thus, Eq. (B.6) can be rewritten as

VB(dx, dp) =
k

f
exp[i

k

2f
d2
p]

∫
dx2 exp[−ik

f
x2dp] ES(x2, z = 0)

×
∫
dx1 E∗

LO(x1 − dx, z = 0)δ(x1 − x2)

(B.8)

Integrating over x1, the above equation becomes,

VB(dx, dp) =
k

f
exp[i

k

2f
d2
p]

∫
dx2 exp[−ik

f
x2dp] × E∗

LO(x2 − dx, z = 0)ES(x2, z = 0)

By replacing x2 by x and dropping the term z = 0, the mean square beat amplitude

is then given by

|VB(dx, dp)|2 ∝
∣∣∣∣
∫
dx E∗

LO(x− dx)ES(x) exp(−ikdp
f
x)

∣∣∣∣
2

(B.9)

We can explicitly write out the magnitude squared of the detected signal as

|VB(dx, dp)|2 ∝
∫
dx E∗

LO(x− dx)ES(x) exp(−ikdp
f
x)

×
∫
dx′ ELO(x′ − dx)E∗

S(x′) exp(ik
dp
f
x).

(B.10)

This can be rewritten using the variable transformations as

x = xo + η/2

x′ = xo − η/2. (B.11)
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The Jacobian of this transformation is 1. Thus, the beat signal can be written in

terms of these variables as

|VB(dx, dp)|2 ∝
∫
dxo

∫
dη E∗

LO(xo + η/2 − dx)ELO(xo − η/2 − dx)

× E∗
S(xo − η/2)ES(xo + η/2) exp(−ikdp

f
η).

(B.12)

Recall the definition of the Wigner distribution,

W (x, p) =

∫
dε

2π
exp(iεp)〈 E∗(x+ ε/2)E(x− ε/2)〉 (B.13)

where its inverse transform is given by,

E∗(x+ ε/2)E(x− ε/2) =

∫
dp exp(−iεp)W (x, p). (B.14)

Using this equation to replace the signal fields in Eq. (B.12) the beat signal becomes

VB(dx, dp)|2 ∝
∫
dxo

∫
dη E∗

LO(xo + η/2 − dx)ELO(xo − η/2 − dx)

×
∫
dp exp(−ikdp

f
η) exp(−iηp)WS(x, p). (B.15)

Again, since the LO Wigner distribution is

WLO(x◦ − dx, p+ k
dp
f

) =

∫
dη

2π
exp[−iη(p+ k

dp
f

)]

× E∗
LO(xo + η/2 − dx)ELO(xo − η/2 − dx).

(B.16)
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The LO fields in Eq. (B.15) can be replaced by the Wigner function in Eq. (B.16).

Then finally, the mean square heterodyne beat signal |VB|2 can now be written as

|VB(dx, dp)|2 ∝
∫
dxdpWLO(x− dx, p+

k

dp
)WS(x, p) (B.17)

where WS(x, p) is the Wigner distribution of the signal field in the plane of L2 (z

=0) and WLO(x, p) is the LO Wigner distribution in the plane of L1 (z = 0).



Appendix C

Amplitudes of SR and SI

The combined two LO beams are mixed with the signal beam in a beamsplitter in

the balanced heterodyne detection scheme. The outputs of the beamsplitter E1(t)

and E2(t) at the detectors D1 and D2 respectively are given by,

E1(t) = ES(x1)e
−i(ω+ΩS)t + ELO1(x1)e

−i(ω+ΩLO1)t + ELO2(x1)e
−i(ω+ΩLO2)t + cc

E2(t) = ES(x2)e
−i(ω+ΩS)t − ELO1(x2)e

−i(ω+ΩLO1)t − ELO2(x2)e
−i(ω+ΩLO2)t + cc

(C.1)

where ω and Ω indicate optical and modulation frequencies. The minus signs in

E2(t) are due to the π-phase shift of the beamsplitter. The ES(x), ELO1(x) and

ELO2(x) are the amplitudes of the signal beam and two LO beams respectively.

These fields are function of position coordinate in the detection plane of detectors

D1 and D2. The heterodyne beat signal between the local oscillator beam and

signal beam is given by spatial overlapping integration i.e.,
∫
dx1E

∗
S(x1)ELO1(x1),∫

dx2E
∗
S(x2)ELO2(x2) and etc. However, for simplicity we neglect these integrations

in the following discussion. Then, the heterodyne beat signals V1(t) in detector D1
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and V2(t) in detector D2 are given respectively by,

V1(t) = E∗
1(t)E1(t) + cc

= E∗
SES + E∗

SELO1e
−i(ΩLO1−ΩS)t + E∗

SELO2e
−i(ΩLO2−ΩS)t

+ E∗
LO1ELO1 + E∗

LO1ESe
−i(ΩS−ΩLO1)t + E∗

LO1ELO2e
−i(ΩLO2−ΩLO1)t

+ E∗
LO2ELO2 + E∗

LO2ESe
−i(ΩS−ΩLO2)t + E∗

LO2ELO1e
−i(ΩLO1−ΩLO2)t + cc

V2(t) = E∗
2(t)E2(t) + cc

= E∗
SES − E∗

SELO1e
−i(ΩLO1−ΩS)t − E∗

SELO2e
−i(ΩLO2−ΩS)t

+ E∗
LO1ELO1 − E∗

LO1ESe
−i(ΩS−ΩLO1)t + E∗

LO1ELO2e
−i(ΩLO2−ΩLO1)t

+ E∗
LO2ELO2 − E∗

LO2ESe
−i(ΩS−ΩLO2)t + E∗

LO2ELO1e
−i(ΩLO1−ΩLO2)t + cc .

(C.2)

The output voltage VB(t)=V1(t) − V2(t) from the balanced heterodyne detection

before being fed into the spectrum analyzer is given by,

VB(t) = 2E∗
SELO1e

−i(ΩLO1−ΩS)t + 2E∗
SELO2e

−i(ΩLO2−ΩS)t + cc (C.3)

In spectrum analyzer, the power spectrum of the VB is measured as

|VB(Ω)|2 =

∫ ∞

−∞

dτ

2π
eiΩτ 〈VB(t)VB(t+ τ)〉 (C.4)

but it is displayed as
√|V (Ω)|2. As mentioned in Chapter 3, it is squared by using a

squarer to recover the beat signal |VB(Ω)|2 which is denoted as |V◦(t)|2 in Figure 3.2.

From Eq. (C.4), the power spectrum can be calculated by keeping the slowly varying

term (ΩLO1 − ΩLO2) in time t and other terms that depend on τ , that is,
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〈VB(t)VB(t+ τ)〉 =
1

T

∫ T/2

−T/2
dt VB(t)VB(t+ τ)

∝ E∗
SELO1ESE

∗
LO1e

−i(ΩS−ΩLO1)τ

+ E∗
SELO2ESE

∗
LO2e

−i(ΩS−ΩLO2)τ

+ E∗
SELO1ESE

∗
LO2e

−i(ΩLO1−ΩLO2)te−i(ΩS−ΩLO2)τ

+ E∗
SELO2ESE

∗
LO1e

i(ΩLO1−ΩLO2)te−i(ΩS−ΩLO1)τ

+ (: the negative frequency contributions from the above terms:)

(C.5)

Here, ΩS=120 MHz, ΩLO1=110 MHz + 5 kHz and ΩLO2=110 MHz. Now, by sub-

stituting Eq. (C.5) into Eq. (C.4) to obtain the power spectrum for the beat VB

and setting the analyzer at 10 MHz with the bandwidth of 100 kHz, the |V◦(t)|2 at

5 kHz after the recovery by the squarer is

|V◦(t)|2 ∝ E∗
SELO1ESE

∗
LO2e

−i(ΩLO1−ΩLO2)t + cc (C.6)

Here ΩLO1 − ΩLO2 = 5 kHz. The in-phase and out-of-phase components of the

|V◦(t)|2 at 5 kHz correspond to SR and SI in Eq. (3.8). Note that E∗
SELO1 in

integrated over the transverse plane as is ESE
∗
LO2. It is worth noting that the

component E∗
SELO1 of Eq. (C.6) is corresponds to the measurement of the position

distribution in S(x◦, p◦) of Eq. (3.8) by the tightly focussed LO1 beam. Similarly,

the component ESE
∗
LO2 of Eq. (C.6) indicates the measurement of the momentum

distribution in S(x◦, p◦) of Eq. (3.8) by the collimated LO2 beam.
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