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Abstract

Strongly interacting two-component Fermi gases are prototypes for other exotic

systems in nature, including high temperature superconductors, quark-gluon plas-

mas and neutron stars. Interactions between spin components can be varied

widely, permitting exploration of the crossover from Bose to Fermi statistics. In

the strongly interacting limit, the behavior of these systems becomes indepen-

dent of the microscopic details of their interactions. Hence, strongly interacting

Fermi gases provide a testing ground for many-body nonperturbative calculations

of strongly interacting matter.

In this dissertation, I describe the first thermodynamic study of a strongly

interacting degenerate Fermi gas. This study of the heat capacity shows a transi-

tion in behavior at T/TF = 0.27(0.02), which is interpreted as a superfluid phase

transition by Kathy Levin’s pseudogap theory. This is the first direct measure-

ment of the superfluid transition temperature in the strongly interacting regime.

I also describe the first measurement of the temperature dependence of the radial

breathing mode in a strongly interacting Fermi gas. As the temperature of the

gas is lowered, we find an increase in the lifetime of the breathing mode oscilla-

tion at the hydrodynamic frequency. This is inconsistent with expectations for a

collisional system, and provides evidence for a superfluid state. As the tempera-

ture increases, we observe a transition in behavior at T/TF = 0.35. In the high

temperature regime, an abrupt increase in the damping rate is interpreted as the

iv



breaking of noncondensed atom pairs. Further, I describe studies of the magnetic

field dependence of the radial breathing mode in a low temperature system, which

test the best current many-body predictions for the equation of state of the gas.

An increase in the damping rate above the center of a broad Feshbach resonance

is interpreted as the breaking of atom pairs.

I describe our techniques for producing degenerate, stable, strongly interacting

two-component mixtures of 6Li confined in an optical trap. Evaporative cooling

yields 2.0(0.2) × 105 atoms at temperatures as low as T/TF = 0.06. Starting

from these cold atom samples, I describe the techniques used to study the heat

capacity and radial breathing mode in a strongly interacting Fermi gas.
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Chapter 1

Introduction

I suspect one could mark the passage of years by noting the annual scramble

among university biology, chemistry, and physics departments to enlist majors

from the limited pool of scientifically-minded freshman. Inevitably, in the course

of lobbying, physics professors boast, “Physics is the fundamental science.” Biol-

ogy and chemistry, the argument proceeds, could be rendered obsolete if we had

adequate knowledge of the state of every constituent particle in a chemical reac-

tion or a living organism. It is an extreme view, to be certain, as I never expect to

explain why my family dog howled at firetrucks starting from Schrödinger’s equa-

tion. That said, the notion of studying “the fundamental science” is an appealing

one. The argument can be taken one step further, however, for those who study

fermions, the fundamental building blocks of matter. Unfortunately, basic studies

of fundamental physical systems rarely garner much attention, as they are so far

removed from potential applications in the “real world.” As a result, it might

seem surprising that the field of strongly interacting degenerate Fermi gases has

enjoyed so much exposure in popular science publications in recent years, and it is

natural to question why. The answer, or some portion of it, requires a digression

into quantum statistics.

All particles in the universe fall into two classes of matter which obey dif-

1
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ferent quantum statistics: fermions and bosons. Typically, quantum mechanics

textbooks run amok with personification when describing the differences between

the two types of particles. Bosons are described as jovial, gregarious, and socia-

ble, while fermions are characterized as misfits who absolutely, positively need

their personal space. The analogies, while painful at times, have their merit. In a

quantum world of discretized energy levels, multiple bosons are allowed to occupy

the same quantum state, a privilege not extended to fermionic particles thanks

to the Pauli exclusion principle. While this establishes the primary difference be-

tween bosons and fermions, it suggests no reason why the study of one would be

more fundamental than the other. For this, we must draw on the concept of spin,

which can be thought of as a classification scheme for quantum particles. Bosons

have integer spin (0, 1, and so on) while fermions have half-integer spin (1/2, 3/2,

and so on). Perhaps most importantly for the purposes of this discussion, even

numbers of fermions can be assembled to produce a boson.

The chest-thumping fermion researcher might argue that many bosonic sys-

tems are little more than a cluster of fermions in one place. Surely this is an

unfair characterization of the many interesting studies of bosonic systems, but its

essence explains the widespread interest in the field of degenerate Fermi gases.

Fermions are the fundamental building blocks of matter, and so fermionic systems

are ubiquitous in the universe. Not all of these fermionic systems are easily acces-

sible or subject to human manipulation, however, and this is where the ultracold

vapor of fermionic 6Li atoms confined in our optical trap becomes relevant. In

studying the comparatively simple system of a gas of fermions, potentially we

can learn about many more exotic systems in nature, ranging from strongly in-

teracting nuclear matter to high temperature superconductors. And, unlike some
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of these other systems, we can exercise good control over many of the physical

parameters of our system.

In Section 1.1, we consider in greater detail some of the motivation for studying

strongly interacting Fermi gases. This is followed in Section 1.2 by a discussion of

the significance of the research presented in this dissertation. Finally, Section 1.3

provides an outline of this dissertation.

1.1 Motivation for studies

Justifying the need for basic research is often a struggle, particularly in a society

which focuses heavily on results and practical applications. As for the latter, one

would be hard pressed to argue that studies of strongly interacting Fermi gases

will yield substantial improvement in the average person’s quality of life in the

near future. While a hardcore pragmatist might have difficulty justifying this type

of research, those of a more flexible nature will be pleased to learn that studies of

strongly interacting Fermi gases are of interest to researchers beyond the atomic,

molecular, and optical physics community (see for example [1–3]). Below, we

discuss some of the areas of physical inquiry that have taken an interest in the

research we conduct in our lab.

1.1.1 High temperature superconductors

In ordinary metals, the motion of electrons is impeded by frequent collisions

with other matter. This gives rise to ohmic heating, a process that reduces the

efficiency of the transmission of electricity. There is a class of materials, however,

that undergoes a very unusual transition at low temperature to a state in which
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the electrons flow without resistance. These metals are known as superconductors,

and the economic consequences of developing a superconductor which operates

above room temperature (≈ 295 K) could be staggering. Naturally, then, there

is great interest in developing such a material.

The term “high temperature superconductor” might be a bit misleading to

those unfamiliar with the history of the field, as the current high temperature

superconductors do not make the transition to a superconducting state until they

are cooled to temperatures roughly 160 ◦C below room temperature. Theoretical

understanding of the operation of these materials remains incomplete, unfortu-

nately. There are those who hope that the development of a dependable theory

of high temperature superconductors might yield insights into methods for de-

veloping better superconductors (that is, superconductors with a higher critical

transition temperature). It should come as no surprise, then, that there is also

keen interest in the progress of the theory of superconductors.

Perhaps the most widely recognized theory of superconducting behavior is

BCS theory, developed by Bardeen, Cooper, and Schrieffer in the late 1950’s ( [4]

provides a fine summary of the theory). In the theory, a collection of fermions,

often referred to as the “Fermi sea,” allows a pair of spin-up and spin-down fermi-

ons that are weakly attracted to each other to form a delicate bound state. The

paired fermions, known as Cooper pairs, are correlated primarily in momentum

space (they have equal and opposite momenta), and their separation is often

larger than the average interparticle spacing of fermions in the Fermi sea. If

many of the fermions in the sea undergo pairing, then the aggregate collection

of fermions will undergo a transition to a superconducting state, in which they

flow without resistance. As the pairs are delicate objects, the superconducting
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state can be a fairly fragile being as well, and both are easily broken by thermal

fluctuations. Consequently, superconducting transitions tend to occur at rather

low temperatures, where thermal fluctuations are suppressed.

This is all quite nice, but how does the physics of a high temperature supercon-

ductor relate to the physics governing an ultracold Fermi gas? Indeed, it might

seem odd to claim the existence of parallels between materials that appear to

operate at very different temperatures. In fact, there is only an apparent discrep-

ancy. The physics of both systems are governed not by their absolute temperature

T , but the ratio of their temperature to a characteristic temperature for that sys-

tem. This characteristic temperature, known as the Fermi temperature TF , is

a property of the physical system which depends on the density of the fermions

involved, among other things. For some of the best currently known high temper-

ature superconductors, where a typical Fermi temperature is on the order of 104

kelvin, the critical transition temperature Tc to the superconducting state occurs

at Tc/TF ≈ 0.01 [5]. In ultracold Fermi gases, we have a very similar scenario

to what occurs in a superconductor. As the Fermi gas is cooled, the presence of

attractive interactions between opposite spin fermions can lead to pairing and a

phase transition to a superfluid state. Where electrons in a superconductor flow

without resistance, fermions in a superfluid Fermi gas can flow without viscos-

ity. Furthermore, in the presence of strong attractive interactions, the transition

temperature to the superfluid state can be a substantial fraction of the Fermi tem-

perature (see [6–10], for example), upwards of 0.25. Consequently, the behavior

of a superfluid Fermi gas at reduced temperature T/TF = 0.25 might behave like

a metal superconductor operating at a temperature of several thousand degrees

kelvin, well above room temperature. Studying the behavior of such a superfluid
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might yield insights into the development of the highly sought-after above room

temperature superconductor. More immediately accessible, however, is the use

of data from studies of degenerate Fermi gases to test the accuracy of theories

developed for superconductors. In metals and other condensed matter systems,

researchers often exercise limited control over physical properties such as the inter-

particle spacing between fermions or the strength of their interactions. Ultracold

Fermi gases are far more flexible, however, and the ability to produce such gases

under different physical conditions provides an extensive battery of tests for theo-

ries of superconductivity. In Chapter 6, we report on the comparison between the

measured heat capacity of a strongly interacting Fermi gas and the predictions of

a theory originally developed for high temperature superconductors.

1.1.2 Quark-gluon plasma

Once believed to be elementary particles, baryons such as protons and neutrons

are now known to be composed of smaller particles called quarks. Quarks belong

to the class of fermionic particles, and under normal conditions, are bound to

other quarks via the exchange of gluons. However, for very high temperature and

density conditions, quarks and gluons can become unbound, creating a quark-

gluon plasma (QGP). Such a condition is believed to have existed some tens of

microseconds following the Big Bang at the beginning of the universe (see [11],

for example).

Recently, researchers at the Relativistic Heavy Ion Collider (RHIC) succeeded

in producing a QGP under controlled laboratory conditions (for a discussion of

this somewhat controversial result, see [12]). A remarkable experimental achieve-

ment requiring 100 GeV/nucleon [13,14], the resulting plasma at 2× 1012 Kelvin
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surprisingly shares some properties with our ultracold atomic gases. Early the-

oretical efforts predicting the existence of the QGP hinted that it would be a

weakly interacting system [15]. However, data from RHIC suggested instead that

the behavior of the system was more readily described by nearly perfect hydro-

dynamics, in which frequent collisions drive the dynamics of the system. In fact,

the QGP has been touted as a nearly perfect fluid [15], given its hydrodynamic

properties. The observation of extremely good hydrodynamics in a strongly inter-

acting ultracold gas of 6Li [16] was one of the primary reasons dialogue between

ultracold Fermi gas and QGP researchers began. The anisotropic expansion of a

strongly interacting 6Li gas, first observed in 2002, resembles the “elliptic flow”

of particles that occurs when heavy nuclei collide slightly off-axis [15]. Given the

wide disparity in energy and temperature scales between ultracold Fermi gases

and a QGP, it is surprising to note that researchers in both fields have under-

taken similar calculations in an effort to explain the behavior of their respective

systems. For instance, calculations of the viscosity and hydrodynamic behavior

arising from binary collision processes have proceeded in much the same fashion

in both fields [17].

1.1.3 Neutron stars

As a final example of the parallels between strongly interacting Fermi gases and

other physical systems in the universe, we consider the case of neutron stars. Such

stars are composed of very densely packed neutrons. The tremendous density of

the stars and the associated gravitational attraction would be great enough to

cause collapse of the star were it not for the Fermi pressure provided by the Pauli

exclusion principle.
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We have observed similar behavior in a strongly attractive Fermi gas [18],

where the inward attractions are induced by a Feshbach resonance (see Sec-

tion 2.3) and are opposed by the outward Fermi pressure. Comparison between

the strongly attractive, degenerate Fermi gases produced in our laboratory and

the strongly interacting matter in a neutron star is made possible by the univer-

sal nature of these systems. For very strongly interacting matter, the behavior

of the system becomes independent of the details of how strong interactions are

produced. In Section 2.2.1, we discuss a universal many-body parameter β which

characterizes the strength of interparticle interactions in very strongly interacting

matter. While the nuclear theory community has been performing calculations

of β for several decades, the first measurements of β were conducted by atom

cooling and trapping groups studying strongly interacting Fermi gases. This is

discussed in greater depth in Section 2.2.1.

There is substantial excitement that the similarities between systems such

as high temperature superconductors, the QGP, and neutron stars and strongly

interacting degenerate Fermi gases will allow strongly interacting Fermi gases to

serve as proving grounds for theories developed for other systems. Moreover, one

could argue that the existence of dialogue between historically disparate subfields

of physics is a worthwhile end in itself.

1.2 Significance of current work

In Section 1.2.1, I assess the importance of the original research on strongly

interacting Fermi gases discussed in this dissertation. This research builds heavily

on the efforts of many others. In Section 1.2.2, I outline my contributions to the
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improved operation of the experimental apparatus used in our laboratory.

1.2.1 Original studies of strongly interacting Fermi gases

The two primary experimental efforts outlined in this dissertation are the mea-

surement of the heat capacity in the strongly interacting regime (Chapter 6) and

studies of the radial breathing mode throughout the crossover region (Chapter 7).

Our study of the heat capacity [10] is the first thermodynamic measurement of

a strongly interacting Fermi gas, and the first direct measurement of the super-

fluid transition temperature in the strongly interacting regime. This measurement

required the development of new experimental techniques, including an approxi-

mate scheme for measuring the temperature of the gas in the strongly interacting

regime. Temperature measurement in the presence of strong interactions is a

fairly controversial topic, and while we do not suggest that our scheme is the

ultimate solution, we do believe it is a practical alternative to other temperature

measurement schemes, as discussed in Section 6.3.

Our exhaustive studies of the radial breathing mode in a strongly interact-

ing Fermi gas, discussed in Chapter 7, also yielded important insights. As the

breathing mode effectively tests how the gas holds itself together while being

stretched and compressed, it provides a convenient test of the equation of state

of the gas. As researchers continue to develop better theories to describe the

behavior of strongly interacting matter, simple tests of these theories are of great

importance. Measurements of the breathing mode constitute one such test.

Our initial study of the temperature dependence of the radial breathing mode

lifetime [19] provided the first evidence for superfluid hydrodynamics in a strongly

interacting Fermi gas. This was followed by a more definitive study of the temper-
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ature dependence of the radial breathing mode [20], which verified the conclusions

of our initial study and provided several new insights. This second study revealed

unexpected features in the damping rate of the breathing mode as a function

of temperature which have been interpreted as possible indicators of a superfluid

phase transition and the breaking of noncondensed atom pairs. We also conducted

exhaustive measurements of the magnetic field dependence of the radial breathing

mode for a low temperature gas. The results of this study were in general agree-

ment with predictions based on superfluid hydrodynamics. Unexpected increases

in the damping rate and frequency above resonance, first observed in [21], have

been interpreted in terms of pair-breaking.

1.2.2 Contributions to laboratory operation

While a good deal of effort was expended in acquiring the data for this disserta-

tion, none of this would have been possible without the substantial efforts of my

predecessors. Of particular note are the contributions of Ken O’Hara, Stephen

Granade, Michael Gehm, and Staci Hemmer, who are responsible for the design

and construction or purchase and installation of nearly every element presently in

use on the system. All of the laser systems, basic optical design choices, vacuum

system elements, and other myriad components were in place when I began work-

ing in the lab. Moreover, all of the necessary computer and software equipment

had been developed and debugged. Very simply, the credit for the construction

of the system should be directed to the aforementioned people. Without them,

the work presented in this dissertation would not have been possible.

The majority of my time in the lab was consumed by making particular

processes more efficient or precise, and increasing the reliability of the system. In
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my early days in the lab, I was guided in these efforts by Staci Hemmer. Shortly

thereafter, we were joined by postdoctoral researcher Andrey Turlapov. Together,

we simplified a number of the optical designs on the system, and where possible,

replaced unreliable electronic circuits and power supplies with more dependable

pieces of equipment. Improving the reliability of the system also required up-

grades in the custom software used to control the experimental apparatus. Of the

contributions I made to the laboratory from an operational standpoint, I consider

the last of these to be the most substantial.

Some of the studies presented in this dissertation required that particular

events occur with microsecond precision. While all of the physical components

which comprise the experimental apparatus were capable of functioning with mi-

crosecond precision, not all of the various microsecond time delays were accounted

for in the software which controls the system. These delays have now been docu-

mented in the “timing files” (scripts which control the activity of the experimental

apparatus). Another important upgrade to the software was the development of

an error checking scheme for the DG535 Stanford pulse generators which we use

to control some of our most time-sensitive tasks. The general programming of the

Stanford pulse generators also underwent an overhaul, as the use of configurations

stored in nonvolatile memory in the pulse generators now prevents some errors

which could have occurred when the user switched between different timing files.

These upgrades are discussed in Appendix C.1.

Perhaps my single biggest contribution to the laboratory’s custom software

library was the development of a LabVIEW program which automates the process

of taking and saving data. As the reliability of the experimental system improved,

it became apparent that the system could be run for hours at a time with minimal
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attention from the user. To capitalize on this new degree of reliability, a program

was developed which allows the user to vary a single experimental parameter

over a user-defined range of values, saving data at each value of the parameter.

Further, the system was designed to randomize the order in which the data is

acquired, thereby lessening the effects of systematic drifts over the course of a

day. The software that handles this is discussed in Appendix C.2.

The final software upgrade of note, described in Appendix C.3, involves the

development of a LabVIEW file which enables the user to command the behavior

of particular GPIB programmable devices involved in the final stage of the atom

cooling process. This upgrade did not provide any further functionality to the

laboratory, but it did automate a number of tedious processes which formerly

were handled manually.

The common thread among all of the upgrades summarized above is that they

enabled the experimental system to operate more reliably and with less attention

from the user. And while the data in this dissertation could conceivably have

been acquired without these upgrades, the process would have been substantially

more painful.

1.3 Dissertation organization

Chapter 2 covers most of the basic theoretical background required for an un-

derstanding of the relevance of the experimental results discussed elsewhere in

this dissertation. Where possible, I have attempted to provide simple physical

descriptions, and where simple descriptions are unavailable, I have tried to direct

the reader to more demanding treatments of the subject matter. In Chapter 2,
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I also present a brief summary of the major experimental results from the sub-

field of degenerate, strongly interacting Fermi gases over the past several years.

It is hoped that such a summary will help to place the studies described in this

dissertation in a larger context.

Before delving into the novel physical studies described in Chapters 6 and 7,

we must first cover some basic atom cooling and trapping methods. Chapter 3

summarizes the basic experimental techniques currently employed in our labora-

tory, and provides a general description of the experimental apparatus as well.

Much of this chapter is similar to content contained in previous theses from this

group [22–24], and is included here for completeness. Furthermore, some of the

experimental techniques in use have evolved in complexity from previous theses,

and these areas are discussed in greater detail.

All of the data presented in this dissertation was acquired in the form of

absorption images of the atom clouds. Due to the small radial size of the trapped

atom cloud, reliable imaging requires that we release the cloud from the trap and

allow it to expand to a size much larger than the resolution of our imaging system

prior to imaging the cloud. In order to infer information about the trapped cloud,

we need to understand how the cloud expands upon release from our optical trap.

In Chapter 4, we consider the expansion dynamics of gases in the noninteracting

and hydrodynamic regimes. This is followed in Chapter 5 by a thorough discussion

of the techniques used for probing the atom cloud and processing the resulting

images.

In Chapter 6, we report our studies of the heat capacity of a strongly interact-

ing Fermi gas, the first thermodynamic study of such a system. In the chapter,

I describe the novel energy input technique and temperature measurement meth-
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ods used to study the heat capacity. Our understanding of our results was aided

greatly by a collaboration with Kathy Levin’s theory group at the University of

Chicago. Included in this chapter is a very basic description of their theory along

with a comparison of their theory and our data.

Using experimental techniques very similar to the ones that make a study

of the heat capacity possible, we can excite the radial breathing mode of our

strongly interacting Fermi gas, leading to the studies discussed in Chapter 7.

We have conducted fairly exhaustive studies of the breathing mode, considering

both the dependence on interaction strength and temperature. In this chapter, I

will describe the techniques used to excite and then monitor the evolution of the

breathing mode. Interpretation of the sometimes complex results of these studies

is provided.

Chapter 8 offers a conclusion to this dissertation and provides an outlook

for future studies of strongly interacting degenerate Fermi gases. In spite of

the tremendous experimental progress provided by a number of research groups

worldwide, there is still much to learn about this very physically rich system.

Finally, there are three appendices included in this dissertation. Although

many of our studies focus on the behavior of strongly interacting harmonically

trapped Fermi gases, our understanding of these results often relies on concepts

drawn from theoretical treatments of noninteracting harmonically trapped Fermi

gases. As a result, Appendix A presents some basic results from the area of

noninteracting Fermi gases. This appendix is written at a basic level and is

intended as a handy reference for future researchers in our laboratory. Appendix B

covers some of the issues relevant to the generation of an on-resonance probe

pulse needed for high field imaging, a technique we use to take pictures of our
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gas. Finally, Appendix C provides a description of the custom software upgrades

I implemented during my time in the group. This section will be of limited

interest to anyone outside our laboratory, save those who enjoy tedious technical

descriptions of software.



Chapter 2

The BEC-BCS crossover and
Feshbach resonances

Much of the appeal of studying ultracold gases resides in the excellent degree of

control we exercise when manipulating them. While we can readily control the

density and temperature of the gases, perhaps the most useful “knob” to turn is

the strength of the interactions between the particles which comprise the gas. In

this chapter, we explore the basic physics of the so-called “BEC-BCS crossover,”

which explores the transition between Bose-Einstein and Fermi statistics as the

nature and strength of interparticle interactions is varied. We will find that this

realm of very rich physical behavior is made accessible by Feshbach resonances

which can greatly enhance the rate at which collisions occur in the gas. Some

basic scattering theory will be presented, and we will consider the special case of a

unitary Fermi gas. Much of the discussion will focus on broad physical concepts,

but toward the end of the chapter we will focus on issues specific to the 6Li atom.

In Section 1.2.1, I provided a brief description of the significance of the original

research presented in this dissertation. In an attempt to position these results in

a larger hierarchy of progress by the field as a whole, I include a discussion of the

major experimental results from the past several years in Section 2.5. We begin,

however, with a basic discussion of the BEC-BCS crossover.

16
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2.1 The BEC-BCS Crossover

A qualitative description of the BEC-BCS crossover is perhaps most easily given

by examining the two extremes in the crossover spectrum. BEC stands for “Bose-

Einstein condensation,” a phenomenon first predicted by Einstein early in the

twentieth century [25].1 In Bose-Einstein condensation, as a group of bosonic

particles is cooled below a critical temperature, many of the bosons collapse into

the ground state of the system. As BECs amount to macroscopic occupation of

the lowest quantum state available, the phenomenon obviously cannot be observed

with fermionic particles, as the Pauli exclusion principle prevents fermions with

the same quantum numbers from occupying the same quantum state. However,

recall that even numbers of fermions can bind together to form a composite bo-

son. In that case, paired fermions with small interparticle separation will behave

like bosons and can undergo Bose-Einstein condensation. Such molecules can be

formed when weak repulsive interactions exist between two spin components of a

Fermi gas.

Suppose, however, that we have a two-component mixture of fermions which

is governed by weak attractive interactions between the two components. This

is the BCS limit. BCS theory was introduced in Section 1.1.1, but it is worth

summarizing again here. Under the right conditions, two fermions can become

weakly paired via correlations in momentum space. In order for a shallow bound

state to appear, the presence of other fermions (often referred to as the “Fermi

sea”) is necessary. It is also critical that the interactions between the fermions be

1At the time of Einstein’s prediction, the technology did not exist to produce such a state in
a controlled laboratory setting. In fact, Bose-Einstein condensation was not directly observed in
bosonic gases until 1995 [26–28], an experimental achievement which garnered the 2001 Nobel
prize in physics.
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attractive rather than repulsive. Finally, due to the weak nature of the coupling

between the components of the pair, the paired state can be quite delicate. Pairs

can be broken easily by thermal fluctuations, and so the phenomenon of pairing

tends to occur at low temperatures. If a substantial fraction of the fermions in

the gas form pairs, then the gas can undergo a transition to a superfluid state,

analogous to the transition to a superconducting state in a superconductor.

In summary, BECs can form in fermionic systems provided pairs of fermions

with small interparticle separation form, and act as composite bosons. As with

atomic BECs, BECs of molecules composed of fermions can form in a sufficiently

cold system governed by weak repulsive interactions. In the other extreme, a

BCS-type superfluid can form in a sufficiently cold system in which there exist

weak attractive interactions between the fermions. Suppose, however, we have a

physical system in which the nature (attractive versus repulsive) and strength of

interparticle interactions can be continuously tuned between the BCS and BEC

regimes. In this case, we can investigate the “BEC-BCS crossover.” This is

precisely the type of system we can generate in our laboratory. We can explore the

crossover from Fermi to Bose statistics by manipulating the interactions between

two spin components of a Fermi gas. All of this is made possible by the use of

Feshbach resonances, to be discussed in Section 2.3. Before delving into the many

useful features of a Feshbach resonance, it will be helpful to review some basic

scattering theory.
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2.2 Low energy scattering

Scattering processes involving two quantum particles are covered in nearly every

elementary quantum mechanics textbook (examples include [29–32]) and in pre-

vious theses from this group (see [22, 24] for some of the more comprehensive

treatments). Consequently, only the basics of two body scattering will be re-

viewed here. In the discussion that follows, we will use the notation conventions

in [31], though the conventions are much the same in any standard quantum

mechanics textbook.

Consider a stream of particles impinging on a target. If we suppose that the

incident stream of particles is, more or less, a plane wave with wave vector k, and

if we suppose that the scattered particles look roughly like a spherical wave with

outgoing spherical wave amplitude f(k′,k), where k′ represents the wave vector

of the outgoing wave, then the outgoing spherical wave amplitude is related to

the differential scattering cross section dσ/dΩ by

dσ

dΩ
dΩ = |f(k′,k)|2 dΩ. (2.1)

The quantity on the left hand side of (2.1) represents the ratio of particles scat-

tered into a detector subtending solid angle dΩ per second to the number of

particles per unit area per second impinging on the detector.

If the scattering potential provided by the target is spherically symmetric, and

if we let θ be the angle between the incident and outgoing wave vectors k and k′,

then we can expand the outgoing wave in partial waves as

f(k′,k) = f(θ) =
∞∑

l=0

(2 l + 1)fl(k) Pl(cos θ), (2.2)
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where l indicates the order of the angular momentum of the outgoing wave and

Pl(x) are Legendre polynomials. The partial wave amplitudes fl(k) are related to

the scattering phase shifts δl by [31]

fl(k) =
exp(i δl) sin δl

k
. (2.3)

The total scattering cross section can be calculated using (2.1), (2.2) and (2.3):

σtot =
4 π

k2

∞∑

l=0

(2 l + 1) sin2 δl. (2.4)

Rewriting the scattering cross section in this manner might seem like a step

in the wrong direction, as it suggests we must determine the value of an infinite

number of partial wave phase shifts δl. Matters simplify substantially for ultra-

cold gases, however, where p-wave and higher order angular momentum processes

(l > 0) are largely suppressed. Before presenting a simple argument as to why

this is the case, however, suppose that instead of considering the scattering of

many particles from a target, we focus on the process of one particle scattering

from another. The above formalism still holds if we suppose that the individual

particles are represented by wavepackets.

We now consider a simple argument for the dominance of s-wave scattering

processes in our laboratory. Under typical experimental conditions, the temper-

ature of the particle is often 1 µK or lower, which corresponds to a de Broglie

wavelength λdB of roughly 700 nm. This corresponds to a linear momentum of

pmax = h/λdB = 9.5 × 10−28 m/s. Further, if we consider an interparticle po-

tential with an effective range r0 = 20 bohr, a reasonable approximation for the

electronic triplet potential which dominates the interaction of the particles in our
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gas, then the maximum quantized angular momentum lmax associated with an

interaction between two 6Li atoms at 1 µK is much less than one:

~lmax = r0 pmax ⇒ lmax =
2 π r0

λdB

≈ 0.001. (2.5)

Since l must be a nonnegative integer, the primary interactions between ultracold

atoms at the temperatures we have considered must involve l = 0, or s-wave,

processes. In this case, the infinite sum in (2.4) reduces to a single term,

σtot =
4 π sin2 δ0

k2
. (2.6)

That is, if s-wave collisions dominate, we need to calculate only the lowest order

scattering phase shift δ0.

Trigonometric identities yield

sin2 δ0 =
tan2 δ0

1 + tan2 δ0

, (2.7)

and (2.7) can be rewritten using the definition of the low energy s-wave scattering

length [30]

as ≡ − lim
k→0

tan δ0

k
, (2.8)

which in turn permits us to express the scattering cross section in terms of the

incident wave vector k and the s-wave scattering length as as

σtot =
4 π a2

s

1 + k2 a2
s

. (2.9)



22

For very low energy collisions, k → 0 and the scattering cross section becomes

σtot ≈ 4 π a2
s. (2.10)

Equation (2.10) is an important result, as it suggests that low energy scat-

tering processes can be effectively parameterized by a single number, the s-wave

scattering length as. If the magnitude of as is large, then the interaction between

the scattering particles is strong. Conversely, small values of as indicate weak

interparticle interactions. Furthermore, the sign of the s-wave scattering length

indicates whether the effective potential associated with the scattering process is

repulsive (as > 0) or attractive (as < 0).

When we discuss the operation of Feshbach resonances in Section 2.3, we will

rely on the s-wave scattering length as a means of characterizing the nature of

interparticle interactions throughout the BEC-BCS crossover region. Before doing

so, however, we consider a special case in which we reach the quantum mechanical

limit of strong interactions. That is, we consider a unitary Fermi gas.

2.2.1 Unitary Fermi gases

We saw in Section 2.2 that the strength of a low energy collisional process could

be expressed in terms of the s-wave scattering length. What happens if we let

as → ±∞? Regardless of the sign of the interaction, (2.9) indicates that

lim
as→±∞

σtot =
4 π

k2
. (2.11)
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That is, the collisional behavior of the system effectively becomes independent

of the sign and strength of the interparticle interactions. When these conditions

exist in our gas of fermions, we have created a unitary Fermi gas.

To make further progress with the concept of unitarity, we must step back for

a moment and consider a very different case, that of the noninteracting Fermi gas.

For a gas confined in a potential U(r), we can write the equation of state as [33]

~2 kF (r)2

2 m
+ U(r) = µ, (2.12)

where kF (r) represents the position dependent local Fermi wave vector and µ is the

global chemical potential of the system. If we were to introduce weak interparticle

interactions into the system, then (2.12) could be modified [34, 35] to include an

interaction energy term Uint proportional to the product of the scattering length

as and the particle density n(r). The latter of these quantities is related to the

local Fermi wave vector via n(r) ∝ kF (r)3. As the strength of the interparticle

interactions was increased, however, the mean field formalism would cease to be

valid, and the s-wave scattering length would need to be replaced by an effective

scattering length aeff . Eventually, the scattering cross section would reach the

limit provided by (2.11), where the lone remaining length scale in the system is

the local Fermi wave vector, kF (r). By dimensional analysis, then, we require

that aeff ∝ 1/kF (r). But, if Uint ∝ aeff n(r), then the respective dependence

of aeff and n(r) on kF (r) yields Uint ∝ kF (r)2. Since the local Fermi energy

εF (r) = ~2 kF (r)2/(2 m), we can rewrite the interaction energy term as [16,36]

Uint = β εF (r), (2.13)
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where β is a dimensionless constant. Then, in the unitarity limit, the zero tem-

perature equation of state is

(1 + β)
~2 kF (r)2

2 m
+ U(r) = µ∗. (2.14)

Note that we have placed an asterisk on the global chemical potential in (2.14)

to distinguish it from the global chemical potential in the noninteracting case.

The parameter β is a universal many-body parameter which gives the ratio of the

interaction energy to the local Fermi energy [36].

There is a simple interpretation of the equation of state given by (2.14). Sup-

pose we define an effective mass m∗

m∗ =
m

1 + β
, (2.15)

where m is the bare mass appearing in (2.14). Then we can rewrite (2.14) as

~2 kF (r)2

2 m∗ + U(r) = µ∗. (2.16)

Very simply, the equation of state for a unitary gas is the same as the equation

of state for a noninteracting gas with a scaled mass. When we discuss the heat

capacity of a unitary Fermi gas in Chapter 6, we will be interested in the specific

case of a harmonically trapped unitary gas. For a zero temperature harmonically

trapped noninteracting Fermi gas with N/2 particles per spin state, the global

chemical potential µ is equal to the Fermi energy at the center of the trap (see

Appendix A.2.2)

µ = εF = ~ ω̄(3 N)1/3, (2.17)
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where ω̄ = (ωx ωy ωz)
1/3 is the geometric mean of the trap oscillation frequencies.

Since ω̄ ∝
√

1/m, we can write the scaled geometric mean of the trap oscillation

frequencies as ω̄∗ =
√

1 + β ω̄. Consequently, the chemical potential for the zero

temperature unitary case is

µ∗ =
√

1 + β µ =
√

1 + β εF , (2.18)

where again εF is the global Fermi energy for a noninteracting gas.

There are interesting consequences to having interaction energy of the form

given by (2.13). Since the scattering length is effectively infinite, it cannot appear

in any physically meaningful terms. Likewise, (2.14) is independent of the details

of the interparticle interaction potential (recall that U(r) arises from an external

potential which confines all of the particles). Consequently, we have written an

equation of state which is independent of the details of the interparticle interac-

tions. In other words, unitarity limited systems obeying (2.14) should behave in

similar fashion regardless of the way in which strong interactions form in the sys-

tem. Indeed, the nuclear theory community has been performing calculations of β,

relevant to strongly interacting nuclear matter, for some time (see [37], for exam-

ple). However, experimental verification of the value of β, which recent theoretical

investigations [38–40] suggest is roughly β = −0.55, waited until researchers of

strongly interacting Fermi gases began measuring the quantity [10,16,18,41–43].

This is one example of universal behavior, or universality [44, 45], in which the

details of interparticle interactions become unimportant in the unitarity limit,

permitting the comparison of strongly interacting matter of many different ilks.

In closing, we offer one caution about the preceding formalism. When dis-
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cussing collisional processes, we focused on the binary collision model, in which

two particles are involved in an interaction process. As a result of the Pauli ex-

clusion principle, we would expect binary collision processes to play a dominant

role in two-component Fermi mixtures, where three particle processes would be

unlikely. However, in the strongly interacting regime, some of the experimental

data are difficult to explain in terms of binary collision models. As a result, we

caution against relying too heavily on the two-body collision picture, particularly

in the regime of strong interactions.

2.3 Collisional Feshbach resonances

Having explored the basics of the BEC-BCS crossover in Section 2.1 and basic

scattering theory in Section 2.2, we turn now to the physical mechanism which

makes the study of weak and strong interactions in our gas possible, the collisional

Feshbach resonance.

Consider colliding particles interacting via the potentials depicted in Fig-

ure 2.1. In the Figure, the combined energy of the colliding particles is represented

by the solid horizontal line. The particles have sufficient energy to interact via the

open channel represented by the solid curve, but do not have sufficient energy to

interact via the potential represented by the dashed curve. (Note that the energy

of the colliding particles is below the mouth of the dashed curve.) This latter

potential represents an energetically forbidden, closed collision channel. Under

normal circumstances, the particles will interact via the open collision channel,

and the closed channel will have little or no impact on the process. However, if

the total energy of the colliding particles could be raised or lowered such that it
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Figure 2.1: A collisional Feshbach resonance arises when the energy of two col-
liding particles in an open collisional channel coincides with the energy of a bound
state in a closed molecular channel. In the above diagram of potential energy V (r)
versus interparticle separation r, the solid curve represents the potential energy
in the open channel, the solid horizontal line represents the energy of the collid-
ing particles, the dashed curve represents the potential in the closed (molecular)
channel, and the horizontal dashed lines represent bound molecular states. When
the energy of the colliding particles coincides with a bound state in the closed
channel, there is a resonant enhancement of the interparticle collision rate and
the scattering length diverges.

matched the energy level of a bound state in the closed channel, then the scat-

tering process in the open channel is greatly enhanced. This type of resonance

is often referred to as a Feshbach resonance [46]. The scenario depicted in Fig-

ure 2.1 is a generic representation of the Feshbach resonance phenomenon. For

the states of 6Li which we study, the triplet potential (“open channel”) is very

shallow compared to the singlet potential (“closed channel”).

The strong enhancement of the scattering rate near a Feshbach resonance is

manifested in the form of a diverging scattering length. Often, control over the
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energy of the colliding particles is exercised by the application of a magnetic

field which Zeeman tunes the energy of the colliding particles in the open triplet

channel into resonance with a bound state in the closed singlet channel.2 In the

vicinity of a Feshbach resonance, the general form for the scattering length as a

function of magnetic field B is given by [47]

as(B) = ab

(
1 +

∆

B −B0

)
, (2.19)

where ab represents the background scattering length, B0 is the magnetic field

which marks the center of the Feshbach resonance, and ∆ is the width of the

resonance. Plotting (2.19) as a function of magnetic field reveals that the Feshbach

resonance allows us to continuously explore the behavior of the colliding particles

as they are tuned from weak to strong attractive interactions, before changing

abruptly to strong repulsive and then weak repulsive interactions. In Section 2.4,

we will discuss two important Feshbach resonances in 6Li which allow us to study

the BEC-BCS crossover. A plot of the scattering length versus magnetic field for

these resonances is given in Figure 2.3.

2.4 The electronic ground state of 6Li

While the majority of this chapter has focussed generally on two-component Fermi

systems, we now consider specifically the two-component Fermi system we use in

our laboratory. As mentioned previously, we work with an isotope of lithium, 6Li.

The 6Li atom is composed of 3 protons, 3 neutrons, and 3 electrons, yielding an

2In the singlet potential, the electronic spins of the two atoms are antiparallel. In the triplet
potential, the electronic spins are parallel. Consequently, the energy of the triplet potential can
be Zeeman tuned while the singlet potential remains stationary.
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overall charge neutral atom. The nuclear ground state has nuclear spin I = 1,

while the electronic ground state consists of 2 electrons in the 1s orbital and the

final, unpaired electron in the 2s orbital. Throughout the remainder of this thesis,

“the electron” refers to the unpaired electron in the valence band. In the electronic

ground state, the orbital angular momentum quantum number L = 0, while the

intrinsic spin of the electron is S = 1/2. As we will need to consider the hyperfine

structure of the 6Li atom, it is worthwhile to establish now the total angular

momentum quantum number F arising from the nuclear, orbital, and electron

spins. In the electronic ground state (I = 1, L = 0, and S = 1/2), angular

momentum addition gives two possible values of the total angular momentum,

F = 3/2 and F = 1/2.

In the absence of a magnetic field, the F = 1/2 manifold of the ground state

is two-fold degenerate, with spin projections mF = ±1/2, while the F = 3/2

level has four-fold degeneracy, where mF = ±3/2, ±1/2. The application of an

external magnetic field lifts this degeneracy, and six distinct eigenstates emerge.

We wish to solve for the eigenstates of the internal Hamiltonian

Hint =
ahf

~2
S · I +

µB

~

(
ggnd

J S + gI I
)
·B, (2.20)

where ahf/h = 152.137 MHz is the magnetic dipole constant and ggnd
J = 2.002 is

the total electronic g-factor for the 6Li ground state, gI = −0.000448 is the total

nuclear g-factor, µB is the bohr magneton, and B is the external magnetic field.3

3The reader is encouraged to peruse Appendix A in [24] and references therein for a more
thorough discussion of the interaction of the 6Li atom with electromagnetic fields.
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We find that the eigenstates of (2.20) are [48]:

|1〉 = sin Θ+ |1/2 0〉 − cos Θ+ |−1/2 1〉 (2.21)

|2〉 = sin Θ− |1/2 − 1〉 − cos Θ− |−1/2 0〉 (2.22)

|3〉 = |−1/2 − 1〉 (2.23)

|4〉 = cos Θ− |1/2 − 1〉+ sin Θ− |−1/2 0〉 (2.24)

|5〉 = cos Θ+ |1/2 0〉+ sin Θ+ |−1/2 1〉 (2.25)

|6〉 = |1/2 1〉 , (2.26)

where the basis kets |mS mI〉 give the electronic spin projection mS and the nu-

clear spin projection mI . The hyperfine states are labelled according to increasing

energy, with |1〉 being the eigenstate with the lowest energy eigenvalue, and |6〉
possessing the largest energy eigenvalue. The coefficients in (2.21) through (2.26)

are magnetic field dependent and obey the following relations

sin Θ± =
1√

1 + (Z± + R±)2 /2
(2.27)

cos Θ± =

√
1− sin2 Θ± (2.28)

Z± =
µB B

ahf

(ggnd
J − gI)± 1

2
(2.29)

R± =

√
(Z±)2 + 2. (2.30)
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The energy eigenvalues En associated with the eigenstates |n〉 are

E1 = −1

4

(
ahf − 2 gI µB B + 2 ahf R+

)
(2.31)

E2 = −1

4

(
ahf + 2 gI µB B + 2 ahf R−)

(2.32)

E3 =
ahf

2
− µB B

2
(2 gI + ggnd

J ) (2.33)

E4 =
1

4

(−ahf − 2 gI µB B + 2 ahf R−)
(2.34)

E5 =
1

4

(−ahf + 2 gI µB B + 2 ahf R+
)

(2.35)

E6 =
ahf

2
+

µB B

2
(2 gI + ggnd

J ). (2.36)

We can readily plot the energy eigenvalues as a function of magnetic field. Due to

the smallness of the energy scale, it is useful to plot the energy levels in frequency

units, using µB/h = 1.3996 MHz/gauss. This is done in Figure 2.2, where the

energy eigenvalues have been labelled by their associated eigenstate |n〉.
In our laboratory, the initial stages of our experimental sequence are designed

to produce a 50-50 mixture of the |1〉 and |2〉 hyperfine ground states. Why

are these states preferable to other two-component combinations of hyperfine

states? There are several reasons. First, there are two Feshbach resonances in the

|1〉-|2〉 mixture which occur at experimentally accessible magnetic fields. These

resonances are depicted in Figure 2.3. The broad Feshbach resonance centered at

834 gauss [49] is the resonance we primarily use. It is quite broad (several hundred

gauss) and is the resonance of choice for many researchers working with 6Li. Above

the center of the Feshbach resonance, attractive interactions of arbitrary strength

can be generated. Below the center of the Feshbach resonance, the scattering

length is positive, enabling us to create repulsive interactions of arbitrary strength.
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Figure 2.2: The hyperfine energy eigenvalues of the 6Li ground state are plotted
in frequency units versus applied magnetic field in gauss. There are six energy
levels at nonzero magnetic field, and convention dictates that the eigenstates are
labelled |1〉, |2〉, and so on, in order of increasing energy. For reasons discussed
in the main text, we use a mixture of the |1〉-|2〉 states in our lab. At the left, we
note the total angular momentum quantum number (F = 1/2 or F = 3/2) for
each of the states at zero magnetic field.
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Although the true BEC and BCS limits correspond to weakly interacting systems,

the high side of the resonance (B > 834 gauss) is often referred to as the “BCS

side” of the resonance and the low side of the resonance (B < 834 gauss) is

referred to as the “BEC side” of the resonance, even when discussing the strongly

interacting regime. Depicted in the inset of Figure 2.3 is the position of the narrow

Feshbach resonance near 544 gauss [50]. This resonance is extremely narrow,

and has not been used for the crossover studies discussed in this dissertation.

Below the narrow Feshbach resonance, however, is a feature known as the “zero

crossing” [51, 52], where the scattering length as = 0. This feature is important

for the production of noninteracting Fermi gases, as discussed in Section 3.3.1.

A second reason for studying the |1〉-|2〉 mixture is that it is an energetically

stable combination of states. In the ground state of 6Li, the total angular mo-

mentum spin projection mF = mS + mI is conserved in s-wave collisions. If

we ignore energy considerations for a moment, a collision of atoms in the |4〉
(mF = −1/2) and |1〉 (mF = 1/2) states could yield atoms in the |1〉 (mF = 1/2)

and |2〉 (mF = −1/2) states following the collision. A quick glance at Figure 2.2

reveals, however, that such a collision would result in the conversion of internal

energy to kinetic energy (since the combined energy of the |4〉 and |1〉 states is

greater than that of the |1〉 and |2〉 states). But, how much energy is released?

Close to zero magnetic field, the total energy released would be roughly h× 228

MHz, or more than 10 mK in temperature units. Even larger energies would be

released at higher magnetic field. Since we wish to work at microkelvin or sub-

microkelvin temperatures, we obviously cannot have collisions which release such

large amounts of energy. This problem is avoided if we start with a |1〉-|2〉 mixture

at a temperature of 150 µK, a condition we can readily produce, as discussed in
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The data for this plot was extracted from [50].
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Section 3.1.2. While angular momentum considerations would allow two atoms

beginning in the |1〉 and |2〉 states to end up in the |1〉− |4〉, |2〉− |5〉, |4〉− |5〉 or

|3〉 − |6〉 states, energy considerations prohibit all of these collision exit channels

provided that the starting temperature of the |1〉-|2〉 mixture is much less than 10

mK. Since the |1〉-|2〉 mixture is stable against inelastic collisions, and possesses

Feshbach resonances at experimentally accessible magnetic fields, it is an excellent

choice for researchers studying two-component strongly interacting Fermi gases.

Recall that our ultimate goal is the study of two-component atomic Fermi

gases. Further, consider a very simple two-component Fermi system: two spin 1/2

particles, one with “spin-up” and the second with “spin-down.” This is precisely

the type of system we create and study in our lab, where the |1〉 state has total

angular momentum spin projection mF = 1/2 and the |2〉 state has mF = −1/2.

If we consider (2.21) and (2.22), however, we see that cos Θ± becomes very close

to unity at high magnetic field, in which case the electronic spin projection in the

|1〉 and |2〉 states is nearly identical. Consequently, when we discuss our “spin-

up”-“spin-down” mixture at high magnetic field, we are actually considering a

mixture of atoms which is very nearly electron spin polarized (and interacts via

a triplet electronic potential).

Now that we have outlined the properties of the 6Li atom which allow us to

explore the BEC-BCS crossover in a controlled laboratory setting, we are ready

to consider the general experimental techniques employed in our laboratory in

Chapter 3. Before doing so, however, it will be helpful to view the novel studies

described in Chapters 6 and 7 as part of a worldwide effort to study strongly

interacting Fermi gases. To this end, I have included an overview of the major

experimental results in our field in Section 2.5.
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2.5 The quest for superfluidity

In recent years, studies of degenerate Fermi gases have yielded major experimental

progress and a mind-boggling number of theoretical predictions and insights. Even

simple descriptions of the major theoretical developments could easily consume

the remainder of this dissertation, so I will spare both myself and the reader such

a summary, leaving the task instead for a theorist who is wiser and more quixotic

than I am. Likewise, a description of every experimental result is beyond the

scope of this document. However, a general timeline of the major experimental

achievements in the field is tractable, and will be important in helping to place

the studies described in this dissertation in a larger context.

A reasonable starting point for the brief history of degenerate Fermi gases is

the first production of such a gas in a controlled laboratory environment. While

the first degenerate Fermi gases were produced in magnetic traps [53–55], the

ultimate goal of realizing a strongly interacting degenerate Fermi gas required the

development of ultrastable optical traps capable of trapping stable mixtures of

multiple spin states. In the mid-1990’s, the longest reported lifetimes of optical

traps was on the order of ten seconds [56, 57]. After developing a theory for

understanding the impact of noise sources on optical trap lifetimes [58,59], in 1999

the Duke group produced a stable optical trap with a lifetime of 300 seconds [60],

comparable to the lifetimes of magnetic traps. In 2001, the Duke group produced

the first degenerate Fermi gas using all optical techniques [51].

Having produced degenerate Fermi gases, most groups then turned their sights

to what would become a holy grail for the field: the creation and observation of a

superfluid Fermi gas. The detection of a superfluid state requires a demonstration

of macroscopic coherence of the atom sample. Macroscopic coherence can be seen
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in the form of interference phenomena, superfluid hydrodynamics or quantized

vortices, for example.

An important first step toward producing and detecting a superfluid state was

determining the location of Feshbach resonances in the spin state mixtures of in-

terest [52,61,62]. The use of Feshbach resonances was essential, as the transition

temperature to a superfluid state was predicted to be experimentally accessible

only in the strongly interacting regime [6,7]. With the position of the broad Fes-

hbach resonance in 6Li somewhat localized, the Duke group produced the first

strongly interacting degenerate Fermi gas in 2002 [16]. The signature of strong

interactions was the observation of anisotropic expansion following release of the

gas from the optical confining potential. The hydrodynamic expansion of the gas

was suggestive of a superfluid state, but the researchers noted that collisional evo-

lution of the cloud could not be completely ruled out as a cause of the observed

expansion dynamics. In response to this study, a model based on zero tempera-

ture collisions was developed which suggested that the hydrodynamic expansion

observed by the Duke group could be accounted for by collisional processes [63].

The validity of this conclusion, however, was called into question by a more rigor-

ous model [64] which suggested that collisional processes would lead to substantial

entropy and temperature increases in the gas as it expanded. Such temperature

increases were not detected by the Duke group, however, and superfluid hydrody-

namics remains the most likely explanation for the observed expansion dynamics

of the cloud. The first observation of strongly interacting degenerate Fermi gases

by the Duke group also marked the first measurement of β in a strongly interact-

ing Fermi gas. This was followed by other measurements of the interaction energy

and studies of expansion dynamics in the strongly interacting regime [65,66]. Im-
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portant experiments conducted around this time also include the observation of

the absence of clock shifts in a Fermi gas in the unitarity limited regime [67,68].

In early 2003, several groups began to focus on the production of molecules

on the side of the Feshbach resonance where it is energetically favorable for two

fermions to form a molecule. Many groups succeeded in producing molecules from

two-component Fermi gases [50,69–72], and found that the lifetime of those mole-

cules was quite long in the vicinity of the Feshbach resonance. Having created

molecules, the next logical step was to induce those molecules to Bose-condense.

Reports of the production and study of a BEC of molecules formed by paired

fermions came near the conclusion of 2003 and early 2004 [41, 42, 73–75]. While

the production of a molecular BEC was a noteworthy accomplishment, the pri-

mary experimental goal remained the observation of superfluid behavior on the

attractive, “BCS side” of the Feshbach resonance.

Claims of condensation in an attractive two-component mixture of fermions

began to be voiced in early 2004. The JILA group made the first claim of fermionic

condensation [76], based on evidence which relied on the projection of a fermionic

condensate onto a molecular condensate. The interpretation of their data was

questioned by the MIT group, who conducted a similar experiment and suggested

that the supposed fermionic condensate may have been molecular in nature [77].

Furthermore, there was some concern regarding the validity of the JILA group’s

projection technique, as it was not clear if the molecular condensate which was

used as an indicator of a fermionic condensate could have formed during the

projection process. These concerns were ultimately laid to rest in early 2005,

when the MIT group demonstrated that the formation time of the condensate

was sufficiently long that the projection technique was a valid indicator of the
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existence of a fermionic condensate [78]. While these studies demonstrated the

presence of a condensate, they were unable to show macroscopic coherence of the

condensate, a key indicator of a superfluid state.

Several attempts to observe macroscopic coherence came in the form of studies

of the breathing mode of a strongly interacting Fermi gas [19–21, 79]. Studies

conducted at Duke included investigations of the magnetic field dependence of the

radial breathing mode in the low temperature regime [19,79] and the temperature

dependence of the mode in a unitarity limited system [19, 20]. These results are

discussed in greater detail in Chapter 7. A study by a group at the University

of Innsbruck examined the magnetic field dependence of the axial and radial

breathing modes in the low temperature regime [21].

Evidence for a superfluid state arose from the observation of increased breath-

ing mode oscillation lifetimes in the low temperature regime [19, 20]. The mea-

sured oscillation frequency was in excellent agreement with predictions for a

strongly interacting, hydrodynamic Fermi gas. However, frequency information

alone is insufficient to establish whether hydrodynamic behavior arises from col-

lisional processes or from a macroscopic wavefunction associated with a super-

fluid state. At very low temperatures, Pauli blocking suppresses collisions, which

should result in decreased oscillation lifetimes at the hydrodynamic frequency.

The data taken at Duke, however, showed increased oscillation lifetimes at the

hydrodynamic frequency in the low temperature regime, which we regard as evi-

dence for a superfluid state. Studies of the radial breathing mode as a function of

magnetic field displayed an unexpected increase in the oscillation frequency and

damping rate above the Feshbach resonance. This behavior was observed by both

the Innsbruck group [21] and the Duke group [79], and was first interpreted by
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the Innsbruck group as a possible indication of pair breaking.

An expected precursor to the transition to a superfluid state is the formation

of pairs of fermions. Consequently, a number of techniques were devised to record

the presence of fermion pairs. Radio-frequency spectroscopy [80], rapid oscilla-

tion of the interaction strength between spin components [81], detection of spatial

correlations in the gas [82], and detection of shot noise in the atom cloud [83]

demonstrated the presence of atom pairs throughout the BEC-BCS crossover re-

gion. However, the demonstration of pairing alone is insufficient to establish

the existence of a superfluid state. Pseudogap theory (see [5] for a summary of

pseudogap theory) suggests that fermions undergo pairing and a phase transition

at different temperatures, unlike the case in traditional BCS theory. Instead, as

the collection of fermions is cooled, pairs begin to form at one temperature, often

denoted T ∗, before undergoing a phase transition to a superfluid/superconducting

state at some lower temperature, traditionally labelled Tc. While pseudogap the-

ory remains somewhat controversial, several variants of pseudogap theory have

achieved qualitative, and in some cases, quantitative agreement with data from

the field of strongly interacting Fermi gases. As the body of available experimen-

tal results has failed to rule out pseudogap theory as a possible explanation for the

behavior of strongly interacting Fermi gases, many in the field have accepted that

a demonstration of superfluid behavior must include more than an observation of

pairing between fermions.

It should be noted that around this time, two groups conducted refined spec-

troscopy studies to better localize the Feshbach resonances in 6Li [49, 84]. While

less glamorous than some other studies seeking demonstrations of superfluidity,

these efforts were critical to continued progress in the field, and deserve mention.
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The first study of the thermodynamic properties of the unitary Fermi gas was

conducted at Duke in 2004, and was reported in [10]. Specifically, we studied

the heat capacity, and with theoretical support from a group at the University

of Chicago, made the first direct measurement of the superfluid phase transition

temperature in a unitarity limited Fermi gas. This result is covered in greater

detail in Chapter 6. The study of the heat capacity also yielded interesting insights

into universality and a virial theorem for a unitary gas [85].

Another relatively recent study that deserves mention is a molecular probe

experiment which determined the population of the closed-channel molecular state

[86]. Here, researchers found that the population of the closed-channel singlet

state is vanishingly small at and above the center of the broad Feshbach resonance

in 6Li.

In May 2005, the MIT group provided further evidence for superfluidity in a

strongly interacting Fermi gas: observation of quantized vortices. For the condi-

tions of their experiment, vortices appear to be the manifestation of macroscopic

coherence in their gas.

Having reached the major milestone of producing and detecting a superfluid

state in the low temperature regime, one might question if research into strongly

interacting Fermi gases will grow stagnant. For all that has been made of the im-

portance of observing a superfluid state, the answer is no. There is still much to be

understood about the superfluid state, and there is much to be learned about the

physics of strongly interacting Fermi systems. Recent experiments have probed

the momentum distributions in a Fermi gas in the crossover region [87] as well as

modifications to the physics when the two spin components of the Fermi gas are

not equally populated [43, 88]. Furthermore, briefly explored lines of study such
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as the investigation of p-wave processes [84,89,90] and interspecies Feshbach res-

onances and heteronuclear molecules [91, 92] are candidates for additional study.

Finally, while the studies mentioned above involved a single atom trap, there is

a great deal of interest in modelling condensed matter systems using Fermi gases

confined in optical lattices.



Chapter 3

General Experimental Methods

A typical experimental cycle in our laboratory, from the initial trapping and

cooling sequence to the acquisition of an absorption image of the cooled gas of

atoms, takes roughly 25 seconds. In Chapters 6 and 7, I will describe the specific

experimental manipulations used to conduct studies of the heat capacity and

breathing mode of strongly interacting Fermi gases. However, the bulk of the

experimental cycle is the same for these experiments, as well as many others

conducted in our laboratory. In fact, for a typical experimental cycle time of 25

seconds, more than 24 seconds of that time will feature identical experimental

manipulations for the heat capacity and breathing mode experiments. The goals

of this chapter are to outline the behavior of the experimental system during

these 24 seconds, as well as present some basic theory for understanding this

behavior. The experimental apparatus has been described extensively in previous

theses from this group [22–24, 93], and the reader is encouraged to review those

sources for greater detail regarding the experimental apparatus. The description

presented in this dissertation is included for completeness and to note recently

implemented upgrades which have not been described elsewhere.

We begin with a discussion of basic atom cooling and trapping theory in

Section 3.1. This is followed by a description of the experimental apparatus in

43
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Section 3.2. With all of the basic theory and experimental elements exposed, we

describe a typical experimental sequence in Section 3.3. In our studies, it is im-

portant that we are able to produce both noninteracting and strongly interacting

degenerate Fermi gases. Consequently, Sections 3.3.1 and 3.3.2 discuss some of

the issues specific to the production of noninteracting and strongly interacting

gases, respectively.

3.1 Basic cooling and trapping techniques

The technology for cooling and trapping atoms has changed little in recent years.

While upgrades to our experimental apparatus have enabled us to utilize some

of these techniques more efficiently, the underlying principles have remained the

same. In this section, I will cover the basic cooling and trapping strategies used in

our laboratory. The production of a vapor of atoms, and the subsequent slowing of

these atoms in the Zeeman slower is summarized in Section 3.1.1. This initial stage

of cooling provides atoms which are slow enough to be captured in a magneto-

optical trap. The operation of this trap is discussed in Section 3.1.2. Some

portion of the atoms confined in the magneto-optical trap are loaded directly into

a second optical trap, a far off-resonance dipole trap. The operation of the dipole

trap is considered in Section 3.1.3. Finally, we consider the last stage of cooling in

Section 3.1.4 which relies on a method for selectively removing the hottest atoms

from the atom cloud.
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3.1.1 Preliminary cooling stages

If we wish to cool a gas of atoms, it follows that we must first produce a gas

of atoms. As 6Li is a solid at room temperature, we must heat the gas until a

vapor forms, a topic covered in Section 3.2.3. This vapor of atoms then travels

through a Zeeman slower, where a near-resonant beam opposes the motion of

the atoms, a process discussed in greater detail in Section 3.2.4. Upon exiting

the Zeeman slower, the atoms are travelling at speeds of roughly 30 meters per

second. While this vapor of atoms is substantially cooler than the vapor that

exists in the oven, we are still far from the temperatures required for the onset of

quantum degeneracy. Further cooling is provided by the magneto-optical trap.

3.1.2 The Magneto-Optical Trap (MOT)

The first cooling step after the Zeeman slower relies on a Magneto-Optical Trap

(MOT), a combination of laser beams and magnetic fields which reduce the tem-

perature of the 6Li atoms while simultaneously providing a linear spatial restoring

force. We will begin with a discussion of the basic physics behind the MOT before

discussing specific issues that arise when confining 6Li in a MOT.

Basic physics of a MOT

The first topic we will consider in the operation of the MOT is the phenomenon

of optical molasses. Depicted in Figure 3.1 is a one-dimensional scenario. Con-

sider an atom (represented by the grey circles in Figure 3.1) that has a simple

two-level electronic transition of frequency ωatom and is constrained to move in

one dimension (left and right in Figure 3.1). The atom is illuminated by coun-
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Figure 3.1: Mechanism behind optical molasses. Here, we consider an atom
(grey circle) confined to move in one direction (left or right). The small black
arrows indicate the velocity vector of the atom. The large grey and white arrows
represent a stream of photons whose frequency ωphot is red detuned from the
“true” (un-Doppler-shifted) transition frequency of the atom ωatom. (a) Here the
atom is moving to the left, which results in the photon beam from the left (grey
arrow) being Doppler shifted toward resonance with the atom, while the photon
beam from the right (white arrow) is Doppler-shifted even further from the atomic
resonance. (b) Here the atom is moving to the right, which results in the photon
beam from the right (grey arrow) being Doppler shifted toward resonance with the
atomic transition. The photon beam from the left is Doppler-shifted away from
the atomic transition. In both (a) and (b) the atom has an increased probability
of absorbing a photon from the beam whose direction opposes the atom’s velocity
vector. This results in the atom’s momentum being restricted to a small range of
values close to zero momentum.
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terpropagating laser beams composed of photons whose frequency ωphot is red

detuned from the atomic transition frequency (ωphot < ωatom). In scenario (a) in

Figure 3.1, the motion of the atom (represented by the small black arrow) will

cause the laser beam from the left to be Doppler-shifted toward resonance with

the atomic transition. Meanwhile, the laser beam propagating from right to left

is further red-detuned from the atomic transition. In scenario (b), the situation

is reversed, with the photon beam propagating from right to left being Doppler-

shifted toward resonance with the atomic transition. In both (a) and (b), the

atom is more likely to absorb a photon from the laser beam which is propagating

in a direction opposite to the atom’s velocity vector. This preferential absorption

of atoms which oppose the atomic motion will result in a reduction of the atom’s

momentum in that direction. Since the reduced momentum of the atom makes

it seem as if the atom is moving in a viscous liquid, this phenomenon is referred

to as optical molasses. While we have considered the one-dimensional case, the

argument easily generalizes to a three-dimensional scenario involving three sets

of red-detuned, orthogonal, counterpropagating beams.

Optical molasses does not tell the whole story of the MOT, nor does it pro-

vide sufficiently low temperatures to reach quantum degeneracy. Every cycle of

absorption from one of the laser beams is accompanied by re-emission of a pho-

ton. The momentum recoil from the photon emission cycles competes with the

momentum-reducing influence of the laser beams, and the net result is a lower

bound on the temperatures which can be reached by relying on optical molasses.

The limit is known as the Doppler cooling limit and is roughly 140 µK for 6Li.

While 140 millionths of a degree above absolute zero seems like an impressively

small temperature, it is still too high for the types of studies we wish to conduct.
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In Section 3.1.3, we will discuss the next steps in cooling the gas of 6Li, but before

doing so, we must address a second limitation of optical molasses.

In the discussion of optical molasses, it should be noted that the primary

physical result was confinement of the atoms to a small region of momentum space

close to zero momentum. There was no spatial confinement of the atoms, however,

so by a random walk process atoms in the optical molasses could slowly wander

away from the intersection of the laser beams providing the optical molasses effect.

Furthermore, in Section 3.1.3, we will see that the next stage of cooling will require

that the atoms confined in the MOT be loaded into a second optical trap, and

the success of this procedure depends on maintaining a high atomic density in the

MOT. The solution to the random walk problem and the need for high densities

rests in the application of spatial confinement to the atoms.

Thus far, we have considered the action of the optical part of the magneto-

optical trap, so it should not be terribly surprising that the next portion of the

discussion will focus on the magnetic elements of the trapping mechanism. As

with the discussion of optical molasses, we will consider a simple case of atomic

motion in one dimension. Furthermore, while the angular momentum and asso-

ciated electronic structure of the 6Li atom is more complicated than what will be

discussed in the simplified model below, the effect of the applied magnetic field

will be more transparent if we consider a simple atomic structure.

Consider an atom whose ground state total angular momentum is F = 0 and

whose excited state total angular momentum is F ′ = 1. In the ground state

manifold, the total angular momentum projection mF is obviously restricted

to mF = 0. In the excited state, however, we have m′
F = 0,±1, and these

sublevels should Zeeman tune differently upon application of an external mag-
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netic field. Furthermore, angular momentum considerations require that the

|F = 0 mF = 0〉 to |F ′ = 1 m′
F = 1〉 transition occurs only upon absorption of σ+

circularly-polarized light, while the |F = 0 mF = 0〉 to |F ′ = 1 m′
F = −1〉 transi-

tion relies upon absorption of σ− circularly-polarized light. This combination of

preferential absorption of light with a given polarization along with Zeeman tun-

ing of the m′
F sublevels in the excited state can be exploited to provide a spatial

restoring force to the atoms.

Suppose we have two wire coils arranged in the anti-Helmholtz configuration.

In this scenario, the coils are coaxial, and current flow through the upper coil

is opposite in direction to current flow through the lower coil. The result is

a spherical quadrupole magnetic field which features a null magnetic field on

the axis of the coils midway between the two coils. As atoms move away from

this midpoint in any direction, the magnetic field gradient varies linearly. The

presence of this field gradient will result in Zeeman tuning of the m′
F sublevels in

the excited state. In Figure 3.2, we depict the energy tuning of the magnetic field

sublevels in the ground and excited states of our fictional F = 0, F ′ = 1 atom as

a function of one spatial dimension x. Suppose that we arrange our optical beams

such that photons travelling from right to left have σ− circular polarization, while

photons travelling from left to right have σ+ circular polarization. We assume

that the photons are slightly red-detuned with respect to the F = 0 → F ′ = 1

transition at zero magnetic field (the dashed horizontal line and the thick vertical

arrow indicate the energy of the incident photons in Figure 3.2). The spatially

dependent force arises from the preferential selection of photons with a given

polarization as a function of distance from the zero magnetic field point. An

atom that wanders into the spatial region x > 0 will be more likely to absorb a
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Figure 3.2: The spatial restoring force of the MOT arises from the preferential
absorption of a photon with a particular polarization based on the atom’s position.
The vertical axis represents energy and the horizontal represents spatial position,
with x = 0 at the intersection of the axes. A magnetic field exists near x = 0
which is well approximated by B(x) = B0 x, where B0 is a constant. We consider a
hypothetical two-level system in which the total angular momentum in the ground
and excited states is F = 0 and F ′ = 1, respectively. The narrow horizontal and
slanted lines depict the Zeeman tuning of the angular momentum sublevels as a
function of position. The dashed horizontal line and thick vertical line with an
arrow indicate the energy of a photon which is interacting with the atom. If the
atom wanders toward a position x > 0, it is more likely to absorb a σ− photon, as
this transition is Zeeman shifted toward resonance. Conversely, if an atom moves
to a position x < 0, it is more likely to absorb a σ+ photon. This action gives
rise to a spatial restoring force.
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σ− photon travelling from the right, as this quantum transition is Zeeman shifted

toward resonance. Likewise, atoms in the x < 0 region will be more likely to

absorb a σ+ photon, as this transition is Zeeman shifted into resonance. For

small displacements about x = 0, the restoring force is linear in space. Though

we have discussed this spatial restoring force in one dimension, it generalizes to

three dimensions. This three-dimensional spatial confinement, when combined

with the optical molasses effect, can yield a large number of cold atoms.

Throughout this discussion, I have adopted simplified models to illustrate

the basic physical principles which govern the operation of MOTs. Often, the

assumptions involved simplifications in the angular momentum and energy level

structure of the atom which was interacting with the optical beams in the MOT.

As the real angular momentum and energy level structure of the 6Li atom is more

complex than the model atoms discussed above, it is worthwhile to consider some

practical issues that arise when designing a MOT to capture 6Li atoms.

The 6Li MOT

Ideally, the 6Li quantum energy level structure would allow us to work on a closed,

two-level transition, where the atom would shuttle back and forth between the

ground and excited states. Unfortunately, the situation is not this simple. As

discussed in Section 2.4, the electronic ground state of 6Li has two possible values

of the total angular momentum, F = 1/2, 3/2. In the lowest electronic excited

state, the orbital angular momentum L = 1, and the nuclear and electronic spins

remain the same as in the ground state, I = 1 and S = 1/2. Angular momentum

addition allows for three possible values of the total angular momentum of the

excited state, F ′ = 1/2, 3/2, 5/2. From an energy standpoint, these three excited



52

state hyperfine levels are unresolved, as the natural linewidth of the ground to

excited state transition (≈ 5.9 MHz) is larger than the hyperfine splitting between

the F ′ = 1/2 and F ′ = 5/2 excited states (≈ 4.4 MHz). The ground state,

meanwhile, is well-resolved, with a hyperfine splitting of roughly 228 MHz between

the F = 1/2 and F = 3/2 levels. Consequently, light that is resonant with the

F = 1/2 to excited state transition will not be resonant with the F = 3/2 to

excited state transition, and vice versa.

The ultimate consequence of this large ground state hyperfine splitting is the

need for two different frequencies of light in the optical beams used in the MOT.

As both ground state hyperfine levels will be occupied when atoms emerge from

the Zeeman slower, we need light resonant with both levels to maximize our atom

capture. Once captured, we must continue to use bichromatic MOT beams, as

failure to do so would lead to optical pumping into dark quantum states which

cannot be trapped by the MOT. We refer to light tuned to the F = 3/2 to excited

state transition as the “MOT beam,” while light tuned to the F = 1/2 to excited

state transition is referred to as the “repumper beam.” Empirically, we find that

the optimized ratio of the power in the MOT beam to the repumper beam is

roughly 3:1. When loading the MOT, we typically red-detune the MOT beams

≈ 30 − 35 MHz from resonance, while detuning the repumper beams roughly

20 MHz from resonance. When working properly, our 6Li MOT is estimated to

contain roughly 500 million atoms.

Earlier, it was noted that the role of the MOT is to act as a pre-cooler for

yet another optical trap, to be discussed in Section 3.1.3. We can optimize the

loading of this second optical trap by conducting two additional phases at the

end of the MOT loading cycle. When working properly, we can load our MOT
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to a reasonable level within 5 seconds. Following this 5 second loading time,

we implement the MOT “cooling phase”, where both the MOT and repumper

beams are brought to within 3 MHz of resonance, and the intensity of both the

MOT and repumper beams are substantially reduced (the intensity of the beams

during the cooling phase must be adjusted on a daily basis to optimize the cooling

phase). The cooling phase lasts roughly 5 ms and is designed to cool the atoms to

the Doppler limit of 140 µK while increasing the density of the MOT. Following

the cooling phase, we conduct an “optical pumping” phase, during which the

repumper beams are extinguished while the MOT beams remain on. Here, the

frequency of the MOT beams are tuned directly into resonance while the intensity

of the beams remains close to the intensities used during the cooling phase. The

optical pumping phase has a duration of 200 µs and is designed to pump all of

the atoms in the MOT into the F = 1/2 ground state manifold. Recall from the

discussion in Section 2.4 that the desired two component mixture of hyperfine

states, the |1〉-|2〉 mixture, can be generated by populating the F = 1/2 ground

state level and applying a bias magnetic field. Hence, the optical pumping phase

places the atoms in the appropriate ground state hyperfine level to produce our

desired two component mixture. At the same time, removing atoms from the

F = 3/2 hyperfine level prevents inelastic collisions which could lead to substantial

heating of the atomic sample.

3.1.3 The far off-resonance dipole trap (FORT)

Whereas the operation of the MOT relies on optical beams whose frequency is

nearly resonant with the 6Li atom, the operation of the far off-resonance dipole

trap (FORT) relies on a high power beam whose frequency is quite far from the
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atomic resonance. The FORT is produced by a Coherent DEOS LC100-NV CO2

laser with peak output power of 140 watts. The wavelength of the laser is 10.6

µm, which is nearly 16 times longer than the wavelength of the light used in the

MOT beams. As the CO2 laser beam is so far from resonance, the probability

of absorption of a photon is quite small. Instead, the CO2 laser beam polarizes

the 6Li atoms, and the atoms are then attracted to regions of high laser beam

intensity. A simple spatial variation in the beam intensity can be produced by

focusing the CO2 laser beam, with the position of maximum intensity being at the

focus of the beam. When the FORT is operating properly, roughly two million

atoms can be confined in a small region near the focus of the CO2 laser beam.

The remainder of this section will elaborate on this process.

Electric Dipole force

If we position the CO2 laser beam and associated optics such that the focus of

the laser beam coincides with the location of the 6Li atoms confined by the MOT,

the electric field from the CO2 laser beam will influence the 6Li atoms. While the

atoms are overall charge neutral, spatial variations in the electric field provided

by the CO2 laser beam will induce an electric dipole moment in the atoms. The

interaction energy associated with an atom of polarizability α in the presence of

an electric field E is given by [23,24]

Udip = −1

2
αE2, (3.1)

where the bar indicates that the electric field is averaged over many optical cycles.

The electric field associated with a photon propagating through space assumes a
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sinusoidal form, and if we take E to be the slowly varying amplitude of the electric

field, then (3.1) can be rewritten as Udip = −α E2/4. Of course, the square of the

electric field can be readily related to the field’s intensity I, and the potential

associated with the electric dipole can be expressed in the MKS units system as

Udip = − 1

2 ε0 c
α I, (3.2)

where ε0 is the permittivity of free space and c is the speed of light. As ε0, c and

I are all positive quantities, we see the attractive or repulsive nature of the dipole

potential depends on the sign of the polarizability α. Simple models of atomic

polarizability (see [23,24], for example) indicate that if the optical frequency of the

electric field is lower than the transition frequency of the atom, the polarizability

α will be positive, and the dipole potential will be attractive. Strictly speaking,

atoms in different quantum states which experience the same electric field will

experience different forces. However, if the electric field frequency is very far

detuned from any of the atomic transition frequencies considered, then atoms

in different quantum states will experience essentially the same force. This is

important, as we intend to confine two different hyperfine ground states of the 6Li

atom in our trap. Since the frequency of the CO2 laser beam is so far detuned from

all of the transition frequencies for the hyperfine ground states of 6Li, the potential

formed by this laser beam provides a state-independent trapping mechanism. In

this case, the polarizability α is effectively equal to the static polarizability α0

associated with the DC stark effect [24].
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FORT geometry

As noted earlier, the emergence of a dipole force requires spatial variations in the

electric field. This is accomplished by focusing the collimated CO2 laser beam

such that the focus of this beam overlaps with the location of the atoms confined

in the MOT. For a cylindrically symmetric system, the intensity of a focused

Gaussian beam is [94]

I(r, z) =
I0

1 + (z/z0)2
exp

(
−2 r2

r2
0

)
, (3.3)

where I0 is the maximum beam intensity, z0 = π r2
0/λ is the Rayleigh range, and

r0 is the 1/e2 intensity radius of the beam at z = 0. λ is the wavelength of the

electric field associated with the beam. This expression for the spatial variation

of the intensity can be combined with (3.2) to express the dipole potential energy

as

Udip(r, z) = − U0

1 + (z/z0)2
exp

(
−2r2

r2
0

)
, (3.4)

where the maximum trap depth in MKS units is given by

U0 =
α0 I0

2 ε0 c
. (3.5)

Note that in (3.5), we have used the static polarizability α0.

For many applications, we find that the atoms confined in the dipole potential

occupy only the deepest portion of the trap. In this case, the combined Lorentzian

confinement in the axial direction and the Gaussian confinement in the radial di-

mension can be approximated by harmonic confinement in all dimensions. Taylor
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expanding (3.4) yields

Udip(r, z) ≈ −U0 +
2 U0

r2
0

r2 +
U0

z2
0

z2. (3.6)

If we consider a harmonic trap containing particles of mass m where the trap

oscillation frequencies ωi are defined in the usual manner

U(r, z) = −U0 +
mω2

r

2
r2 +

mω2
z

2
z2, (3.7)

then we can make the identifications

ω2
r =

4 U0

mr2
0

(3.8)

ω2
z =

2 U0

mz2
0

. (3.9)

Loading the FORT

In the discussion of the operation of the MOT, I alluded to two phases, known as

the “cooling” and “optical pumping” phases, which are conducted at the end of

each MOT loading cycle. These two phases are necessary to optimize the loading

of the FORT from the MOT. In fact, while the MOT is loading, we are loading

the FORT as well. Provided that the FORT and MOT are well-overlapped, and

provided that the cooling and optical pumping phases are working properly, we

can load approximately 2 million atoms into the FORT. With the FORT loaded,

the MOT beams have served their purpose and can be extinguished until the

beginning of the next experimental cycle. The atoms loaded into the FORT are at

approximately 140 µK, the Doppler limited temperature of the MOT. This is still
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far from the temperatures we seek, however. To achieve the desired temperatures,

we must conduct evaporative cooling, a process we now discuss.

3.1.4 Evaporative cooling

With the MOT beams extinguished and the FORT loaded, we still have a non-

interacting classical gas. Classical because the temperature is still too high, and

noninteracting because the magnetic field at the location of the FORT is zero,

where the scattering length between the |1〉 and |2〉 states is zero. (Recall that

the MOT magnetic field is a spherical quadrupole field with a magnetic field zero

equidistant between the two anti-Helmholtz coils).

The process of evaporative cooling is relatively straightforward. Suppose we

have a trap containing a 50-50 mixture of two spin states and we produce condi-

tions such that the particles begin to collide with each other. If the trap depth is

many orders of magnitude deeper than the energy of an average atom inside the

trap, then the probability of atoms leaving the trap is quite small. However, sup-

pose that the trap depth is only a few times greater than the average energy of a

particle in the trap. As the particles confined in the trap undergo collisions, some

atoms will cede energy to others and fall into deeper portions of the trap while

others will manage to acquire enough energy to escape the trapping potential. If

only the highest energy atoms leave the trap, then the remaining atoms will be

left with a lower average energy. That is, the remaining atoms will be cooler.

This process occurs continuously: the hottest atoms leave the trap, while the re-

maining atoms rethermalize via collisions. This process is known as evaporative

cooling, a procedure in which the experimenter sacrifices hot atoms to produce

a cooler atomic sample. In an ideal world, evaporative cooling would continue
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ad infinitum or until the experimenter intervened. In practice, the process loses

its effectiveness when the average energy of a trapped particle is substantially

lower than the trap depth, at which point it becomes statistically unfavorable

for a given atom to acquire enough energy from collisions with other particles to

escape the trap.

All is not lost, however, if the trap depth is lowered to the point where evap-

orative cooling can begin again. We use the terminology “free evaporation” to

describe the process of evaporative cooling while the trap depth is held con-

stant at its maximum value. We use the term “forced evaporation” to describe

the process of evaporative cooling while lowering the depth of the optical trap.

Forced evaporation proceeds by time-dependent amplitude reduction of the con-

fining potential. A simple exponential lowering curve can be applied to conduct

forced evaporation, but a more efficient method can be derived based on simple

scaling laws [23,24,95]. If we wish to keep the trap depth an order of magnitude

greater than the thermal energy kB T of an average particle in the trap, then the

proper time dependence of the trap depth is given by

U(t) = U0

(
1

1 + t/τlc

)1.45

, (3.10)

where τlc is the lowering curve time constant. Depending on the duration of time

over which the trap is lowered and the selected value of τlc, we can lower the trap

to any desired depth. In practice, the trap depth is reduced not by reducing the

power of the CO2 laser, but by reducing the efficiency of an AO placed at the

laser’s output (see Section 3.2.7). We use an IntraAction Corp AGM-4010BJ1 AO

designed to operate at maximum efficiency when 50 watts of 40 MHz RF power is
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applied to the AO’s crystal. Before reaching the RF amplifier for the AO crystal,

a 40 MHz sine wave of fixed amplitude generated by an Agilent E4423B signal

generator is multiplied by the output of an Agilent 33250A arbitrary waveform

generator. Prior to being multiplied by the signal from the Agilent E4423B sig-

nal generator, the output of the Agilent 33250A waveform generator is directed

through a low-pass filter to minimize electronic noise which contributes to atom

heating in the optical trap. The arbitrary waveform generator is loaded with a

voltage versus time curve which will produce the desired trap depth versus time

given by (3.10). When the user wishes to begin forced evaporation, the arbitrary

waveform generator is triggered, and the CO2 laser power reaching the trapping

region is reduced in a controlled fashion. After the trap depth has been lowered

to the desired value, the user can leave the trap depth at its minimum point

for a period of time before adiabatically recompressing the trap to any fraction

of its original depth. Details of this procedure are addressed in Section C.3 of

Appendix C.

We note that the appearance of τlc in (3.10) raises another important issue:

the trap depth cannot be lowered at an arbitrarily fast rate. The time constant

involved in the lowering process must be substantially larger than the average

time between collisions of the trapped particles. If this condition is not met,

the trapped atoms will not have sufficient time to rethermalize after ejecting

hot atoms, and the efficiency of evaporative cooling will suffer. Empirically de-

termined values of the lowering curve time constant for common experimental

conditions are given in Sections 3.3.1 and 3.3.2.

To this point, it should be clear that the efficiency of the evaporative cooling

process depends critically on the presence of collisions between the two trapped
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spin states. The efficiency of cooling is impacted also by the degree to which the

two spin states are equally populated. Consider an extreme case, where 90% of

the atoms are in state |1〉 and the remaining 10% are in state |2〉. Here, many

atoms in state |1〉 will be unable to undergo collisions, and will simply be spilled

from the trap as the trap depth is reduced. The optimum scenario involves a 50-

50 mixture of both spin states. To ensure that this is the case before evaporative

cooling commences, we first ramp the magnetic field from 0 gauss to a small

bias field of roughly 8 gauss. A noisy radio-frequency (RF) pulse is then applied

to the atoms confined in the FORT via a small antenna placed in our vacuum

chamber. The center frequency of this noisy RF pulse matches the frequency

splitting between the |1〉 and |2〉 states at 8 gauss, and drives the atoms into

an incoherent equally-populated mixture. Once the spin state populations are

properly balanced, the bias magnetic field can be ramped to higher values to

initiate the processes of free and forced evaporation.

In closing, I offer a brief note about terminology. Throughout this chapter, I

have described a number of cooling processes, including cooling provided by the

Zeeman slower, the MOT and evaporative cooling. As we now take for granted the

proper operation of the cooling mechanisms of the Zeeman slower and the MOT,

the only remaining cooling process of substantial interest is evaporative cooling.

For this reason, I will frequently use the term “cooling” to mean “evaporative

cooling” throughout the remainder of this dissertation.
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3.2 Experimental Apparatus

When compared to some other atom cooling and trapping laboratories, our ex-

perimental apparatus appears to be relatively simple. That said, the length of

this chapter should indicate that our system still features a reasonable level of

complexity. In this section, I will attempt to provide a basic description of the

major components in our experimental apparatus. Much of the system has been

described in detail in previous theses from this group [22–24, 93]. Consequently,

for more detailed information than what is provided in the following descriptions,

the reader is encouraged to peruse earlier theses.

3.2.1 Double-pass AO arrangement

Acousto-optic modulators (AOs) are used extensively throughout the experiment

to generate optical beams of the desired frequency. All of the AOs presently

in use on the experimental system operate in the double-pass configuration. A

schematic is shown in Figure 3.3. A polarizing beam-splitting cube directs a

linearly polarized optical beam into the AO crystal. Lenses placed before and

after the crystal focus and recollimate the beam. An iris placed behind the crystal

blocks all orders but the first order upshifted beam, which then travels through

a quarter waveplate before contacting a retroreflecting mirror. The mirror sends

the beam back through the quarter waveplate, iris and AO crystal. The first order

beam from this backgoing pass will now be propagating along the same line as

the incident beam, and will have experienced two equal frequency shifts from the

AO. This backgoing beam also has had its polarization flipped, such that it will

exit the polarizing beam splitting cube on a face orthogonal to the face where the
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Figure 3.3: Schematic of an acousto-optic modulator operating in the double-
pass configuration, as described in Section 3.2.1.

beam first entered. This arrangement has a number of advantages over the single-

pass arrangement. First, when the AO is in the “off” position, rejection of leakage

light is better than for an AO operating in the single-pass configuration. Further,

as the frequency shift provided by the AO is changed, the angular misalignment

in the outgoing beam is reduced for the double-pass arrangement compared to

the single-pass scenario. Finally, the double-pass configuration allows for larger

frequency shifts than those possible with a single pass through the AO. Unless

otherwise noted, throughout the remainder of this dissertation, reported values

of frequency shifts provided by AOs refer to the total frequency shift after the

optical beam has passed through the AO twice.

3.2.2 The vacuum chamber

The cooling and trapping techniques discussed in Section 3.1 are effective provided

that the atom cloud is in a low pressure environment. High background gas pres-

sure will result in collisions between background gas particles and trapped atoms,

which will lead to heating of the trapped atom cloud as well as loss of atoms.
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Consequently, the business of cooling and trapping atoms must be conducted in

an ultrahigh vacuum environment.

The primary vacuum chamber comprises the oven, the Zeeman slower, and

the so-called “trapping region” where the MOT and FORT are located. Detailed

diagrams as well as descriptions of the entire vacuum chamber are available in

[22–24, 93]. A side view of the vacuum system is shown in Figure 3.4. At the

right of the diagram is the oven region. Atomic flux from the oven region travels

through the Zeeman slower before being trapped by the MOT and FORT in the

main trapping region. In the main trapping region, the pressure is less than

2× 10−11 torr, which is roughly two orders of magnitude lower than the pressure

maintained in the oven region when the oven is at operating temperatures. The

pressure differential is made possible by a small aperture copper nipple between

the oven region and the Zeeman slower. The ultrahigh vacuum is maintained

by continuously operating ion pumps along with occasional operation of titanium

sublimation pumps. The operation and specifications of these pumps are discussed

in greater detail in [22–24].

3.2.3 The oven

Lithium is a soft, silver-gray solid at room temperature, and while our ultimate

goal is to produce very cold 6Li atoms, doing so requires that we manipulate a

vapor of 6Li. The melting point of lithium is around 180◦ C [96], but we need to

keep our lithium oven source closer to 400 ◦C to provide adequate atom flux into

the main trapping region. For more information regarding the vapor pressure of

6Li as a function of temperature (which determines the atom flux to the main

trapping region), the reader is encouraged to consult Appendix A in [24].
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Figure 3.4: Simplified diagram of the vacuum chamber. The oven region is shown
at the right. Atomic flux from the oven passes through the Zeeman slower before
being confined in the main trapping region by the MOT and FORT. Alphanumeric
labels on the various vacuum ports match the convention used in [24]. Figure
contents are modified versions of similar diagrams appearing in [24]. Drawing not
to scale.
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Figure 3.5: Schematic of the 6Li oven. At the left is the “can,” where most of
the 6Li resides. The nozzle of the oven sprouts from the can and collimates the
atomic vapor while conducting it to the Zeeman slower. The oven assembly mates
with the vacuum chamber using a rotatable 2 3/4 inch ConFlat (CF) flange, at
the right of the schematic. Dimensions are given in inches The boldface numbers
on the diagram mark the 5 regions of the oven. Wrapped around the outside of
each oven region is a nichrome wire, which is used as the heating element for the
oven. As the nichrome wires in different oven regions are wired in parallel, we have
independent control of the temperature in each region of the oven. Thermocouples
monitor the temperature in each of the regions.
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The oven itself resembles a corn-cob pipe (see Figure 3.5), and is mummified

by 5 independent sets of nichrome wire windings (Omega PN NI80-020-50) and

thermal cement (Omega CC High Temperature Cement). As the nichrome wires

in the 5 oven regions are wired in parallel, the current flowing through each wire

can be customized to produce the desired temperature for that region of the oven.

Thermocouples are placed in each of the 5 regions to monitor the temperature

profile. Both the thermocouples and the nichrome wire are encased in thermal

cement, and the oven is enclosed by firebrick to insulate the assembly from its

room temperature surroundings.

The interior of the oven is lined with stainless steel mesh, which is designed

to wick liquid lithium which strikes the inner bore of the nozzle back toward

the can region. This design is often referred to as a recirculating oven, and the

basic goal is to maximize the life of the oven by recycling any lithium which fails

to successfully exit the oven on its initial attempts. The success of the wicking

action, the atomic flux from the oven, and the lifetime of the oven all depend

on the chosen temperature profile. Choosing an appropriate temperature profile

remains something of a black art, and the “correct” temperature profile varies

from oven to oven. As a general guideline, Table 3.1 lists temperature profiles

that worked with two different ovens.

3.2.4 The Zeeman slower

The first stage of the atom cooling process occurs in the Zeeman slower (see

Figure 3.4). Here, the motion of the atoms is impeded by a slowing beam which

enters the vacuum chamber system from the left via port S1 in Figure 3.4. The

frequency of the slowing beam is red detuned from the D2 transition in 6Li by
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Region No. 1 2 3 4 5

Oven A 370 380 425 350 250

Oven B 370 380 415 410 350

Table 3.1: Temperature profiles for two different ovens. The region numbers
correspond to the numbers shown in Figure 3.5. Temperatures are given in ◦C.
Determining the correct temperature profile for a given oven is a trial-and-error
process, but the above examples provide a reasonable starting point when break-
ing in a new oven.

roughly 200 MHz. However, as the atomic beam from the oven and the slowing

beam are counterpropagating, the finite velocity of the atoms causes a Doppler

shift which brings some portion of the atoms into resonance with the slowing

beam. Atoms that are resonant with the slowing beam will absorb photons. The

excited atoms will then emit photons in random directions. Since the atoms are

always absorbing photons which are travelling in a specific direction (toward the

oven), but emitting photons in a random direction, on average the atoms’ speed

along the slowing beam axis will decrease. However, this slowing will occur only

for a small portion of the atomic flux for which the atoms are Doppler-shifted into

resonance with the slowing beam. Furthermore, as this small subset of atoms is

slowed, the atoms will eventually reach sufficiently small velocities that they will

no longer be Doppler-shifted into resonance with the slowing beam. A more

efficient method of harvesting fast atoms from the oven is needed.

The solution to this problem is the Zeeman slower. Here, several wire coils

coaxial with the slowing beam direction apply a spatially varying bias magnetic

field to the atoms. In Figure 3.4, the 10 wire coils are separated by larger di-

ameter air fins to dissipate heat. The coils are wired in parallel, so the current

flowing through each coil can be controlled independently. The bias magnetic
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fields Zeeman shift the energy level spacing of the atoms such that the atoms

remain resonant with the Doppler-shifted slowing beam as they travel the length

of the Zeeman slower. Some fraction of the atoms from the oven (those with

very high velocities) remain untrappable, as the maximum bias field applied by

the slower is incapable of Zeeman shifting the energy level spacing of the atom

to be resonant with the slowing beam. Nevertheless, with prudent choices of the

magnetic fields, a reasonably large number of atoms can be harvested from the

“fast” atomic beam coming from the oven. The amount of atom slowing (i.e.,

cooling) which occurs in the Zeeman slower is quite impressive. Atoms travelling

around 2 kilometers per second upon entering the Zeeman slower can be slowed

to roughly 30 meters per second upon exiting the slower. Most importantly, this

latter speed is sufficiently slow for the atoms to be captured by the MOT dis-

cussed in Section 3.1.2. For more information regarding the Zeeman slower, the

reader is encouraged to examine [93,97].

3.2.5 Optical beam generation

The discussion of the operation of the MOT and the Zeeman slower makes obvious

the need to generate several optical beams near the D2 resonance in 6Li. This

section addresses the production of such beams.

The beam generation workhorse is a Coherent 699-21 dye laser, which is

pumped by a recently acquired Coherent Verdi V-10 diode-pumped solid state

laser. The latter of these can output up to 10 W at 532 nm, and has excellent

pointing stability. A typical output pump power for the Verdi is around 6.5 W,

though only a little more than 5 W reaches the dye laser after a beam splitter in-

serted between the Verdi and the dye laser redirects a portion of the pump beam.
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We utilize 1.17 grams of LD688 dye dissolved in 1.1 liters of 2-phenoxyethanol in

our dye laser, and we find that the dye laser can output over 850 mW in single

mode operation near 671 nm when the dye is fresh.

An important consequence of the apparatus used to establish the frequency

standard of the dye laser (see Section 3.2.6) is that the dye laser output frequency

is roughly 200 MHz below the desired atomic resonance in 6Li. This is by design,

as the operation of the Zeeman slower requires that the slowing beam be roughly

200 MHz below resonance. A quarter waveplate1 and polarizing beam splitting

cube after the dye laser output directs 80-130 mW of laser power to the slowing

beam port (see Figure 3.9). A glan prism and quarter waveplate are placed in the

slowing beam path prior to the vacuum chamber to ensure that the slowing beam

has good circular polarization to maximize its interaction with the atomic flux

from the oven. In addition, a telescope placed in the slowing beam path expands

the beam diameter to roughly 1 cm before entering the vacuum chamber. The

slowing beam then converges to a focus in the oven region. The high intensity

of the slowing beam near the oven creates a dipole force which attracts atoms to

the slowing beam and improves the rate of atom loading.

Laser power which is not diverted to the slowing beam path is directed to

the MOT AO, where a double-pass arrangement upshifts the laser light by 165-

170 MHz during the MOT loading phase (or more, for the cooling and optical

pumping phases). A half waveplate and polarizing beam splitting cube direct

a portion of the MOT light to the repumper AO, where the light is upshifted

even further to produce the repumper light needed to excite atoms from the

1Ideally, we would use a half waveplate to determine the portion of the dye laser output that
forms the slowing beam. However, given the desired power distribution after the waveplate and
polarizing beam splitting cube, a quarter waveplate works fine.
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F = 1/2 ground state. The MOT and repumper beams are then recombined

on a polarizing beam splitting cube and directed toward the vacuum system, as

shown in Figure 3.9. Before reaching the vacuum system, however, the combined

MOT and repumper beams are split into 3 separate beams, each with its own

expanding telescope. These 3 beams are directed to different ports on the main

vacuum chamber, where they make up the 3 mutually orthogonal MOT beams

needed to confine the atoms in three-dimensional space. Note that this scheme

differs from the “bowtie” MOT beam generation scheme described in previous

theses [22–24]. The present scheme, which uses three independent optical beams,

allows for easier beam alignment and optimization of trap loading.

The MOT beams enter the vacuum chamber as shown in Figure 3.6 and panel

(a) of Figure 3.7. In Figure 3.6, the horizontal MOT beams enter the chamber

after passing through a quarter waveplate to produce circularly polarized light.

Upon exiting the vacuum chamber, each beam passes through an additional quar-

ter waveplate before being retroreflected.

In Chapter 5, we will discuss the procedure for extracting data from the system

by taking absorption images of the atom clouds. These absorption images require

the production of a resonant probe beam and the introduction of this probe beam

to the vacuum chamber. In previous theses, the camera probe ports and the

vertical MOT beam ports were independent. However, to observe anisotropic

expansion of the atom cloud in the strongly interacting regime [16], the imaging

system was modified, and the vertical MOT beam and probe beam now share

the ports formerly used exclusively by the vertical MOT beam. In panel (a) of

Figure 3.7, we show the operation of the vertical MOT beam. Here, the beam

passes through a polarizing beam splitting cube before encountering a quarter
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waveplate. Upon exiting the bottom of the vacuum chamber, the beam passes

through a second quarter waveplate and a second polarizing beam splitting cube

before being retroreflected. The polarization of the vertical MOT beam is chosen

such that the beam passes through the polarizing beam splitting cubes unchanged.

The cubes are necessary, however, to introduce the probe beam into the vacuum

system, a scenario depicted in panel (b) of Figure 3.7. Here, the linear polarization

of the probe beam is selected such that it will enter the polarizing beam splitting

cube at the bottom of the vacuum chamber and be directed upwards. Before

entering the vacuum system, the probe beam passes through a quarter waveplate,

which produces the desired circular polarization for interactions with the trapped

atoms. At the top of the vacuum system, the beam passes through the quarter

waveplate, producing linear polarization which is deflected to the left when it

contacts the upper polarizing beam splitting cube. This deflected beam passes

through a simple imaging setup (not shown in Figure 3.7) before being imaged

by the camera.

Having settled the geometry of the MOT and probe beams, we turn now to the

production of the probe beam. We do not require that the MOT and repumper

beams be available during all phases of an experimental cycle. Consequently,

when the MOT and repumper beams are not needed, the MOT AO is turned off,

and the zeroth-order beam which passes through the MOT AO strikes a pick-off

mirror and is directed through consecutive double-passed AOs. This scenario is

depicted in Figure 3.10. The camera AOs are used to generate the probe beam

used in imaging, and hence are given the rather unexciting but accurate names of

Camera AO #1 and Camera AO #2. After navigating through both camera AOs,

the camera beam is directed to a single-mode optical fiber which guides the beam
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Figure 3.6: Top view of the horizontal MOT beams entering the vacuum cham-
ber. Prior to entering the chamber, each linearly polarized beam passes through
a quarter waveplate (gray rectangle) to produce circularly-polarized light. Upon
exiting the chamber, the beam passes through a quarter waveplate before being
retroreflected by a mirror (black rectangle). The vertical MOT beam (not shown)
enters the vacuum chamber via port M1. This figure is not to scale, and is a
modified version of a similar figure appearing in [24]. Alphanumeric labels on the
various vacuum ports match the convention used in [24].
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Figure 3.7: View from the oven side of the vacuum chamber of the geometry of
the vertical MOT and probe beams. Gray rectangles represent quarter waveplates,
solid rectangles are mirrors, and squares with a single diagonal line represent
polarizing beam splitting cubes. (a). The vertical MOT beam configuration. (b).
The probe beam configuration. These figures are not to scale, and are modified
versions of similar figures appearing in [24]. Alphanumeric labels on the various
vacuum ports match the convention used in [24].

closer to the vacuum system and removes many beam imperfections. Upon exiting

the camera fiber, the beam is collimated after expanding to a size of roughly 2.5

cm in diameter, and directed to the vacuum system as displayed in panel (b) of

Figure 3.7. An important limitation of this experimental arrangement is that we

cannot simultaneously generate the MOT and probe beams. In practice, however,

this limitation rarely presents problems.

In closing, we offer a few comments about the simplified diagrams of the cur-

rent optical layout included in Figures 3.9 and 3.10. The legend for these figures

is shown in Figure 3.8. Please note that the diagrams are not to scale, and that

there are a number of elements on the optical table that are not represented in the

diagrams. For instance, various telescopes, irises, and mirrors have been omitted

to avoid cluttering the diagrams. Only the essential elements for understanding
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Figure 3.8: The legend for the optical layouts shown in Figures 3.9 and 3.10.
Waveplates in the diagrams are labelled according to their phase shift (λ/2 or
λ/4). The mechanical shutter shown above is in the closed position. Mechanical
shutters which are open are shown with a white area at the center of the narrow
section.

the generation of optical beams with different frequency shifts have been included.

3.2.6 Frequency standard – the “locking” region

As some processes during an experimental cycle require that we produce optical

beams within a MHz of the desired atomic transition, we require that our dye

laser be locked to an absolute frequency standard. This frequency standard is

supplied by an independent vacuum chamber and 6Li oven arrangement, which

we refer to as “the locking region.” A beam splitter takes a small portion of the

dye laser’s output and directs it through a double-passed AO, where the beam is

upshifted by roughly 200 MHz. This probe beam (with a power of approximately

1 mW) is then directed to the locking region vacuum system, where it intersects

perpendicularly with an atomic beam of 6Li. The fluorescence from the beam is

monitored by a PMT while a small amount of frequency modulation introduced by

the AO causes the frequency of the probe beam to scan over the D2 transition at

a frequency of 14.2 kHz. A lock-in amplifier and electronic servo [98] process the

frequency-modulated fluorescence signal from the PMT, and send an error signal
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Figure 3.9: Optical layout for generating the MOT and slowing beams. The
legend is shown in Figure 3.8. The schematic is not to scale and some optical
elements have been omitted.
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Figure 3.10: Optical layout for generating the camera beam. The MOT AO is
in the “off” position, allowing a pickoff mirror to direct the zeroth order beam
to the camera AOs. The legend is shown in Figure 3.8. The schematic is not to
scale and some optical elements have been omitted.
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to the dye laser control box to keep the dye laser’s reference cavity locked to the

desired atomic resonance. More information about the locking region design can

be found in [99].

3.2.7 FORT beam generation and conditioning

In some sense, generation and manipulation of the laser beam which produces

the FORT is simpler than the generation of beams associated with the MOT. In

the case of the FORT, we do not care what the precise frequency of the trapping

beam is, only that it is sufficiently far from resonance. Furthermore, we need only

one beam to produce the FORT, compared to the numerous beams required for

a MOT. However, the generation of the FORT does pose several problems.

The laser source for the FORT is a Coherent DEOS LC100-NV CO2 laser,

which has a peak output power of 140 watts at a wavelength of 10.6 µm. This

wavelength is well into the infrared portion of the electromagnetic spectrum,

where it is invisible. This combination of high power and invisibility can make

beam alignment procedures complicated and/or dangerous. Fortunately, for suf-

ficiently low powers or for beams with large cross sectional areas, the position of

the beam can be tracked using fluorescent viewing cards. Beam alignment proce-

dures are also aided by the use of an AO placed near the CO2 laser’s output, as

depicted in Figure 3.11. The AO’s efficiency can be reduced to a level such that

the first order transmitted beam which produces the FORT is cut to a safe power

level.

The location of the AO must be carefully chosen, as the high output power

of the CO2 laser taxes the ability of the water-cooled2 AO to dissipate energy

2In fact, the AO is cooled by a mixture of distilled water (75%) and Dowfrost (25%), an
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Figure 3.11: CO2 laser and placement of beam conditioning optics relevant to
generation of the FORT trapping beam. Drawing not to scale. Drawing of the
vacuum chamber taken from [24]. Alphanumeric labels on the various vacuum
ports match the convention used in [24].



80

absorbed from the beam. For this reason, the distance between the CO2 laser

output and the AO is increased by adding a “zig-zag” mirror arrangement be-

tween the elements to increase the path length (not depicted in Figure 3.11).

This increased path length allows the cross sectional area of the CO2 laser beam

to expand, which reduces the intensity of the beam when it enters the AO, and

improves the far-field quality of the beam. When first installed, the AO is ro-

tated to produce maximum output power in the first order beam, represented

by the solid gray line in Figure 3.11. Some portion of the beam incident on the

AO will remain in the zeroth order, however, and this beam (represented by the

thick dashed gray line) is directed to a water-cooled beam dump. In spite of the

efforts to reduce thermal effects in the AO, we still observe thermal lensing of the

first-order beam. This thermal lensing leads to astigmatism in the beam, which is

corrected by a cylindrical telescope formed by lenses L1 and L2. The beam then

passes through a diffractive sampling optic, where a small portion of the beam

is extracted and directed to a detector (the thin gray line in Figure 3.11). This

detector arrangement can be used to measure noise characteristics of the laser as

well as make precision measurements of the laser power which are necessary for

effective evaporative cooling. The vast majority of the beam, however, contin-

ues to a polarizer, which is positioned to allow this forward-going beam to pass

unimpeded. The beam then passes through an expanding telescope formed by as-

pheric lenses L3 (focal length = 1.2 inches) and L4 (focal length = 11.25 inches).

The telescope expands the beam by a factor of 10, approximately. After being

redirected by two mirrors, the beam is incident on aspheric lens L5 (focal length

= 7.5 inches), which we refer to as the “focusing lens” or the “final lens.” Recall

anti-corrosion agent. This same mixture cools the CO2 laser as well.
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from the discussion of FORT operation that the depth of the trap is proportional

to the intensity of the beam. Lens L5 produces a point of very high intensity in

the middle of the vacuum chamber, where the FORT is formed. At the focus,

the beam radius is between 40 and 50 µm and the Rayleigh length in the axial

direction is roughly an order of magnitude larger. Note that the 10x telescope is

essential for producing a tight focus, as basic gaussian optics predicts a tighter

focus for a beam with a larger waist entering the focusing lens. The aspheric

lens L6 (focal length = 7.5 inches) recollimates the beam on the other side of the

vacuum chamber. In between, the beam passes through two special windows, to

be discussed in a moment.

Once the beam has been recollimated by lens L6, there are two options for its

subsequent path. The “chopper” is an element after lens L6 that is essentially

a mirror which can be raised or lowered pneumatically [23, 24]. In the scenario

depicted in Figure 3.11, the “chopper” is in the down position, and the beam is

directed to a power meter. The chopper remains in this position throughout much

of the free and forced evaporation processes. However, when loading the FORT,

we can increase the efficiency of atom capture from the MOT by increasing the

power of the beam which forms the FORT. This is accomplished by placing the

chopper in the “up” position, in which case the beam strikes the rooftop mirror.

The rooftop mirror retroreflects the beam while flipping its linear polarization

90 degrees. The retroreflected beam retraces the path of the input beam all the

way to the polarizing optic, at which point its orthogonal polarization causes the

beam to be directed into a beam dump, as demonstrated by the thin dashed gray

line in Figure 3.11.

One might question: why not leave the retroreflected beam on at all times?
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While this would provide us with more trapping power, we find that the pointing

instability of the backgoing beam heats the trapped atoms, a scenario that is

largely absent in the forward-going beam. In fact, low pointing noise and other

stability factors are critical in being able to perform atom cooling and trapping

experiments on a long time scale using all-optical techniques [58]. For this reason,

the laser providing the trapping beam must be extremely quiet, and all optics

along the CO2 laser beam path must be well mounted on sturdy bases.

In closing, we noted earlier that the CO2 laser beam passes through special

windows when entering and exiting the vacuum chamber. In fact, all of the optics

along the CO2 laser path, including the windows, are made of zinc-selenide, a

yellowish, but largely transparent material which is non-absorptive in the infrared

portion of the electromagnetic spectrum. Glass, unfortunately, absorbs at 10.6

µm, and is therefore unsuitable for use with the CO2 laser. In spite of the efforts

to reduce absorption of the CO2 laser beam, the ≈ 70% maximum efficiency of

the AO and the number of surfaces between the laser output and the power meter

noticeably reduces the beam power. While peak powers near 140 W are possible

at the CO2 laser output, 60 W is a normal power level detected at the position

of the power meter.

3.2.8 Radio-frequency antenna

In 2002, a vacuum system upgrade was conducted in which a radio-frequency

(RF) antenna was installed in the vacuum chamber. Transitions between the

hyperfine ground states of the 6Li atom occur in the radio-frequency range, so

the RF antenna allows us to alter the populations of the various hyperfine ground

states.
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In spite of the wide array of potential experimental manipulations provided

by the antenna, to date we have used the antenna exclusively to balance spin

state populations prior to initiating evaporative cooling. This is accomplished by

applying an 8 gauss bias magnetic field to the atoms and sending a noisy RF pulse

centered at ≈ 7.4 MHz to the antenna. The bandwidth of the pulse is 2 MHz, and

the pulse duration is 100 milliseconds. The center frequency of the pulse is chosen

to match the frequency splitting of the |1〉 and |2〉 states at 8 gauss. Via rate

equation pumping, the populations of the |1〉 and |2〉 spin states are equalized.

The source of the RF signal is a Hewlett Packard 33120A function generator

whose output is directed to a Mini-Circuits 15542 ZAD-1 frequency mixer. Here,

the signal is multiplied by a DC signal provided by a buffered output from the

multiplexer, which allows us to easily control the RF circuit from the computer.

Prior to reaching the RF antenna, the RF signal is amplified by an Amplifier

Research Model 30L amplifier.

3.2.9 High field magnets

Designed and built largely by Ken O’Hara, the high field magnets presently in-

stalled on the apparatus enable studies of the behavior of strongly interacting

gases near the broad Feshbach resonance in 6Li centered at 834 gauss. The two

magnets are each powered by two Agilent 6682A power supplies wired in series.

At peak output, the current flow is 240 amps, producing bias fields of up to 1114

gauss. Each magnet dissipates close to 5 kW, and therefore must be water-cooled.

Interlocks monitoring the power consumption of the magnets as well as the flow

of cooling water protect against overheating and destruction of the magnets.

The high field magnets are involved in almost every phase of the experimental
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cycle. During the MOT loading phase, the magnets run in the anti-Helmholtz

configuration, in which the current flow through the upper magnet is opposite to

the current flow in the lower magnet, producing a spherical quadrupole magnetic

field. Following conclusion of the MOT loading sequence, the so-called “magnet

flipper” box, also designed by Ken O’Hara, reverses the polarity of one of the

magnets. When the magnets are turned on again, they operate in the Helmholtz

configuration, producing a nearly uniform bias magnetic field at the location of

the trapped atoms.

3.2.10 MOT bias coils

When optimizing the loading of atoms from the MOT to the FORT, it is helpful

to be able to shift the MOT position slightly. This is accomplished using two

pairs of electromagnets. The small coils coaxial with the direction of the CO2

laser beam [23,24] allow for shifting of the MOT along the CO2 laser beam axis.

Larger coils coaxial with the slowing beam axis shift the MOT in that direction.

The current flow through both sets of bias coils is controlled by the “Hummer,”

a custom-built current regulation device.

Finally, the large bias coils coaxial with the slower do more than provide a

bias field during the MOT loading phase. They also provide the 8 gauss magnetic

field needed for equalizing spin state populations as discussed in Section 3.2.8.

3.2.11 CCD camera and imaging system

The generation of the probe beam used for imaging was addressed in Section 3.2.5,

and the path of the probe beam through the vacuum chamber is depicted in panel

(b) of Figure 3.7. After exiting the polarizing beam splitting cube on top of the
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Figure 3.12: Figure showing the geometry of the CCD camera and imaging beam
when imaging in Fast Kinetics mode. The black arrows indicate the direction of
probe beam propagation. Figure not to scale.

vacuum system, the beam is directed horizontally toward the imaging optics and

the camera. The remaining optical elements in the imaging beam path are shown

in Figure 3.12.

After exiting the polarizing beam splitting cube, the imaging beam passes

through a converging achromat lens. Immediately after the achromat is an iris

with an aperture roughly 0.5 inches in diameter. Light collected from the outer-

most portions of the imaging lens tends to degrade image quality and resolution.

The iris ensures that only light striking the center portion of the lens, where aber-

ration is less prevalent, is directed to the camera. For all of the data discussed

in this dissertation, the camera was operating in Fast Kinetics acquisition mode,

a topic covered in greater detail in Section 5.1. When operating in Fast Kinetics

mode, a razor blade is placed in the image plane of the large achromat lens. In

the normal imaging mode, the razor blade is removed. Finally, after a portion of

the imaging beam is blocked by the razor blade, the remaining portion is collected

by a microscope objective fixed to the end of a bayonet mount on the front of the

CCD camera. Images are acquired using an Andor Technology DV434-BV CCD
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camera, featuring a 1024 × 1024 array of pixels (pixel size = 13 µm on a side).

The acquisition and processing of images is discussed extensively in Chapter 5.

3.2.12 Timing system

Throughout Section 3.2, I have described the operation of many of the major el-

ements in our experimental system. The task of making this collection of instru-

ments play nicely with each other falls to the timing system. The timing system

consists primarily of a computer-controlled 32-channel I/O box and GPIB output

managed by LabVIEW software. These elements in turn control the actions of

a number of GPIB devices on the system, as well as elements which respond to

digital inputs. Of course, given the complexity of the system, the operation of

some physical instruments requires switching between different values of analog

signals. For this reason, a large custom built multiplexer translates the digital

signals from the 32-channel control box into the appropriate analog signals. Much

of the software design and development for the system was completed by Stephen

Granade, and the operation of the timing system is described extensively in his

dissertation [23]. Many of the software upgrades implemented in recent years are

outlined in Appendix C of this dissertation.

3.3 Typical experimental sequence

In Sections 3.1 and 3.2, I introduced and described the operation of the basic

tools used to cool and trap atoms in our laboratory. In this section, I will present

a chronological account of a typical experimental sequence. While the sequence

of events which occur during a typical experimental cycle are the same for nearly
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every experiment we conduct, some details of the process differ based on whether

we are producing a noninteracting or a strongly interacting Fermi gas. In Sec-

tions 3.3.1 and 3.3.2, I will address the production of noninteracting and strongly

interacting Fermi gases, respectively.

The experimental cycle begins with the loading of the MOT. A vapor of 6Li

atoms is produced in the oven, which collimates the vapor beam and directs it to

the Zeeman slower. Inside the slower, the motion of the atomic beam is opposed

by a slowing beam, and the velocity of the atoms is substantially reduced. At the

end of the Zeeman slower, the atoms have slowed to a point where they can be

captured by a magneto-optical trap (MOT). During the MOT loading process, the

MOT bias coils shift the MOT position slightly to maximize overlap between the

MOT and the FORT. Once the MOT loading sequence is complete, the optical

slowing beam is turned off via a mechanical shutter.

Throughout the MOT loading sequence, the FORT is also present. We can

increase the capture of atoms from the MOT by maximizing the power in the CO2

laser beam which forms the FORT. To create maximum FORT depth, the chopper

is in the “up” position during the loading process, allowing the retroreflected CO2

beam to overlap the forward-going beam. To further improve the efficiency of

FORT loading, we conduct two phases at the conclusion of the MOT loading

sequence. First, we conduct a “cooling phase,” during which the MOT beams

are ramped closer to the atomic resonance while simultaneously being reduced in

intensity. The cooling phase lasts 5 ms, and brings the atoms in the MOT to a

temperature of roughly 140 µK. At the conclusion of the cooling phase, a brief

(200 µs) “optical pumping” phase is conducted, during which atoms are pumped

into the lowest hyperfine ground state of the 6Li atom. Once the optical pumping
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phase has been completed, the MOT beams are extinguished. We are left with

approximately 2 million atoms in the FORT, at a temperature of 140 µK.

After the MOT beams have been extinguished, and the FORT loaded, the

atoms are still sitting at the center of the spherical quadrupole magnetic field,

where the magnetic field is zero. The high field magnets providing the spherical

quadrupole magnetic field are turned off, and the direction of current flow through

one of the magnets is reversed using the magnet “flipper” box. An 8 gauss bias

magnetic field produced by one pair of the MOT bias coils is applied to the

atoms confined in the FORT. The application of this magnetic field lifts the two-

fold degeneracy which exists in the lowest hyperfine ground state of 6Li at zero

magnetic field. Two new eigenstates emerge, labelled the |1〉 and |2〉 states. A

noisy RF pulse is then applied to the atoms. The center frequency of the RF pulse

matches the frequency splitting between the |1〉 and |2〉 at 8 gauss, and results in

equal spin populations of the |1〉 and |2〉 states.

The high field magnets are then turned on after which the MOT bias coils

providing the 8 gauss field are turned off. The field supplied by the high field

magnets is brought to 300 gauss, where 10 seconds of free evaporation occurs.

Several seconds after the start of free evaporation, the retroreflected portion of

the CO2 laser beam which forms the FORT is adiabatically blocked as the chopper

is slowly lowered, leaving only the forward-going beam to provide the confining

potential. This results in a weaker trapping potential, but no position noise from

the backgoing beam. At the conclusion of the free evaporation sequence, we have

roughly 1 million atoms at a temperature of around 50 µK.

Once free evaporation is complete, forced evaporation can begin. The choice

of magnetic field for forced evaporation depends on whether the user wishes to
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produce a noninteracting (Section 3.3.1) or strongly interacting (Section 3.3.2)

gas. The trap depth of the FORT is controllably lowered to allow hot atoms to be

ejected from the trap. The remaining atoms rethermalize and result in an overall

cooler atom cloud with approximately 2 × 105 atoms. The depth of the FORT

is then adiabatically recompressed to a user-defined value. For more information

about the lowering curves which guide the process of forced evaporation, see

Appendix C.3.

Following the desired experimental manipulation (see Chapters 6 and 7 for

techniques used to study the heat capacity and breathing mode of the confined

gas), information is extracted from the system in the form of an absorption image.

Unfortunately, the size of the trapped atom cloud is too small to be imaged reli-

ably, so we must first release the atom cloud from the trap. Following release, the

cloud begins to expand, and the manner in which this expansion occurs depends

on the nature of the interactions between the two spin states which comprise the

cloud (see Chapter 4). Once the cloud has expanded to a sufficiently large size,

a resonant pulse of light strikes the cloud, and the resulting image is recorded on

a CCD camera. This process is destructive in nature, and results in the atoms

in the atom cloud being scattered. After these atoms have had time to disperse,

a second pulse of light strikes the CCD array. By comparing the photon counts

in this second pulse to the photon counts in the image of the cloud, the spatial

distribution of the atoms can be reconstructed (see Chapter 5).

At this point, the experimental cycle is effectively complete. The experimental

apparatus returns to its MOT loading configuration in preparation for the next

cycle. In closing, we include a table (Table 3.2) summarizing the frequency shifts

provided by AOs during different phases of the experimental sequence. These
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MOT MOT MOT Camera
AO Name Loading Cooling Optical pumping beam
Locking +200 +200 +200 +200
MOT +170 +196 +198 Off
Repumper +247 +228 Off Off
Camera AO #1 Off Off Off +214
Camera AO #2 Off Off Off +214

Table 3.2: Summary of the frequency shifts provided by the AOs during different
experimental phases. All AOs operate in a double-pass configuration and the
reported frequency shifts are given in MHz after completing both passes through
the AO. The values reported in the table provide ballpark figures, and may need
to be modified to maximize system performance.

values are approximate, and will depend on other factors such as the overall laser

power and the selected beam power during different experimental phases. While

these frequency shifts are not to be taken as the definitive experimental settings,

they do provide ballpark figures that have been associated with good performance

from the experimental apparatus.

3.3.1 Production of a degenerate noninteracting Fermi gas

When producing a noninteracting Fermi gas, the loading of the MOT and the

FORT proceed as described in Section 3.3. Following the process of equalizing

the spin state populations, the magnetic field is ramped to 300 gauss, where

free evaporation takes place. Following 10 seconds of free evaporation, forced

evaporation is initiated while the magnetic field remains at 300 gauss. The depth

of the optical trap is lowered according to (3.10), where we use a lowering time

constant τlc = 0.25 seconds for a duration of roughly 12 seconds. The optical trap

is held at this minimum depth for roughly 1 second before being recompressed

to some final value in 1 or 2 seconds. We typically wait 0.5 to 1 second before
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initiating any further experimental manipulation, to allow the atom sample to

come to equilibrium following the optical trap recompression sequence. When the

experimental system is operating properly, the above procedure will net about 105

atoms per spin state at a reduced temperature of T/TF ≈ 0.25. Of course, as long

as we maintain the magnetic field at 300 gauss where the gas is weakly interacting,

we do not have a truly noninteracting sample. To reach the noninteracting limit,

we have two options:

1. Ramp the magnetic field to 0 gauss, where the |1〉-|2〉 scattering length is 0.

2. Ramp the magnetic field to the so called “zero crossing” near 530 gauss [62],

where the scattering length is also 0.

In practice, the latter of these options is superior on two counts. First, following

the experimental manipulation of the atomic sample, we will need to image the

atom cloud. At zero magnetic field, there is substantial optical pumping to dark

states during the on-resonance probe pulse [24], resulting in reduced signal-to-

noise. This effect is mitigated at the zero crossing, where the imaging transitions

are well-approximated by a two-level system. This effect is discussed in greater

detail in Section 5.4. As the imaging transition is nearly a two-level system, and

therefore undergoes minimal optical pumping to dark states during the probe

pulse, the signal-to-noise which results from imaging at 530 gauss is superior to

that at zero magnetic field.

There is a second, and in some ways, more physically interesting reason we

elect to produce a noninteracting gas by working at the zero crossing rather than

at zero magnetic field. Early attempts on our part to study a noninteracting

gas by ramping the applied magnetic field to zero gauss resulted in an apparent
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“explosion” of the gas. Comparison of images acquired at 300 gauss prior to the

magnetic field sweep and those images taken after the sweep to zero magnetic field

revealed a substantial loss of atoms as well as significant heating of the remaining

atoms. At the time, we were unable to explain the cause of this behavior, but

more recent studies [84,90] reveal that there are three p-wave Feshbach resonances

for a |1〉 − |2〉 mixture between 159 and 215 gauss. As the magnets which apply

the bias magnetic field are quite large, the time needed to conduct magnetic field

sweeps is on the order of 0.35 seconds. At such a sweep rate, the atom cloud

appears to spend a sufficiently large amount of time in the vicinity of these p-

wave resonances for there to be significant atom loss and heating. Fortunately,

there are no such problems in conducting a magnetic field ramp from 300 gauss

upwards to the zero crossing, and as a result, we produce noninteracting gases by

working near the zero crossing.

Those familiar with the properties of |1〉-|2〉 mixtures of the 6Li ground state

might be tempted to ask: why not produce a noninteracting gas by performing

free and forced evaporation near the broad Feshbach resonance centered at 834

gauss before sweeping the magnetic field to the zero crossing? After all, evapora-

tive cooling could be conducted more quickly and efficiently at 834 gauss, where

we have a unitarity limited scattering length, compared to the relatively weak

scattering length at 300 gauss. There are two reasons we do not produce nonin-

teracting samples in this way. First, we cannot leave the large bias magnets at

high magnetic field (say, 800 gauss, or larger) for more than about 10 seconds,

before protective interlocks engage to prevent the magnets from overheating. Ef-

forts to conduct free and forced evaporation near the broad Feshbach resonance

would likely tax these safety limits. The second reason we do not produce non-
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interacting gases by cooling near the broad Feshbach resonance before ramping

the magnetic field to the zero crossing is due to heating between 650 and 680

gauss [61,62].

Finally, one might ask: why not generate a noninteracting gas by utilizing the

large scattering lengths available near the narrow Feshbach resonance at 544 gauss

to conduct evaporative cooling prior to ramping the magnetic field to the (nearby)

zero crossing value? This is not experimentally viable, as the so-called narrow

Feshbach resonance is quite aptly named. The width of the resonance is less than

1 gauss [50, 84], making it too narrow to study reliably.3 The required magnetic

field precision exceeds the precision of our magnetic field controls. Furthermore,

as the large magnets do not produce a completely uniform bias magnetic field, it

is possible for atoms contained in different portions of the optical trap to exist

on different sides of the narrow Feshbach resonance. (That is, an atom at the

very center of the magnetic field axis might occupy a region in space where the

magnetic field is above the Feshbach resonance value, while an atom far from

the magnetic field axis might experience a bias magnetic field whose magnitude

is less than the narrow Feshbach resonance value). While the narrow Feshbach

resonance centered at 544 gauss might eventually prove to be an interesting object

of study, we did not attempt to examine it for the data in this dissertation. Unless

otherwise stated, references to “the Feshbach resonance” indicate we are speaking

about the broad Feshbach resonance centered at 834 gauss.

3One of the few studies using the narrow resonance is presented in [50].
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3.3.2 Production of a degenerate strongly interacting Fermi

gas

Compared to the issues considered in Section 3.3.1 regarding the production of

a noninteracting Fermi gas, the production of a strongly interacting Fermi gas

is comparatively simple. Following free evaporation for 10 seconds at a bias

magnetic field of 300 gauss, the magnetic field is ramped to a destination value

near the broad Feshbach resonance centered at 834 gauss. Forced evaporation

starts with the lowering of the optical trap depth for 3-4 seconds with a typical

time constant of 80 ms. (The specific lowering durations and time constants

depend on the magnetic field and the efficiency of FORT loading from the MOT,

and are therefore tweaked often.) Note that this is shorter than the lowering times

and time constants used for the noninteracting gas; the very large scattering length

which exists near the Feshbach resonance allows evaporative cooling to proceed

with great efficiency, which results in increased speed. After the lowering sequence

is complete, the optical trap depth is held at its minimum value for roughly 0.5

seconds before being recompressed to the desired final trap depth in approximately

1 second. After allowing 0.5 seconds to ensure that the gas is in equilibrium at

the final optical trap depth, the atom cloud is ready for further experimental

manipulation. When the experimental apparatus is functioning properly, the

above sequence yields strongly interacting Fermi gases containing 2 × 105 atoms

at estimated reduced temperatures T/TF ≤ 0.10.4

One of the advantages of producing a strongly interacting gas near the Fesh-

4Why “estimated” reduced temperatures? In the strongly interacting regime, temperature
measurement remains controversial. See Section 6.3.2 for our pragmatic solution to the problem
of measuring temperatures in the strongly interacting regime.
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bach resonance is that we can employ on-resonance imaging techniques without

having to change the magnetic field. As discussed in Section 5.4, the optical

transitions used in imaging are very nearly closed two-level cycling transitions,

which maximize the signal-to-noise ratio. The only scenario for which optical

imaging becomes problematic is well below the center of the Feshbach resonance,

where it is energetically favorable for 6Li atoms to form 6Li2 dimers. Trying to

image these dimers by tuning the probe beam frequency to the free atom optical

transition will be successful provided that the dimers are weakly bound. If the

binding is sufficiently weak, an atom in the dimer will absorb a photon and the

associated momentum recoil will break the pair, yielding two atoms which can

then be imaged readily. In practice, we find that the apparent atom number

and signal-to-noise ratio is decreased when imaging at magnetic fields below the

Feshbach resonance, where 6Li2 dimers are formed.

With the completion of the descriptions of the production of interacting and

noninteracting degenerate Fermi gases, we are in a position to discuss extracting

data from the system. We do so by acquiring absorption images of the clouds,

but we must release the clouds from the trapping potential before performing ab-

sorption imaging. We cover the topic of expansion dynamics in the next chapter.



Chapter 4

Expansion Dynamics

All of the images of atom clouds analyzed and presented in this dissertation were

acquired following release of the atoms from the optical trap. Ideally, we would

be able to image the trapped clouds directly, as that would eliminate the need to

understand the expansion dynamics of the cloud. However, imaging of expanded

clouds is necessary for two reasons. First, the transverse size of the trapped cloud

is comparable to the resolution of our imaging system. Extracting information

about the spatial density of the cloud requires that the overall dimensions of the

cloud be much larger than the resolution of our imaging system. Second, the cloud

is released from the optical trap because we want to reduce the optical thickness

of the cloud. The trapped cloud is so optically thick that attempts to calculate

the spatial profile of the cloud based on on-resonance absorption imaging become

unreliable. Releasing the cloud from the optical trap overcomes both of these

problems: the expanded cloud is much larger than the resolution of our imaging

system, and the expanded cloud is less optically thick.

The expansion dynamics of quantum gases is a rich topic, particularly in the

strongly interacting regime, where high collision rates and superfluidity strongly

influence the evolution of the expanding atom cloud. In this section, I will discuss

the expansion dynamics of a noninteracting atom cloud (ballistic expansion) and

96
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the evolution of an expanding hydrodynamic cloud. The latter case is applicable in

the strongly interacting regime, where the gas appears to obey the hydrodynamic

equations when trapped [19,21,79] and following release from the optical trap [16].

In the sections that follow, we will make use of the relaxation approximation

to obtain formulas governing the time-dependent scale factors bi(t) that describe

the evolution of the overall dimensions of the atom cloud. For a cloud expanding

by a scale transformation, the shape of the cloud will remain the same following

release from the trap, and the size of the cloud in the i-direction at time t is bi(t)

times its trapped size. We will find that the expansion dynamics are governed

by the optical trap oscillation frequencies and the slight magnetic field curvature

provided by our magnets. Procedures for measuring these oscillation frequencies

are covered at the end of this chapter.

4.1 The Relaxation Approximation

Ideally, one would predict the behavior of a gas by measuring the initial con-

ditions for each particle and deterministically evolving the state of the system,

thereby allowing one to make predictions for the macroscopic observables. Of

course, for systems involving a large number of particles, this approach is unrea-

sonable. While predicting the behavior of individual particles in the atom cloud

is unreasonable, predicting the evolution of the phase space density is not. Here,

the behavior of single atoms is disregarded, and the statistical behavior of the

aggregate sample followed instead. This technique is a powerful one, as we can

explore the kinds of behavior a system might exhibit without possessing detailed

knowledge of the interparticle interactions. In the following, we will consider the
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evolution of the classical phase space density.

We begin by taking the total time derivative of the phase space density

f(t, xi, vi) = f(t, x, y, z, vx, vy, vz), yielding

∂f

∂t
+ v · ∂f

∂r
− 1

m

∂U

∂r
· ∂f

∂v
= Icoll[f ], (4.1)

where Icoll[f ] is an integral related to collisional processes in the gas. While

one could proceed by writing down and solving the expression for the collisional

integral (which would require knowledge of interparticle interactions), we will

instead use the relaxation approximation (also referred to as the relaxation time

approximation, [100]). This approximation involves the following simplification

[101]

Icoll[f ] ≈ −f − fle

τR

, (4.2)

where fle is the phase space density for local equilibrium conditions and the

relaxation time τR is related to the average time between collisions in the gas.

Next, we use the phase space density scaling ansatz [101]

f(t, xi, vi) =
1

∏
j

(
bj θ

1/2
j

)f0

[
x̃i,

1

θ
1/2
i

(
vi − ḃix̃i

)]
, (4.3)

where x̃i = xi/bi, the bi = bi(t) factors track the overall size of the gas in the

i-direction, dots represent derivatives with respect to time, and the θi = θi(t)

factors track the effective temperature in the i-direction. Further, f0 denotes the

equilibrium phase space density. Combining (4.1), (4.2), and (4.3), we arrive at
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the following system of equations,

b̈i +
1

bi m 〈x̃2
i 〉

[〈
x̃i

∂UEV (bxx̃, byỹ, bz z̃)

∂x̃i

〉
− θi

〈
x̃i

∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉]
= 0 (4.4)

θ̇i + 2 θi
ḃi

bi

= − 1

τR

(
θi − θ̄

)
, (4.5)

where θ̄ = (θx+θy+θz)/3 in the latter equation. In (4.4), I have used two different

forms of the potential energy. UEQ represents the potential energy terms present

under equilibrium conditions prior to perturbations. UEV represents potential

energy terms relevant as the system evolves in time. For scenarios in which

the potential energy contributions that establish the initial equilibrium remain

constant as the system evolves in time, the functional forms of UEQ and UEV will

be similar. However, in general, the two potential energy terms will not be equal,

as we will see in the coming sections.

4.2 Ballistic expansion

We begin with the simple case of a noninteracting gas. At first, we will consider

expansion from a harmonic optical potential with trap oscillation frequencies ωi.

Ballistic expansion is observed in degenerate mixtures of the |1〉 and |2〉 hyperfine

states of 6Li at zero magnetic field [48] and at the “zero crossing” [52, 62] near

530 gauss, where the s−wave scattering length between the two hyperfine states

is zero. In this section, we consider ballistic expansion at zero magnetic field.

Ballistic expansion in the presence of a magnetic field, a scenario that occurs at

the zero crossing, will be addressed in Section 4.3.

We start with the equations derived in Section 4.1 using the relaxation ap-
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proximation

b̈i +
1

bi m 〈x̃2
i 〉

[〈
x̃i

∂UEV (bxx̃, byỹ, bz z̃)

∂x̃i

〉
− θi

〈
x̃i

∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉]
= 0 (4.6)

θ̇i + 2 θi
ḃi

bi

= − 1

τR

(
θi − θ̄

)
. (4.7)

Recall that τR is related to the characteristic time between collisions of two parti-

cles in the gas. In the noninteracting limit, there are no collisions, and τR →∞.

In this case, (4.7) yields θi = 1/b2
i . Prior to release from the optical trap, the only

potential energy present is that provided by the optical trap. If we assume the

optical trap provides harmonic confinement, then

UEQ(x̃, ỹ, z̃) =
m

2

(
ω2

x x̃2 + ω2
y ỹ2 + ω2

z z̃2
)
. (4.8)

After the optical trap is extinguished, the atom cloud evolves free of external

forces.1 In this case, UEV = 0. The above system of six equations then simplifies

to a three equation system,

b̈i − 1

mb3
i 〈x̃2

i 〉
〈

x̃i
∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉
= 0. (4.9)

Combining (4.8) and (4.9), we arrive at a simple differential equation for the bi(t)

factors,

b̈i − ω2
i

b3
i

= 0. (4.10)

1We assume the effects of gravity are negligible for typical experimental conditions. Further,
we are not concerned with the center of mass motion of the atom cloud, so much as we are
interested in the temporal evolution of the cloud’s spatial profile.
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To (4.10) we add the initial conditions

bi(0) = 1 (4.11)

ḃi(0) = 0. (4.12)

Solving (4.10) for these initial conditions yields

bi(t) =

√
1 + (ωi t)

2. (4.13)

The physical meaning of the bi(t) factors is straightforward. An atom cloud with

width σi in the i-direction at time t = 0 will have a width bi(t)× σi at time t.

4.3 Ballistic expansion with magnetic field

In the preceding section, we considered the expansion dynamics of a noninteract-

ing gas. The results of Section 4.2 are valid for a noninteracting system where

there are no additional forces present during time of flight. This would be the case

for the two lowest hyperfine ground states of 6Li at zero magnetic field. However,

for reasons addressed in Section 3.3.1, we prefer to produce noninteracting gases

at the zero crossing near 530 gauss.

For ballistic expansion near the zero crossing, the presence of the magnetic

field can alter the expansion dynamics. If the magnetic field generated by the

large magnets were perfectly uniform, the gradient of the magnetic field would be

zero, and no magnetic force would be exerted on the atoms. In reality, however,

the finite size of the magnets results in finite curvature of the magnetic field.

The presence of this magnetic field curvature exerts a force on the atoms as they
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expand. Although the presence of the magnetic field gradient represents a small

perturbation for typical experimental conditions, the effect can be significant if

the atom cloud is released from a shallow optical trap, as detailed in Section 4.6.2.

We return to equations (4.4) and (4.5). Once again, we let τR →∞ to obtain

b̈i +
1

mbi 〈x̃2
i 〉

[〈
x̃i

∂UEV (bx x̃, by ỹ, bz z̃)

∂x̃i

〉
− 1

b2
i

〈
x̃i

∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉]
= 0. (4.14)

In contrast to the analysis of Section 4.2, magnetic forces are present at all times.

Consequently, if we approximate both the dipole optical potential and magnetic

potential as three-dimensional harmonic potentials, UEV and UEQ are

UEV (bx x̃, by ỹ, bz z̃) =
m

2

(
ω2

mx b2
x x̃2 − ω2

my b2
y ỹ2 + ω2

mz b2
z z̃2

)
(4.15)

UEQ(x̃, ỹ, z̃) =
m

2

[(
ω2

x + ω2
mx

)
x̃2 +

(
ω2

y − ω2
my

)
ỹ2 +

(
ω2

z + ω2
mz

)
z̃2

]
, (4.16)

where ωi represents the optical trap oscillation frequency in the i-direction, and

ωmi represents the magnetic potential oscillation frequency in the i-direction.

Before continuing, note that the magnetic potential is attractive in the x- and z-

directions, but repulsive in the y-direction (along the magnet axis), a consequence

of the symmetry of the magnet’s design and magnetostatics which is discussed in

Section 4.6.2.

If we plug (4.15) and (4.16) into (4.14), the equations governing the time
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evolution of the bi factors are as follows,

b̈x + ω2
mx bx − ω2

x + ω2
mx

b3
x

= 0 (4.17)

b̈y − ω2
my by −

ω2
y − ω2

my

b3
y

= 0 (4.18)

b̈z + ω2
mz bz − ω2

z + ω2
mz

b3
z

= 0. (4.19)

In the absence of the magnetic field curvature, we were able to obtain a simple

analytic solution describing ballistic expansion of the noninteracting gas. Unfor-

tunately, the presence of the magnetic field potential prevents us from doing the

same here. Equations (4.17) through (4.19) must be solved numerically, making

use of the initial conditions (4.11) and (4.12).

4.4 Hydrodynamic expansion with magnetic field

As the case of ballistic expansion is well understood, and as the noninteracting

regime can be readily accessed given the two hyperfine states of 6Li we trap, it

is natural to question why one would conduct time of flight expansion under any

other circumstances. Indeed, if one is using time of flight expansion as a tool to

probe the gas, rather than a probe of the expansion dynamics themselves, it would

be more convenient to conduct all time of flight measurements in the noninteract-

ing regime. Unfortunately, technical limitations prevent us from doing so. Much

of the interesting physics of this system occurs near the broad Feshbach resonance

located near 834 G. If one can very quickly sweep from the Feshbach resonance

region to the zero crossing near 530 G, then all time of flight measurements can be

conducted in the noninteracting regime. In our laboratory, a magnetic field sweep
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of around 300 gauss can take several tenths of a second, much longer than the

microsecond time scales we would require to ensure that the sweep rate was much

faster than all physically relevant time scales. Consequently, we are often forced

to conduct our time of flight measurements in the strongly interacting regime,

where we have observed very good hydrodynamic behavior.

The underlying cause of hydrodynamic expansion can be a high collision rate

in the gas, or the presence of superfluidity in the gas. While there is still some de-

bate about the cause of hydrodynamic behavior in degenerate Fermi gases under

various conditions, the behavior appears to be well described by the hydrodynamic

equations of motion. Unlike the case of ballistic expansion, we will not consider

hydrodynamic expansion in the absence of a magnetic field. Observations of hy-

drodynamic behavior occur at magnetic fields in the vicinity of the broad Feshbach

resonance centered at 834 gauss, where the gas is strongly interacting. Once these

interactions are removed, hydrodynamic behavior is not observed. Hence, we will

consider the most experimentally relevant scenario in which a hydrodynamic gas

expands from a combined optical and magnetic potential into a purely magnetic

potential.

Once again, we begin with the equations based on the relaxation approxima-

tion. For the noninteracting gas, we let the characteristic time between collisions

go to infinity. Here, we consider the case of an infinite collision rate, in which the

characteristic time between collisions goes to zero. In that case, τR → 0. Then

the equations governing the bi are given by

b̈i +
1

m bi 〈x̃2
i 〉

[〈
x̃i

∂UEV (bx x̃, by ỹ, bz z̃)

∂x̃i

〉
− 1

Γ2/3

〈
x̃i

∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉]
= 0,

(4.20)
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where Γ ≡ bx by bz. Once again, we approximate both the magnetic and opti-

cal potentials as three-dimensional harmonic potentials. Substituting (4.15) and

(4.16) into (4.20), we obtain the following system of equations,

b̈x + ω2
mx bx − ω2

x + ω2
mx

bx Γ2/3
= 0 (4.21)

b̈y − ω2
my by −

ω2
y − ω2

my

by Γ2/3
= 0 (4.22)

b̈z + ω2
mz bz − ω2

z + ω2
mz

bz Γ2/3
= 0. (4.23)

In contrast to the case for the noninteracting gas, where the expansion in each

direction was independent, we see here that for the hydrodynamic gas, the equa-

tions governing the bi must be solved simultaneously using numerical techniques.

When numerically solving equations (4.21) through (4.19), we again use the initial

conditions given by equations (4.11) and (4.12).

4.5 Expansion from a slightly anharmonic trap

In our studies of degenerate Fermi gases, we attempt to produce experimental

conditions in which the atomic cloud occupies only the deepest portion of the

optical potential, where treating the optical trap as a harmonic well should be

approximately correct. Even with these efforts, we have found that slight anhar-

monicity can be significant for some of our measurements. In preceding sections,

we have considered the expansion dynamics of clouds released from harmonic op-

tical potentials with trap oscillation frequencies ωi. How are these frequencies

altered if the cloud expands from an anharmonic confining potential?

For a perfectly harmonic trap, the expansion dynamics are precisely deter-
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mined by the trap oscillation frequencies. For slightly anharmonic traps, we can

characterize the trap using an effective oscillation frequency. We consider the

noninteracting limit given by (4.14), and set UEV = 0. Then, we are left with

b̈i − 1

mb3
i 〈x̃2

i 〉
〈

x̃i
∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉
= 0. (4.24)

We can rewrite (4.24) as

b̈i −
(ω2

i )eff

b3
i

= 0, (4.25)

where the effective trap oscillation frequency is defined as

(
ω2

i

)
eff

=
1

m 〈x̃2
i 〉

〈
x̃i

∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉
. (4.26)

Note that for harmonic forms of UEQ, the effective trap oscillation frequency will

be the standard harmonic trap oscillation frequency. For “soft” potentials, such as

the one produced by our gaussian optical dipole trap, the effective trap oscillation

frequency will be lower than its harmonic counterpart.

4.6 Measuring trap oscillation frequencies

We have seen that the expansion dynamics in the noninteracting and hydrody-

namic limits are governed by the optical trap oscillation frequencies ωi and the

magnetic potential oscillation frequencies, ωmi, for i = x, y, z. Consequently, we

need methods for measuring these quantities. Accurate measurement of the op-

tical trap frequencies relies on a technique known as parametric resonance. The
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results from parametric resonance measurements can be verified by measuring the

breathing mode frequency of the noninteracting gas as well. Measurement of the

effect of magnetic field curvature can be accomplished by monitoring the center

of mass motion of the atomic cloud following release into the magnetic potential.

We begin, however, with the optical trap.

4.6.1 Measuring optical trap oscillation frequencies

The importance of measuring the optical trap oscillation frequencies accurately

cannot be overstated. The physical behavior of the trapped atom cloud is deter-

mined primarily by two factors: the interparticle interactions, and the confining

potential. If we can characterize accurately and precisely the confining potential

of the optical trap, this will leave us free to study the more physically interesting

interparticle interactions in the trapped atom cloud. We have seen already that

the optical trap oscillation frequencies influence the dynamics of an expanding

atom cloud. Perhaps more importantly, however, the optical trap parameters

help determine the natural temperature and energy scales of the trapped atom

cloud. In this section, I will discuss the use of parametric resonance techniques

and measurements of the breathing mode as methods to characterize the optical

trap oscillation frequencies.

The parametric resonance technique is relatively straightforward. First, we

evaporatively cool a 50-50 mixture of the two lowest hyperfine spin states of

6Li at 300 gauss to the lowest temperatures we can achieve. Then, the optical

trap is recompressed to the desired depth. At this point, we initiate the process

of parametric resonance, in which the optical trap experiences small amplitude

modulation at a particular drive frequency. After the amplitude modulation is
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Figure 4.1: The results of a parametric resonance measurement of the radial
trap oscillation frequencies for our optical potential. We monitor the radial width
of the released atom cloud as a function of the frequency of the amplitude mod-
ulation (the parametric drive frequency). Spikes in the width are observed at
frequencies which are twice the natural trap oscillation frequencies. Dots with
error bars are the measured radial widths of the atom cloud (measured approx-
imately using a zero temperature Thomas-Fermi spatial profile) and the dashed
lines are Lorentzian fits to the peaks. The above data was taken for an optical
trap depth U0 = 35 µK/kB, roughly 5% of the maximum trap depth.

complete, the magnetic field is ramped to the zero crossing at 530 gauss, where

the atom cloud is released from the trap and imaged. The width of the released

atom cloud can be tracked as a function of the amplitude modulation frequency

to produce plots like Figures 4.1 and 4.2.

In Figures 4.1 and 4.2, we see the results of performing the parametric reso-

nance procedure in a frequency range close to twice the natural trap oscillation

frequencies. While it is tempting to assume that the resonant excitation of the

atom cloud will be strongest when driving at the natural trap frequencies, in fact

the phenomenon of parametric resonance is observed when exciting the system
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Figure 4.2: The results of a parametric resonance measurement of the axial trap
oscillation frequency for our optical potential. We monitor the radial width of the
released atom cloud as a function of the frequency of the amplitude modulation
(the parametric drive frequency). A spike in the width is observed at twice the
natural axial trap oscillation frequency. Dots with error bars are the measured ra-
dial widths of the atom cloud (measured approximately using a zero temperature
Thomas-Fermi spatial profile) and the dashed line is a Lorentzian fit to the peak.
The above data was taken for an optical trap depth U0 = 35 µK/kB, roughly 5%
of the maximum trap depth.
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at twice its natural frequencies [102]. The spikes in the measured cloud width

indicate that the atom cloud has become hotter at those drive frequencies, which

in turn indicates that the drive frequency is close to twice one of the natural

frequencies of the optical trap. To obtain accurate parametric resonance results,

we typically start with an atom cloud whose reduced temperature T/TF < 0.3.

Starting from degenerate samples has two advantages. First, small increases in

temperature are most easily observed at low temperature, where the increase in

temperature, while small, can still constitute a noticeable fractional change in

temperature. Second, working at low temperature where the atom cloud occupies

the lowest portion of the trap minimizes the impact of trap anharmonicity on the

measurement.

The results displayed in Figures 4.1 and 4.2 were acquired for an optical trap

depth of U0 = 35 µK/kB, roughly 5% of the maximum trap depth. The amplitude

modulation signal for the radial trap oscillation frequencies was a 2 mV peak-

to-peak sine wave with a duration of 1 second. For the axial measurement, the

amplitude modulation was a 5 mV peak-to-peak signal which lasted for 4 seconds.

In both cases, these sine waves were passed through a 15 dB attenuator before

being summed with the DC signal which provides the optical trap depth, yielding

less than 1% amplitude modulation of the trap.

While parametric resonance gives us a reasonably accurate measurement of

the optical trap oscillation frequencies, trap anharmonicity can result in an un-

derestimate of the harmonic trap oscillation frequencies. Fortunately, we can

measure the radial breathing mode of the trapped atom cloud, which will allow

for a consistency check with the parametric resonance measurement. Further,

we have simple analytic formulas for estimating the breathing mode oscillation
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frequency shift resulting from trap anharmonicity.

The process of measuring the breathing mode of the trapped atom cloud is

discussed at length in Chapter 7, and will be summarized here. After conducting

evaporative cooling at 300 gauss, the magnetic field is ramped to the zero crossing

at 530 gauss, and the optical trap is briefly extinguished. After the optical trap

is restored, the atom cloud is trapped once more and begins to oscillate. The

measured oscillation frequency should be in close agreement with one of the mea-

sured radial parametric resonance frequencies. Using the results in Section 7.4.2,

we can calculate the breathing mode oscillation frequency shift arising from trap

anharmonicity. This allows us to fix the “true” optical trap oscillation frequency

for this dimension. Having established the most accurate measurement of one

of the radial trap oscillation frequencies, we can use the ratio of the two radial

trap oscillation frequencies measured using parametric resonance to fix the “true”

trap oscillation frequency for the remaining radial trap dimension. Unfortunately,

for technical reasons, it is inconvenient to excite the axial breathing mode of the

trapped atom cloud to provide a similar consistency check and anharmonicity

estimate for the measured optical trap oscillation frequency in the axial dimen-

sion. Consequently, we take the axial trap oscillation frequency measured using

parametric resonance as the “true” oscillation frequency.

In closing, the astute reader might be concerned that the parametric resonance

excitation process was conducted at 300 gauss rather than the zero crossing at 530

gauss. At the latter magnetic field, the gas is truly a noninteracting system, and

we would expect to obtain the most accurate measurements of the natural trap

oscillation frequencies. In contrast, at 300 gauss, the gas is weakly interacting,

and the presence of interactions could lead to a systematic shift in the measured
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trap oscillation frequencies. However, as the system is weakly interacting at 300

gauss, this should contribute only a small shift in the measured trap frequencies.

This contention is supported by measurements in which parametric resonance

is conducted at 300 gauss and at 530 gauss. We measure the same parametric

excitation frequency for one of the radial dimensions in both cases. Moreover,

conducting parametric resonance at 300 gauss is necessary to measure all of the

trap oscillation frequencies, as we use the fractional change in size of the one

radial width visible on the camera images as an indicator of heating. If we had

a truly noninteracting system, pumping energy into the system axially would

serve to increase the axial width of the cloud without impacting the radial width.

Moreover, we would be completely unable to measure the second radial trap

resonance, as there is no way to observe this dimension on the two-dimensional

camera image. Conducting parametric resonance at 300 gauss allows for cross-

relaxation between the primary axes of the optical trap. Adding energy to the

atom cloud by exciting the axial mode will appear as additional radial energy if

the atoms in the cloud are colliding. This process is possible at 300 gauss, but

not at 530 gauss. Hence, we conduct our parametric resonance excitations at 300

gauss.

4.6.2 Measuring magnetic field curvature

The magnetic potential oscillation frequencies arising from the magnetic field

curvature are measured by monitoring the center of mass motion of the atom

cloud following release from the optical trap. In an ideal world, we would be able

to measure all of the magnetic potential oscillation frequencies ωmi independently.

However, given the current geometry of our imaging system, we can measure only
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two of the magnetic potential oscillation frequencies directly. In fact, we need to

measure only one of these, as symmetry considerations and magnetostatics fix the

values of the other two potential oscillation frequencies.

First, there are some practical issues to discuss. The magnetic potential os-

cillation frequencies will change as the magnetic field is varied. As a substantial

number of our measurements were conducted at 840 gauss, slightly above the cen-

ter of the broad Feshbach resonance at 834 gauss, I will present a measurement

of the magnetic potential oscillation frequencies at 840 gauss. Note that we are

interested only in the center of mass motion of the atom cloud. This might lead

one to believe that the optical trap depth has no impact on the magnetic field

curvature measurement. While this is true, the signal-to-noise ratio of the mea-

surement can be improved by releasing the atom cloud from a very shallow optical

trap. As we have seen in the preceding chapter regarding expansion dynamics,

atom clouds confined in optical traps expand more rapidly as the optical trap

oscillation frequencies are increased. Rapid expansion of the atom cloud results

in lower column densities, and reduced signal-to-noise ratios. Hence, when mea-

suring the magnetic potential oscillation frequencies, we release the atom cloud

from the shallowest possible optical trap.

In Figure 4.3, we see false color absorption images of an atom cloud released

from an optical trap into the magnetic potential at a magnetic field of 840 gauss.

The top panel shows the density profile after 2 ms time of flight. The lower

two images were taken after 6 and 8 ms time of flight. While the aspect ratio

of the spatial density of the atom cloud is changing, we are concerned instead

with the center of mass motion of the cloud.2 This is shown in Figure 4.4, where

2In this particular panel of images, we see that the cloud moves only to the left of the image,
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the transverse position of the cloud is plotted as a function of time elapsed from

the removal of the optical trap. The dots represent the measured position of the

atom cloud, while the dashed line shows a sinusoidal fit to the data, from which we

can extract the magnetic potential oscillation frequencies. Due to the cylindrical

symmetry of our magnet design, the two orthogonal dimensions (x and z) visible

in the camera images have the same magnetic potential oscillation frequencies,

ωmx = ωmz. As only a fraction of a single period of motion can be obtained,

repeated measurements of the magnetic potential oscillation frequencies yield a

range of values. At a magnetic field of 840 gauss, for the two directions visible in

the camera images, we measure 2π × 19 < ωmx < 2π × 24.

While we can determine ωmx and ωmz experimentally with little effort, we

cannot directly measure the final magnetic potential oscillation frequency, ωmy.

We are unable to track the motion of the atom cloud in the y-direction, as it

coincides with the direction of propagation of our imaging beam. However, basic

magnetostatics allows us to calculate the magnetic potential oscillation frequency

in this direction.

In the discussion that follows, we will assume that the magnetic dipole moment

of the atom adiabatically follows the local magnetic field direction. This will

be the case if the atom moves sufficiently slowly. For the low temperatures at

which most of our experiments are conducted, this is a reasonable approximation.

Furthermore, the |1〉 and |2〉 hyperfine states of 6Li, are called “high field seeking”

states (see [22–24] for example), as their magnetic energy is minimized as an

indicating that the atom cloud is located at the equilibrium position of the magnetic potential in
the other visible dimension. If the atom cloud were not in the center of the magnetic potential
in either dimension visible on the camera, the center of mass of the cloud would move roughly
diagonally in the image plane following release from the optical trap.
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Figure 4.3: False color absorption images of the atom cloud after release from a
shallow optical trap into the magnetic potential at 840 gauss. The time elapsed
from release from the optical trap is indicated in the upper right hand corner of
each image. The center of mass motion of the atom cloud can be analyzed to
determine the magnetic potential oscillation frequency in the plane of the camera
image.
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Figure 4.4: The center of mass position of the atom cloud plotted versus time of
flight. The dots represent the measured position of the cloud, while the dashed line
is a sinusoidal fit to the data. As only a fraction of one period of the oscillation
is available, there is some error in the measured magnetic potential oscillation
frequency. At 840 gauss, measurements indicate a magnetic potential oscillation
frequency of 19 to 24 Hz in the plane imaged by the camera.

external magnetic field is increased.

Our magnet arrangement roughly resembles two tires on an imaginary axle,

where each tire represents a coil of wires and the imaginary axle coincides with

the y-axis.3 The trapped atom cloud is located on the y-axis, midway between the

magnets. As an atom moves in the x-z plane away from the y-axis, the magnetic

field drops. Meanwhile, an atom which begins on the y-axis midway between the

magnets will experience an increasing magnetic field as it moves toward one of the

magnets. Since the spin states we trap are drawn to regions of high magnetic field,

we conclude that the magnetic potential is attractive in the x and z directions,

but repulsive in the y direction. Consequently, if we approximate the magnetic

3The common convention is to label the symmetry axis of the magnets the z-axis. However,
to be consistent with our published papers, we label the symmetry axis the y-axis.
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potential as harmonic, we can write

Umag =
m

2

(
ω2

mx x2 − ω2
my y2 + ω2

mz z2
)
. (4.27)

The magnetic potential energy can be written in a more general fashion using

basic magnetostatic theory. If the magnetic dipole moment of the atom is aligned

with the local magnetic field direction, then

Umag = −µ ·B = −µ |B|. (4.28)

Furthermore, Maxwell’s equations state that in free space∇·B = 0 and∇×B = 0.

Consequently, ∇2 B = 0. Using (4.27) and (4.28), we can write

∇2 B = ∇2

(−Umag

µ

)
= ω2

mx − ω2
my + ω2

mz = 0. (4.29)

Due to cylindrical symmetry, however, ωmx = ωmz, which implies

ω2
my = 2 ω2

mx. (4.30)

In other words, we need to measure only ωmx. We can then use cylindrical sym-

metry to fix ωmz, and (4.30) provides ωmy.

In summary, by measuring one of the magnetic potential oscillation frequen-

cies, we can determine all of the magnetic potential oscillation frequencies. Of

course, it would be inconvenient to have to measure the magnetic potential oscilla-

tion frequencies each time we choose to work at a new magnetic field. Fortunately,

by measuring the magnetic potential oscillation frequencies at one magnetic field,
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we can readily calculate the trap oscillation frequencies at an arbitrary magnetic

field. Consider that Fmag ∝ |B|, and Fmi ∝ ω2
mi. Knowing that the magnetic

force is null at zero magnetic field, and supposing we measure the trap oscillation

frequency ωmi(B0) at a magnetic field B0, we can write

ω2
mi(B) = ω2

mi(B0)
B

B0

. (4.31)



Chapter 5

Image Processing

After creating a degenerate Fermi gas and subjecting it to some form of exper-

imental manipulation, we require a method for monitoring the response of the

gas. By far, the most widely used technique for extracting information from con-

fined quantum gases involves an imaging technique. While several schemes exist

for acquiring images of trapped gases, all of the data in this dissertation was ac-

quired using on-resonance absorption imaging. In absorption imaging, a probe

beam pulse which is resonant with an optical transition for one of the trapped

hyperfine states passes through the atom cloud. The resulting combination of

incident and scattered light is collected by a simple imaging system and directed

to a CCD (charge coupled device) camera, where the spatial distribution of the

light is recorded. With the information recorded by the CCD camera, we can

reconstruct the spatial distribution of the atom cloud. The spatial distribution of

the atom cloud, in turn, allows us to calculate such quantities as the number of

trapped atoms, as well as the temperature and size of the atom cloud.

There are two basic challenges to be met when producing absorption images.

The first involves generating a probe beam whose frequency is resonant with the

desired optical transition. This topic is addressed in Appendix B. The second

challenge involves reproducing the spatial distribution of atoms in the cloud by

119
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examining the CCD camera’s recorded array of photon counts, a topic we cover

in this chapter.

5.1 Image acquisition procedure

Acquiring an image of the atom cloud is a two-step process. Following release from

the optical potential, the cloud is allowed to expand for a well defined duration,

known as the time of flight. A probe beam illuminates the atom cloud, and

the incident and scattered fields from the probe beam are imaged by the CCD

camera. This array of photon counts recorded on the CCD camera is referred to

as the “signal” shot, and is displayed in the upper panel of Figure 5.1. Here, the

position of the atom cloud is revealed by the dark spot in an otherwise relatively

flat background.

On-resonance absorption imaging is a destructive process. After waiting a

short time for the atoms to leave the imaging area, a second pulse of light is gen-

erated, and the resulting spatial distribution of photons is recorded by the CCD

camera. This process is referred to as taking the “reference” shot. The reference

shot should be identical to the signal shot in every way, with the exception that

there should be no atoms present while taking the reference shot. A typical ref-

erence shot is displayed in the lower panel of Figure 5.1. For a perfect imaging

system that always produces identical probe pulses composed of an ideal plane

wave, acquisition of a reference shot would be unnecessary. However, a glance at

the lower panel of Figure 5.1 reveals a mottled spatial distribution of recorded

photon counts even when the atom cloud is not present. Having information

about the spatial inhomogeneity of the probe beam is necessary to reconstruct
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Figure 5.1: False color images showing the spatial distribution of a probe pulse
of light. The upper panel, labelled the signal shot, shows the recorded spatial
distribution of photons when the resonant probe pulse illuminates an atom cloud.
The atom cloud casts a shadow, which appears as the dark spot in an otherwise
relatively flat background. The lower panel, labelled the reference shot, shows
the image of the probe beam when no atom cloud is present. Calculating an
absorption image or the column density of the atom cloud requires both a signal
and a reference shot.
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accurately the spatial distribution of atoms in the cloud.

There are two issues that I have swept under the rug thus far. First, the quality

of our absorption images is related to the time delay between acquisition of the

signal and reference shots. The shorter the duration, the better the resulting

images. Of course, we must wait for the atoms to disperse before taking the

reference shot, so we cannot make the delay time arbitrarily short. However,

we can reduce the delay time by making use of a Fast Kinetics feature on our

CCD camera. When working in Fast Kinetics mode, a portion of the CCD array

is shielded by a razor blade placed at the image plane in our imaging system.

Roughly one-third of the CCD array is exposed. In the process of taking the

signal shot, the first third of the CCD array is exposed. After the signal shot is

complete, the camera is instructed to shift the camera pixels to expose a fresh

third of the CCD array. The array of pixels containing the signal shot is now

protected by the razor blade, and the reference shot is captured on the newly

exposed pixels. With both the signal and reference shots acquired, the camera

can then begin the process of reading out the photon counts in the CCD array.

The time savings that results from using the Fast Kinetics mode is substantial.

Our camera requires 16 µs to shift each row of pixels. As we have roughly 340

rows of pixels exposed when working in Fast Kinetics mode, we must wait roughly

6 ms between taking the signal and reference shots.1 In comparison, if we were

to use the entire CCD array when acquiring both the signal and reference shots,

we would have to wait for the camera to shift each row and read out the photon

counts in each pixel. The fastest time to process a pixel is 1 µs for our camera

1In practice, we wait longer than 6 ms to accommodate other necessary delays in the timing
system.
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model, and our camera has a megapixel array. As a result, the minimum delay

time between the signal and reference shots would be in excess of 1 second. As the

quality of our images degrades with increasing delays between acquisition of the

signal and reference shots, Fast Kinetics has become the default imaging mode

for our lab.

The second issue that I have glossed over is the need to take a “background”

image. As with any other photon counting device, our CCD array is susceptible

to dark counts, in which charge buildup in the CCD array results in apparent

photon counts even with the camera shutter closed. This effect can be mitigated

by reducing the temperature of the array using thermoelectric coolers. Typically,

we cool our CCD array to -40 ◦C, resulting in a substantial reduction in dark

counts compared to room temperature conditions. Even with this reduction,

the number of dark counts (≈ 500 per camera pixel) remains too large to be

considered negligible. To account for this, we acquire a “background” image in

which no atoms or probe pulse is present and the shutter to the camera is closed.

Essentially, the background image is a spatial distribution of apparent “photon”

counts when no light is reaching the CCD array. This spatial distribution tends to

be very flat and varies minimally throughout the course of an experimental run.

As a result, only one background is acquired each day, and all of the succeeding

signal and reference shots have this array of background counts subtracted from

them.
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5.2 Image Analysis

Even with all the effort that goes into producing optimum conditions for acqui-

sition of the signal and reference shots, the resulting images still suffer from a

number of imperfections. Much of the image analysis procedure is designed to

reduce the impact of these imperfections. To assess the performance of our exper-

imental system, it is convenient to view the images in real time. We use Andor

MCD software to view the images acquired by the camera, and the preferred

method of displaying the data in real time is as an absorption image. Image

processing involves the manipulation of three arrays of information: the signal

shot, the reference shot, and the background. We let the number of background

counts in the pixel located at (x, z) be represented by IB(x, z). Then the total

counts in the signal (Isig) and reference (Iref ) shots in a pixel at position (x, z)

are given by

Isig(x, z) = Is(x, z) + IB(x, z) (5.1)

Iref (x, z) = Ir(x, z) + IB(x, z), (5.2)

where Is(x, z) and Ir(x, z) represent the counts not due to background dark

counts. Isig(x, z), Iref (x, z) and IB(x, z) are measured quantities from which we

calculate Is(x, z) and Ir(x, z). The absorption image can be calculated using

abs(x, z) = 100

[
1− Is(x, z)

Ir(x, z)

]
, (5.3)

where abs(x, z) gives the percentage absorption in a pixel located at position

(x, z). If we apply (5.3) to the signal and reference shots displayed in Figure 5.1,
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Figure 5.2: False color image showing the calculated absorption based on the
signal and reference shots displayed in Figure 5.1. The light pill-shaped object is
the atom cloud.

we produce the false-color absorption image shown in Figure 5.2.

Even when working in Fast Kinetics mode, where the time elapsed between

acquisition of the signal and reference shots is intentionally small, we still observe

fluctuations in probe beam power between the two shots. Of course, the entire

purpose of the reference shot is to obtain information about what the array of

photon counts looks like in the absence of an atom cloud. Any other differences

between the signal and reference shots will introduce errors when calculating the

absorption image or column density. As a crude first step toward overcoming this

problem, we make use of a “balance” region in the signal and reference shots.

Figure 5.3 shows the absorption image displayed in Figure 5.2 along with two

rectangles. The rectangle at the left of the image shows the outline of the balance

region of interest (ROI). The rectangle that frames the atom cloud shows the

“cloud” region of interest, which is necessary for more sophisticated background

subtraction algorithms which will be discussed in a moment. Note that the bal-

ance ROI is far from the atom cloud, in a region where the absorption should be

zero. In each of the signal and reference shots, the background corrected number
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Figure 5.3: False color absorption image showing two regions of interest (ROI).
The rectangle at the left shows the outline of the balance ROI, a portion of the
image used to correct for probe beam power fluctuations between the acquisition
of the signal and reference shots. The rectangle that frames the atom cloud
shows the cloud ROI, which is used for more sophisticated background subtraction
techniques discussed in the text.

of counts in the balance region is tallied. The ratio of the counts in the signal to

reference shots should be 1, but if it differs, the number of counts in every pixel of

the reference shot is scaled until there is an equal number of counts in the balance

ROI in the signal and reference shots.

While the use of the balance region does a reasonable job of subtracting any

residual background from the image, the analysis program we use for processing

the signal and reference shots (Igor Pro v4.0) has a more sophisticated method

for subtracting residual backgrounds. To make use of Igor Pro’s background

subtraction algorithms, we need to specify the location of the atom cloud, which

is accomplished using the previously mentioned cloud ROI. Igor then fits a plane

to the absorption image outside the cloud region of interest, and subtracts this

residual background.2

2In reality, we perform this background subtraction procedure on the calculated column
density (see Section 5.3) rather than the absorption image. The principle is precisely the same
in both cases, however, and the discussion of this step was included here to avoid a digression
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While the use of absorption images is convenient for tracking the performance

of the system during an experimental run, the extraction of meaningful physi-

cal quantities from our images often requires the conversion of these absorption

images to column densities. That is, we want to convert the calculated absorp-

tion for a particular pixel into the number of atoms represented by that level of

absorption. The calculation of column densities is discussed in Section 5.3.

5.3 Column density for an ideal two-level sys-

tem

In this section, we consider the absorption of a probe beam whose frequency is

close to resonance in a two-level closed atomic system. This type of calculation

arises in many applications in quantum optics, and has been presented in sources

too numerous to reference here. Examples of recent treatments can be found

in [24,103,104].

We consider a probe beam propagating along the y-axis and illuminating an

atom cloud. As the beam passes through the cloud, the intensity of the beam will

diminish. We can express the attenuation of the beam as

dI

dy
= −I α(I) n(x, y, z), (5.4)

where I is the intensity of the beam, n(x, y, z) is the spatial density of the atom

cloud, and

α(I) =
σR

1 + I/Isat + δ2
. (5.5)

when discussing the column density calculation.



128

In (5.5), σR is the resonant optical cross section for a two-level quantum transition

of wavelength λ

σR =
3 λ2

2 π
, (5.6)

and δ is the detuning in half-linewidths of the probe beam from resonance

δ =
ω − ω0

Γs/2
. (5.7)

In the preceding expressions, Γs (Isat) is the linewidth (saturation intensity) of

the transition, ω is the frequency of the incident beam, and ω0 is the transition

frequency of the two-level system.

If we plug (5.5) into (5.4), separate variables and integrate, we obtain

∫ Iy′

I0

dI
1 + I/Isat + δ2

I
= −σR

∫ y′

−∞
n(x, y, z) dy, (5.8)

where Iy′ indicates the beam intensity at position y′. While this formalism allows

us to calculate the intensity of the beam at some arbitrary position inside the

atom cloud, in practice we are concerned with the intensity of the beam after it

passes through the atom cloud. If we let y′ →∞ in the integral on the right hand

side of (5.8), we obtain the definition of the column density

n(x, z) =

∫ ∞

−∞
n(x, y, z) dy. (5.9)

Using this definition and performing the integral on the left hand side of (5.8),

the column density can be written

n(x, z) = − 1

σR

{
(1 + δ2) ln

[
I(x, z)

I0(x, z)

]
+

I(x, z)− I0(x, z)

Isat

}
. (5.10)



129

Figure 5.4: False color image showing the column density calculated from the
data in the signal and reference shots displayed in Figure 5.1. The light region
shows the position of the atom cloud.

Note that in (5.10), I0(x, z) is the intensity of the probe beam at position (x, z)

before the probe beam reaches the atom cloud. I(x, z) is the intensity of the probe

beam after it has passed through the atom cloud. A typical two-dimensional

column density is displayed in Figure 5.4.

In closing we note that (5.10) can be simplified if the incident probe beam

is weak, I0(x, z), I(x, z) << Isat, in which case the second term in braces is

approximately zero. Then the expression for the column density simplifies to

n(x, z) = −1 + δ2

σR

ln

[
I(x, z)

I0(x, z)

]
. (5.11)

This formula for the column density has its merits, as it eliminates the need

to obtain an absolute calibration of the imaging system. Consider that Isat is

a calculated number, whereas I0(x, z) and I(x, z) are measured quantities. To

properly compare the ratio of these quantities to calculate the second term in

braces in (5.10), one needs to consider the following issues:

• What is the efficiency of the CCD camera?
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• Does the camera employ some sort of gain mechanism? (The CCD camera

in use in our lab has gain characteristics which are dependent on the readout

time per pixel on the CCD array.)

• Do optical elements along the probe beam path significantly attenuate the

beam after it has illuminated the atom cloud? Or, does the probe beam

intensity detected at the CCD array provide a good estimate of probe beam

intensity when it illuminates the atom cloud?

Essentially, we must ask the question: if a probe beam has intensity Isat at the

location of the atoms, what intensity will be detected by the camera?

Obviously, it would be convenient to disregard these issues and work with a

weak probe beam pulse [I0(x, z), I(x, z) << Isat]. However, we also desire a short

probe beam pulse, as long probe times would result in “smearing” of the atom

cloud. Recall that for time of flight imaging, the atom cloud is expanding as it is

being illuminated. We want a very short imaging pulse to take a true snapshot

of the atoms, rather than a long imaging pulse which provides a time-averaged

image of the expanding atom cloud. Unfortunately, a short, weak imaging pulse

can result in a low signal-to-noise ratio, so we use a shorter, stronger imaging pulse

along with (5.10) to calculate our column densities. In doing so, we can obtain

good signal to noise ratios with short probe beam pulses. Furthermore, a brief

imaging pulse should minimize optical pumping to dark states, a phenomenon

discussed in Section 5.4. The cost of using this formula is that we must consider

all of the questions in the bulleted list above. That is, rather than using the

calculated value of Isat for the optical transition we use for imaging, we use an

effective value of Isat which takes into account the imperfect performance of our
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imaging system. These issues are considered in Section 5.7.

Before considering the calculation of Isat for our imaging system, there are

other concerns we must address. At the beginning of this section, we assumed that

we had an ideal two-level quantum system. As we will see, for typical imaging

conditions used in our laboratory, this is not precisely true. The number of

interactions between atoms in the cloud and incident photons will be reduced if

the photons have the “wrong” polarization or if the atoms are in the “wrong”

quantum state. These scenarios are considered in Sections 5.4 and 5.5.

5.4 Optical Pumping

Early in the discussion of measuring the column density, we assumed that we

had a perfect, two-level quantum system. Although lithium is a relatively simple,

hydrogenic atom, there are many energy levels to consider, and depending on the

choice of optical transition, the assumption of an ideal two-level system might

be invalid. Hence, during a probe pulse, an atom might end up occupying a

quantum state that is not resonant with the probe beam. This atom is said to be

in a “dark” state. As this atom is present in the atom cloud but not detectable by

the probe beam, the phenomenon of optical pumping into dark states will lead to

an underestimate of the number of atoms present in the cloud. Since the number

of atoms in the cloud sets the characteristic energy and temperature scales of the

physical system, it is worthwhile to estimate the error in the detected number

which results from assuming a perfect two-level system.

In Section 2.4 we found that the two lowest hyperfine ground states of the 6Li
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atom are given by

|1〉 = sin Θ+ |1/2 0〉 − cos Θ+ |−1/2 1〉 (5.12)

|2〉 = sin Θ− |1/2 − 1〉 − cos Θ− |−1/2 0〉 , (5.13)

where the kets |mS mI〉 are given in the basis of the electron and nuclear mag-

netic spin projections, and the coefficients in front of the kets are magnetic field

dependent. In the ground state, the electronic orbital angular momentum is zero,

so if we let J = L + S be the total electronic angular momentum, where L is the

orbital angular momentum, and S = 1/2 is the intrinsic spin of the electron, we

find that the hyperfine ground states of 6Li are in the J = 1/2 manifold. Further,

as the magnetic field is increased, we find that

|1〉 → − |−1/2 1〉 (5.14)

|2〉 → − |−1/2 0〉 (5.15)

with increasing magnetic field. That is, at “high” magnetic field (B > 500 gauss),

the |1〉 and |2〉 states are essentially in the same electronic state and differ only

by nuclear magnetic spin projection. This is fortuitous, as the electronic dipole

transition we use to image the atoms depends on the electronic state of the atom

only. Since the two hyperfine states of interest are essentially in the same elec-

tronic state, we should be able to image both states equally well. In this high field

regime, we see that the electronic spin projection is “down” with respect to the

magnetic quantization axis, which is coaxial with the probe beam propagation

axis. We represent the electric dipole operator by T (1, q), where q = −1, 0, +1
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for left-circular, linear, and right-circular polarized light, respectively. The first

argument of T (1, q) reminds us that the only allowed transitions involve a change

of one unit in the orbital angular momentum. That is, if we consider transitions

between states enumerated in the total product basis |L mL〉 |S mS〉 |I mI〉, we

find

〈I ′ m′
I | 〈S ′ m′

S| 〈L′ m′
L|T (1, q) |L mL〉 |S mS〉 |I mI〉

= δI′,I δm′
I ,mI

δS′,S δm′
S ,mS

δL′,L+1δm′
L,mL+q. (5.16)

Equation (5.16) suggests a way to minimize optical pumping to dark states

during the imaging process. If we are starting from the

|L = 0 mL = 0〉 |S = 1/2 mS = −1/2〉 state, and if we image using left-circularly

polarized light [corresponding to T (1,−1)], the only electronic excited states

which can be accessed are the

|L = 1 mL = −1〉 |S = 1/2 mS = −1/2〉 |I = 1 mI = 0,±1〉 states.

There are now two separate issues to consider. First, as the energy levels

tune differently as a function of magnetic field, will the selection of one imaging

frequency cause some of these transitions to be far off resonance? Second, for the

transitions which are resonant, how strong is the transition probability between

the ground and excited states? First, we consider the issue of detuning. At high

magnetic field, the |1〉 and |2〉 states are separated by nearly 75 MHz, which is

much larger than the natural linewidth (FWHM = 5.9 MHz) of the 6Li D2 line

[arising from the 2 2S1/2 → 2 2P3/2 transition (see [24], for example)]. As such the

|1〉 and |2〉 states are clearly resolved and we need not worry about exciting the |2〉
to excited state transition when exciting the |1〉 to excited state transition, and



134

vice versa. What about the excited states? Due to the small hyperfine splitting

in the J = 3/2 manifold of the 2P level in 6Li, we can safely ignore hyperfine

structure for all but the lowest magnetic fields. At the magnetic fields of interest

(B > 500 gauss), we assume that the magnetic field dependence of the energy

levels is well-described by the Zeeman shift alone. Here the energy shift is (see [24]

for a more thorough discussion)

∆E = µB (gex
J mJ + gI mI) B, (5.17)

where µB is the Bohr magneton. Note that the desired excited electronic state

|L = 1 mL = −1〉 |S = 1/2 mS = −1/2〉 = |J = 3/2 mJ = −3/2〉 , (5.18)

so the magnetic field tuning of the desired excited state is given by

Eex(B) = µB

(
−3

2
gex

J + gI mI

)
B, (5.19)

where gI = −0.0004476540 and gex
J = 1.335 for the states of interest [105]. We

can see now that the separation of the energy levels due to the nuclear magnetic

spin projection will be quite small. For instance, at B = 840 G, the separation

between the mI = −1 and the mI = +1 states will be roughly 1 MHz, which is

smaller than the natural linewidth of the D2 transition. As a result, the three

excited states associated with the |J = 3/2 mJ = −3/2〉 level are unresolvable.

However, since gex
J À gI , the |J = 3/2 mJ = −3/2〉 and |J = 3/2 mJ = −1/2〉

are well-separated, and there is negligible probability of exciting atoms to the

|J = 3/2 mJ = −1/2〉 level when the dye laser frequency is tuned to promote
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atoms to the |J = 3/2 mJ = −3/2〉 level. To quickly summarize, the two hyperfine

ground states (|1〉 and |2〉) are well-resolved, but the three nuclear states in the

|J = 3/2 mJ = −3/2〉 excited state manifold are not resolvable if we consider only

the frequency of the probe beam.

To this point, we have established what quantum energy levels are “in play”

based on issues related to the probe beam frequency. We now consider which

electric dipole transitions can be excited by the probe beam. For convenience, we

will label the excited states of interest in the total product basis as

|A〉 = |L = 1 mL = −1〉 |S = 1/2 mS = −1/2〉 |I = 1 mI = −1〉 (5.20)

|B〉 = |L = 1 mL = −1〉 |S = 1/2 mS = −1/2〉 |I = 1 mI = 0〉 (5.21)

|C〉 = |L = 1 mL = −1〉 |S = 1/2 mS = −1/2〉 |I = 1 mI = +1〉 . (5.22)

If we image using left-circularly polarized light, then T (1, q) → T (1,−1), and

(5.16) gives the following transition probabilities from the ground to excited

states:

| 〈C|T (1,−1) |1〉 |2 = cos2Θ+ (5.23)

| 〈B|T (1,−1) |2〉 |2 = cos2Θ−, (5.24)

with all other electric dipole transition probabilities between the |1〉, |2〉, |A〉,
|B〉, and |C〉 states being zero. For a perfect, two-level system, the coefficients in

(5.23) and (5.24) would be 1, so our task now is to consider how the quantities

cos2Θ+ and cos2Θ− vary with magnetic field.

In Section 2.4, we provided the analytic forms for cos Θ− and cos Θ+. Squaring
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Figure 5.5: The above displays the transition probabilities for on-resonance ab-
sorption imaging. cos2 Θ− (solid line) and cos2 Θ+ (dashed line) give the transition
probabilities for atoms in the |2〉 and |1〉 states, respectively, to the unresolved ex-
cited state. For magnetic fields above 450 gauss, these probabilities are in excess
of 99%, and the imaging transition will act approximately like a closed, two-level
system.

these quantities, we have the desired transition probabilities expressed in (5.24)

and (5.23), respectively. These quantities are plotted as a function of magnetic

field in Figure 5.5. We find that the transition probabilities between the ground

and excited states used for imaging are in excess of 99% for magnetic fields above

450 gauss, where most of our experimental work is conducted. Since these transi-

tion probabilities are close to unity, the imaging transition will act approximately

like a closed, two-level quantum system.

Although our imaging transition will behave approximately like an ideal two-

level system, it is worthwhile to obtain an estimate of the error in the detected

number of atoms resulting from optical pumping to dark states. We consider

imaging at 840 gauss with a probe beam duration of 5 µs and intensity 0.3 Isat.

The photon scattering rate for a two-level system interacting with a resonant
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probe beam is

Γsc =
1

2 τsp

I/Isat

1 + I/Isat

, (5.25)

where τsp = 27.1 ns is the excited state lifetime for the transition of interest in 6Li.

As the probe beam propagates through the atom cloud, the intensity of the beam

will drop. Hence, plugging I/Isat = 0.3 into (5.25) will provide an upper limit

for the average photon scattering rate for atoms in the cloud. For I/Isat = 0.3,

(5.25) reveals that the photon scattering rate is 4.26 million photons per second,

or roughly 21 photons during a 5 µs pulse. Suppose we focus on a single atom

as it absorbs and emits photons during the 5 µs probe pulse. For a perfect two-

level system, on average the atom will absorb and emit 21 photons during the

probe pulse. For a system with optical pumping to a dark state, the number of

photons absorbed and emitted will be smaller. We can obtain an estimate of this

reduction in the number of scattered photons if we consider the departure of our

imaging transition probabilities from unity. At 840 gauss the optical transition

probabilities between the |1〉 and |2〉 ground states and the excited state are nearly

equal,

cos2 Θ+ ≈ cos2 Θ− ≈ 0.998. (5.26)

That is, an atom in the |1〉 state has 99.8% probability of absorbing a photon when

the probe pulse is first turned on. Likewise, it has a 99.8%×99.8% probability

of returning to the |1〉 state after re-emitting the photon. Consequently, only

99.8%×99.8% of the atoms will be in a quantum state which is resonant with the

probe beam after the first absorption-emission cycle. The probability of absorbing

a second photon is 99.8%×99.8%×99.8%=0.9983, and so on. If we follow this
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process over 21 optical cycles, we find that, on average, the atom will absorb

21∑
n=1

0.9982 n−1 =
0.998(1− 0.99842)

1− 0.9982
= 20.14 (5.27)

photons during the 5 µs pulse. Of course, it is unphysical to discuss fractional

photons, but we are considering average quantities here. Equation (5.27) reveals

that an atom in our system will scatter, on average, 20.14 photons for every 21

photons that would be scattered in a perfect two-level system. This means that

κ = 20.14/21 = 0.959 times as many photons will be absorbed by the atom cloud,

which will result in a larger number of photons reaching the CCD camera.

This increase in the number of photons reaching the camera will result in

an apparent reduction in the number of atoms in the cloud. Consider that I0

in (5.10) represents the probe beam intensity prior to reaching the atom cloud,

while I is the probe beam intensity after exiting the atom cloud. The ratio I/I0

provides the percentage of unabsorbed light, while 1− I/I0 gives the percentage

of absorbed light. For a system with optical pumping to a dark state, the amount

of unabsorbed light will increase by a factor proportional to 1− κ. If we let

I

I0

→ I

I0

+ (1− κ)

(
1− I

I0

)
(5.28)

in (5.10), and compare the resulting expression for the column density to what

we would calculate for an ideal system, we obtain

Nerr(I, κ) =
ln{[I + (1− κ)(I0 − I)]/I0}+ [I + (1− κ)(I0 − I)− I0]/Isat

ln(I/I0) + (I − I0)/Isat

.

(5.29)

Equation (5.29) gives the fraction of atoms detected in our nearly two-level system
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compared to a perfect two-level system. A plot of Nerr(I, κ) for κ = 0.959 and

I0/Isat = 0.3 is given in Figure 5.6. We note that the percentage error becomes

quite large as I → 0. However, this limit corresponds to the case of complete

absorption of the probe beam, a scenario we avoid when imaging. For typical

imaging conditions, we do not exceed 80% absorption (or, I/I0 = 0.20). If we

consider an unweighted average of Nerr(I, κ) for absorption levels from 0% to

80%, we obtain

1

I0 − 0.20 I0

∫ I0

0.20 I0

Nerr(I, 0.959) dI = 0.95, (5.30)

for I0 = 0.3 Isat. Since the value of Nerr(I, κ) is relatively flat for absorptions

between 0% and 80%, we expect (5.30) to provide a reasonable estimate of the

error in the measured atom number.3 Consequently, at 840 gauss, if we image

using a probe pulse with intensity I0 = 0.3 Isat and duration 5 µs, we anticipate

that our measured atom number will be ≈ 5% lower than the true value. Since the

Fermi energy εF ∝ N1/3, a 5% underestimate of the atom number will lead to a

2% underestimate of the Fermi energy. Likewise, since the Fermi radii σi ∝ N1/6,

a 5% underestimate of the atom number yields a 1% underestimate of the Fermi

radii.

The preceding formalism should provide an upper limit on the magnitude of

the error in the detected number of atoms. Recall that at the beginning of the

3We can calculate a weighted average of the number error by considering theoretically gen-
erated density profiles for harmonically trapped Fermi gases. The expression for the spatial
density of the clouds is given by (A.47). This atomic density can then be related to the ratio
I/I0 using (5.10) for a chosen value of Isat. Next, we use (5.29) to estimate the error in the
detected atom number for that value of I/I0. Integrating the errors for all density levels pro-
vides a weighted average of the error in the atom number. We find that for typical imaging
conditions, the weighted average of the number error indicates that we underestimate the atom
number by 5% or 6%, in agreement with (5.30).
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Figure 5.6: Estimate of the error in detected atom number resulting from optical
pumping to dark states during probe pulse. The percentage of atoms detected
Nerr given by (5.29) (solid line) varies as a function of the ratio of I/I0. The
dashed line is Nerr = 1. The above plot was generated for I0 = 0.3 Isat and
κ = 0.959.

estimate, we assumed that all of the atoms were interacting with a probe beam

with intensity 0.3 Isat. This is not true, as the probe beam intensity weakens as

it propagates through the atom cloud, resulting in a lower photon scattering rate

for many of the atoms in the cloud. A lower photon scattering rate results in

fewer chances to transition to a dark state, and a smaller error in the number of

detected atoms. Consequently, for typical imaging conditions (a 5 µs probe pulse

with intensity 0.3 Isat at 840 gauss), the 5% underestimate of the atom number

is an upper limit on the magnitude of the error in the detected atom number.

For fields above 840 gauss, we expect the error in the detected atom number to

diminish further, as the imaging transition asymptotically tends toward a closed,

two-level transition. Many cycles of the experimental apparatus indicate that the

statistical fluctuations in the number of atoms is roughly 10%. Since the error in
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atom number arising from optical pumping to dark states is smaller than the 10%

statistical fluctuations in the atom number, we neglect optical pumping when

reporting the number of atoms in our cloud. Moreover, the error bars on the

reported atom number indicate statistical fluctuations only.

In this section, we assumed that the incident photons were in the correct

state (all have left-circular polarization), and considered what portion of atoms

were in the “wrong” quantum state. However, interactions between atoms and

photons will be reduced also if the atoms are in the correct quantum state, but the

incident photons have the incorrect polarization. This latter scenario is considered

in Section 5.5.

5.5 Correcting for probe beam depolarization

Thus far, we have assumed that the probe beam is composed entirely of photons

capable of interacting with the atom cloud. In this case, complete absorption

of the probe beam by the atom cloud at position (x0, z0) yields Is(x0, z0) = 0.

However, suppose that some small portion of the probe beam cannot interact

with the atoms in the cloud because the photons have the incorrect polarization.

In this case, some portion of the probe beam will still propagate to and be detected

by the CCD array despite the perfect absorption of the portion of the probe pulse

that can interact with the atom cloud. To obtain the most accurate reconstruction

of the column density, we need to account for this effect.

In (5.10), we stated that I0(x, z) is the intensity of the probe beam before

the atom cloud and I(x, z) is the intensity after passing through the cloud. For

a perfectly polarized probe beam, we note that I0(x, z) would correspond to the
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“reference shot” quantity Ir(x, z) in (5.2). Similarly, I(x, z) would be equivalent

to the “signal shot” quantity Is(x, z) in (5.1).

We now modify these definitions slightly to account for imperfect probe beam

polarization. Suppose I0(x, z) and I(x, z) represent the portion of the probe beam

which is absorbable by the atom cloud. In this case, we can relate I0(x, z) and

I(x, z) to the quantities Is(x, z) and Ir(x, z) in (5.2) and (5.1) by the following:

I0(x, z) = φ Ir(x, z) (5.31)

I(x, z) = Is(x, z)− (1− φ) Ir(x, z). (5.32)

In (5.31) and (5.32), φ represents the percentage of the input probe beam which

can be absorbed by the atoms. For φ < 1, (5.31) states that not all of the incident

beam can be absorbed. Similarly, (5.32) indicates that for perfect absorption of

the absorbable part of the probe beam, the probe beam will not be completely

attenuated, as the portion of the beam with the wrong polarization will pass

through the cloud. If we substitute (5.31) and (5.32) into (5.10), we obtain

n(x, z) = − 1

σR

{
(1 + δ2) ln

[
Is(x, z) + (φ− 1) Ir(x, z)

φ Ir(x, z)

]
+

Is(x, z)− Ir(x, z)

Isat

}
.

(5.33)

We now have an expression for the column density expressed in terms we

can readily extract from the signal and reference shots. Before applying (5.33),

however, we need to determine the value of φ, a topic we address in Section 5.6.
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5.6 Measuring φ

The column density for clouds confined in the optical trap will be highest at

the center of the trap, and the spatial variation of the trapping potential should

provide a spatially varying column density. However, we find that for very cold

atom clouds that are imaged after short expansion times following release from

the optical potential, absorption images of the cloud reveal a “flat-top” region

near the center of the cloud. Here, while the column density of the atom cloud

still varies in space, the apparent absorption is saturated, as all of the photons

which can be absorbed, are absorbed. For a probe beam composed entirely of

photons with the correct polarization to interact with a perfect two-level atom,

the absorption should be 100% (or, φ = 1) in this “flat-top” region. However,

in practice, this number is slightly less than 1, and we measure φ = 0.97 for our

system.

We measure φ by producing a highly degenerate atom cloud (T/TF < 0.10) in

the strongly interacting regime, where the process of evaporative cooling is most

efficient. We allow the atom cloud to expand from the optical trap for a short time

before illuminating it with a resonant probe pulse. After acquiring a reference

shot (see Section 5.3), we can produce an absorption image. The measured value

of φ is the average percentage absorption for each pixel in the “flat-top” region

of the absorption image. A sample absorption image with a “flat-top” region is

displayed in Figure 5.7.

With the value of φ in hand, we are almost ready to apply (5.33). Before doing

so, however, we need to consider how imaging system imperfections influence the

value of the saturation intensity we should use.
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Figure 5.7: At short expansion times for cold atom samples, the spatial variation
of the absorption profile (shown as dots) acquires a “flat-top.” In the distribution
above, the maximum absorption is roughly 97%, indicated by the dashed line.
This would correspond to φ = 0.97, as described in the text. The solid line shows
100% absorption. The ripples to the right of the spatial profile are an imaging
artifact arising from diffraction and fluorescence from the atom cloud.

5.7 Determining the saturation intensity Isat

The saturation intensity for the D2 line of 6Li, the transition we use for imaging,

is Isat = 2.54 mW/cm2 [24]. We wish to convert this intensity into the number

of photons per pixel for a probe pulse of duration tprobe. The amount of energy

Eprobe striking a single pixel of area Apix in a probe pulse with duration tprobe is

Eprobe = Isat Apix tprobe. (5.34)

The energy associated with a photon of wavelength λ is

Ephoton =
h c

λ
, (5.35)
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where h is Planck’s constant and c is the speed of light. Then the total number of

photons striking a single pixel during the probe pulse is given by Eprobe/Ephoton.

Measurements of the imaging system magnification (discussed in Section 5.9)

indicate that Apix = 6.2× 10−12 m2 for our system. A typical probe pulse for the

data presented in this dissertation is tprobe = 5 µs. For these values, an imaging

pulse at the saturation intensity of the D2 line, where λ = 670.977 nm, would

yield 2660 photons per pixel.

To this point, we have assumed that our imaging system and camera are

perfectly efficient. That is, we have assumed that there is no further attenuation

of the probe beam after it passes through the atom cloud. In addition, we have

assumed that the camera detects every photon that strikes the CCD array. In

practice, of course, this is not true. It is difficult to estimate the attenuation

of the probe beam between the location of the atom cloud inside the vacuum

chamber and the probe beam’s exit port, as we cannot place a power meter inside

the vacuum chamber to measure the probe beam power at the location of the

atom cloud. However, we know that the probe beam’s exit port contains an anti-

reflection coated window, which should minimize attenuation of the probe beam.

Consequently, we make the assumption that a measurement of the probe power

at the probe beam’s exit port provides a reasonable estimate of the beam power

when it strikes the atom cloud.

While it is difficult to estimate the decrease in probe beam power between

the location of the atom cloud and the probe beam’s exit port on the vacuum

chamber, it is straightforward to measure the CCD camera’s efficiency. That is,

we want to know what percentage of photons that strike the camera are detected

by the camera. To accomplish this task, we place a mask in the image plane of
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the first lens in the probe beam path. The mask should be small enough that all

of its edges can be seen on the CCD camera. The proper distance between the

camera and the mask is determined by the sharpness of the mask on the camera.

If the mask is constructed from razor blades and folded pieces of aluminum foil,

its distance can be set precisely by moving the mask until no diffraction ripples

appear at the edges of the mask. The probe beam can then be turned on, and

a power meter placed between the mask and the camera. This measured power,

which we take to be the “true” beam power, can be converted to the number of

photons per second using (5.35). Next, atom-free camera images can be acquired

using probe pulses of various durations (such as 5 µs, 10 µs, and 20 µs, for

example), and the number of counts inside the masked border can be summed.

Plotting the number of counts versus the probe pulse duration should yield linear

data in which the slope of the line provides the number of counts per second

detected by the CCD camera. This can then be compared to the measurement

made using the power meter to determine the efficiency of the camera. Using this

technique, we measure our camera efficiency to be ηcam = 0.50, after we correct

for gain issues, a topic we now address.

When using any detector, one must be wary of gain issues. Our CCD camera

has gain characteristics which depend on the user-specified readout time per pixel.

Further, for users of the Andor DV434-BV camera, we issue one further caution.

Andor’s definition of gain is well-described by any number of adjectives, none of

which are printable in this dissertation. With great restraint, I will generously call

their definition of gain counterintuitive. Consider, for example, you elect to use

a 16 µs readout time per pixel, which the Andor literature indicates will provide

a gain of 1.4. It would be tempting to assume that this value of the gain means
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that for every 10 photons that strike the CCD array, 14 detection events occur.

However, Andor defines gain as the number of photons it takes to register a single

count (detection event) on the array. In other words, a gain of 1.4 according to

Andor’s definition means that 14 photons must strike the CCD array to produce

10 detection events. Sadly, Andor’s definition of gain is what the rest of the planet

defines as the multiplicative inverse of gain. In the discussion that follows, I use

gcam to represent the “true” gain of the camera (or the multiplicative inverse of

the gain specified in the Andor literature).

5.8 Final expression for the column density

The preceding sections have considered modifications to (5.10) to account for

depolarization in the probe beam, optical pumping to dark quantum states, im-

perfect camera efficiency and camera gain issues. We have already modified the

expression for the column density to account for probe beam depolarization, yield-

ing (5.33). We now modify this expression to account for imperfect camera effi-

ciency and camera gain. Recall that (5.33) takes the form

n(x, z) = − 1

σR

{
(1 + δ2) ln

[
Is(x, z) + (φ− 1) Ir(x, z)

φ Ir(x, z)

]
+

Is(x, z)− Ir(x, z)

Isat

}
.

(5.36)

In our earlier discussion, we noted that Is(x, z) and Ir(x, z) are interpreted as the

(background-corrected) number of photon counts in a pixel located at position

(x, z) in the signal and reference shots, respectively. We now need to determine

how the above expression must be modified to account for imperfect camera ef-

ficiency and non-unity gain. First, we note that the argument of the natural log
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in (5.36) will be unaltered, as multiplicative factors correcting for the camera

efficiency and gain will cancel. The second term in braces in (5.36), however,

will require some modification. Both Is(x, z) and Ir(x, z) are measured quantities

which are subject to the camera’s imperfect detection characteristics, whereas

Isat is a calculated quantity denoting the number of photons per pixel in a probe

pulse of duration tprobe at the saturation intensity. To compare these measured

and calculated quantities on equal footing, we must consider a modification to

this term to account for the camera efficiency ηcam and camera gain gcam. We

submit the following as the final expression for the column density,

n(x, z) = − 1

σR

{
(1 + δ2) ln

[
Is(x, z) + (φ− 1) Ir(x, z)

φ Ir(x, z)

]
+

Is(x, z)− Ir(x, z)

gcam ηcam Isat

}
.

(5.37)

In closing, note that the correct application of (5.37) requires that camera gain

issues be accounted for when measuring the camera efficiency ηcam.4

Now that we have our final expression for the column density, we should be

able to analyze images and extract physically meaningful quantities from them.

Doing so, however, will require that we know any magnification factors introduced

by our imaging system. Measuring the magnification is discussed in Section 5.9.

4That is, if your power meter indicates that there should be 10 photons striking the camera,
and you detect 20 photons on your camera, and your camera has a true gain of 2, then your
camera efficiency ηcam = (20/2)/10 = 1, rather than ηcam = 20/10 = 2.
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5.9 Measuring the imaging system magnifica-

tion

The imaging system presently in use relies on a fairly simple optical setup. A

single achromat lens and a microscope objective deliver the image of the atom

cloud to the CCD array in the imaging camera. These optics magnify the image

of the atom cloud, and measuring this magnification factor is a relatively simple

process. The final lens in the CO2 laser beam path that creates the focus where the

atoms are confined is mounted on translation stages which allow us to controllably

translate the position of the trapped atoms. By moving the final lens transverse

to the direction of propagation of the CO2 laser beam, the position of the trapped

atom cloud can be shifted on the CCD camera. As the size of individual camera

pixels is known (13 µm on a side), and as the focusing lens position can be

translated by a known amount, the magnification can be determined. Figure 5.8

shows the results of such a measurement. The apparent position of the atom

cloud on the camera is plotted against the known translation of the CO2 focusing

lens. For our imaging system, the measured magnification is 5.22.

Accurate measurement of the imaging system magnification is critical. Failure

to measure the magnification correctly will result in errors when calculating the

atom number and the size of the atom cloud, among other physically relevant

quantities.
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Figure 5.8: Measurement of the magnification of the imaging system. The
atom cloud is translated a known amount by shifting the focussing lens which
determines the position of the optical trap. The apparent motion of the optical
trap on the camera is monitored, using the known size of a camera pixel. The
ratio of the apparent motion on the camera to the true motion of the lens yields
the magnification, which is provided by the slope of the line through the data.



Chapter 6

Heat Capacity of a Strongly
Interacting Fermi Gas

Measurements of the heat capacity reveal information about one of the most basic

thermodynamic properties of a material, and have been used to identify phase

transitions in a number of classic thermodynamic or condensed matter systems

(see, [106], for example). The heat capacity C is the change in energy associated

with a change in temperature,

C =
dE

dT
. (6.1)

Often, the heat capacity is measured while one thermodynamic quantity is held

constant, such as the volume or the pressure. In our studies of degenerate Fermi

gases there is no simple way of producing constant pressure or constant volume

conditions. Instead, we measure the heat capacity of our degenerate Fermi gases

in the presence of constant trap depth of our confining potential.

In this chapter, we report our measurement of the heat capacity of a strongly

interacting Fermi gas, the first measurement of a thermodynamic quantity in

a strongly interacting Fermi gas. In order to conduct a measurement of the

heat capacity, we developed a technique for adding energy to the gas, as well

as a method for measuring the temperature of the gas. The novel energy input

151
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method allows for a precise estimate of the energy added to the gas, as discussed

in Section 6.1. This is followed by a brief summary of the experimental sequence

for studying the heat capacity in Section 6.2. Our temperature measurement

scheme is an approximate method for measuring the temperature of a strongly

interacting gas which is based on spatial profiles for noninteracting Fermi gases.

Temperature measurement in the strongly interacting regime remains a somewhat

controversial topic, and we compare our scheme to other methods presently in use

in Section 6.3.

Interpretation of the results of our studies was aided greatly by interaction

with a theory group at the University of Chicago. Frequent dialogue with Kathy

Levin and Qijin Chen of the Chicago group resulted in a collaboration in which

we obtained good quantitative agreement between their theory and our data.

An apparent transition in our data is interpreted by their theory as a superfluid

phase transition, which marks one of the first direct measurements of the critical

temperature for the superfluid phase transition in a strongly interacting Fermi

gas. This and other results are discussed in Section 6.4.

6.1 Energy input calculation

In principle, one can produce gases at different temperatures by stopping the

evaporative cooling process prior to reaching the lowest temperatures. However,

in practice, this technique suffers from less than ideal repeatability. Further,

since evaporative cooling relies on ejecting hot atoms from the trapping potential,

stopping the evaporative cooling process before reaching low temperature results

in atom clouds with a larger number of atoms. As a result, if one wishes to study
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a temperature dependent effect, the number varies along with the temperature.

This is obviously not ideal. A second possible method of varying the temperature

involves parametric heating, in which the trap depth is modulated at twice its

natural frequency. In this case, the amplitude modulation of the trap results

in resonant heating of the confined gas. Unfortunately, determining the amount

of heating from parametric excitation can be difficult. In place of these two

techniques, we developed an energy input method based on changing the potential

energy of the atom cloud. Unlike the first method discussed (premature stoppage

of evaporative cooling), this method permits variation of the temperature of the

gas while holding the atom number constant. Further, unlike parametric heating,

this method allows one to write a simple analytic expression for the energy input.

The starting point for our energy input method is a gas that has already been

cooled to the lowest possible temperature. For our purposes, we can approximate

the spatial density of our starting gas as a zero temperature Thomas-Fermi spatial

distribution. We consider a two component Fermi gas with N/2 particles per spin

state. The three-dimensional density profile for a noninteracting Fermi gas in the

local density approximation is given by (see Section A.3.1)

n(x, y, z) =
4 N

σx σy σz π2

[
1−

(
x

σx

)2

−
(

y

σy

)2

−
(

z

σz

)2
]3/2

, (6.2)

where the Fermi radii σi = (2 εF /m)1/2/ωi, εF is the Fermi energy, ωi is the trap

oscillation frequency in the i-direction, and m is the mass of a single fermion.

To obtain the corresponding density in the zero temperature, unitary regime (see

Section 2.2.1), let σi → σ∗i = (1 + β)1/4 σi in (6.2). Further, in the unitarity limit

εF → ε∗F =
√

1 + β εF .



154

The total potential energy associated with a single spin state is given by

Utotal =

∫
n(x, y, z; t) U(x, y, z) dx dy dz, (6.3)

where U(x, y, z) is the potential energy provided by the confining potential. As

written, equation (6.3) allows for a time-dependent density distribution. Natu-

rally, for this calculation to be self-consistent, we should require that the trapping

potential assume a harmonic form, as we have already assumed a density profile

associated with a harmonic trapping potential. However, as we will be calcu-

lating small corrections to the harmonic assumption, we will leave the analytic

expression for the trapping potential in its generic form for now.

The method of adding energy to the gas is clever, but relatively simple, and was

first suggested by John Thomas. Starting with a very low temperature cloud, we

abruptly turn off the trapping potential at time t0 and allow the gas to expand for

a time theat. We then abruptly restore the trapping potential, at which point the

expanded cloud occupies a larger portion of the trap. It is this increased size that

determines the amount of energy added to the gas. Immediately after recapture of

the cloud, it will oscillate, as this method will excite the breathing mode of the gas

(see Chapter 7). However, after the oscillations damp and the cloud has reached

equilibrium, the increased potential energy has been redistributed throughout the

atom cloud. Mathematically, we can express the added energy ∆E as

∆E =

∫
[n(x, y, z; t0 + theat)− n(x, y, z; t0)] U(x, y, z) dx dy dz. (6.4)

Assuming that we have a well-characterized trapping potential, the task be-

comes determining the density profiles before and after the release and recapture
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sequence. Prior to release, we assume that we are starting with a zero tempera-

ture profile given by equation (6.2). To obtain a form for the spatial profile after

theat, we assume a scaling ansatz [107,108] of the form

n(x, y, z; t) =
n0(x/bx, y/by, z/bz)

bx by bz

, (6.5)

where the bi = bi(t) carry all of the time dependence and n0 represents the initial

density distribution at time t0 for which bi(t0) = 1. Note that the bi(t) represent

the same scaling factors as those discussed in our treatment of expansion dynam-

ics in Chapter 4. The scaling ansatz expressed in (6.5) and the density (6.2) are

valid provided that the initial density distribution is harmonically confined and

obeys a polytropic equation of state. In our case, since we are starting from a very

low temperature gas, the condition of harmonic confinement is well met prior to

release from the optical trap. However, for long heating durations, theat, the gas

will expand to sizes for which trap anharmonicity becomes important. Does the

scaling ansatz (6.5) still hold? The answer is yes, because the scaling ansatz is

valid if the original state is a harmonically trapped gas. If the gas does not heat

during expansion (and we have not seen evidence for heating during expansion

when starting with a low temperature cloud), then the scaling ansatz is valid.

The gas can become aware of anharmonicity in the trap only upon restoration

of the trapping potential, at which point the scaling ansatz has served its pur-

pose. Finally, since most of our experiments occur in the strongly interacting or

noninteracting regime, we can use hydrodynamic or ballistic expansion factors,

respectively, to determine the values of the bi.

We can rewrite equation (6.4) using equation (6.5), making the following sub-
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stitutions: x̃ = x/bx, ỹ = y/by, and z̃ = z/bz. We then obtain

∆E =

∫
n(x̃, ỹ, z̃) U(bx x̃, by ỹ, bz z̃) dx̃ dỹ dz̃

−
∫

n(x, y, z) U(x, y, z) dx dy dz. (6.6)

Letting x̃ → x, ỹ → y, and z̃ → z in the first integral in equation (6.6) allows us

to write the added energy in the more convenient form

∆E =

∫
n(x, y, z) [U(bx x, by y, bz z)− U(x, y, z)] dx dy dz. (6.7)

Ultimately, it will be convenient to write the fractional change in the energy of the

gas. To this end, we will normalize the added energy to the starting energy. For a

zero temperature harmonically trapped Fermi gas, the average energy per particle

is 3 εF /4. Consequently, for a zero temperature harmonically confined Fermi gas

with N/2 particles per spin state, the total energy of one of the spin states (prior

to the release and recapture heating sequence) is Etot = 3 εF /4 × N/2 = 3 N εF /8

(see Appendix A.2.3). Later, we will introduce a correction factor to account for

the fact that we actually start from a small but finite temperature gas. If we

consider a zero temperature system, however, the fractional change in energy

produced by the release and recapture sequence is

∆E

Etot

=
8

3 εF N

∫
n(x, y, z) [U(bx x, by y, bz z)− U(x, y, z)] dx dy dz. (6.8)

All that remains is to select a form for the trapping potential U(x, y, z) and

calculate the integral in equation (6.8).
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We begin by assuming that we have a harmonic trapping potential given by

UHO(x, y, z) = −U0 +
m

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
. (6.9)

Using the relationship between the trap oscillation frequencies ωi and the Fermi

radii σi, we can write the trapping potential in the form

UHO(x, y, z) = −U0 + εF

[(
x

σx

)2

+

(
y

σy

)2

+

(
z

σz

)2
]

. (6.10)

Plugging equations (6.10) and (6.2) into equation (6.8), and performing the inte-

gral yields

∆EHO ≡ ∆E

Etot

=
1

6

(
b2
x + b2

y + b2
z − 3

)
. (6.11)

Consequently, if we start from a zero temperature gas and allow time theat to

elapse between release and recapture of the gas, we can write the resulting energy

of both spin states as

E(theat) = E0

[
1 +

1

6

(
b2
x + b2

y + b2
z − 3

)]
, (6.12)

where E0 = 3 N εF /4 for a noninteracting gas and E0 = 3 N ε∗F /4 for a unitary

Fermi gas, where ε∗F =
√

1 + β εF . Note that the bi factors in (6.12) are dependent

on theat. The simplicity of equation (6.12) is a large part of the appeal of this

heating technique. The magnitude of the expansion factors bi(theat) determine

the energy of the gas after it has had time to reach equilibrium.

Thus far, we have assumed that we begin with a zero temperature gas prior to

the energy input sequence. What if we do not start from a gas at zero temperature,

but from a finite temperature system? If the temperature is very high, the above
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formalism will fail, as the assumed density profile was for a zero temperature

system. Naturally, one could simply repeat the above analysis using a numerically

generated finite temperature spatial profile, but if the temperature of the sample

is sufficiently low (that is, low enough that its density profile still looks very

similar to a zero temperature density profile), we can make a single tweak to

equation (6.12) to correct for the finite temperature of the starting atom cloud.

We introduce a parameter η,

E(theat) = η E0

[
1 +

1

6

(
b2
x + b2

y + b2
z − 3

)]
, (6.13)

where η = E(Ti)/E(T = 0). Here, Ti is the temperature of the gas prior to

energy input, and η is the ratio of the energy in a cloud with temperature Ti

to the energy in a zero temperature cloud. In the limit that we start with a

zero temperature cloud, η obviously is equal to one. The value of E(T ) for a

noninteracting Fermi gas is given by (A.28) in Section A.2.3. We note that (6.13)

is valid for noninteracting as well as strongly interacting Fermi gases, provided

that η and E0 are calculated properly in each case.

The preceding analysis is valid for a harmonically confined Fermi gas. How-

ever, for high precision measurements, anharmonic corrections can be important.

Analyzing the contribution of these anharmonic corrections is our next step. Be-

fore diving into the gory details, however, please note that we assume that the

anharmonic corrections are small. We will still assume that we are starting from a

low temperature cloud whose spatial profile can be approximated by a zero tem-

perature harmonically trapped Fermi gas. For large degrees of anharmonicity,

this assumption will break down and the following analysis will be invalid.
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We begin with a more realistic potential for a focused dipole trap,1

U(x, y, z) =
−U0

1 + εF

U0 σ2
z
z2

exp

[
−εF

U0

(
x2

σ2
x

+
y2

σ2
y

)]
. (6.14)

Let ε → ε∗F =
√

1 + β εF and σi → σ∗i = (1 + β)1/4σi in (6.14) to obtain the

corresponding expression for the potential in the unitarity limit. Note that a

Taylor expansion of equation (6.14) up through quadratic terms will reproduce

(6.10). If we keep quartic terms, the potential is approximately

U(x, y, z) ' −U0 + εF

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)

− ε2
F

U0

(
x4

2 σ4
x

+
y4

2 σ4
y

+
z4

σ4
z

+
x2 y2

σ2
x σ2

y

+
x2 z2

σ2
x σ2

z

+
y2 z2

σ2
y σ2

z

)
. (6.15)

Plugging (6.15) into (6.8), we arrive at the following expression for the energy of

the gas following energy input and equilibration:

E(theat) = η E0 (1 + ∆EHO + ∆EAN1) , (6.16)

where ∆EHO is given by equation (6.11), E0 = 3 N εF /4 for a noninteracting gas

and E0 = 3 N ε∗F /4 for a unitary Fermi gas, and the anharmonic correction is

∆EAN1 = − εF

40 U0

[
b4
x + b4

y + 2 b4
z +

2

3

(
b2
x b2

y + b2
x b2

z + b2
y b2

z

)− 6

]
. (6.17)

If we keep sixth order polynomial terms in the Taylor expansion of (6.14), the

1Note that equation (6.14) is not completely correct. If cylindrical symmetry (σx = σy) does
not hold, there should be two Rayleigh lengths in the z−direction. However, provided that the
system is nearly cylindrically symmetric, equation (6.14) is a good approximation.
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calculated energy input becomes

E(theat) = η E0 (1 + ∆EHO + ∆EAN1 + ∆EAN2) , (6.18)

where ∆EAN2 is given by

∆EAN2 =
ε2

F

1440 U2
0

[
5 b6

x + 5 b6
y + 30 b6

z + 3 b4
x

(
b2
y + b2

z

)
(6.19)

+ b2
x

(
3 b4

y + 2 b2
y b2

z + 6 b4
z

)
+ 3 b4

y b2
z + 6 b2

y b4
z − 66

]
.

In closing, we emphasize once more the broad applicability of (6.18). It has

been observed that low temperature one-dimensional profiles in the strongly in-

teracting regime closely resemble zero temperature Thomas-Fermi profiles [16].

Consequently, one of the powerful features of (6.18) is that it is equally applicable

in the noninteracting and strongly interacting regimes, provided that we have a

way of estimating the Fermi energy and the small temperature correction para-

meter η.

6.2 Experimental sequence

Sections 3.3.1 and 3.3.2 describe many of the general steps taken when producing

degenerate noninteracting and strongly interacting Fermi gases. In this section,

we provide greater detail on the final stages of cooling and energy input in our

measurements of the heat capacity of a noninteracting and strongly interacting

Fermi gas. A measurement of the heat capacity of the noninteracting Fermi gas,

while of little interest from a theoretical standpoint, is an important test of our

energy input technique. We discuss the preparation and manipulation of the
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noninteracting gas in Section 6.2.2, but first we consider the strongly interacting

gas in Section 6.2.1.

Before considering issues specific to the noninteracting and strongly interact-

ing cases, there are some physical parameters of interest that are the same in both

scenarios. Following forced evaporative cooling, the optical trap depth is recom-

pressed to roughly 4.6% of the maximum trap depth, which gives a trap depth

U0/kB = 35 µK. At this depth, the trap oscillation frequencies in the nearly cylin-

drically symmetric radial dimensions are ωx = 2 π × 1785 and ωy = 2 π × 1612,

yielding a geometric mean of ω⊥ =
√

ωx ωy = 2 π × 1696(10). The oscillation

frequency in the axial dimension is approximately ωz = 2 π × 72(5). The values

of the radial trap oscillation frequencies have been corrected for anharmonicity as

described in Sections 4.6.1 and 7.4.2, while the axial trap oscillation frequency is

the measured (uncorrected) value. Following forced evaporation and recompres-

sion, we have N = 2(0.2) × 105 atoms, yielding a global Fermi energy, given by

(A.22), of εF /kB ≈ 2.4 µK, for a noninteracting gas. Note that this Fermi energy

is small compared to the trap depth, U0/kB = 35 µK.

6.2.1 Preparation of the strongly interacting Fermi gas

Following the initial stages of the experimental cycle discussed in Section 3.3.2,

the applied bias magnetic field is ramped to 840 gauss, just above the center of

the broad Feshbach resonance, and forced evaporation begins. The depth of the

optical trap is reduced as described in Section C.3.1 over a period of roughly 4

seconds with a lowering time constant of 80 ms (see equation (C.1)). After re-

maining at low well depth for 0.5 seconds, the trap is recompressed to 4.6% of

its maximum trap depth over a period of 1 second. After reaching this final trap
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depth, no further experimental manipulation occurs for 0.5 seconds, which allows

the atoms to reach equilibrium. Next, the energy input scheme outlined in Sec-

tion 6.1 is applied, wherein the optical trap is turned off for a brief period. For the

experiments, theat is varied from 0 to 460 µs, corresponding to 0 ≤ ω⊥ theat ≤ 4.9.

For all of the heating times under consideration, it is a reasonable approximation

to let bz(theat) = 1, as the axial trap oscillation frequency is much less than the

radial trap oscillation frequencies (ωz/ω⊥ = 0.042). After restoration of the trap,

the gas is allowed to equilibrate for 0.1 seconds. The gas is then released from the

trap once again, at which point it expands and is imaged as outlined in Chapter 5.

The time of flight used prior to imaging varied depending on the duration of theat.

For theat < 300 µs, the time of flight was 1 ms or 800 µs , while for theat > 300

µs, the time of flight was 500 µs. The shorter time of flight for longer values of

theat was necessary to maintain a reasonable signal-to-noise ratio when imaging

the hotter atom clouds. When calculating the expansion factors during both the

heating sequence and for time of flight imaging, the equations of hydrodynamics

in the presence of a magnetic potential, outlined in Section 4.4, are applicable.

The experimental cycle was repeated many times to acquire all of the data

presented in Section 6.4.2. The data for different values of theat was acquired in

random order and ten measurements were conducted for each value of theat.

6.2.2 Preparation of the noninteracting Fermi gas

In preparing the noninteracting gas, the initial stages of cooling proceeded as

discussed in Section 3.3.1. Forced evaporation was conducted at 300 gauss, where

the optical trap depth was lowered for 12 seconds with a time constant of 0.25

seconds (see equation (C.1)). The trap depth remained at its minimum value for 1
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second before being recompressed to 4.6% of the maximum trap depth in 1 second.

Upon reaching the final trap depth, no experimental manipulations occurred for

0.5 seconds to allow the atoms to reach equilibrium. Energy was then added to

the gas using the technique outlined in Section 6.1. Values of the heating time

theat ranged from 0 to 300 µs in steps of 10 µs. As with the strongly interacting

gas, we make the approximation bz(theat) = 1, as the axial dimension remains

nearly stationary for the values of theat under consideration. The magnetic field

was maintained at 300 gauss for several tenths of a second to allow the cloud to

equilibrate before being ramped to the zero crossing value near 530 gauss, where

the scattering length as = 0. The gas was then released from the optical trap

and allowed to expand for 1 ms before being imaged as described in Chapter 5.

When calculating the expansion factors for the heating sequence and time of flight

imaging, the equations for ballistic expansion in the presence of a magnetic field,

given in Section 4.3, are applicable. However, the force supplied by the slight

magnetic field curvature alters the ballistic expansion factors bi(t) by less than

0.2% from their zero magnetic field values for t ≤ 1 ms. Consequently, when

calculating the expansion factors for heating and for time of flight, the results for

ballistic expansion in the absence of a magnetic field, given in Section 4.2, are a

good approximation. The experimental cycle was repeated many times to acquire

all of the data presented in Section 6.4.1. The data for different values of theat

was acquired in random order and a total of ten measurements were conducted

for each value of theat.

A close reading of the previous paragraph reveals that the energy input tech-

nique was applied to a weakly interacting gas at 300 gauss rather than a truly

noninteracting gas, such as we have when the applied magnetic field matches the
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zero crossing value. Recall from the discussion in Section 4.6.1, where we consid-

ered measurements of the parametric resonance frequencies at both 300 and 530

gauss, that the results were indistinguishable. That is, the weakly interacting sys-

tem behaved essentially as a noninteracting system, though we elected to conduct

parametric resonance excitations at 300 gauss, as that allowed for cross-relaxation

between the primary axes of the trap. We employ the same reasoning here. In

measuring the heat capacity, we first wish to add energy to the system and then

allow the atoms to redistribute that energy and come to equilibrium. This process

can occur in a weakly interacting system, but not in a noninteracting system.

Now that we have outlined the experimental manipulations which occurred

during the process of adding energy to the noninteracting and strongly interacting

Fermi gases, we must discuss the techniques used for measuring the temperatures

of the resulting atom clouds. Combined knowledge of the energy and temperature

will allow us to measure the heat capacity in the noninteracting and strongly

interacting regimes.

6.3 Temperature measurement

Measuring the temperature of harmonically trapped noninteracting Fermi gases

is a relatively straightforward process. The spatial density of the cloud can be

compared to a theoretical prediction for a cloud of a particular temperature. A

curve fitting algorithm can be employed to find the temperature of the theoret-

ical curve that most closely matches the data. This technique is widely used to

determine the temperature of noninteracting harmonically trapped Fermi gases

(see [51, 109, 110], for example). There are some subtleties, however, which we
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cover in Section 6.3.1.

Temperature measurement in the strongly interacting regime remains a rather

contentious topic. Whereas the spatial profiles of noninteracting gases are well-

known, at present there is no consensus on the appropriate spatial profiles in

the strongly interacting regime. This condition is part of a larger problem, in

which there is no single theory which is regarded as the “correct” theory for

describing strongly interacting matter. The lone exception to this statement is

the case of a zero temperature unitary gas, where the equation of state provided

in Section 2.2.1 has gained widespread acceptance. In general, however, there is

no agreed-upon technique for measuring temperature in the strongly interacting

regime. Given the importance of measuring temperature in the presence of strong

interactions, several techniques have been proposed. In Section 6.3.2, we outline

our temperature measurement scheme for strongly-interacting Fermi systems, and

compare it to some other temperature measurement methods presently in use.

Before discussing issues specific to the measurement of temperature in the

noninteracting or strongly interacting regimes, we provide a few comments ap-

plicable to both cases. In Chapter 5, we discussed how images of the atom clouds

are acquired and processed to yield two-dimensional column densities such as the

one displayed in Figure 5.4. In principle, we could measure the temperature by fit-

ting a two-dimensional theoretical density profile to the two-dimensional column

density. However, we are concerned about the sensitivity of a two-dimensional fit

routine to trap anharmonicity in the axial dimension of the atom cloud. Conse-

quently, we prefer to analyze one-dimensional radial density distributions formed

by binning the two-dimensional column density along the axial direction. An

example of a one-dimensional radial density profile is displayed in Figure 6.1. Be-
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Figure 6.1: A sample one-dimensional spatial distribution of an atom cloud,
formed by binning the two-dimensional column density along the axial direction
to produce a radial profile. The radial coordinate is shown along the horizontal
axis while the vertical axis displays the atomic density in arbitrary units.

fore using a curve fitting routine to determine the temperature of the cloud, the

density profile n(x) is normalized such that

∫ ∞

−∞
n(x) dx = 1. (6.20)

This normalized one-dimensional spatial profile can then be compared to theoret-

ical profiles to determine the temperature of the cloud.

Finally, it is worth mentioning once more that all of the data discussed in this

dissertation was released from the optical trap prior to imaging. Consequently, if

we desire to know the temperature of the trapped cloud, we must be concerned

about possible temperature and shape changes as the cloud expands. In Chap-

ter 4, we covered the equations which describe the expansion of the atom clouds

under ballistic and hydrodynamic conditions. In both cases, the shape of the
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cloud in any one direction did not change, though its size did. Consequently,

since we are trying to detect temperature by monitoring the shape of the cloud,

we suggest that measuring the shape of the expanded cloud will reveal the shape

of the trapped cloud, which in turn provides us with information about the tem-

perature of the trapped cloud. In the noninteracting regime, this is not much of

a concern, as the lack of collisions between the particles in the gas should pre-

vent changes in the energy distribution, and therefore, the temperature of the

cloud. In the presence of interactions, however, there are concerns that collisions

could lead to heating of the atom cloud as it expands [64]. Our efforts to observe

heating as an ultracold strongly interacting gas expands showed no discernable

temperature increase when starting from a low temperature gas. Consequently,

we believe that measuring the temperature of the expanded atom clouds in the

low temperature regime provides a good estimate of the temperature of the cloud

prior to release from the optical trap.

6.3.1 Noninteracting Gases

In the introduction to this section, we noted that the temperature of a harmon-

ically trapped noninteracting Fermi gas influences the shape of the atom cloud.

In practice, one can compare the shape of a real piece of data to a theoretically

generated spatial profile with a known temperature. Using a curve fitting routine,

the best fit to the spatial profile associated with the real piece of data will yield

the temperature that best describes that piece of data.

Unfortunately, the process is not that simple, as there are several parameters

to consider. In Appendix A.3.3, we present analytic expressions for the spatial

profiles for harmonically trapped noninteracting Fermi gases. There, we find that
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the normalized one-dimensional profile assumes the form

n(x; T ) = − 3 N√
π σx

(
T

TF

)5/2

Li5/2

[
exp

(
µ
εF
− x2

σ2
x

T/TF

)]
, (6.21)

where Lin is the polylogarithm function, µ is the chemical potential and σx is

the Thomas-Fermi radius in the x-direction. We see that the shape of the profile

depends on several parameters. As noted already, the temperature of the atom

cloud will influence its shape. Furthermore, the Fermi radius σx plays an impor-

tant role in determining the spatial profile. If we suppose that we can measure

the atom number to sufficiently high accuracy,2 then a curve fitting routine based

on equation (6.21) will need only σx and T/TF as free fit parameters.

In addition to considering the spatial profiles for finite temperature harmon-

ically trapped noninteracting Fermi gases in Appendix A, we also consider the

zero temperature and high temperature limits. We call on those results now to

illustrate the challenge given to a curve fitting algorithm that is handed a piece of

real data and equation (6.21). We see that in the zero temperature limit (A.40),

the one-dimensional profile becomes

nZ(x) =
8 N

5 π σx

(
1− x2

σ2
x

)5/2

. (6.22)

In this case, if we know the number of atoms N , then only the Fermi radius of

the cloud σx needs to be determined. In the high temperature regime given by

2The measured atom number generally agrees with the normalization of the atom cloud to
within 5%. However, we do use the amplitude of the spatial profile as an additional fit parameter
to obtain the best possible fit. The use of this additional fit parameter is largely independent
of the curve fitting issues discussed in Section 6.3, and as such, to simplify the discussion, I
consider the case where the atom number is known to high accuracy.
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(A.51), the profile assumes a classical, gaussian form,

nc(x) =
N

2 π1/2 σx

(
T

TF

)−1/2

exp

[
−TF

T

(
x2

σ2
x

)]
. (6.23)

Here, we see that both the Fermi radius σx and the temperature T/TF appear, and

they enter the expression for the density profile symmetrically. That is, at high

temperature, the curve fit routine can determine only the product σ2
x × T/TF ,

but not the individual values of the temperature and the Fermi radius. This is

in stark contrast to the situation at zero temperature, where the Fermi radius

and the temperature are wholly uncorrelated. In between these two limits, the

Fermi radius and temperature gradually evolve from being completely indepen-

dent fit parameters at low temperature to perfectly correlated fit parameters at

high temperature. That is, the fit routine has a relatively easy task determining

the Fermi radius and temperature when the atom clouds are quite cold, and it

has an impossible task at high temperature.

Determining the temperature and the Fermi radius in the classical (high tem-

perature) regime is only impossible if the fit routine considers both the Fermi

radius and the temperature to be free fit parameters. If we provide the fit rou-

tine information about the Fermi radius of the cloud, then we can measure its

temperature. There are several techniques for overcoming this indeterminacy.

First, one can calculate the Fermi radius of the cloud using knowledge of the trap

oscillation frequencies and the number of atoms (see (A.37)). This calculated

Fermi radius can then be held constant while the curve fit routine determines

the temperature. As always, the devil is in the details. Recall that we acquire

images of clouds following release and expansion from the optical trap. The cost



170

of performing time of flight measurements is that one needs to understand the

expansion dynamics, which requires knowledge of the trap oscillation frequencies,

as discussed in Chapter 4. This is not a problem if we consistently produce the

same trap conditions in each of our experiments. However, if we wanted to study

a particular effect as a function of trap depth, it would be a very tedious task to

measure the trap oscillation frequencies at each new trap depth.

There is a more convenient way of overcoming the correlation between the

atom cloud’s Fermi radius and its temperature in the classical regime. The solu-

tion is to measure the Fermi radius σx at low temperature (where the Fermi radius

and the temperature are nearly independent), and hold the Fermi radius constant

at the measured value for all higher temperatures.3 This technique has the ad-

vantage that one need not go through the time consuming process of thoroughly

characterizing the trap conditions and then determining the expansion dynamics

to measure the temperature.

Typically, the power of the laser which generates the optical trap is stable on

the order of hours. This means that the trap oscillation frequencies ωi are also

stable on this time scale. The number of atoms which we load into the trap,

however, will vary from shot to shot. As the number of atoms will affect the

apparent Fermi radius of the cloud, we must take these fluctuations into account.

Using the definition of the Fermi radius (A.37) and the Fermi energy (A.22), we

can write

σi =

√
2 εF

m

1

ωi

=

√
2 ~ ω̄ 61/3

mω2
i

(
N

2

)1/6

= ci

(
N

2

)1/6

, (6.24)

3Note that the Fermi radius σx is a zero temperature parameter. As it does not have any
temperature dependence, the value of σx measured at low temperature is applicable to all higher
temperature clouds generated under the same trap conditions.
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where ci = [2 ~ ω̄ 61/3/(mω2
i )]

1/2 is the “number independent Fermi radius.” (Re-

call that N is the total number of particles in the gas, so N/2 is the number

of particles per spin state in a 50-50 mixture). One can accurately measure the

number independent Fermi radius by measuring the Fermi radius σi of the cloud

at low temperature and correcting for the number of atoms in that spin state by

dividing σx by (N/2)1/6. Averaging the measured values of ci from 10 to 20 atom

samples generated under the same conditions is sufficient to fix the value of ci.

The temperature of hotter atom clouds can then be determined by using (6.24),

using the measured value of ci along with the measured atom number for that

particular cloud, to fix the value of σi. Once σi is fixed, the fit routine, based on

(6.21) can then independently determine the temperature T/TF .

The primary advantages of this technique are its speed and simplicity. Acquir-

ing twenty pieces of data to fix the value of ci takes no more than 10 minutes, and

provided that the expansion dynamics of the cloud during time of flight are reason-

ably well understood, one can readily measure the temperature of the cloud. The

primary drawback of this technique is that the initial determination of ci requires

very low temperatures. The fit routine begins to have difficulty distinguishing

between Fermi radius and temperature for T/TF ≥ 0.20. Hence, to obtain a reli-

able measurement of the temperature, one should measure ci using atom clouds

at temperatures T/TF ≤ 0.15. If such low temperatures are unattainable, one

must resort to measuring each of the trap frequencies and calculating the value

of ci.

While the discussion in this subsection has focussed on temperature measure-

ment of noninteracting clouds, we will see that many of the same issues must

be considered when attempting to extract temperature information from strongly



172

interacting clouds. Many of the solutions to these issues are the same, but as we

will see in Section 6.3.2, some of the consequences of these solutions will have a

profound impact on the natural energy and temperature scales for the strongly

interacting system.

6.3.2 Strongly interacting gases

In the introduction to Section 6.3, we alluded to the difficulties of measuring tem-

peratures of atom clouds in the strongly interacting regime. In the noninteracting

regime, we have seen that the spatial density profiles are well known. This is not

the case in the strongly interacting regime, however, so another method must be

employed. In this section, we discuss an empirical thermometry method based

on the similarities between the one-dimensional densities of noninteracting and

strongly interacting gases. It is important to note that we consider this temper-

ature measurement scheme to be applicable in the strongly interacting regime at

or above the center of the broad Feshbach resonance in 6Li at 834 gauss. Spa-

tial profiles below the resonance, where molecules can form and Bose condense,

reveal bimodal structures composed of a condensate surrounded by a thermal

cloud [41,42,73–75]. Our empirical thermometry scheme is not applicable in this

regime, the “BEC side” of the resonance. Unless otherwise stated, the discussion

that follows pertains to temperature measurement in a strongly attractive Fermi

gas.

Very simply, in the strongly interacting regime where some portion of the atom

cloud might be superfluid while other regions are not, there is little reason to be-

lieve that the density profiles should look like noninteracting gas profiles. Yet

this is what was first observed in [16], where one-dimensional profiles of ultracold,
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strongly interacting Fermi gases were well-fit by zero temperature Thomas-Fermi

profiles of the form given by (A.40). Even as the temperature of the gas is in-

creased, the profile still appears to be well-fit by a Thomas-Fermi profile. Eventu-

ally, as the temperature rises to a level where the gas begins to acquire a more or

less classical, gaussian profile, the Thomas-Fermi shape continues to be a “good”

shape for the gas, as the Thomas-Fermi shape naturally tends to a gaussian pro-

file for large temperatures. In Figure 6.2, we show three different one-dimensional

density profiles of strongly interacting gases acquired at 840 gauss. Panels (a),

(b), and (c) show density profiles of atom clouds of increasing temperature. The

dots represent the data, while the solid curves show best fit Thomas-Fermi pro-

files for noninteracting, harmonically trapped Fermi gases. In spite of the strong

interactions, the cloud profiles are well-fit by the noninteracting profiles [10,111].

We utilize this surprising similarity to implement an approximate temperature

measurement scheme.

Before continuing, it is important to note that the success of this temperature

measurement scheme is not necessarily an indication that the spatial distribution

of atoms in a strongly interacting, harmonically confined gas is nearly indistin-

guishable from a similarly confined noninteracting system. It does seem to be the

case, however, for binned one-dimensional profiles. The three-dimensional clouds

and the two-dimensional column densities associated with strongly interacting

gases might have more complex features (kinks or bends) that get “washed out”

when the distributions are integrated to produce one-dimensional profiles. Given

our current imaging techniques, it is impossible to reconstruct the shape of the

three-dimensional cloud. However, viewing of the two-dimensional column densi-

ties does not reveal any obvious nonmonotonic features in the spatial distribution
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of atoms. A more substantial study of these two-dimensional profiles involving

the averaging of many atom clouds may reveal the existence of unusual features

in the atomic density. Such a study was not undertaken for this dissertation.

Recall that when measuring the temperature of noninteracting Fermi gases, we

hold the Fermi radius σi, which in turn is based on ci as given in (6.24), constant

at a measured value while using the reduced temperature T/TF as a floating fit

parameter. We will use essentially the same procedure here. Using noninteracting

Fermi gas profiles, we will measure the Fermi radius σ∗i of a cold atom cloud.

As with the noninteracting gas, we can measure a “number independent Fermi

radius” c∗i using,

σ∗i = c∗i

(
N

2

)1/6

, (6.25)

where asterisks are being used to distinguish quantities from their noninteracting

gas counterparts. After measuring c∗i for ultracold gases, we can then hold this

value of c∗i constant for hotter clouds, using (6.25) to calculate the appropriate

value of σ∗i for a cloud with N/2 atoms per spin state. With the value of σ∗i fixed,

we use a modified version of (6.21),

n(x; T̃ ) ∝ Li5/2

[
exp

(
µ
εF
− x2

(σ∗x)2

T̃

)]
, (6.26)

to measure the empirical reduced temperature T̃ for that atom cloud.

At this point, we have a way of labelling the temperature of the gas. The

above formalism cannot determine the true temperature T/TF in the strongly

interacting regime, but it does allow us to assign an empirical temperature T̃ to

strongly interacting clouds. The next logical step, then, is to consider the physical

significance of measuring temperature in this manner.
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Figure 6.2: Three normalized one-dimensional density profiles (dots) of clouds
imaged at 840 gauss in the strongly interacting regime. The solid gray lines
represent best fit Thomas-Fermi density profiles for noninteracting Fermi gases.
Panel (a) shows a cloud at empirical temperature T̃ = 0.11, panel (b) shows a
cloud at T̃ = 0.32, while panel (c) shows a cloud at T̃ = 0.62. The meaning of
the empirical temperature parameter T̃ is addressed in Section 6.3.2.
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Our first attempt at understanding the meaning of T̃ will draw on our dis-

cussion of unitary Fermi gases in Section 2.2.1. There, we saw that dimensional

analysis allows us to write a modified version of the equation of state for a nonin-

teracting gas to express the equation of state for a unitary system. Furthermore,

recall that the modification involved the introduction of the parameter β, which

is a universal constant representing the ratio of the interaction energy to the local

Fermi energy. Simple algebraic manipulation of (2.14) revealed that the unitary

gas behaves in many regards like a noninteracting gas composed of particles with

an effective mass m∗ = m/(1 + β). Since β < 0, the effective mass exceeds the

bare mass, m∗ > m. For a harmonically trapped zero temperature Fermi system,

the Fermi radii obey (see Appendix A.3.1)

σi =

(
2 εF

m

)1/2
1

ωi

, i = x, y, z. (6.27)

If we substitute the expression for the effective mass in (6.27), along with the

appropriate modifications to the expressions for the Fermi energy and the trap

oscillation frequencies, ω∗i =
√

1 + β ω and ε∗F =
√

1 + β εF , we find that the

Fermi radii in the unitary case σ∗i are related to the noninteracting Fermi radii σi

via

σ∗i = (1 + β)1/4 σi. (6.28)

Before continuing, it is worth noting that (6.28) has been used to measure the

value of β based on cloud sizes in the strongly interacting regime [10,16,18,41,43].

This discussion of β is intended as more than an illuminating aside. The

preceding discussion should make it apparent that the value of β sets the char-

acteristic length scale (via the Fermi radii) along with the characteristic energy
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scale (via the Fermi energy). Further, since the Fermi energy in the unitarity

limit ε∗F =
√

1 + β εF is proportional to the Fermi temperature T ∗
F =

√
1 + β TF ,

we propose a natural reduced temperature scale for the unitary regime,

T̃nat =
T

TF

√
1 + β

. (6.29)

We are now in a position to consider whether the natural temperature scale

given by (6.29) is equivalent to the empirical reduced temperature T̃ which ap-

pears in the expression for the density profiles given by (6.26). At zero temper-

ature, we require that T/TF = T̃ = 0. The natural temperature scale T̃nat ob-

viously meets this requirement. Next, we consider the high temperature regime.

Recall that in the classical (high temperature) regime, the Thomas-Fermi profiles

become gaussian (see (6.23)). Furthermore, recall that the Fermi radius and re-

duced temperature enter gaussian profiles as the product, σ2
x × T/TF . Even in

the presence of interactions, we expect the gaussian shape to be valid in the high

temperature regime, where the gas becomes more classical in nature. If we let

σx → σ∗x in the product σ2
x × T/TF , we require that T/TF → T̃nat to maintain

appropriate normalization of the gaussian cloud. That is,

σ2
x

T

TF

=
(σ∗x)

2

√
1 + β

T

TF

= (σ∗x)
2 T̃nat. (6.30)

Consequently, if we let σx → σ∗x and T/TF → T̃nat in (6.23), we can measure the

temperature of a high temperature, interacting atom cloud by holding the Fermi

radius constant at σ∗x. The reported temperature will be T̃nat, which we can then

relate to the reduced temperature T/TF using (6.29). Since the finite temperature

Thomas-Fermi shape given in (6.26) becomes gaussian in the classical limit, we
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conclude that the empirical temperature T̃ = T̃nat in the high temperature regime.

To this point, we have established that T̃ = T̃nat in the zero temperature

and high temperature limits. However, we do not have any simple means of

relating the empirical reduced temperature T̃ to the “true” temperature T/TF

in the intermediate temperature regime. In order to do so, we require a more

sophisticated approach, one that allows us to calibrate T̃ over all temperature

ranges.

Temperature calibration

The temperature calibration technique is relatively simple, though it does result

in a model-dependent temperature scale. The essential thrust involves generating

theoretical one-dimensional profiles of strongly interacting clouds at a number of

different temperatures, and then subjecting them to the temperature measure-

ment scheme outlined in Section 6.3.2. In doing so, we can establish a one-to-one

correspondence between the empirical temperature T̃ and the “true” tempera-

ture T/TF . As noted earlier, there is no universally-accepted theory for strongly

interacting gases. Consequently, each unique theory of strongly interacting mat-

ter will predict different spatial profiles, which will yield a different temperature

calibration. Furthermore, each temperature calibration will be valid for a par-

ticular strength of interparticle interactions. Each time one wishes to measure

the temperature at a new magnetic field (i.e., new interaction strength), a new

temperature calibration is needed.

The above calibration procedure was implemented with the help of Kathy

Levin and Qijin Chen from the University of Chicago. Their theory is based

on a pseudogap formalism in which particles in the trap can fall into three cate-
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gories: condensed fermion pairs, noncondensed fermion pairs, and unpaired fermi-

ons [5, 8, 10, 111]. Their theory accounts for fermion-fermion and fermion-boson

correlations, but not boson-boson correlations. Consequently, their theory is ex-

pected to have inappropriate behavior when the gas is deep in the BEC regime.

This is not a concern to us, however, as we are interested in a temperature calibra-

tion in the strongly interacting limit. For more information on Levin’s pseudogap

theory, the reader is encouraged to consult [5, 8, 10,111].

In Figure 6.3, we show the results of the temperature calibration using Levin’s

density profiles. In the Figure, the vertical axis gives the “true” temperature of

the theoretical density profiles, while the horizontal axis shows the measured em-

pirical temperature T̃ scaled by a factor of
√

1 + β. For this calibration, we used

β = −0.49, as measured in [10]. The dots represent the measured temperature

calibration, while the gray dotted line is the diagonal T/TF =
√

1 + β T̃ . If T̃

is equal to the natural temperature scale T̃nat (6.29), then we would expect all

of the dots to overlap the diagonal gray line. We see that close to zero tem-

perature and for temperatures T/TF > 0.30, the quantity
√

1 + β T̃ provides a

reasonably accurate estimate of the “true” temperature T/TF . However, for finite

reduced temperatures less than 0.30,
√

1 + β T̃ tends to underestimate the true

temperature. It is believed that the discrepancy between the measured empirical

temperature T̃ and the temperature T/TF arises from the appearance of con-

densed fermion pairs. In Levin’s theory, condensation first appears at a critical

temperature Tc/TF = 0.29, which leads to a modification in the density profile

of the gas. This is evidently reflected in the temperature calibration shown in

Figure 6.3.
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Figure taken from [10].
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Based on the results shown in Figure 6.3, we conclude that

T̃ ≈ T̃nat =
T

TF

√
1 + β

, for T̃ ≥ 0.42. (6.31)

When attempting to determine the true temperature for T̃ < 0.42, we will need to

rely on the correspondence between the temperature scales shown in Figure 6.3. A

power law fit to the measured temperatures which is constrained to pass through

the point
√

1 + β T̃ = T/TF = 0 yields the following correspondence,

√
1 + β T̃ = 1.8

(
T

TF

)1.49

, for T̃ < 0.42. (6.32)

To summarize, to convert the empirical temperature T̃ to the “true” temperature

T/TF , we can use (6.32) for T̃ < 0.42 and (6.31) for all higher temperatures. In

closing, we caution once again that these conversion factors will be dependent

upon the theory used to generate the theoretical density profiles which serve as

the basis for the temperature calibration.

The primary advantage of measuring the temperatures of strongly interact-

ing profiles in this fashion is that we can use essentially the same temperature

measurement techniques we use for noninteracting Fermi gases. However, extra

effort is needed to determine the reduced temperature T/TF associated with the

measured value of T̃ .

Applicability of this temperature measurement method outside of the

strongly interacting regime

Thus far, we have focussed on temperature measurement in the unitary regime,

as we intend to study the heat capacity in the unitarity limit. However, the
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temperature calibration technique based on curve fitting of theoretically gen-

erated density profiles should be applicable outside the unitarity limit as well,

provided that the one-dimensional density profiles continue to resemble nonin-

teracting Thomas-Fermi shapes. While this precludes using this technique with

bimodal density distributions in the BEC regime, it poses no restrictions for re-

gions featuring strong attractive interactions. Of course, when we first introduced

β, it was presented as a parameter valid only at unitarity. However, in an approx-

imate fashion, we could parameterize the strength of the interparticle interactions

by measuring a value of β using (6.28), for example, as a function of magnetic

field. That is, we could measure β = β(kF as), where the dimensionless parameter

kF as denotes the interaction strength. Here, kF is the Fermi wave vector and as

is the s-wave scattering length. With each new interaction strength, a new value

of β could be measured, and a new calibration curve relating
√

1 + β T̃ and T/TF

could be developed.

Before considering the influence of trap anharmonicity on the accuracy of

our temperature measurement scheme in Section 6.3.3, we briefly mention other

temperature assessment techniques in the strongly interacting regime.

Other temperature measurement schemes in the strongly interacting

region

Other schemes have been considered for estimating the temperature of gases in

the strongly interacting regime. Some have used measurements of the condensate

fraction on the BEC side of the resonance as a means of assessing the initial

temperature of the gas. Here, estimates of the temperature can be made by

assessing the fraction of the atom cloud which has Bose-condensed, compared
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to the portion of the cloud composed of thermal, unpaired atoms. This is a

common temperature measurement technique for weakly interacting atomic Bose

gases. However, due to the width of the broad Feshbach resonance in 6Li, it is

difficult to reduce the magnetic field to the point where the gas is truly weakly

interacting. As a result, when estimating the temperature of the gas, care must

be taken to account for the presence of interactions. For a discussion of some

of the issues involved in measuring temperature in this way, see [112]. Once the

temperature is estimated deep in the BEC regime, researchers conduct isentropic

field sweeps into the strongly interacting regime (see [41, 78], for example). For

40K, isentropic field sweeps from the noninteracting regime above resonance into

the strongly interacting regime have been used to assess the initial temperature

of the gas [76]. However, isentropic field sweeps can fix the temperature of the

gas in the strongly interacting regime only if the relationship between entropy

and temperature is known for a strongly interacting system. Otherwise, there is

no means of connecting the temperature in the weakly or noninteracting regimes,

where the entropy versus temperature dependence is known, to the corresponding

temperature when strong interactions are involved. As there has not been a

measurement of the entropy versus temperature in the strongly interacting regime,

estimates of the temperatures following isentropic sweeps into the presence of

strong interactions rely on theoretical input [113,114].

6.3.3 Influence of trap anharmonicity on temperature mea-

surement

When discussing the energy input technique in Section 6.1, we considered the

impact of slight anharmonicity in the trapping potential. As a measurement of
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the heat capacity will require knowledge of both the energy and temperature of

the cloud, we need a way of determining the influence of trap anharmonicity on

temperature measurement as well. In Section 6.3, the temperature measurement

technique we outlined relied on spatial profiles for a noninteracting Fermi gas

confined in a perfectly harmonic trap. In this section, I will examine the errors

arising from measuring the temperature of anharmonically confined atom clouds

using a curve fitting routine based on harmonically trapped profiles. Through-

out this section, the formalism we use will be drawn from noninteracting Fermi

gas theory. However, we once again draw on the similarity of one-dimensional

noninteracting and strongly interacting Fermi gas density profiles to justify the

use of these results for both interaction regimes. To determine the impact of

trap anharmonicity on the measured temperature, we first need to generate some

anharmonic density profiles.

Generating anharmonic spatial densities

We begin with (A.33) from Appendix A:

n(x, y, z) =
2 π (2 m)3/2

(2 π ~)3

∫ ∞

0

dε f(ε) (ε− U)1/2 Θ [ε− U ] , (6.33)

where f(ε) is the usual Fermi occupation function

f(ε) =
1

exp [(ε− µ)/(kB T )] + 1
. (6.34)

Further, µ is the chemical potential and U is the trap potential energy. We can

write (6.33) in slightly more compact fashion by normalizing the energy terms to

the Fermi energy and temperature. Making the substitutions ε → εF ε′, µ → εF µ′,
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U → εF U ′, and T → TF T ′, (6.33) becomes

n(x, y, z) =
2 π (2 m)3/2ε

3/2
F

(2 π ~)3

∫ ∞

0

dε′
(ε′ − U ′)1/2 Θ [ε′ − U ′]
exp [(ε′ − µ′)/T ′] + 1

. (6.35)

If we absorb all of the lead coefficients outside the integral into a normalization

factor A, we can write the expression for the density as

n(x, y, z) = A

∫ ∞

0

dε′
(ε′ − U ′)1/2 Θ [ε′ − U ′]
exp [(ε′ − µ′)/T ′] + 1

. (6.36)

Equation (6.36) is valid provided that the trapping potential is infinitely deep.

However, any realistic trap will have finite depth, which means that the inte-

gration over energy should be terminated when the energy of a particle exceeds

the maximum depth of the trap (if the energy of the particle exceeds the max-

imum trap depth, then the particle is not trapped). In unscaled units, for a

trap potential with maximum depth U0, the upper limit on the energy integral

should be εmax = U0. Since the energy integral in (6.36) is expressed in terms of

scaled units, the upper limit on the integral for a trap with maximum depth U0 is

ε′max = U0/εF . That is, for a trap potential with maximum depth U0, the spatial

profile can be obtained by using the following:

n(x, y, z) = A

∫ U0/εF

0

dε′
(ε′ − U ′)1/2 Θ [ε′ − U ′]
exp [(ε′ − µ′)/T ′] + 1

. (6.37)

As an example, when assessing the impact of trap anharmonicity on our measure-

ments, we often consider a three-dimensional gaussian trapping potential

U ′(r) =
U0

εF

[
1− exp

(
− εF r2

U0 σ2
r

)]
, (6.38)
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where σr =
√

2 εF /m/ω̄. Plugging (6.38) into (6.37) and performing the inte-

gration numerically, one can obtain a three-dimensional density profile. Lower-

dimensional spatial profiles can be obtained by integrating over the appropriate

coordinates. The choice of a three-dimensional gaussian to approximate the trap-

ping potential of the optical trap is motivated by the ability to calculate the

chemical potential for the three-dimensional gaussian using a simple correction

factor to the related result for a three-dimensional harmonic oscillator [60].

We now use the temperature measurement scheme outlined in Section 6.3.1 to

examine the error arising from measuring the temperature of an anharmonically

confined noninteracting Fermi gas using a curve fitting routine which assumes the

gas is perfectly harmonically trapped. We assume that the gas is probed while it

is confined in a three-dimensional gaussian potential as given by (6.38). Figure 6.4

depicts the “measured” temperature versus the “actual” temperature for two val-

ues of the ratio of the Fermi energy to the trap depth: εF /U0 = 0.049 (squares

and dots), a typical value for our experimental conditions, and εF /U0 = 0 (gray

dashed line), the case of perfect harmonic confinement. For εF /U0 = 0, we obvi-

ously have perfect agreement between the measured and “actual” temperatures.

However, for the anharmonically confined gas (squares), we find that the fit rou-

tine based on in situ temperature measurement systematically overestimates the

temperature of the cloud. This is to be expected, as the “soft” gaussian potential

increases the width of the atom cloud, resulting in an apparent larger tempera-

ture. The error becomes more pronounced as the temperature is increased: for

temperatures below 0.6 TF , the measured temperature is within 5% of the true

temperature. The temperature overestimate rises to 10% above 1.1 TF and 20%

above 1.8 TF . We now consider the significance of the dots shown in Figure 6.4.
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Figure 6.4: Error introduced by measuring the temperature of a noninteract-
ing Fermi gas confined in a three-dimensional gaussian potential using a curve
fitting routine based on density profiles for a harmonically confined Fermi gas.
The squares are the results of an in situ temperature measurement, while the
dots represent temperature measurement after expansion according to an effective
trapping frequency. The in situ temperature measurement shows monotonically
increasing error as the temperature rises, while the temperature measurement
after time of flight remains closer to the true value. The ratio of the Fermi en-
ergy to the trap depth considered here is εF /U0 = 0.049 (squares and dots) and
εF /U0 = 0 (gray dashed line).
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Thus far, we have found that for a “soft” potential, in situ temperature mea-

surements based on harmonically trapped profiles will overestimate the actual

temperature of the cloud. We now show that the temperature error is reduced

if the measurement is made on a cloud released from the trap. For simplicity,

we will consider the case of ballistic expansion from the trapping potential, as

discussed in Section 4.2.

When a cloud of atoms is released from a trap, the expansion dynamics is

heavily influenced by the trap conditions prior to release. In the case of perfect

harmonic confinement, the expansion of the gas is parameterized by the trap

oscillation frequencies ωi. However, if the initial confinement is not perfectly

harmonic, we can assign an effective frequency (ωi)eff which differs from the

harmonic value, as outlined in Section 4.5.

We note that for “soft” potentials, the effective frequency is reduced from its

harmonic value. This lower effective confinement frequency will result in slower

expansion during time of flight. While anharmonic effects arising from a “soft”

potential tend to make the cloud appear hotter when imaged in situ, the reduced

effective frequency results in slower expansion during time of flight. Hence, the

cloud starts larger, but expands more slowly than expected.

We return again to Figure 6.4, and consider the temperature measurement

error introduced by fitting Thomas-Fermi spatial densities for a harmonically

confined gas to a cloud trapped in a three-dimensional gaussian potential. The

dots in the figure represent the measured temperature after ballistic expansion

according to an effective trapping frequency. In this case, the x-dimension of the

cloud expands by a factor of btof =
√

1 + [(ωx)eff t]2 after time of flight t. We

employ the temperature measurement procedure outlined in Section 6.3.1, holding
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the Fermi radius constant at the value measured for the lowest temperature data

point. Furthermore, we assume that ωx t > 5. The temperature error in this case

never exceeds 11% for reduced temperatures up to T/TF = 1.8. In contrast, the

in situ temperature measurement error can be twice as large in this temperature

regime.

In the preceding estimates of temperature errors resulting from the measure-

ment of anharmonically confined atom clouds using theoretical profiles of har-

monically confined clouds, we considered a noninteracting gas undergoing ballistic

expansion. If we repeat the analysis with atom clouds expanding hydrodynami-

cally, we obtain essentially the same estimates of the temperature measurement

error. Furthermore, as the spatial profiles of one-dimensional noninteracting and

strongly interacting atom clouds appear to be quite similar, we believe that the

temperature measurement errors depicted in Figure 6.4 are good estimates of

temperature errors for a noninteracting gas following ballistic expansion as well

as a strongly interacting gas following hydrodynamic expansion. Since we find

that the error in the measurement is a few percent or less for reduced tempera-

tures up to 1.0 T/TF , when considering the analysis of the heat capacity data in

Section 6.4, we do not attempt to correct the measured temperatures for errors

arising from anharmonicity.

6.4 Results and discussion

In Section 6.2, we outlined the experimental sequence for creating noninteracting

and strongly interacting Fermi gases. Following energy input as described in

Section 6.1, we measure the temperature of the gas as outlined in Section 6.3.
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The result is a series of ordered pairs consisting of energies calculated using (6.18)

and measured temperatures.

We begin in Section 6.4.1 with analysis of the heat capacity of a noninteracting

Fermi gas. As noninteracting Fermi gases are well understood, this is not a

particularly interesting case. It does, however, provide a check of our energy input

and temperature measurement techniques for a noninteracting system. The more

physically interesting investigation of the heat capacity of a strongly interacting

Fermi gas is discussed in Section 6.4.2. Finally, we can use the heat capacity data

to verify the virial theorem for a strongly interacting Fermi gas, as discussed in

Section 6.4.3.

6.4.1 Heat capacity of a noninteracting Fermi gas

Before considering our heat capacity data for a noninteracting Fermi gas, we

will consider theoretical predictions for the energy of the gas as a function of

temperature, normalized to the ground state (zero temperature) energy. In Ap-

pendix A.2.3, we calculate the average energy per particle for a noninteracting,

harmonically trapped Fermi gas as a function of temperature. The result is given

by (A.28). Obtaining the heat capacity is then a simple matter of applying (6.1)

to the energy versus temperature relation.

In earlier sections, we considered the influence of trap anharmonicity on our

measurements, and we found that trap anharmonicity will provide a measurable

effect on the energy input, but a negligible effect on the measured temperature

of the gas for most of the temperature range of interest. Consequently, when

developing the theoretical prediction of the energy versus temperature curve for

the noninteracting gas, we must take trap anharmonicity into account. This can
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be done with a simple modification to (A.28). For a three-dimensional gaussian

potential such as (6.38), we can introduce a numeric factor g(x) which provides

the ratio of the density of states in a three-dimensional gaussian well to the density

of states in a three-dimensional harmonic potential. The formula for g(x) is given

by [60]

g(x) =
[− ln(1− x)]3/2 (1− x)1/2

x2

16

π

∫ 1

0

du u2
√

exp[(u2 − 1) ln(1− x)]− 1,

(6.39)

where the argument x is the energy of the atom in units of the well depth such

that x = 0 at the bottom of the well and x = 1 at the top. Using (6.39), we

can write the temperature dependence of the energy of a Fermi gas trapped in

a three-dimensional gaussian well of depth U0, normalized to the ground state

energy, as

EG(T ′)
EG(T = 0)

=

∫ U0/(kB TF )

0
dε′ ε′ 3 g(kB TF ε′/U0) / {exp [(ε′ − µ′)/T ′] + 1}

∫ 1

0
dε′ ε′ 3 g(kB TF ε′/U0)

. (6.40)

As in Appendix A, µ′ and ε′ are the chemical potential and energy in units of

the Fermi energy, respectively, and T ′ is the temperature in units of the Fermi

temperature. We will make use of (6.40) when analyzing the measured energy

versus temperature relation for a noninteracting Fermi gas.

With all of the theoretical framework in place, we are ready to examine the re-

sults of our energy versus temperature measurement in the noninteracting regime.

Recall that prior to adding energy to the gas, we cool the gas to the lowest pos-

sible value. For the noninteracting gas, the lowest attainable temperature was

T/TF = 0.24, which gives η = 1.34 for the temperature correction in (6.18).
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In Figure 6.5, we plot the measured energy versus temperature for a noninter-

acting Fermi system. Recall that the vertical axis showing the normalized energy

is a calculated quantity based on the duration of theat, while the horizontal axis

indicates the measured temperature. This breaks with the usual convention of

displaying the dependent variable along the vertical axis. However, this method

of displaying the data was chosen to facilitate a discussion of the heat capacity,

which can be determined readily by taking the derivative of the energy versus

temperature curve. We note that the data points have error bars for the tem-

perature but not the energy, as the energy input is very precisely determined by

theat. The temperature error bars indicate the standard deviation of the mean of

the measured temperatures from multiple repetitions of the same value of theat.

Recall from Section 6.2.2 that data for different values of theat was acquired in

random order, and each data point displayed in Figure 6.5 is the average of ten

repetitions for a given value of theat.

There are no surprises in the data. The agreement between the theory given

by (6.40) (with kB TF /U0 = 0.068) and the data in Figure 6.5 is quite good,

validating both the energy input and temperature measurement techniques. Of

course, Figure 6.5 is not truly a presentation of the heat capacity. For that, we

would need to take the derivative of the energy versus temperature data points.

However, due to statistical fluctuations in the data, calculating the slopes between

adjacent data points would not yield an especially meaningful presentation of the

data. What is important is that the measured energy versus temperature curve

is in good agreement with theory, which implies that the measured heat capacity

is in good agreement with the theory as well.

Having tested our methods with the well-known case of a noninteracting Fermi
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Figure 6.5: The normalized energy versus reduced temperature for a noninter-
acting Fermi gas. The dots represent data points where the energy, based on the
duration of theat, is calculated using (6.18) and the temperature is measured us-
ing the procedure discussed in Section 6.3.1. The solid line shows the theoretical
prediction based on (6.40). E0 represents the ground state energy. Figure first
published in [10].
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gas, we can now examine the results for the more physically interesting case of a

strongly interacting Fermi gas.

6.4.2 Heat capacity of a strongly interacting Fermi gas

Prior to adding energy to the strongly interacting Fermi gas, we were able to

lower the temperature of the gas to T̃ = 0.04. In order to use (6.18), we need to

estimate η, the correction factor which accounts for the finite temperature of the

gas prior to the heating sequence. Due to the very low temperatures considered,

where the energy varies little with increasing temperature, we suggest that ideal

gas scaling can be used to estimate the temperature correction factor. Using a

Sommerfeld scaling factor for the energy with the empirical temperature T̃ , we

obtain,

η = 1 +
2 π2

3
T̃ 2 ≈ 1.01, (6.41)

which hardly affects the energy scale.

In the analysis that follows, comparison between data and theory will require

a measured value of β. We measure β = −0.49(0.04), a topic that is addressed in

more detail at the end of this section.

Following energy input and equilibration, we obtain the data shown in Fig-

ure 6.6. As with the noninteracting gas data, we show the energy, a calculated

quantity, along the vertical axis, and the measured empirical temperature T̃ along

the horizontal axis. In the Figure, the diamonds represent the average of ten data

points for a given value of theat, while the solid line shows the theoretical pre-

diction for ideal gas scaling. For the theory, we have used (6.40) with rescaled

temperatures (T ′ → T̃ ), and the ratio of the Fermi energy to the trap depth is
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Figure 6.6: Energy versus temperature for a strongly interacting Fermi gas. The
diamonds represent data points, while the solid line represents ideal gas scaling
given by (6.40). In general, ideal gas scaling is in reasonable agreement with the
measured energy versus temperature data points for a strongly interacting Fermi
gas. The lowest temperature data point (square) is constrained to lie on the solid
line. Figure first published in [10].

√
1 + β kB TF /U0 = 0.049. Since we have used ideal gas theory to estimate η,

the lowest temperature data point, represented by a square in Figure 6.6, is con-

strained to lie on the ideal gas scaling curve. We see that over a wide range of

temperatures, the measured energy versus temperature data for a strongly inter-

acting Fermi gas is in surprisingly good agreement with that predicted by ideal

gas scaling.

If we look closely at the coldest data, however, we find that the data does

depart from ideal gas scaling. This is shown in Figure 6.7. As with Figure 6.6,

the data are represented by diamonds, while the ideal gas scaling predicted by

theory is the solid line. We see that in this low temperature region, the data

are better fit by a power law of the form E(theat)/E0 − 1 = 9.8 T̃ 2.53, shown in

Figure 6.7 as the dotted line.
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Figure 6.7: Energy versus temperature for a strongly interacting Fermi gas at
low temperature. The data (diamonds) deviate from ideal gas scaling (solid line),
but are in agreement with a best-fit power law E(theat)/E0−1 = 9.8 T̃ 2.53 (dotted
line) in the low temperature regime. The lowest temperature data point (square)
is constrained to lie on the solid line. Figure first published in [10].
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This departure from ideal gas scaling is even more evident if we plot the energy

versus temperature data on a ln− ln scale as shown in Figure 6.8. As with the

other figures, diamonds represent the data, while the solid line represents ideal

gas scaling. The dotted line is associated with the best-fit power law given in the

preceding paragraph. There is a change in behavior at T̃ ≈ 0.33, where the value

is chosen by the intersection of the best-fit power law and the noninteracting

gas theory prediction. While this change in behavior is suggestive of a phase

transition, we need theoretical support to provide such an interpretation.

Such theoretical support was provided by Kathy Levin’s group at the Univer-

sity of Chicago. Frequent correspondence between Kathy Levin and Qijin Chen,

both of Chicago, and members of the Duke group resulted in a joint publica-

tion [10]. The primary results of that collaboration are displayed in Figure 6.9.

In the figure, both noninteracting and strongly interacting gas data are compared

to theoretical predictions provided by the Chicago group. As with all other figures

in this section, the theoretical predictions were made using the three-dimensional

gaussian potential given by (6.38) to account for slight anharmonicity in our trap-

ping potential.4 The agreement between the noninteracting data (dots) and the

noninteracting theory (upper solid line) is quite good, as expected. The agree-

ment between the strongly interacting data (diamonds) and the Chicago group’s

strongly interacting theory is also reasonably good over a wide temperature range.

In all preceding figures, we have plotted the strongly interacting data using the

empirical temperature scale T̃ . In Figure 6.9, however, we use the temperature

4Note that the ratio of the Fermi energy to the trap depth differs between the noninteracting
and strongly interacting cases. Since the strong interactions lower the Fermi energy by a factor
of
√

1 + β for the strongly interacting case, we have a lower ratio
√

1 + β kB TF /U0 = 0.049
than we do for the noninteracting case kB TF /U0 = 0.068.
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Figure 6.8: Energy versus temperature for a strongly interacting Fermi gas
plotted on a ln− ln scale. The data (diamonds) agree well with ideal gas scaling
(solid line) above T̃ ≈ 0.33. For T̃ < 0.33, the data departs from ideal gas scaling.
The dotted line gives a best fit power law in the low temperature regime. The
lowest temperature data point (square) is constrained to lie on the solid line. The
change in behavior at T̃ ≈ 0.33 is interpreted as a superfluid phase transition.
Figure first published in [10].
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calibration scheme outlined in Section 6.3.2 to replot the data in the more familiar

reduced temperature scale T/TF . The inset in Figure 6.9 shows the temperature

calibration which was determined using the procedure considered in Section 6.3.2.5

Despite the good overall agreement between the strongly interacting data and the

theory, we find that the low temperature strongly interacting data is better fit

by a power law of the form E(theat)/E0 − 1 = 97.3(T/TF )3.73 represented by the

dashed line in the figure. If we fit a power law to the strongly interacting data

in the high temperature regime, we obtain E(theat)/E0 − 1 = 4.98 (T/TF )1.43.

The intersection of these two curves is T/TF = 0.27(0.02), where the error arises

from statistical uncertainty only. The change in behavior at this temperature is

interpreted by the theory as a superfluid phase transition, and the measured tran-

sition temperature T/TF = 0.27(0.02) is in good agreement with the theoretical

prediction Tc/TF = 0.29.

Using the power law fits to the energy versus temperature in the high and

low temperature regimes, we can estimate the jump in the heat capacity at the

apparent superfluid phase transition. Taking the derivative of the power laws

provided in the preceding paragraph, we can obtain the heat capacity, as shown

in Figure 6.10. If we calculate the “jump” in the heat capacity, we obtain

C< − C>

C>

≈ 1.51(0.05), (6.42)

where C< (C>) represents the heat capacity below (above) the critical tempera-

ture. The error bar in (6.42) takes into account statistical errors only. This mea-

5The comparison between theory and data occurred after a slight detuning of the theoretical
model away from resonance to 1/(kF as) = 0.11, so that the model has the same value of β as
what was measured experimentally. Given the width of the resonance, this amounts to a small
adjustment of the theory.
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Figure 6.9: Energy versus temperature for strongly interacting and ideal Fermi
gases plotted on a ln− ln scale. Noninteracting gas data (circles) agree well with
ideal gas theory (upper solid line) over the entire range of temperatures consid-
ered. Strongly interacting Fermi gas data (diamonds) agrees reasonably well with
strongly interacting gas theory (lower solid line) over a wide range of tempera-
tures. The dashed line shows a best-fit power law to the low temperature data.
The separation between the noninteracting and strongly interacting gas data is
interpreted by theory as a superfluid phase transition. The arrow and marker
T/TF = 0.27 indicate our estimate of the superfluid phase transition tempera-
ture. The inset shows the temperature calibration used to convert the empirical
temperature T̃ to theoretical temperatures T/TF for the strongly interacting gas
data. In the inset, the arrow and Tc label indicate the critical temperature for a
superfluid phase transition in the theory. Figure first published in [10].
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Figure 6.10: Heat capacity and energy curve for the strongly interacting Fermi
gas data. The dashed curve shows the piecewise function of power law fits to the
energy versus temperature data for the strongly interacting Fermi gas above and
below the change in behavior observed at T/TF = 0.27. The solid curve shows
the heat capacity derived from the energy versus temperature curve. The heat
capacity jump near T/TF = 0.27 is interpreted as an indicator of a superfluid
phase transition.

sured value of the jump in the heat capacity is slightly larger than that expected

for an s-wave BCS superconductor in a homogeneous case, where (C<−C>)/C> =

1.43. In closing, we caution that this estimate of the heat capacity jump may prove

to be model-dependent, as the jump is estimated using data which has undergone

the model-dependent temperature calibration procedure outlined in Section 6.3.2.

While we consider the measurement of a superfluid phase transition tempera-

ture of a strongly interacting Fermi gas to be the primary result of our study of the

heat capacity, there is another observation worth mentioning. In Figure 6.9, we
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note that the theory curves for the strongly interacting and noninteracting data

do not overlap until a temperature well above the critical temperature for the

superfluid phase transition. This is consistent with, although it does not prove,

the existence of noncondensed atom pairs in the strongly interacting case prior to

the onset of a superfluid phase transition.

Measurement of β

In our discussion of unitary Fermi gases in Section 2.2.1, we introduced the dimen-

sionless parameter β, which parameterizes the interaction strength in a unitary

Fermi system. In Section 6.3.2, we saw that β plays an important role in establish-

ing the natural temperature and energy scales in the strongly interacting regime.

Consequently, β plays an important role in the analysis of the heat capacity data.

To measure β, we produced ten ultracold strongly interacting Fermi gases

at 840 gauss. Following preparation of the gas as outlined in Section 6.2.1, the

strongly interacting atom cloud was released from the optical potential and al-

lowed to expand for 1 ms before the cloud was imaged. The two-dimensional col-

umn densities were integrated along the axial dimension to produce radial density

distributions. The Fermi radius of the one-dimensional distribution, σ∗x was then

measured for each atomic sample. Using a calculated hydrodynamic expansion

factor (bx(1ms) = 13.3), the size of the measured cloud was rescaled to determine

the cloud size prior to release from the optical trap. Using (6.28), along with the

value of the noninteracting Fermi radius σx calculated using (6.24) and verified

by measurements of noninteracting Fermi gases, the value of β for each cloud was

measured. Averaging the measured values of β, we obtain β = −0.49(0.04), where

the reported error is statistical error only. This measured value is in reasonable



203

agreement with predictions [38–40].

6.4.3 Virial theorem for a unitary Fermi gas

Before leaving our discussion of the heat capacity experiment, we consider an

additional physical insight that can be obtained from further examination of the

data. Using a simple theoretical argument, along with the energy versus temper-

ature data from our study of the heat capacity, we verify the existence of a virial

theorem for unitary Fermi gases [85]. We begin with the theoretical argument.

Recall from our discussion in Section 2.2.1 that in unitary Fermi gases, the

details which govern the short-range interparticle interactions cease to be rele-

vant, and universal behavior is expected. Consider such a gas to be confined

in a harmonic potential U(r). If we look at a small volume ∆V of the gas at

position r, we find that the enclosed number of particles ∆N have some energy

∆E. Further, suppose that the number of particles enclosed in this small volume

remains constant, such that the spatial density n = ∆N/∆V . Since the gas is in

the unitary regime, the energy in this small volume can be related to the local

Fermi energy εF (n) and the temperature. Consequently, we can write

∆E = ∆N εF (n) fE

[
T

TF (n)

]
, (6.43)

where TF (n) indicates that the local (density dependent) Fermi temperature. For

a zero temperature noninteracting gas, fE = 3/5, while for a zero temperature

unitary Fermi gas, fE = 3(1 + β)/5. Similarly, we can write an expression for the

local entropy

∆S = ∆N kB fS

[
T

TF (n)

]
, (6.44)
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where kB fS is the average entropy per particle. We can use the thermodynamic

relation

P = −
[
∂∆E

∂∆V

]

∆N,∆S

(6.45)

to determine the local pressure P . When taking the partial derivative in (6.45),

we need to hold ∆S constant, which implies that we must hold TF (n) constant

according to (6.44). Consequently, equations (6.43) and (6.45) yield

P =
2

3
n εF (n) fE

[
T

TF (n)

]
. (6.46)

Equation (6.46) reveals that in the unitary gas, the pressure and the local energy

density are related in the same manner as for an ideal, homogeneous gas. Equation

(6.46) was first derived in [44], and rederived in [85].

In mechanical equilibrium the local pressure and the force of the trapping

potential cancel, yielding

∇P (r) + n(r)∇U(r) = 0. (6.47)

If we take the inner product of (6.47) with r and assume a harmonic oscillator

potential, we obtain

N〈U〉 =
3

2

∫
d3rP (r), (6.48)

where 〈U〉 is the average potential energy per particle. If we then combine

∫
d3rP (r) =

∫
d3r

2

3
n εF (n) fE

[
T

TF (n)

]
= E −N〈U〉, (6.49)
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with (6.48), we obtain

N 〈U〉 =
E

2
. (6.50)

Equation (6.50) is a statement of the virial theorem for a harmonically trapped

unitary Fermi gas. Finally, since 〈U〉 is proportional to the mean square size of a

harmonically confined gas, (6.50) is equivalent to

E

E0

=
〈x2(E)〉
〈x2(E0)〉 , (6.51)

where E0 represents the ground state energy of the gas.

Equation (6.51) can be verified easily using the data acquired for the heat

capacity measurement. We already have all of the energy information for each

value of theat. To measure the mean square size of the cloud, we fit each one-

dimensional spatial profile with a finite temperature Thomas-Fermi shape. The

mean square size of the best fit Thomas-Fermi shape is taken as the mean square

size of the actual atom cloud. If we plot the energy versus mean square size, we

obtain Figure 6.11. Here, we plot the mean square size versus the energy of the

cloud, where both the size and the energies have been normalized to their ground

state values. The data are represented by dots and the line of best fit is given by

the dashed line. The best fit yields 〈x2(E)〉 / 〈x2(E0)〉 = 1.03(0.02)E/E0, in close

agreement with (6.51).

This result indicates that in spite of the strong interactions in the gas, the

potential energy still constitutes half of the total energy, just as it does for a

noninteracting gas. In addition to verifying the virial theorem for a unitary Fermi

gas, the linearity of the energy versus the size of the cloud serves as further

confirmation of the accuracy of the energy input method outlined in Section 6.1.
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Figure 6.11: Mean square size versus energy for a unitary Fermi gas. Both the
size and energy have been normalized to their ground state values. The data is
represented by dots, while the dashed line is a best fit to the data. The slope
of the line is nearly one, in good agreement with (6.51). Figure first published
in [85].
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6.5 Conclusion

In this chapter, we considered a measurement of the heat capacity of a strongly

interacting Fermi gas. The measurement was made possible by the development

of a novel technique for adding energy to the gas. Further, an empirical temper-

ature measurement technique yielding a reduced temperature T̃ was developed

for measuring the approximate temperature in the strongly interacting regime. A

measurement of the heat capacity in a noninteracting gas confirmed the reliability

of the energy input technique. For the strongly interacting gas, the energy versus

temperature data departs from ideal gas scaling near T̃ = 0.33. With the aid of

Kathy Levin’s theory group at the University of Chicago, we were able to calibrate

our approximate temperature scale using their theory. We found good quantita-

tive agreement with their BEC-BCS crossover theory, and our rescaled energy

versus temperature data for a strongly interacting Fermi gas shows a transition

at T/TF = 0.27(0.02), which is interpreted as a superfluid phase transition. This

estimated critical transition temperature is close to the predicted critical temper-

ature from their theory, Tc/TF = 0.29. This constitutes the first measurement

of a thermodynamic quantity of a degenerate Fermi gas in the strongly interact-

ing regime, and the first attempt to directly measure the superfluid transition

temperature at unitarity.

In the process of measuring the heat capacity of a strongly interacting gas, we

also measured the universal many-body interaction parameter β = −0.49(0.04).

Further, the mean square widths of the clouds used in the heat capacity study

were analyzed to verify the virial theorem for a harmonically confined unitary

Fermi gas.



Chapter 7

Breathing Mode Measurements

Studying the collective modes in quantum gases is a useful technique, as it offers

the possibility of learning about microscopic interactions by monitoring macro-

scopic behavior. In our recent studies of strongly interacting Fermi gases, we have

spent a great deal of time monitoring the radial breathing mode of the gas, in

which the trapped gas rhythmically expands and contracts much like a balloon

being alternately inflated and deflated. As the response of the trapped atom cloud

to this compression process reveals information about the pressure forces govern-

ing the particles, investigations of the radial breathing mode yield information

about the equation of state of the gas. In light of the intense interest in develop-

ing a successful theory of strongly interacting fermionic matter, collective mode

studies are a useful tool for testing the equations of state proposed by competing

theories.

Our early studies of the radial breathing mode in a strongly interacting Fermi

gas provided evidence of a superfluid phase transition [19]. While not a proof

of the existence of a superfluid state, our data is difficult to explain in terms of

non-superfluid scenarios. Subsequent and more exhaustive studies of the radial

breathing mode [20, 79] conducted in our lab revealed features which seem to

indicate the existence of atom pairs.

208
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In Section 7.1, we discuss the technique for exciting the radial breathing mode

of the gas. In fact, it is essentially the same procedure used in our studies of the

heat capacity discussed in Chapter 6, though the time scales involved are markedly

different. In Section 7.2, we discuss the preparation of the gas for excitation

of the breathing mode. This is followed in Section 7.3 by an examination of

predicted frequencies and damping times for the radial breathing mode based on

the relaxation approximation formalism. In Section 7.4, we make predictions for

the radial breathing mode by starting from the equations of hydrodynamics. We

will recover some of the results of Section 7.3, in addition to determining formulas

for correcting the measured breathing mode frequencies for trap anharmonicity.

Finally, in Sections 7.5 and 7.6 we will discuss the results of our experimental

investigations. In Section 7.5, we will consider the magnetic field dependence of

the radial breathing mode for low temperature strongly interacting Fermi gases.

In Section 7.6, we will examine the temperature dependence of the breathing

mode frequency and damping rate in the unitarity limit. A summary of these

results is provided in Section 7.7.

7.1 Exciting the breathing mode

Before discussing the technique we use to excite the breathing mode, it is in-

structive to consider what the breathing mode, once excited, looks like. For the

conditions produced by our optical dipole trap, the confined atom cloud has a

cigar shape. It is nearly cylindrically symmetric, with a longer length in the

axial direction than in the radial dimensions. When the breathing mode of the

atom cloud is excited, it looks like the cigar-shaped cloud is being rhythmically
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inflated and deflated. As the trap oscillation frequencies in the radial and axial

dimensions differ substantially (ωz ¿ ωx , ωy), the breathing mode can be prefer-

entially excited in either the radial or axial dimension. For technical reasons, it is

more convenient for us to excite the radial breathing mode rather than the axial

breathing mode, and so we deal exclusively with the former here. For studies of

the axial breathing mode, the reader is encouraged to review the research carried

out by Rudolf Grimm’s group at the University of Innsbruck [21].

As the depth of our optical trap is controlled via an acousto-optic modulator

(see Section 3.2.7), we can very quickly extinguish and restore the optical trap. It

is this precise time control that allows us to excite the breathing mode. Suppose

at time t0, we turn off the dipole trap. The cloud of atoms, no longer confined in

the optical trap, begins to expand. After a short expansion time texcite, the optical

trap is turned on once again. When the optical trap is restored, the expanded

atom cloud finds itself no longer in equilibrium with the trapping potential. As

a result, the size of the cloud oscillates (see Figures 7.1 and 7.2). Eventually

the oscillations damp as the cloud returns to nearly its original size (the size at

time t0). We assume here that the time texcite is sufficiently small that very little

energy is added to the gas in the process of exciting the breathing mode. Of

course, some energy must be added to coax the atom cloud out of its equilibrium

state, but for typical values of texcite used in our measurements, the energy added

and corresponding increase in temperature are negligible.

Once the breathing mode is excited, there are two major physical quantities

of interest: the lifetime of the oscillations and the frequency of the oscillations.

These quantities can be studied as the nature and strength of the interparticle

interactions are varied, and they can be studied as a function of temperature.
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Figure 7.1: Two dimensional false color absorption images showing the time
evolution of the radial breathing mode of a strongly interacting cloud of 6Li.
Images show the spatial density of the cloud, with lighter colors indicating higher
atom densities. The times listed to the right of each panel show the time elapsed
since the restoration of the optical dipole trap following the excitation time texcite.
The gas grows to a maximum size around 250 µs before shrinking back to a smaller
size around 450 µs. The panels show roughly one complete period of oscillation.
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Figure 7.2: The Fermi radius of the atom cloud as a function of hold time
following the restoration of the trapping potential. Dots with error bars represent
measured cloud sizes, while the solid line displays a least-squares fit of a damped
sinusoid to the data. Both the frequency and the lifetime of the oscillations
contain information of interest.

Before considering basic theoretical predictions for the oscillation frequency and

damping time in Section 7.3, we will describe the preparation of the gas and

excitation of the radial breathing mode in Section 7.2.

7.2 Experimental sequence

Our studies of the radial breathing mode included investigations throughout the

BEC-BCS crossover region, as well as noninteracting Fermi gases. As with the

study of the heat capacity, the noninteracting gas was studied as a check on our

experimental techniques.

Each cycle of the experiment began with cooling the gas to the lowest tem-

perature possible. This was accomplished by evaporative cooling using similar

lowering curve times and time constants to those outlined in Section 6.2. For

most of the experiments, the trap was recompressed to 4.6% of its maximum

depth, and contained N ≈ 2×105 atoms. As with our study of the heat capacity,

this yields a Fermi energy of around εF /kB ≈ 2.4 µK for a noninteracting gas,

small compared to the trap depth U0/kB = 35 µK. Following recompression to
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4.6% of the maximum trap depth, the gas is given 0.5 seconds to reach equilibrium

before exciting the breathing mode. As noted in Section 7.1, the radial breathing

mode is excited by turning off the trapping potential for a brief period, texcite. For

most of the data discussed in this chapter, texcite = 25 µs. Upon restoration of the

trapping potential, the cloud begins to oscillate, and those oscillations are then

monitored. Of course, the process of exciting the breathing mode adds energy to

the gas, but this additional energy (given by (6.18), letting theat = texcite) results

in a temperature increase of ∆T/TF < 0.015 after the gas thermalizes, using non-

interacting gas scaling. As this temperature increase is smaller than typical error

bars on our temperature measurements, we consider it to be negligible.

Following the excitation of the breathing mode, the atom cloud is held in the

optical trap for a time thold. The cloud is then released from the trap for time

of flight imaging. For much of the data presented in this chapter, 1 ms time of

flight was used prior to on-resonance absorption imaging. A schematic of the

experimental sequence is displayed in Figure 7.3. Since on-resonance imaging

techniques are destructive, many repetitions of the experiment were needed to

study the breathing mode oscillations. Each data run typically consisted of 60-90

values of thold acquired in random order. Three complete data runs of this type

were taken, and the resulting data was averaged to produce a curve such as the one

shown in Figure 7.2. We were concerned with the width of the cloud as a function

of time after excitation of the breathing mode. As with the heat capacity study,

the two-dimensional absorption images were integrated along the axial direction

to produce one-dimensional radial distributions. These one-dimensional profiles

were then fit with a zero temperature Thomas-Fermi shape (as given by (A.40)) to

extract an estimate of the Fermi radius σx. For much of the data discussed in this
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Figure 7.3: Schematic of the sequence for exciting the radial breathing mode.
The vertical axis indicates whether the trap is on (dark regions) or off (blank
spaces), while the horizontal axis indicates time. The radial breathing mode is
excited by turning off the trap for a brief period texcite. When the trap is restored,
the cloud begins to oscillate. The trap is kept on for a duration thold before being
extinguished once more for time of flight imaging. The vertical line at the right
indicates the time of the imaging probe pulse. Note that the figure is not to scale.

chapter, where T/TF < 0.20, this technique is a reasonable way to parameterize

the width of the atom cloud. For higher temperature conditions, such as those

considered in Section 7.6, estimates of the cloud width based on zero temperature

profiles were corrected using calculations of the second moment of the density

distribution for finite temperature Thomas-Fermi profiles.

Although we presently lack a theory of the damping rate of the breathing

mode of a strongly interacting Fermi gas, we found that the averaged widths of

the cloud as a function of time following the breathing mode excitation were well

fit by a damped sinusoid

σx(t) = σx0 + A exp(−t/τ) sin(ω t + φ). (7.1)
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Of particular interest to us is the damping time τ and the oscillation frequency

ω.

In closing, we note that for much of the data, the gas was cooled directly at

the magnetic field at which the breathing mode was excited. There are a few

exceptions, however. For the noninteracting gas, evaporative cooling occurred

at 300 gauss, before the magnetic field was ramped to the zero crossing near 530

gauss for excitation of the breathing mode. For much of the data in the BEC-BCS

crossover region (750 gauss or above), the gas was cooled and studied at the same

magnetic field. However, for magnetic fields in excess of 930 gauss, the gas was

cooled closer to the Feshbach resonance before being ramped to the desired field

at which the breathing mode was excited. This additional magnetic field sweep

is believed to be adiabatic, and was used to prevent overheating of the magnets.

Before considering the results of our studies, it will help to have some expecta-

tions about the type of behavior we expect to observe under different experimental

conditions. For this, we return to the machinery developed for the relaxation ap-

proximation in Section 4.1.

7.3 The relaxation approximation and the radial

breathing mode

In Section 4.1, we used the relaxation approximation to calculate expansion factors

following release of the atom cloud from the optical trap. We can use the same

formalism to predict breathing mode oscillation frequencies and damping rates

for a collisional gas. Recall that consideration of the time dependence of the

phase space density of the gas in the relaxation approximation yields the following
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equations:

b̈i +
1

bi m 〈x̃2
i 〉

[〈
x̃i

∂UEV (bxx̃, byỹ, bz z̃)

∂x̃i

〉
− θi

〈
x̃i

∂UEQ(x̃, ỹ, z̃)

∂x̃i

〉]
= 0 (7.2)

θ̇i + 2 θi
ḃi

bi

= − 1

τR

(
θi − θ̄

)
. (7.3)

In the preceding equations, bi(t) represents the scale factor in the i-direction, θi(t)

is the effective temperature in the i-direction, and

θ̄ =
1

3

∑
i

θi. (7.4)

UEQ includes potential energy terms for equilibrium conditions, while UEV in-

cludes potential energy terms which may be time dependent.1 In the case of

the breathing mode, the perturbation is weak (the gas expands very little during

texcite), and the optical trap is present as the gas vibrates. Further, the weakness

of the perturbation means that we can consider the limit of small oscillations,

in which bi and θi remain close to their equilibrium values of unity. If we let

bi(t) → 1 + ei(t) and θi(t) → 1 + φi(t), where ei, φi ¿ 1, and linearize the

resulting equations, (7.2) and (7.3) become

ëi + ω2
i (2ei − φi) = 0 (7.5)

φ̇i + 2ėi = − 1

τR

(
φi − φ̄

)
, (7.6)

1When considering the expansion dynamics of the gas following release from the trapping
potential, we considered the influence of the magnetic field curvature on the expanding gas.
The behavior of the breathing mode is dominated by the optical trap for the conditions under
which the breathing mode data discussed in this chapter was taken. Consequently, we consider
the effect of the optical trap only.
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for the case of harmonic confinement. In (7.6),

φ̄ =
1

3

∑
i

φi. (7.7)

We now study the radial breathing mode. Suppose the radial breathing mode

is excited and the axial dimension remains stationary. In that case, ez = ėz = 0,

and the system of equations governing the radial oscillations is

ëx + ω2
x (2 ex − φx) = 0 (7.8)

ëy + ω2
y (2 ey − φy) = 0 (7.9)

φ̈x + 2 ëx +
1

3τR

(
3φ̇x + 2 ėx + 2 ėy

)
= 0 (7.10)

φ̈y + 2 ëy +
1

3τR

(
3φ̇y + 2 ėx + 2 ėy

)
= 0. (7.11)

In a moment, we will numerically solve the above equations to extract both the

damping rate and the oscillation frequency of the radial breathing mode. First,

however, we will consider the noninteracting limit (τR → ∞) and the hydrody-

namic limit (τR → 0).

If we let τR → ∞ in equations (7.8) through (7.11), the system of four equa-

tions decouple into two independent two-equation systems,

ëi + ω2
i (2 ei − φi) = 0 (7.12)

φ̈i + 2 ëi = 0. (7.13)

Solving (7.13) for φ̈i and substituting it into the second time derivative of (7.12)
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yields

e
(4)
i + 4 ω2

i ëi = 0, (7.14)

where e
(n)
i denotes the nth time derivative with respect to ei, for n > 2. As the

above equation obviously admits an oscillatory solution at a frequency ω = 2 ωi,

we conclude that exciting the breathing mode of a noninteracting harmonically

confined gas will yield oscillations at a frequency 2 ωi in the i-direction.

We now consider the hydrodynamic limit, in which the characteristic time

between collisions goes to zero. In this case, (7.5) and (7.6) become

ëx + ω2
x (2 ex − φx) = 0 (7.15)

ëy + ω2
y (2 ey − φy) = 0 (7.16)

3 φ̇x + 2 (ėx + ėy) = 0 (7.17)

3 φ̇y + 2 (ėx + ėy) = 0. (7.18)

Taking the time derivative of equations (7.15) and (7.16), and substituting ex-

pressions for the φ̇i from equations (7.17) and (7.18), we can reduce the above

four equation system to a two equation system,

e(3)
x + ω2

x

(
8

3
ėx +

2

3
ėy

)
= 0 (7.19)

e(3)
y + ω2

y

(
8

3
ėy +

2

3
ėx

)
= 0. (7.20)

In the limit of perfect cylindrical symmetry (ωx = ωy), both the x- and y-

dimensions are governed by the following equation:

e
(3)
i +

10

3
ω2

i ėi = 0. (7.21)
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The above obviously admits oscillatory solutions with a frequency ω =
√

10/3 ωi ≈
1.826 ωi. If we do not have perfect cylindrical symmetry, we can still derive an

analytic expression for the radial breathing mode in the hydrodynamic limit. If

we plug solutions of the form ex(t) = F exp(i ω t) and ey(t) = G exp(i ω t) into

(7.19) and (7.20) and eliminate F and G, we obtain a fourth order polynomial

equation,

9 ω4 − 24(ω2
x + ω2

y) ω2 + 60 ω2
x ω2

y = 0. (7.22)

Of the four solutions to (7.22), only two are linearly independent. The lower fre-

quency solution corresponds to the quadrupole mode2 while the higher frequency

solution is associated with the radial breathing mode [101,115], and is given by

ω =

[
4

3

(
ω2

x + ω2
y

)
+

2

3

√
4(ω4

x + ω4
y)− 7 ω2

x ω2
y

]1/2

. (7.23)

Equation (7.23) can be simplified substantially if ωx and ωy are nearly equal. We

define the geometric mean of the radial trap oscillation frequencies as

ω⊥ =
√

ωx ωy. (7.24)

If we let ωx = ω⊥ + ξx and ωy = ω⊥ − ξy, where ξx,ξy > 0 and |ξx − ξy| ¿ ω⊥,

then (7.23) is approximately

ω '
√

10

3
ωx ωy =

√
10

3
ω⊥. (7.25)

In the experiments, we monitor the radial breathing mode in the x-direction.

2For a cylindrically symmetric cigar-shaped trap, the radial hydrodynamic quadrupole mode
oscillates at ω =

√
2 ω⊥, where ω⊥ is given by (7.24).
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Equations (7.14) and (7.25) indicate that for a nearly cylindrically symmetric

system, the relaxation approximation formalism predicts that the radial breathing

mode oscillation frequency in the x-direction will remain in the following range:

√
10

3
ωx ωy ≤ ω ≤ 2 ωx. (7.26)

To this point, we have made no mention of the lifetime of the breathing mode

excitation. That is, we have not discussed how long the oscillations persist. In

the two limits already examined (the hydrodynamic and noninteracting cases),

we found that the solution for ω was real, corresponding to an infinite lifetime. In

reality, of course, there will be experimental limitations to the observed lifetime

of the mode. However, it is instructive to calculate the predicted lifetime and

corresponding oscillation frequency for an ideal system. Our next goal, then, is to

calculate the lifetime and frequency of the breathing mode oscillation for an arbi-

trary choice of τR. Recall that when τR was first introduced, it was remarked that

τR was related to the characteristic time between collisions between constituent

particles in the atom cloud, which we will call τ0 for convenience. We never dis-

cussed the specific relationship between τR and τ0, as this was unnecessary to

examine the two limits, τR → ∞ and τR → 0. Further, as τR is restricted to be

between 0 and ∞, we can simply assign a numerical value to τR between 0 and ∞
and numerically solve for the associated breathing mode frequency and lifetime.

This is a considerable simplification, as the relationship between τR and τ0 can in

general be a complicated function governed by interparticle interactions.

We return once more to the system of equations (7.8) through (7.11). We con-

sider solutions of the form: ex = A exp(iωt), ey = B exp(iωt), φx = C exp(iωt),
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and φy = D exp(iωt). Making these substitutions into the system of equations,

and eliminating A, B, C and D, we are left with the polynomial equation,

3 τ 2
R ω6 − 3

[
1 + 4 τ 2

R

(
ω2

x + ω2
y

)]
ω4 + 8

[
ω2

y + ω2
x

(
1 + 6 τ 2

R ω2
y

)]
ω2

− 20 ω2
x ω2

y − i τR

[
6 ω5 − 20

(
ω2

x + ω2
y

)
ω3 + 64 ω2

x ω2
y ω

]
= 0. (7.27)

Note that we have not assumed cylindrical symmetry (ωx = ωy) in (7.27). In

the noninteracting limit (τR → ∞), (7.27) has four nontrivial (ω 6= 0) solutions:

ω = ±2ωx, ±2ωy. In the hydrodynamic limit (τR → ∞), (7.27) reduces to

a fourth-order polynomial with the solutions ω = ±√2 ω⊥, ±
√

10/3 ω⊥ for a

nearly cylindrically symmetric trap. Of the hydrodynamic solutions, the higher

frequency solution (
√

10/3 ω⊥) corresponds to the radial breathing mode in a

cigar-shaped trap [115] such as the one in our laboratory. If we solve (7.27)

numerically for the case of perfect cylindrical symmetry, we do indeed find that

the radial breathing mode oscillation frequency smoothly varies between 1.826 ωi

and 2 ωi for i = x, y as τR is varied between 0 and ∞. However, for the case of

unequal radial confinement, we find that the limits of the oscillation frequency

are slightly altered.

Under typical experimental conditions, we are quite close to having a cylin-

drically symmetric trap. However, as comparison between theory and experiment

for breathing mode measurements requires substantial precision, it is critical to

characterize the degree of trap anisotropy. Accurate measurements of ωx and

ωy can be made using the parametric resonance excitation technique discussed

in Section 4.6.1. For typical trap conditions, we find that ω⊥ = 2π × 1696,

ωx = 2π × 1785 ≈ 1.05 ω⊥, and ωy = 2π × 1612 ≈ 0.95 ω⊥. Plugging these values
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Figure 7.4: Locus plot showing the radial breathing mode oscillation frequency
in the x-direction versus the lifetime of the mode (solid curve). The dashed line in
the lower portion of the graph shows the hydrodynamic breathing mode oscillation
frequency, while the dot-dashed line in the upper portion of the graph marks
the collisionless (noninteracting) frequency. We assume that the axial dimension
remains stationary while the radial directions oscillate. The computation was
performed for typical trap conditions where the harmonic confinement frequencies
are given by: ω⊥ = 2π × 1696, ωx = 2π × 1785 ≈ 1.05 ω⊥, and ωy = 2π × 1612 ≈
0.95 ω⊥. Note that the oscillation frequency is a multi-valued function of the
damping rate.

into (7.27) and solving numerically for ω, we can obtain both the predicted os-

cillation frequency (Re[ω]) and the predicted lifetime of the oscillations (Im[ω]).

The results for the predicted behavior of oscillations in the x-direction (which we

measure in the experiment) are shown in the locus plot in Figure 7.4.

There are several important features shown in Figure 7.4. First, we note that

for a given lifetime of the breathing mode, there are two available oscillation

frequencies, which correspond to two different values of the characteristic time
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between interparticle collisions. Further, we note that starting on the lower leg

of the graph close to the minimum damping rate (maximum oscillation lifetime)

and following the solid curve counterclockwise, we are progressing from the hy-

drodynamic limit (infinite collision rate) to the noninteracting limit (infinite time

between collisions). Between these two limits, we find a maximum damping rate

at which the oscillation frequency is single-valued.

We note in closing that while the relaxation approximation formalism is often

applied to weakly interacting systems, we expect that it can shed some light on

the behavior of more complex, strongly interacting systems. At no point in the

preceding analysis did we make any assumptions about the explicit nature of the

interparticle interactions. We merely made assumptions about the evolution of the

phase space density of the system, and then systematically varied the relaxation

time τR between its two well-known limits (0 and∞). Based on these assumptions,

we were able to establish limits on the radial breathing mode oscillation frequency

as well as make a prediction about the maximum possible damping rate for this

formalism.

7.4 Hydrodynamic gases obeying a polytropic

equation of state

In Section 7.3, we considered the behavior of the radial breathing mode as the

relaxation time τR was varied from zero to infinity. The relaxation approximation

formalism allowed us to explore the collisionless and hydrodynamic limits, as well

as all points in between. In this section, we will consider another approach to

calculating the oscillation frequency of the radial breathing mode. We will derive
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predictions for the radial breathing mode for a gas which obeys a polytropic

equation of state, in which the pressure P ∝ nγ+1, where γ is a constant and

n = n(x, y, z, t) is the spatial density of the gas. In doing so, we will recover

the results from Section 7.3 in the hydrodynamic limit. However, in this section,

we will go beyond the harmonic approximation, and consider how anharmonicity

impacts the measured breathing mode frequency. While these results will be

derived using the equations of irrotational hydrodynamics, we will see that a

simple correspondence between the equations for a hydrodynamic gas and those

for a noninteracting gas will allow us to simultaneously establish the effect of

anharmonicity on a noninteracting system as well.

We begin with Euler’s equation for irrotational flow

du

dt
+∇

(
u2

2

)
= − 1

m
∇U − 1

mn
∇P, (7.28)

where u is the stream velocity obeying ∇ × u = 0, U is the trap potential,

P is the pressure, and m is the mass of a particle. We now assume a scaling

ansatz [107,108] of the form

n(x, y, z, t) =
1

Γ
n0(x̃, ỹ, z̃), (7.29)

where Γ ≡ bx by bz, x̃ = x/bx, ỹ = y/by, z̃ = z/bz, the factors bi = bi(t) carry all of

the time dependence [bi(0) = 1, ḃi(0) = 0], and n0 denotes the density distribution

at time t = 0. Substituting (7.29) into (7.28) and looking only at the equation

for the x-direction, we obtain

n0(x̃, ỹ, z̃)

Γ
x̃ b̈x +

n0(x̃, ỹ, z̃)

m Γ bx

dU

dx̃
+

1

mbx

dP

dx̃
= 0, (7.30)
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where U = U(bx x̃, by ỹ, bz z̃) and b̈x = d2bx/dt2. Multiplying (7.30) by x̃ and

integrating over the density distribution yields

b̈x

Γ
〈x̃2〉+

1

m Γ bx

〈x̃ dU

dx̃
〉+

1

mbx

∫
x̃

dP

dx̃
dx̃ dỹ dz̃ = 0, (7.31)

where the density averaged quantities are defined as

〈ξ〉 ≡ 1

N

∫
ξ(x̃, ỹ, z̃) n0(x̃, ỹ, z̃) dx̃ dỹ dz̃. (7.32)

Note that n0 obeys the following normalization

N =

∫
n0(x̃, ỹ, z̃) dx̃ dỹ dz̃. (7.33)

We proceed by assuming a polytropic equation of state P = c nγ+1, where c

and γ are constants. Using this expression for the pressure along with equilibrium

force balance considerations (∇U0 +∇P0/n0 = 0, where “0” subscripts indicate

equilibrium conditions), we can write

dP

dx̃
= −n0(x̃, ỹ, z̃)

Γγ+1

dU(x̃, ỹ, z̃)

dx̃
, (7.34)

Plugging (7.34) into (7.31), we get

b̈x +
1

mbx 〈x̃2〉
[
〈x̃ dU(bx x̃, by ỹ, bz z̃)

dx̃
〉 − 1

Γγ
〈x̃ dU(x̃, ỹ, z̃)

dx̃
〉
]

= 0, (7.35)

with similar equations governing ỹ and z̃. In principle, one could input an expres-

sion for the trap potential and solve equations (7.35) numerically to obtain the

breathing mode frequency. However, further progress can be made by employing
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the following two assumptions:

1. We have a cigar-shaped trap with cylindrical symmetry: bx = by, where the

trap oscillation frequencies ωi obey the relations ωx = ωy and ωz ¿ ωx, ωy.

2. The method used to induce small oscillations preferentially excites radial

rather than axial vibrations. In this case, the projection of the density

profile in the z-direction remains nearly stationary while the radial direction

oscillates.

With these two assumptions, we find bz = 1 and the only remaining equation is

b̈x +
1

mbx 〈x̃2〉
[
〈x̃ dU(bx x̃, by ỹ, z̃)

dx̃
〉 − 1

b2γ
x

〈x̃ dU(x̃, ỹ, z̃)

dx̃
〉
]

= 0. (7.36)

We can now study the behavior of the gas for the case of small oscillations,

where the bi(t) factors deviate only slightly from their equilibrium values of 1.

The procedure for determining the oscillation frequency is as follows:

1. Select a form for U and Taylor expand the potential to the desired order.

2. Make the substitution bx → 1 + ex(t), where ex(t) ¿ 1. Linearize (7.36) to

obtain an equation of the form ëx + ω2
meas ex = 0 to extract the predicted

radial oscillation frequency ωmeas for the chosen form of the potential.

3. Choose an appropriate equation of state. That is, choose a value of γ.

For a perfectly harmonic potential, the expectation values in (7.36) drop out,

and the above procedure can be completed without choosing a form of the density

distribution. For the harmonic case, (7.36) reduces to

b̈x + ω2
x

(
bx − 1

b2γ+1
x

)
= 0. (7.37)
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Making the substitution bx(t) → 1 + ex(t) and linearizing (7.37), we obtain

ëx + 2(γ + 1) ω2
x ex = 0. (7.38)

Consequently, for a gas confined in a cylindrically symmetric (ωx = ωy = ω⊥)

harmonic trap, the oscillation frequency is

ω2
meas = ω2

γ ≡ 2(γ + 1) ω2
⊥. (7.39)

However, we now consider a more realistic expression for the potential produced

by an optical dipole trap,

U(x, y, z) = U0 − U0

1 +
(

z
z0

)2 exp

[
−

(
x

x0

)2

−
(

y

y0

)2
]

, (7.40)

where x2
0 = 2 U0/(mω2

x) and similarly for y0 and z0.
3

If we Taylor expand (7.40), keep the first two orders of anharmonic corrections,

and use the three-step procedure to determine the oscillation frequency, we find

ω2
meas = ω2

γ − ω2
γ

[
4(2 + γ)

3(1 + γ)

〈x̃4〉
x2

0〈x̃2〉 +
〈x̃2z̃2〉
z2
0〈x̃2〉

]

+ ω2
γ

[
4(3 + γ)

5(1 + γ)

〈x̃6〉
x4

0〈x̃2〉 +
4(2 + γ)

3(1 + γ)

〈x̃4 z̃2〉
x2

0 z2
0〈x̃2〉 +

〈x̃2z̃4〉
z4
0〈x̃2〉

]
, (7.41)

where we have assumed cylindrical symmetry, x2
0 = y2

0. For typical trap con-

ditions, the anharmonic corrections are small and the term in brackets on the

3The given expression for the dipole potential is only approximately correct, as different
confinement in the x- and y-directions would require two Rayleigh lengths in the z-direction.
However, if x0 ≈ y0, then the use of one Rayleigh length in the z-direction in the expression for
the dipole potential is a reasonable approximation.
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second line of (7.41) can be neglected. In this case, the expression relating ωmeas

and ωγ reduces to

ω2
meas = ω2

γ

{
1−

[
4(2 + γ)

3(1 + γ)

〈x̃4〉
x2

0〈x̃2〉 +
〈x̃2z̃2〉
z2
0〈x̃2〉

]}
. (7.42)

We can simplify (7.42) even further by demonstrating that the first term in brack-

ets in (7.42) is the dominant anharmonic correction. We can estimate the values

of the 〈ξ(x̃, z̃)〉 terms by assuming a normalized two-dimensional gaussian profile

of the form4

n0(x̃, z̃) =
N

π σx σz

(
T

TF

)−1

exp

[
−TF

T

(
x̃2

σ2
x

+
z̃2

σ2
z

)]
. (7.43)

The Fermi radii in (7.43) can be related to x0 and z0 in (7.42) via

σ2
x =

εF

U0

x2
0 (7.44)

σ2
z =

εF

U0

z2
0 , (7.45)

where we have made use of the definitions of x0 and z0 along with (A.37). Using

(7.32), (7.43), (7.44) and (7.45), we find that

〈x̃2z̃2〉
z2
0〈x̃2〉 =

1

3

〈x̃4〉
x2

0〈x̃2〉 . (7.46)

In a moment, we will consider anharmonic corrections for γ = 2/3 and γ = 1.

For both of these values, the lead coefficient in front of the 〈x̃4〉/(x2
0 〈x̃2〉) term

4This formula is given in equation (A.50) in Section A.3.4. All of the density profiles given
in Appendix A are normalized such that integration over all coordinates yields N/2. The lead
factor in (7.43) is twice as large as that given in (A.50) to ensure that (7.43) satisfies the
normalization condition given by (7.33).
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in (7.42) is approximately 2. Consequently, (7.46) reveals that the second term

in brackets in (7.42) is roughly 6 times smaller than the first term in brackets

in (7.42). Furthermore, the second term in brackets in (7.42) has the opposite

sign as the next order anharmonic correction shown in (7.41). As a result, when

calculating anharmonic corrections to the measured breathing mode frequencies

for a cylindrically symmetric trap, we neglect the second term in brackets in (7.42)

and use

ω2
meas = ω2

γ

[
1− 4(2 + γ)

3(1 + γ)

〈x̃4〉
x2

0〈x̃2〉
]

= ω2
γ

[
1− 2(2 + γ) mω2

⊥
3(1 + γ) U0

〈x̃4〉
〈x̃2〉

]
. (7.47)

To make use of (7.47), one needs to choose the form of the density profiles to

determine the values of the 〈x̃k〉 terms. Further progress can be made by choosing

an analytic form of the density profile, though of course, these values can also be

obtained numerically for an arbitrary choice of density profile. Assuming a zero

temperature Thomas-Fermi profile for a harmonically trapped gas as given by

(A.40),5 we find that 〈x̃4〉/〈x̃2〉2 = 12/5. Consequently, for zero temperature

spatial profiles, (7.47) becomes

ω2
meas = ω2

γ

[
1− 8(2 + γ)

5(1 + γ)

mω2
⊥ 〈x̃2〉
U0

]
. (7.48)

For classical profiles, as given by (A.51), 〈x̃4〉/〈x̃2〉2 = 3, in which case (7.47)

5Of course, for this calculation to be self-consistent, we should consider spatial densities
related to anharmonically confined clouds. However, for small degrees of trap anharmonicity,
it is a reasonable approximation to use a spatial density based on harmonic confinement to
estimate the first order anharmonic correction.
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Figure 7.5: The ratio 〈x̃4〉/〈x̃2〉2 (solid line) versus temperature for a harmoni-
cally trapped noninteracting Fermi gas. The ratio was calculated using the density
profile given by (A.48), and is relevant for anharmonic corrections to the radial
breathing mode frequency. The dashed line in the lower portion of the figure
is the zero temperature limit (2.4) of the ratio, while the dot-dashed line in the
upper portion marks the classical limit (3).

becomes

ω2
meas = ω2

γ

[
1− 2(2 + γ)

(1 + γ)

mω2
⊥ 〈x̃2〉
U0

]
. (7.49)

In between the zero and high temperature limits 〈x̃4〉/〈x̃2〉2 varies smoothly be-

tween 12/5 and 3, as shown in Figure 7.5. The ratio of the moments of the

distribution was calculated using normalized finite temperature Thomas-Fermi

profiles as given by (A.48).

Applying equations (7.47), (7.48), and (7.49) is relatively straightforward.

Both U0 and ω⊥ can be determined from parametric resonance measurements

as described in Section 4.6.1, while m is the mass of a single atom. Using mea-

sured values of the oscillation frequency ωmeas and the 〈x̃k〉 terms, one can solve

(7.47), (7.48), (7.49) for ωγ, which is the oscillation frequency we would measure
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for a harmonic trap. In closing, we note that all of the 〈x̃k〉 terms in (7.47), (7.48),

and (7.49) are related to the trapped size of the cloud. If anharmonic corrections

are being estimated based on images of expanded atom clouds, the cloud sizes

must be rescaled to their trapped dimensions before applying (7.47), (7.48), or

(7.49).

7.4.1 Anharmonic corrections for a unitary Fermi gas

As much of our data is taken in the strongly interacting regime, where we have

a unitary or nearly-unitary system, we are interested in the value of (7.47) for a

unitary gas. Unitary Fermi gases obey a polytropic equation of state in which

γ = 2/3 [115]. In this case, (7.47) becomes

ω2
meas = ω2

γ

[
1− 16 mω2

⊥
15 U0

〈x̃4〉
〈x̃2〉

]
. (7.50)

In the zero temperature limit, setting γ = 2/3 in (7.48) yields

ω2
meas = ω2

γ

[
1− 64

25

m ω2
⊥ 〈x̃2〉
U0

]
. (7.51)

The high temperature limit is given by setting γ = 2/3 in (7.49),

ω2
meas = ω2

γ

[
1− 16

5

m ω2
⊥ 〈x̃2〉
U0

]
. (7.52)

For known values of U0, ω⊥, and m, measured values of ωmeas and 〈x̃k〉 can be

used to calculate ωγ with the aid of (7.50), (7.51), and (7.52).
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7.4.2 Anharmonic corrections for a noninteracting Fermi

gas

If we return to the relaxation approximation formalism and consider the collision-

less limit, we obtain [101,116]

b̈x +
1

m bx 〈x̃2〉
[
〈x̃ dUEV (bx x̃, by ỹ, z̃)

dx̃
〉 − 1

b2
x

〈x̃ dUEQ(x̃, ỹ, z̃)

dx̃
〉
]

= 0. (7.53)

We note that if we let γ = 1 in (7.36), we obtain (7.53). Hence, to determine

the anharmonic corrections for a noninteracting gas, we can set γ = 1 in (7.47),

yielding

ω2
meas = ω2

param

[
1− mω2

⊥
U0

〈x̃4〉
〈x̃2〉

]
. (7.54)

Setting γ = 1 in (7.48) to obtain the zero temperature limit yields

ω2
meas = ω2

param

[
1− 12

5

mω2
⊥ 〈x̃2〉
U0

]
. (7.55)

In the high temperature limit, setting γ = 1 in (7.49) gives

ω2
meas = ω2

param

[
1− 3 mω2

⊥ 〈x̃2〉
U0

]
. (7.56)

Note that for a perfectly harmonic trap, where ωmeas = ωparam, setting γ = 1 in

(7.39) gives ωparam = 2 ω⊥, which agrees with the result derived in Section 7.3

for a noninteracting gas. For anharmonic traps, values of ω⊥ and U0 based on

parametric resonance measurements6 and measured values of ωmeas and 〈x̃k〉 can

6Parametric resonance measurements are subject to trap anharmonicity as well. Conse-
quently, when first characterizing the dipole trap, we use values of (ωx)anharm and (ωy)anharm

measured using parametric resonance to estimate the value of ω⊥ ≈ [(ωx)anharm (ωy)anharm]1/2
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be entered into (7.54), (7.55), and (7.56) to calculate ωparam, the oscillation fre-

quency one would measure for a harmonic trap. In closing, we note that although

we assumed cylindrical symmetry in deriving (7.47), which we use as the basis

for the equations displayed in this subsection, (7.54), (7.55), and (7.56) are valid

in the absence of cylindrical symmetry as well.

7.5 Magnetic field dependence of the breathing

mode

Our initial measurements of the radial breathing mode frequency [19] were re-

stricted to magnetic fields between 770 gauss and 910 gauss. We found over this

range of interaction strengths that the measured radial breathing mode frequen-

cies are in general agreement with predictions based on an equation of state for

a superfluid hydrodynamic gas. Moreover, close to the center of the Feshbach

resonance, we found that our measured radial breathing mode frequency was

within 0.3% of the value expected for a unitarity-limited hydrodynamic Fermi

gas (
√

10/3 ω⊥). At roughly the same time, Bartenstein et al [21] conducted

similar studies of both the radial and axial breathing mode frequencies. While

they found that their axial data was in good agreement with hydrodynamic pre-

dictions, they observed a systematic shift away from hydrodynamic predictions in

the radial mode. Near the center of the broad Feshbach resonance, their measured

which appears in (7.54). A measurement of the radial breathing mode oscillation frequency in
the x-direction for a noninteracting gas for the same trap conditions then allows us to use (7.54)
to calculate ωparam/2, which we regard as the “true” harmonic oscillation frequency of the trap
in the x−direction, ωx. We estimate the “true” harmonic oscillation frequency of the trap in
the y-direction using ωy = (ωy)anharm×ωx/(ωx)anharm. We then use the “true” harmonic trap
oscillation frequencies ωx and ωy to calculate the value of ω⊥ = √

ωx ωy used in all subsequent
applications of the equations appearing in Section 7.4.
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radial breathing mode frequency was roughly 8.7% below the predicted value for

a unitarity-limited hydrodynamic Fermi gas [117]. Furthermore, on the BCS side

of the resonance, they observed a dramatic increase in the radial breathing mode

frequency and damping rate near 910 gauss. As this magnetic field represented

the limit of our initial studies of the radial breathing mode, we were motivated to

perform an additional study. The results of this more extensive investigation of

the radial breathing mode frequency and damping rate were published in [79]. In

this latter investigation, we found that measurements conducted below 950 gauss

confirmed the results of our initial study [19]. However, for magnetic fields near

1080 gauss, we observed a breakdown in hydrodynamic behavior. This breakdown

was signalled by an increase in the measured breathing mode frequency and an

even more abrupt increase in the damping rate of the oscillations. This general

behavior is in qualitative agreement with the results of Bartenstein et al, although

there are important quantitative differences which will be explored in a moment.

Following preparation of the gas and excitation of the breathing mode as de-

scribed in Section 7.2, the lifetime and frequency of the resulting oscillations were

measured. The measured frequencies were corrected for anharmonicity, and are

plotted as a function of magnetic field and interaction strength in Figure 7.6. The

lower horizontal scale provides the interaction strength in terms of the dimension-

less parameter 1/(kF as), where kF =
√

2 mεF /~2 is the Fermi wave vector at the

center of the trap, εF = ~ ω̄(3 N)1/3 is the Fermi energy for a noninteracting gas,

and as is the s-wave scattering length. The upper horizontal scale gives the mag-

netic field at which the data was acquired. Note that in converting from magnetic

field to 1/(kF as), we assume that the Feshbach resonance is centered at 834 gauss.

The solid curve in Figure 7.6 provides a theoretical prediction based on superfluid
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Figure 7.6: Magnetic field dependence of the frequency ω of the radial breath-
ing mode, normalized to the geometric mean of the trap oscillation frequencies in
the two radial dimensions, ω⊥. The solid line is the theory based on superfluid
hydrodynamics from Hu et al [118]. The dashed horizontal line represents the
predicted hydrodynamic frequency for a unitary Fermi gas, ω/ω⊥ =

√
10/3. The

lower horizontal axis parameterizes the interaction strength using the dimension-
less parameter 1/(kF as), where kF is the Fermi wave vector at the center of the
trap and as is the s-wave scattering length. The upper horizontal axis gives the
associated magnetic field in gauss. Note that the magnetic field axis is not linear.
Figure first published in [79].

hydrodynamics given by Hu et al in [118].

In Figure 7.7, we display both the frequency and damping time dependence on

interaction strength. Once again, the dimensionless parameter 1/(kF as) parame-

terizes the interaction strength on the lower horizontal axis, while the magnetic

field is given on the upper horizontal axis. The frequency data shown in Figure 7.6

is given once more, with the frequency axis labelled at the left of the figure. The

right vertical axis gives the damping rate in dimensionless units, 1/(τ ω⊥).

For magnetic fields close to resonance, the measured radial breathing mode
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Figure 7.7: Magnetic field dependence of the damping rate 1/(τ ω⊥) and fre-
quency ω/ω⊥ of the radial breathing mode. The damping rate data is represented
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The frequency data is represented by the open circles (error bars have been omit-
ted to avoid clutter), with the axis labelled on the left hand side of the graph.
The solid line represents the predicted frequency of the radial breathing mode by
Hu et al [118]. The frequency and damping time are plotted against interaction
strength in both the dimensionless parameter 1/(kF as) (bottom axis) and the
magnetic field (top axis). Note that the top (magnetic field) axis is not linear.
Figure first published in [79].
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frequencies are in good agreement with the hydrodynamic predictions of Hu et al,

confirming the measurements first made in [19]. The measured breathing mode

frequency just above the center of the Feshbach resonance, ω/ω⊥ = 1.829(0.006),

is in good agreement with the value expected for a unitary, hydrodynamic Fermi

gas,
√

10/3 = 1.826. In Figure 7.7, we see that the damping rates are quite

small close to the center of the resonance, where damping times of up to 7 ms

were observed. This corresponds to 1/(τ ω⊥) = 0.014, or roughly 20 periods of

oscillation.

As we move away from the center of the broad Feshbach resonance, the data

remain in qualitative agreement with the predictions of Hu et al [118], but quan-

titative discrepancies begin to appear. Data taken at 750 and 770 gauss are

close to two standard deviations below the predicted frequencies. Above the reso-

nance, the observed frequency dips below the predicted value before rising above

the predicted values. The lowest measured frequency occurred at 925 gauss, be-

fore rising rapidly around 1080 gauss. The highest magnetic field for which the

breathing mode was studied, 1114 gauss, represents the largest magnitude field

we can produce with our magnets. At this field, the measured breathing mode

frequency is above the predictions of superfluid hydrodynamics but still well be-

low the expected frequency for a noninteracting gas, 2 ωx. This is in contrast to

the measurements of Bartenstein et al [21], where the measured oscillation fre-

quency at high magnetic field was found to exceed predictions for a noninteracting

system.

The observed upward shift in the radial breathing mode frequency is indica-

tive of a breakdown in hydrodynamic behavior which is seen more clearly in the

damping rate as a function of magnetic field, as shown in Figure 7.7. The abrupt
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increase in the damping rate at 1080 gauss is in qualitative agreement with similar

behavior reported in [21]. However, there are two ways in which our data differ

from Bartenstein et al :

1. Near resonance, we observe good agreement between our predictions and

hydrodynamic theory, in contrast to [21], where the measured frequencies

are systematically lower than predictions [117].

2. We observe a breakdown of hydrodynamics at a magnetic field near 1080

gauss, significantly larger than the magnetic field of 910 gauss at which

Bartenstein et al observed similar behavior.

As the abrupt increase in frequency and damping rate above resonance was an

unexpected observation, there was and is interest in explaining the source of the

behavior. Bartenstein et al have proposed that the breakdown of hydrodynamic

behavior occurs when the binding energy of the atom pairs (the zero temperature

BCS energy gap ∆) becomes smaller than the quantized collective mode energy

~ω. Using a crude estimate based on BCS theory, we find that the trap-averaged

gap ∆̄ ≈ 2 ~ω at 910 gauss for Bartenstein et al and ∆̄ ≈ ~ω at 1080 for

the conditions in our experiment. We would expect single-particle excitations

associated with pair breaking to occur at 2 ∆ = ~ω, so it is unusual that we

have ∆ ' ~ω for our trap conditions at the magnetic field where hydrodynamics

breaks down. However, Heiselberg has noted that the leakage of energy to surface

modes could account for the rapid decay of the breathing mode oscillations when

∆ > ~ω [119]. Unfortunately, this argument cannot explain why we observe the

breakdown in hydrodynamics at a different value of the quantized collective mode

energy from that seen by Bartenstein et al. Finally, it is worth noting that the
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application of predictions from BCS theory, a theory based on weak interactions,

should be used with skepticism in a regime where the gas is strongly interacting.

Another estimate of the breakdown magnetic field comes from Falco and Stoof

[120], who suggested that the gas will behave like a BCS system when the energy

of the molecular state which gives rise to the Feshbach resonance exceeds the

Fermi energy of a two atom pair. In such a case, the small but finite temperature

of our gas might be enough to destroy a superfluid state. Setting the approximate

energy of a bound atom pair equal to twice the trap-averaged value of the local

Fermi energy,

~2

ma2
s

= 2 〈εF (x)〉, (7.57)

we can estimate the breakdown magnetic field. The left hand side of (7.57)

represents the binding energy of an atom pair relative to the zero of energy in

the triplet potential. For our trap conditions, (7.57) gives 1/(kF as) = −0.79,

which is quite close to the value 1/(kF as) = −0.74 for our trap conditions at

1080 gauss, the magnetic field at which we observe a breakdown in hydrodynamic

behavior. While this is an appealing explanation for the behavior we observe in

our system, it is unable to explain the results of Bartenstein et al, who observed

the breakdown of hydrodynamics at the same magnetic field for several different

trap depths. Ultimately, our simple models of pair-breaking are unable to explain

the discrepancy in the magnetic fields at which the breakdown of hydrodynamics

is observed by Bartenstein et al and by the Duke group.
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7.6 Temperature dependence of the breathing

mode at unitarity

We conducted a systematic study of the frequency and damping time of the radial

breathing mode of a strongly interacting gas of 6Li just above the center of a broad

Feshbach resonance. Here, the zero energy scattering length is effectively infinite

and the gas is in the unitary regime. This measurement constitutes the first sys-

tematic study of the temperature dependence of the radial breathing mode in a

strongly interacting Fermi gas. For reasons outlined in Section 6.3, temperature

measurement in the strongly interacting regime remains controversial. Through-

out this section, we will present the behavior of the radial breathing mode as a

function of the empirical temperature T̃ . Of course, this temperature scale can

be calibrated to theoretical temperature scales using the technique discussed in

Section 6.3.2, but it is not necessary here.

Our initial investigation of the temperature dependence of a strongly inter-

acting Fermi gas was given in [19], where we found that the lifetime of the radial

breathing mode oscillation increased as we lowered the temperature of the gas.

In that study, conducted at 870 gauss, different temperatures were achieved by

stopping the evaporative cooling process prior to reaching the lowest possible tem-

perature, resulting in different atom numbers for different temperature conditions.

Furthermore, our understanding of temperature measurement in the strongly in-

teracting regime was somewhat limited, and so the temperatures reported in [19]

show the trend in temperature, but might not be reliable estimates of the absolute

temperature. Recall that in Section 7.2, we reported that the duration of the re-

lease and recapture sequence to excite the breathing mode was 25 µs. This is
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true for the data reported in [20], but not for our initial study of the temperature

dependence of the radial breathing mode reported in [19]. In the initial study,

an excitation time of 50 µs was used at 4.6% of the maximum trap depth, which

limited our maximum oscillation lifetime to 3.85(0.40) ms. Even with these lim-

itations, this initial study of the damping time yielded evidence for a superfluid

state in the low temperature regime.

Evidence for superfluidity arose in the form of the observation of a hydro-

dynamic oscillation frequency at 870 gauss. Of course, such behavior can arise

from collisional processes as well. However, as the temperature of the gas is

lowered, Pauli blocking should begin to suppress collisional processes. The ob-

servation of hydrodynamic behavior, in a regime where collisional hydrodynamics

is an unlikely explanation, strongly suggests superfluid behavior. Attempts to

fit the measured breathing mode lifetimes with predictions based on two-body

Pauli blocking were unsuccessful, and the momentum relaxation time required to

explain the 3.85(0.40) ms lifetime at the lowest temperature data point was very

small. As we saw in Section 7.3, in the hydrodynamic limit where the relaxation

time τR → 0, the relaxation approximation model predicts hydrodynamic breath-

ing mode oscillation frequencies ωhydro with an infinite lifetime. If we consider

a first order correction to this result, we find that in the hydrodynamic limit,

two-body collision models [116, 121, 122] predict that the lifetime of the mode is

inversely proportional to the relaxation time,

1

τ
∝ ω2

hydro τR. (7.58)

However, in the low temperature limit, collisional models which incorporate Pauli
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blocking [116, 123] predict the following relationship between relaxation time τR

and temperature

1

ω⊥ τR

∝
(

T

TF

)2

. (7.59)

Combining (7.58) and (7.59), we see that two-body collisional models in the hy-

drodynamic limit predict that τ → 0 as T/TF → 0. This is precisely the opposite

of the observed relationship between τ and T/TF in the low temperature regime,

where the lifetime of hydrodynamic oscillations increases as the temperature is

lowered. As collisional hydrodynamics was unable to explain the increased life-

time of the breathing mode oscillations as the temperature of the gas was lowered,

it was seen as inconsistent with the data.

We also considered the possibility that the observed behavior arose from a

collisionless mean-field scenario. Such a scenario is easily rejected based on the

observed oscillation frequency. While the data agree almost precisely with the ex-

pected hydrodynamic frequency, which is well below the noninteracting frequency

2 ωx, a collisionless mean field scenario based on the Vlasov equation [108] leads

to a breathing mode frequency above the noninteracting frequency [19].

To summarize, we find that collisional hydrodynamics can explain the ob-

served frequency, but not the observed oscillation lifetimes at low temperature.

A collisionless mean field scenario does not agree with the observed oscillation

frequency. Having rejected both collisional hydrodynamics and collisionless mean

field scenarios as unlikely explanations for the observed behavior, we concluded

that the observation of increased breathing mode oscillation lifetimes as the gas

was cooled was solid evidence for superfluidity, if not a definitive proof.

While this study presented exciting evidence for superfluid hydrodynamics, it

was not without its imperfections. The method used to produce gases at different
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temperatures was not ideal, as the stoppage of evaporative cooling meant that

gases at different temperatures had a different number of atoms. If the damping

rate depended on the Fermi energy of the system (which in turn depends on

the number of atoms in the gas), then these fluctuations in atom number could

confound the interpretation of the data. A more reliable method of producing

gases at different temperatures was required. Furthermore, as already noted, our

understanding of temperature was somewhat limited at the time we conducted

our first study of the temperature dependence of the radial breathing mode.

Fortunately, the methods discussed in Chapter 6 in our study of the heat

capacity allowed us to conduct a more definitive investigation of the temperature

dependence of the radial breathing mode. The results of this effort were reported

in [20]. In this study, we evaporatively cooled the gas at 840 gauss, just above the

center of the broad Feshbach resonance, to the lowest possible temperature, T̃ .

Using the energy input techniques discussed in Section 6.1, we were then able to

produce a gas at arbitrary temperature using various values of theat. After allowing

0.1 seconds for the gas to reach equilibrium, the breathing mode was then excited

using a 25 µs excitation time. A schematic of this process is shown in Figure 7.8.

This technique for producing gases at arbitrary temperatures is superior to the

premature stoppage of evaporative cooling, as it allows for fairly constant atom

number even as the temperature of the cloud is varied. Furthermore, as we have

very good control over theat, this method permitted us to take higher resolution

damping time versus temperature data. Even with these improved techniques, our

study of the temperature dependence of the damping time of the radial breathing

mode took several months, and more than 6300 repetitions of the experimental

cycle. The most important results of these labors are shown in Figures 7.9, 7.10
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Figure 7.8: The schematic shows the technique used to study the temperature
dependence of the radial breathing mode. Dark regions indicate times during
which the optical trap is on, while blank regions indicate that the trap is off.
Following an energy input duration of theat, the gas is allowed to equilibrate. The
breathing mode is then excited during texcite, after which the gas oscillates for a
time thold in the trap before being released for time of flight imaging. Note that
the schematic is not to scale.

and 7.11.

The data presented in Figure 7.9 was taken at 840 gauss at 4.6% of the maxi-

mum trap depth and atom number N = 2.0(0.2)×105. We see that the measured

oscillation frequency varies relatively smoothly as a function of empirical tem-

perature T̃ . In the Figure, the open circles represent the measured oscillation

frequency prior to applying anharmonic corrections. The black dots show the

corresponding frequencies following anharmonic corrections where the ratio of

the spatial moments (〈x4〉/〈x2〉, for example) in (7.50) were estimated using finite

temperature Thomas-Fermi fits to the data. While the anharmonicity-corrected

data points in Figure 7.9 do not have error bars, the frequency error arising from

uncertainty in the correction is estimated to be comparable to the statistical error

of the uncorrected data points. Over the range of temperatures studied, we find

that the measured oscillation frequency remains close to the hydrodynamic value

(represented by the dot-dashed line in Figure 7.9) and is substantially less than
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Figure 7.9: Frequency of the radial breathing mode for a unitary Fermi gas
versus empirical temperature T̃ . The open circles represent the measured fre-
quencies, while the black dots represent the data following correction for anhar-
monicity using finite temperature Thomas-Fermi profiles. The dot-dashed line is
the unitary hydrodynamic frequency ω/ω⊥ =

√
10/3. The dashed line at the top

of the graph is the frequency 2 ωx observed for a noninteracting gas in the low
temperature regime. Figure first published in [20].
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the value expected for a noninteracting gas, 2 ωx = 2.10 ω⊥, shown in Figure 7.9

as the dashed line. The closeness of the breathing mode frequency to the hydro-

dynamic frequency could be explainable in terms of universal hydrodynamics for

a system governed by isentropic conditions [85].

While the measured oscillation frequency varies smoothly as a function of

empirical temperature, we observe much richer behavior from the temperature

dependence of the damping rate, shown in Figure 7.10. For T̃ < 0.50, the damping

rate varies linearly with T̃ . A linear fit for this temperature range yields

1

τ ω⊥
= 0.146(0.004) T̃ − 0.0015(0.0014). (7.60)

We note that the damping rate extrapolates close to zero at zero temperature, con-

sistent with zero temperature expectations for a superfluid system. As with our

initial study of the temperature dependence of the radial breathing mode [19], the

observation of increased oscillation lifetimes in the very low temperature regime

is inconsistent with collisional hydrodynamics and is consistent with superfluid

behavior.

Above T̃ = 0.50, the damping rate departs strongly from linear scaling. While

we do not have a satisfactory theory of the damping rate as a function of tem-

perature, we suggest that the observed departure from linear scaling could signal

a superfluid transition. Using the “natural temperature” conversion given by

(6.31), we find that T̃ = 0.50 is associated with T/TF = 0.35, which is reasonably

close to the measured transition temperature (T/TF = 0.27) in the heat capacity

study of a unitary Fermi gas. As the measurements of the heat capacity and the

breathing mode lifetime are quite different, it is not apparent that critical transi-
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Figure 7.10: Temperature dependence of the damping rate for the radial breath-
ing mode of a unitary gas of 6Li at 840 gauss. The solid dots are the main data set
taken at 4.6% of the maximum trap depth and N = 2.0(0.2) × 105. The dashed
line is Equation (7.60), which extrapolates close to zero at zero temperature.
Figure first published in [20].
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tion signatures should be observed at precisely the same temperature. Finally, it

is worth noting once more that the interpretation of the damping rate’s departure

from linear scaling with T̃ is speculative, and not based on theoretical insights.

Near T̃ = 0.60, there appears to be a reproducible notch in the damping rate.

The three data points in the notch fall between 2.2 and 4.1 standard deviations

below the linear extrapolation at T̃ = 0.60. A similar feature was predicted for

a two-component fluid composed of a Bose-Einstein condensate and a thermal

cloud, where beating of the oscillation frequencies of the different components

leads to an apparent faster decay of the oscillation amplitude [124]. We have

monitored the decay of the mode for durations exceeding several decay time con-

stants, but find no evidence of the revival of the oscillations. At present, we do not

have a satisfactory explanation for the appearance of the notch in the damping

at T̃ = 0.60.

For temperatures above the notch, 0.65 ≤ T̃ ≤ 1.0 (or, 0.45 ≤ T/TF ≤ 0.71,

using (6.31)), the damping rate appears to be nearly independent of temperature.

This is followed by an increase in the damping rate between 1.0 ≤ T̃ ≤ 1.2 (or

0.71 ≤ T/TF ≤ 0.86). Above T̃ = 1.2, the damping rate appears to be nearly

independent of temperature.

We have considered several possible explanations for the behavior of the damp-

ing rate versus temperature for T̃ > 1.0. We find that predictions for a normal

Fermi gas undergoing binary collisions [122] should exhibit slow variations (on

the order of TF ) in the damping for temperatures above T/TF = 0.70, in contrast

to the variations we observe which occur over a fraction of the Fermi tempera-

ture. Moreover, the binary collision model predicts a decrease in damping in this

temperature regime, whereas we observe an increase in damping followed by weak
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temperature dependence above T̃ > 1.2. Finally, while we find that the oscilla-

tion frequency remains close to the hydrodynamic value throughout the range of

temperatures studied, the binary collision model predicts a frequency close to the

noninteracting gas value for T/TF > 0.70. Interestingly, the maximum observed

damping time is relatively consistent with the maximum damping time predicted

by the binary collision model for our trap conditions, 1/(τ ω⊥)max = 0.13 (for a

trap with perfect cylindrical symmetry, 1/(τ ω⊥)max = 1/
√

120 ' 0.09). In spite

of the apparent agreement on the maximum damping time, we observe too many

discrepancies between the predictions of the binary collision model and our data

to consider it a likely explanation for the observed high temperature behavior.

Another possible explanation for the increase in damping in the high temper-

ature regime is trap anharmonicity, which increases the bandwidth. However, if

trap anharmonicity were the dominant cause of damping, 1/τ would be propor-

tional to the frequency correction. That is,

1

τ ω⊥
∝ mω2

⊥ 〈x2〉
U0

∝ kB T

U0

, (7.61)

in which case we would expect the damping rate to rise rapidly and monotonically

with increasing temperature, in contrast to our observations.

As a final possible explanation for the increase in damping rate for 1.0 ≤ T̃ ≤
1.2, we consider the breaking of noncondensed pairs. Recall from Section 2.5 that

pseudogap theory, in which pairing of particles and the condensation of those

particles can occur at different temperatures, might be applicable to strongly in-

teracting Fermi gases. We considered pair breaking as a possible mechanism for

the observed increase in damping rates for low temperature gases at magnetic
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fields above the center of the Feshbach resonance in Section 7.5. The same basic

argument can be applied here. We find that the region of increasing damping

of the breathing mode corresponds roughly to the temperature at which noncon-

densed pairs are expected to vanish [10]. A prediction from pseudogap theory

for the trap-averaged gap for a unitary Fermi system indicates that ∆̄ ≤ ~ω for

T ≥ 0.75 TF , or T̃ ≥ 1.06 [125].

We have also examined the dependence of the damping rate in the low tem-

perature regime (T̃ ≤ 0.50) on the trap oscillation frequency ω⊥ and the number

of atoms N . In the unitary regime, dimensional analysis restricts the possible

dependence to the following form,

1

τ
= ω⊥ f(T/TF , N, λ), (7.62)

where λ = ωz/ω⊥ is the ratio of the axial to the radial trap oscillation frequencies,

and f is a dimensionless function. Experimentally, we are unable to determine

the dependence of the damping time on λ, but we can consider the effect of

different trapping frequencies, atom number and temperature. The results of

these studies are shown in Figure 7.11. We find that decreasing the number of

atoms in the cloud by a factor of three has no apparent impact on the lifetime of

the oscillations. Furthermore, the data in Figure 7.11 indicate that 1/τ versus T̃

scales approximately as ω⊥ when the trap is at 0.85% and 19% of the maximum

trap depth. Ultimately, we can restrict the damping rate dependence given by

(7.62) even further,

1

τ
= ω⊥ f(T/TF , λ), (7.63)

wherein the damping rate can depend on the number only via the Fermi temper-
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Figure 7.11: Damping rate 1/(τ ω⊥) for the system with scaled parameters.
The two solid squares represent data acquired at 0.85% of the maximum trap
depth. The four open diamonds are associated with data acquired at 19% of the
maximum trap depth. The two open circles are associated with data acquired
for atom numbers roughly 3 times smaller than that for the main data set. The
dashed line is Equation (7.60), the best fit to the low temperature data for the
main data set. Figure first published in [20].

ature TF .

In closing, we show the locus plot of the frequency versus damping rate for the

main data set taken at 4.6% of the maximum trap depth in Figure 7.12. Here, we

see reasonable agreement between the theory (solid curve) developed using the

relaxation approximation, and the data. For high damping rates, however, the

agreement between data and theory worsens. In spite of the reasonable agreement

for small damping rates, this plot should not be construed as validation of the

binary collision model, as we have effectively disregarded temperature information

in producing this plot. We note merely that if we consider only the frequency and

damping rate of the oscillations, there is reasonable agreement between the data
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Figure 7.12: Locus plot of the damping rate and frequency for a unitary Fermi
gas. The dots represent data following correction for anharmonic effects, while the
solid line is the theoretical prediction provided by the relaxation approximation
formalism discussed in Section 7.3. The solid line is the same as that shown
in Figure 7.4. The dashed line in the lower portion of the graph shows the
hydrodynamic breathing mode oscillation frequency, while the dot-dashed line in
the upper portion of the graph marks the collisionless (noninteracting) limit.

and the relaxation approximation prediction.

7.7 Conclusion

Studies of the breathing mode in a strongly interacting Fermi gas provide a con-

venient method for testing the equation of state of the system. In this chapter, we

presented our studies of both the magnetic field and temperature dependence of

the radial breathing mode in a strongly interacting Fermi gas of 6Li atoms. Our

initial study of the temperature dependence of the lifetime of the oscillations [19]
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was inconsistent with both collisionless mean-field and collisional hydrodynamic

scenarios. Consequently, we interpreted our results as evidence for superfluid

hydrodynamics. This study also featured a limited investigation of the radial

breathing mode as a function of magnetic field, and our results were generally in

good agreement with predictions based on superfluid hydrodynamics.

In response to similar studies carried out at the University of Innsbruck [21],

we conducted a more extensive study of the breathing mode as a function of

magnetic field [79]. In this study, we replicated the results of our previous inves-

tigations, and observed an unexpected increase in the breathing mode frequency

and damping rate at a magnetic field above the center of the Feshbach resonance.

While these observations were in qualitative agreement with similar observations

first made at Innsbruck, we have been unable to explain the discrepancy in the

magnetic fields at which these phenomena were observed. The Innsbruck group

has postulated that the mechanism behind the increase in oscillation frequency

and damping rate involves the breaking of paired atoms, an idea we also consider

plausible.

Our final major study of the radial breathing mode in a strongly interacting

Fermi gas focused on a high resolution measurement of the frequency and damp-

ing time in the unitarity limit [20]. We found that the measured frequency varied

smoothly as a function of temperature, and remained relatively close to the pre-

dicted hydrodynamic frequency. In contrast, the damping time displayed very

rich behavior as a function of empirical temperature T̃ . The damping rate was

found to vary linearly with T̃ in the low temperature regime, before departing

abruptly from linear scaling. Following a downward notch in the damping rate at

T̃ = 0.60, the damping rate was nearly independent of temperature before rising
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once more between 1.0 ≤ T̃ ≤ 1.2. We suggest that the initial departure from

linear scaling near T̃ = 0.50 (T/TF = 0.35) could be an indicator of a superfluid

phase transition, as the abrupt change in behavior occurs at a temperature close

to the transition in the heat capacity (see Chapter 6). Finally, we consider it

plausible that the increase in damping rate for 1.0 ≤ T̃ ≤ 1.2 is indicative of the

breaking of noncondensed pairs.



Chapter 8

Conclusion

This dissertation has described experimental investigations of a strongly interact-

ing gas of fermionic 6Li atoms. Studies of the heat capacity and radial breathing

mode of a strongly interacting Fermi gas were made possible by upgrades to an

existing cooling and trapping apparatus [22–24,93] and computer control system.

The heat capacity study is the first measurement of a thermodynamic quantity

in a strongly interacting Fermi gas. We observe a transition in behavior in the

energy versus temperature near T/TF = 0.27(0.02), which is interpreted as the

onset of superfluidity. This represents the first direct measurement of the super-

fluid transition temperature in the strongly interacting regime. The measured

energy versus temperature dependence is in good quantitative agreement with

predictions provided by a pseudogap theory developed by Kathy Levin’s group at

the University of Chicago.

Our studies of the radial breathing mode included efforts to determine the

magnetic field dependence and temperature dependence of the breathing mode

oscillation frequency and damping rate. Our investigation of the magnetic field

dependence revealed an unexpected increase in the damping rate and oscillation

frequency above the center of the Feshbach resonance. This effect, first observed

in [21], is interpreted as a possible signature of the breaking of fermionic atom

255
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pairs. Our study of the breathing mode in the unitarity limit revealed that while

the oscillation frequency depended weakly on the temperature of the gas, the

damping rate exhibited several noteworthy features. As the temperature of the gas

was lowered, the lifetime of hydrodynamic breathing mode oscillations increased,

providing evidence for a superfluid state at low temperature. Abrupt changes in

the breathing mode oscillation lifetime have been interpreted as possible indicators

of a superfluid phase transition and the breaking of noncondensed atom pairs.

In the remaining sections of this chapter, I will provide a brief summary of the

preceding chapters before considering anticipated upgrades to the experimental

apparatus and possible future lines of study in the field of strongly interacting

Fermi gases.

8.1 Chapter summary

Chapter 1 began by discussing the motivation for studying strongly interacting

Fermi gases in a controlled laboratory setting. Parallels between our system and

high temperature superconductors, the quark-gluon plasma and neutron stars

make our system an interesting object of study, as the other systems are not as

easily manipulated and studied as our own. Also in Chapter 1, I outlined the

significance of the work presented in this dissertation. This included a discussion

of my efforts with regard to upgrading the experimental apparatus as well as

the significance of the primary results of our experimental efforts. Chapter 1

concluded with an outline of this dissertation.

Chapter 2 introduced the concepts of the BEC-BCS crossover and Feshbach

resonances. In the BEC limit, weakly repulsive interactions can lead to bind-
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ing of two fermions to form a molecule. In the BCS limit, weak, attractive in-

teractions can lead to the formation of Cooper pairs. In between, the system

evolves smoothly between the two weakly interacting limits to a strongly inter-

acting regime where the nature of the interparticle interactions (attractive versus

repulsive) flips sign abruptly. Studies of the BEC-BCS crossover in atomic gases

are made possible through the use of Feshbach resonances, in which the energy of

two colliding particles can be Zeeman tuned into resonance with a bound state in

a closed scattering channel. After discussing Feshbach resonances, Chapter 2 then

focused on the particular hyperfine ground states of 6Li which we trap and cool in

our laboratory. Finally, a brief overview of the major experimental results from

the past few years in the field of strongly interacting Fermi gases was included.

Chapter 3 covered the basic experimental techniques we employ to produce

degenerate, strongly interacting Fermi gases. The operation of the magneto-

optical trap and far-off resonance dipole trap were considered. This was followed

by a general description of the experimental apparatus.

To extract information from our experimental system, we acquire on-resonance

absorption images of the atom clouds following expansion from the optical trap.

Chapter 4 considered the dynamics of an atom cloud expanding by ballistic or

hydrodynamic scale transformations. As complete understanding of the expansion

dynamics of the gas requires knowledge of the optical trap oscillation frequencies

and magnetic field curvature, Chapter 4 also considered how these quantities are

measured. Once the cloud has expanded to a size much larger than the imaging

system resolution, an on-resonance probe pulse illuminates the cloud. Chapter 5

addressed the acquisition and processing of these absorption images.

Chapter 6 presented our study of the heat capacity of a unitary Fermi gas.
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Such a study was made possible by the development of novel energy input and

temperature measurement techniques. Using these new techniques, we measured

the heat capacity of a strongly interacting and noninteracting Fermi gas, and

found good agreement between our results and theoretical predictions. A col-

laboration with a theory group at the University of Chicago led by Kathy Levin

helped us interpret our results as a signature of a phase transition in the unitary

Fermi gas. Our study of the heat capacity also yielded data which was used to

demonstrate the virial theorem in the unitarity limit.

Chapter 7 presented our extensive studies of the radial breathing mode in

a strongly interacting Fermi gas. Using techniques similar to those used in the

study of the heat capacity, we were able to excite the breathing mode and monitor

the lifetime and frequency of the oscillations. The breathing mode was studied

as a function of magnetic field as well as temperature. Some of the results of our

investigations have been interpreted as evidence for superfluidity and the breaking

of condensed and noncondensed pairs in the unitarity limit.

The present chapter provides an overview of the work discussed in this disser-

tation, while also contemplating some anticipated upgrades to the experimental

apparatus and future research directions.

There are three appendices in this dissertation. Appendix A presents a number

of basic theoretical results for noninteracting, harmonically trapped Fermi gases.

While none of the material contained here is particularly novel, this appendix is

intended as a useful resource for other group members. Appendix B considers

issues related to the production of a resonant imaging probe pulse at nonzero

magnetic field for the quantum states of interest. Finally, Appendix C discusses

many of the custom software upgrades which have been implemented during my
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time as a member of the research group.

8.2 Anticipated upgrades to the experimental

apparatus

The Coherent 699-21 dye laser which generates our slowing, MOT, and probe

beams has been in use since 1982. In the intervening decades, it has performed

admirably in many important experiments. Of course, as dye lasers are notori-

ously finicky instruments, our 699 dye laser has also caused graduate students,

post doctoral researchers, and tenured professors to launch into epic expletive-

laced tirades. Dye laser failures and the attendant swearing episodes have grown

more frequent in recent years, as both optical elements in the laser cavity and

electronic components in the dye laser’s control box have given the last full mea-

sure in the name of science. Fortunately, help is on the way in the form of a new

Coherent 899-21 dye laser. We anticipate that the new 899 dye laser can be made

to perform as well or better than its predecessor, and be more reliable as well.

Further, we expect to expand the radio-frequency capabilities of our exper-

imental system. At present, we use only noisy RF excitations to balance spin

state populations after loading the FORT. An upgrade to our RF antenna and

electronics arrangement should allow for more complex RF manipulation of the

strongly interacting gas, such as transitions from the |1〉 and |2〉 states to higher

energy hyperfine ground states.

Finally, over the past several years, construction of a new cooling and trapping

apparatus has been underway in a laboratory adjacent to the one where the work

described in this dissertation was performed. At present, construction is nearing
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completion, and experimental investigations will begin shortly.

8.3 Outlook

It might be tempting to think that with the proof of superfluidity now in hand,

the field of strongly interacting Fermi gases will become stagnant. I consider this

prospect fairly unlikely. Even prior to the demonstration of vortices in a strongly

interacting Fermi gas [126], many in the field felt that the existing data provided

sufficient evidence for the existence of a superfluid state at low temperature in

the strongly interacting regime. The observation of vortices confirmed what many

already believed. But for all the focus that has been placed on resonance superflu-

idity, there is still much to be learned about strongly interacting fermionic matter

in general. Clear maps of the phase diagram in the crossover region still remain to

be determined. Once the superfluid transition temperature is clearly established,

researchers can work at temperatures above the transition, where collisional hy-

drodynamics is believed to govern the system. Such studies would be of great

interest to quark-gluon plasma theorists, for example.

Other possible lines of research have been mentioned in Section 2.5. These

include investigations of higher angular momentum scattering [84, 89, 90], mis-

matched Fermi surfaces [43,88], and perhaps most prominently, Fermi systems in

reduced dimensions and lattices. A number of groups, theoretical as well as ex-

perimental, have already begun to study one-, two-, and three-dimensional optical

lattices containing fermions. Their findings and predictions are too numerous to

mention here, but such systems are expected to exhibit behavior that sometimes

differs markedly from the three-dimensional bulk gases investigated in this dis-
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sertation. With the proof of superfluidity no longer in question, many research

groups are free to pursue divergent lines of inquiry into the behavior of strongly

interacting Fermi gases.



Appendix A

Harmonically trapped Fermi
gases

Although the title of this dissertation suggests that we deal exclusively with

strongly interacting Fermi gases, we rely heavily on concepts drawn from the

area of noninteracting Fermi gases. As the noninteracting Fermi gas is well un-

derstood, and as we are capable of producing noninteracting Fermi gases in our

laboratory, the ideal (noninteracting) Fermi system provides a convenient method

for testing our experimental procedures before applying them to the less well-

understood strongly interacting system. Furthermore, in Chapter 6, we present an

approximate temperature measurement scheme relying on noninteracting Fermi

gas results which is applied to strongly interacting systems. Some of the physical

quantities of interest for noninteracting Fermi gases are derived in this chapter.

Throughout this Appendix, and the rest of this dissertation as well, I assume

that the local density approximation [33] is valid. In this case, we suppose that

our trapping potential varies smoothly and slowly and that a small volume of

our trapped atom cloud contains enough atoms for that small volume to act

as a homogeneous Fermi system. While these assumptions will break down at

the edge of our atom cloud, much of our experimental work appears to support

the validity of the local density approximation for our trap conditions. For a

262
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more rigorous mathematical statement of the conditions associated with the local

density approximation, the reader is encouraged to examine [33].

Before considering the derivation of physical quantities such as the density of

states, chemical potential, and spatial profiles of harmonically trapped noninter-

acting Fermi gases, we consider the Sommerfeld expansion, which will be useful

in deriving the low temperature behavior of many of these quantities.

A.1 Sommerfeld expansion

In the remainder of this Appendix, we will often be interested in analytic expres-

sions for physical quantities in the low temperature regime. Such expressions can

be obtained using the Sommerfeld expansion [127].

We begin with a generic integral of the form

I =

∫ ∞

0

dεH(ε) f(ε), (A.1)

where H(ε) is a general function of the energy and f(ε) is the Fermi occupation

number for energy ε [127],

f(ε) =
1

exp
(

ε−µ
kB T

)
+ 1

. (A.2)

In the preceding equation, µ is the chemical potential, kB is Boltzmann’s constant,

and T is the temperature. Next, we define

K(ε) =

∫ ε

0

dε̄H(ε̄), (A.3)
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which allows us to rewrite (A.1) as

I =

∫ ∞

0

dε
dK(ε)

dε
f(ε). (A.4)

If we integrate (A.4) by parts and suppose that the function H(ε) has properties

such that the surface term vanishes, the integral I can be written as

I = −
∫ ∞

0

dεK(ε)
df(ε)

dε
. (A.5)

We now consider a Taylor expansion of the function K(ε) about the point

ε = µ, where µ represents the chemical potential. Then, we can approximate

K(ε) as

K(ε) ' K(µ) + (ε− µ)K ′(µ) +
(ε− µ)2

2
K ′′(µ), (A.6)

where primes denote derivatives with respect to ε. Plugging (A.6) into (A.5) and

making the substitution y = (ε−µ)/(kB T ), the approximate value of the integral

I becomes

I ' K(µ)

∫ ∞

−µ/(kBT )

ey dy

(ey + 1)2
+ kB T K ′(µ)

∫ ∞

−µ/(kBT )

y ey dy

(ey + 1)2

+
(kB T )2

2
K ′′(µ)

∫ ∞

−µ/(kBT )

y2 ey dy

(ey + 1)2
. (A.7)

We now make one further approximation. For very low temperatures, kB T ¿ µ,

so we can let −µ/(kB T ) → −∞ in the lower limit of the integrals in (A.7). If we
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do this and evaluate the integrals, we are left with

I ' K(µ) +
π2

6
(kBT )2 K ′′(µ)

=

∫ µ

0

dεH(ε) +
π2

6
(kB T )2 H ′(µ). (A.8)

The integral in (A.8) can be split into two integrals,

I =

∫ εF

0

dεH(ε)−
∫ εF

µ

dεH(ε) +
π2

6
(kB T )2 H ′(µ). (A.9)

For a low temperature system, the chemical potential will be nearly equal to

the Fermi energy. Consequently, the second integral in (A.9) can be approximated

by ∫ εF

µ

dεH(ε) ' (εF − µ) H(εF ). (A.10)

Returning once more to (A.9), we see that the final term is quadratic in the

temperature and contains the quantity H ′(µ). Since we are concerned only with

the first order correction to the temperature, we can let H ′(µ) → H ′(εF ), in which

case

I =

∫ εF

0

dεH(ε)− (εF − µ) H(εF ) +
π2

6
(kB T )2 H ′(εF ). (A.11)

To make further progress, we need to determine the low temperature expres-

sion for the chemical potential. In Section A.2.2, we will derive Equation (A.24),

which we use to calculate the chemical potential. If we compare (A.24) to (A.1),

we make the identifications: I = ε3
F /3 and H(ε) = ε2. If we plug these values into

(A.11) and solve for µ, we obtain the Sommerfeld approximation for the chemical
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potential,

µ ' εF

[
1− π2

3

(
T

TF

)2
]

, for
T

TF

¿ 1. (A.12)

We can now use this analytic expression for the low temperature chemical poten-

tial to simplify (A.11). Plugging (A.12) into (A.11), we obtain our final expression

for the Sommerfeld expansion,

I =

∫ εF

0

dεH(ε)− εF
π2

3

(
T

TF

)2

H(εF ) + ε2
F

π2

6

(
T

TF

)2

H ′(εF ). (A.13)

Consequently, obtaining Sommerfeld expansions requires writing an integral

of the form (A.1), identifying H(ε) and using (A.13) to obtain the lowest order

temperature dependence.

A.2 Derivation of basic quantities

In this section, I will derive the density of states for a harmonically trapped gas.

Using this result, we can calculate an expression for the number of trapped atoms,

which we can then use to determine the chemical potential for a noninteracting

Fermi gas as a function of temperature.

A.2.1 Density of states

As we are assuming that shell effects can be neglected and the density profile of our

trapped atom cloud can be treated as a continuous distribution, we will need to

derive an expression for the density of states for a harmonically trapped Fermi gas.

The density of states can be derived quickly by pursuing a geometrical argument.

We begin with the expression for the energy eigenvalues for a three-dimensional
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harmonic oscillator with trap oscillation frequencies ωi, for i = x, y, z [30],

ε = ~
[
ωx

(
nx +

1

2

)
+ ωy

(
ny +

1

2

)
+ ωz

(
nz +

1

2

)]
. (A.14)

Here, the ni can take on nonnegative integer values. If we drop the zero point

energy factors of 1/2 in (A.14), we have

ε = ~ (ωx nx + ωy ny + ωz nz) , (A.15)

which defines a plane in energy space. To determine the density of states, we

can use the usual technique of calculating the volume of states in energy space

enclosed by a particular value of the energy ε. Taking the derivative of this volume

with respect to energy then provides the density of states. Consider Figure A.1.

The shaded volume enclosed by a particular choice of the ni is the volume of a

pyramid,

VDoS =
1

3
× height of pyramid× area of base

=
1

3
× nmax

z ×
(

1

2
nmax

x × nmax
y

)
, (A.16)

where the nmax
i factors represent the value of ni when nj = nk = 0 (in other

words, the nmax
i are the coordinates of the intersection of the slanted plane and

the coordinate axes in Figure A.1). Using (A.15), we see that

nmax
i =

ε

~ωi

. (A.17)
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Figure A.1: Energy space for the three dimensional harmonic oscillator. The
choice of energy eigenvalues for the three orthogonal coordinates defines a plane
in energy space which can be used to calculate the density of states.

Plugging (A.17) into (A.16), we obtain

VDoS =
ε3

6 (~ω̄)3 , (A.18)

where the geometric mean of the trap oscillation frequencies is given by ω̄ =

(ωx ωy ωz)
1/3. If we take the derivative of (A.18) with respect to energy, we obtain

the density of states for a harmonically trapped three-dimensional gas,

g(ε) =
dVDoS

dε
=

ε2

2 (~ ω̄)3 . (A.19)

A.2.2 Chemical potential

Using the density of states (A.19) along with the Fermi occupation number (A.2),

we can calculate the chemical potential of the system for a particular temperature
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and number of atoms. Throughout this dissertation, we will frequently consider

two-component Fermi gases with equal spin populations. I will define N as the

total number of particles in the gas, which naturally gives N/2 particles for each

spin component. Hence, we can write

N

2
=

∫ ∞

0

g(ε)f(ε) dε =
1

2(~ω̄)3

∫ ∞

0

ε2dε

exp
(

ε−µ
kB T

)
+ 1

. (A.20)

If we consider a zero temperature Fermi gas, the preceding integral simplifies.

The Fermi occupation number becomes unity for all energy levels below the Fermi

energy εF , and is zero for all energy levels above the Fermi energy. In that case,

N

2
=

1

2(~ω̄)3

∫ εF

0

ε2dε =
ε3

F

6 (~ω̄)3 , (A.21)

and a simple manipulation gives the Fermi energy for a noninteracting Fermi gas

confined in a harmonic trap with N/2 particles per spin state,

εF = ~ ω̄(3N)1/3. (A.22)

The Fermi energy sets a characteristic energy scale which is of great importance

when discussing both interacting and noninteracting Fermi gases. Similarly, one

can define a related temperature, the Fermi temperature TF . For a harmonically

trapped noninteracting Fermi gas with N/2 particles per spin state, the Fermi

temperature is

TF =
εF

kB

=
~ ω̄(3N)1/3

kB

. (A.23)

The definitions of the Fermi energy and temperature will allow us to write an
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integral equation which can be used to determine the chemical potential µ. Using

the definition of the Fermi energy, we can rewrite (A.20) as

ε3
F

3
=

∫ ∞

0

ε2dε

exp
(

ε−µ
kBT

)
+ 1

. (A.24)

Often, the relevant physics will depend not on the absolute temperature T but

instead on the ratio of the temperature to the Fermi temperature. To this end,

we define a reduced temperature T ′ ≡ T/TF , a reduced energy ε′ ≡ ε/εF , and we

normalize the chemical potential to the Fermi energy as well, µ′ ≡ µ/εF . With

these substitutions, (A.24) can be written

1

3
=

∫ ∞

0

ε′ 2dε′

exp
(

ε′−µ′
T ′

)
+ 1

. (A.25)

Equation (A.25) can be used to determine the chemical potential for a given value

of the reduced temperature. Simply select a value for the reduced temperature

T ′ and numerically determine the scaled chemical potential µ′.

Finally, we repeat here the Sommerfeld expression for the chemical potential

derived in Section A.1,

µ ' εF

[
1− π2

3

(
T

TF

)2
]

, for
T

TF

¿ 1. (A.26)

The Sommerfeld approximation and the result of the full numerical calculation of

the chemical potential are plotted in Figure A.2.
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Figure A.2: Chemical potential in units of the Fermi energy versus temperature.
The solid line shows the full numerical calculation using (A.25). The dashed line
shows the Sommerfeld approximation (A.26).

A.2.3 Average energy per particle

Determining the average energy per particle for a harmonically confined Fermi

gas is a relatively straightforward task. We begin by writing the total energy of

both spin states of the gas,

E(T ) = 2

∫ ∞

0

ε g(ε) f(ε) dε =
1

(~ω̄)3

∫ ∞

0

ε3 dε

exp
(

ε−µ
kBT

)
+ 1

. (A.27)

Using (A.22) and the reduced parameters defined in Section A.2.2, we can derive

an expression for the average energy per particle,

E(T )

N
= 3 εF

∫ ∞

0

ε′ 3dε′

exp
(

ε′−µ′
T ′

)
+ 1

. (A.28)



272

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

E(T)/(N εF)

1.00.80.60.40.20.0

T/TF

Figure A.3: Average energy per particle in units of the Fermi energy versus
temperature. The solid line is generated using (A.28), while the Sommerfeld
approximation (A.29) is the dashed line.

Obtaining values of the average energy per particle involves choosing a value

of the reduced temperature, retrieving the value of the chemical potential from

(A.25), and calculating the integral in (A.28). Note that for a zero temperature,

harmonically trapped noninteracting Fermi gas, the average energy per particle is

3 εF /4. Using the Sommerfeld expansion in (A.13), the low temperature energy

per particle is

E(T )

N
' 3 εF

4

[
1 +

2 π2

3

(
T

TF

)2
]

, for
T

TF

¿ 1. (A.29)

Both the full numerical result (A.28) and the Sommerfeld approximation (A.29)

for the average energy per particle are plotted in Figure A.3.
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A.3 Density profiles for harmonically trapped

noninteracting Fermi gases

The primary method for extracting data from our experimental arrangement in-

volves taking an absorption image of our atom clouds. These absorption images

are then processed to yield spatial density profiles of the gas. As these profiles

are the easiest way to extract information from our experimental system, we now

discuss the theoretical density profiles for a harmonically trapped noninteracting

Fermi gas. We start with zero temperature profiles before considering low temper-

ature Sommerfeld profiles. Next, spatial profiles at arbitrary finite temperature,

which we refer to as Thomas-Fermi profiles, will be presented. Finally, spatial

profiles in the high temperature, classical limit will be presented.

Before deriving results for specific temperature conditions, however, I will

present the general derivation of the spatial density profiles. As noted previously,

we will assume that the local density approximation is valid. In this approxima-

tion, one supposes that a small volume within the trap contains a large number

of fermions which act like its own homogeneous fermionic system. These individ-

ual homogeneous systems can then be “glued together” to produce the complete

density profile. This technique is valid provided that there are a large number

of particles in a small volume in the gas, and that the trapping potential varies

slowly on the order of the size of this small volume [33]. If these conditions are

met, then the three-dimensional density distribution is given by

n(x, y, z) =
1

(2 π ~)3

∫
d3p f [H(x,p)], (A.30)
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where f is the Fermi occupation number given by (A.2) and the single particle

Hamiltonian is

H(x,p) =
p2

2 m
+ U. (A.31)

Here, U = U(x, y, z) is the potential energy. We can rewrite (A.30) as

n(x, y, z) =
1

(2 π ~)3

∫
dε f(ε)

∫
d3p δ

[
ε−

(
p2

2 m
+ U

)]
. (A.32)

Performing the momentum integral over spherical coordinates, (A.32) can be writ-

ten in a more convenient form as an integral over energy

n(x, y, z) =
2 π (2 m)3/2

(2 π ~)3

∫ ∞

0

dε f(ε) (ε− U)1/2 Θ [ε− U ] . (A.33)

In (A.33), Θ[ε − U ] restricts the integration to energy values for which ε > U .

Finally, note that we have made no assumptions about the temperature in deriving

(A.33).

A.3.1 Zero temperature profiles

We first consider a zero temperature noninteracting two-component gas of Fermi

atoms with N/2 atoms per spin state. Here, the Fermi occupation number is

unity below the Fermi energy and zero above. Equation (A.33) then becomes the

straightforward integral

nZ(x, y, z) =
2 π (2 m)3/2

(2 π ~)3

∫ εF

0

dε (ε− U)1/2 Θ [ε− U ]

=
4π (2 m)3/2

3 (2 π ~)3/2
ε
3/2
F

(
1− U

εF

)3/2

Θ [εF − U ] . (A.34)



275

We consider a three-dimensional harmonic oscillator potential of the form

Uho(x, y, z) =
m

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
. (A.35)

We can rewrite the potential in the more convenient form

Uho(x, y, z) = εF

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)
, (A.36)

using the Fermi radii defined as

σi =

(
2 εF

m

)1/2
1

ωi

, i = x, y, z. (A.37)

Using the harmonic potential along with the Fermi energy for a harmonic

oscillator (A.22), we can rewrite (A.34) as

nZ(x, y, z) =
4 N

σx σy σz π2

(
1− x2

σ2
x

− y2

σ2
y

− z2

σ2
z

)3/2

Θ

[
1− x2

σ2
x

− y2

σ2
y

− z2

σ2
z

]
.

(A.38)

Obtaining lower dimensional projections of (A.38) involves integration over

the appropriate coordinate(s). The two-dimensional projection of nZ(x, y, z) is

nZ(x, z) =

∫ ymax

−ymax

nZ(x, y, z) dy

=
3 N

2 π σx σz

(
1− x2

σ2
x

− z2

σ2
z

)2

Θ

[
1− x2

σ2
x

− z2

σ2
z

]
, (A.39)

where ymax = σy(1 − x2/σ2
x − z2/σ2

z)
1/2 in the integral. Likewise, using zmax =

σz(1 − x2/σ2
x)

1/2, the one-dimensional zero temperature distribution is found to
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be

nZ(x) =

∫ zmax

−zmax

nZ(x, z) dz

=
8 N

5 π σx

(
1− x2

σ2
x

)5/2

Θ

[
1− x2

σ2
x

]
. (A.40)

Note that integration of (A.40) over x from −σx to +σx yields N/2, the number of

fermions per spin state. A normalized one-dimensional zero temperature density

profile is plotted in Figure A.4.

A.3.2 Sommerfeld profiles

To derive density profiles for low temperature harmonically trapped noninter-

acting Fermi gases, we return once more to (A.33), which provides the general

expression for the three-dimensional density profile using the local density approx-

imation. This integral has the same form as (A.1), and we make the identification

H(ε) =
2 π (2 m)3/2

(2 π ~)3
(ε− Uho)

1/2Θ [ε− Uho]

=
6 N

ε
3/2
F σx σy σz π2

(ε− Uho)
1/2Θ [ε− Uho] , (A.41)

where again we will assume harmonic confinement of the form given by (A.36).

Using (A.13), we find that the three-dimensional Sommerfeld density profile for

a noninteracting Fermi gas with N/2 atoms per spin state is

ns(x, y, z) =
4 N Θ [1− Uho/εF ]

σx σy σz π2

{(
1− Uho

εF

)3/2

− π2

2

(
T

TF

)2
[(

1− Uho

εF

)1/2

− 1

4

(
1− Uho

εF

)−1/2
]}

.(A.42)
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As done previously for the zero temperature profiles, we can obtain lower-

dimensional versions of (A.42) by integrating over the appropriate coordinates.

The two-dimensional Sommerfeld profile becomes

ns(x, z) =

∫ ymax

−ymax

ns(x, y, z) dy

=
3N

2 π σx σz

[(
1− x2

σ2
x

− z2

σ2
z

)2

−π2

3

(
T

TF

)2 (
1− 2 x2

σ2
x

− 2 z2

σ2
z

)]
Θ

[
1− x2

σ2
x

− z2

σ2
z

]
, (A.43)

where we have used the same limits of integration as in the calculation of (A.39).

Likewise, using the same limits of integration employed in (A.40), we can integrate

(A.43) over the z-direction to obtain

ns(x) =
8 N

5 π σx

Θ

[
1− x2

σ2
x

] {(
1− x2

σ2
x

)5/2

+ 5π2

(
T

TF

)2
[

1

8

(
1− x2

σ2
x

)1/2

− 1

6

(
1− x2

σ2
x

)3/2
]}

. (A.44)

Note that integration of ns(x) over the x-direction will yield N/2, the number of

atoms per spin state. Furthermore, as expected, in the zero temperature limit,

(A.44) reduces to (A.40). A normalized one-dimensional Sommerfeld density pro-

file for T/TF = 0.10 is plotted in Figure A.4.

A.3.3 Finite temperature profiles

As the Sommerfeld profiles are valid only in the low temperature limit, there is

a need to consider density profiles for arbitrary temperatures. Previous theses
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[23, 24] from our research group have gone into substantial detail regarding the

derivation of these profiles. As such, I will present only the results.

As in preceding subsections, we consider a noninteracting Fermi gas with N/2

particles per spin state. Integration of the complete phase space density over all

momenta yields the three-dimensional spatial distribution,

n(x, y, z; T ) = − 3 N

π3/2 σx σy σz

(
T

TF

)3/2

Li3/2


exp




µ
εF
− x2

σ2
x
− y2

σ2
y
− z2

σ2
z

T/TF





 ,

(A.45)

where the polylog function is defined as,

Lin(x) =
∞∑

k=1

xk

kn
, |x| < 1. (A.46)

Using the series expansion of the polylog function, one can obtain lower di-

mensional spatial distributions [23, 24]. The two- and one-dimensional spatial

profiles, respectively, are

n(x, z; T ) = − 3 N

π σx σz

(
T

TF

)2

Li2

[
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and

n(x; T ) = − 3 N√
π σx

(
T

TF

)5/2

Li5/2

[
exp

(
µ
εF
− x2

σ2
x

T/TF

)]
. (A.48)

In closing, we note that the polylogarithm function Lin(x) has a singularity

at x = 1. Consequently, care should be exercised when performing numerical ma-

nipulations where the argument of the polylogarithm approaches 1. An example

of a one-dimensional Thomas-Fermi profile is plotted in Figure A.4.
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Figure A.4: Normalized one-dimensional density profiles for zero and finite tem-
perature harmonically trapped noninteracting Fermi gases. The dotted curve is a
zero temperature profile, while the dashed curve is a Sommerfeld density profile for
T/TF = 0.10. The solid curve is a Thomas-Fermi density profile for T/TF = 0.35.

A.3.4 High temperature limit

At sufficiently high temperature, quantum statistics become unimportant, and the

spatial density profiles can be derived by assuming Maxwell-Boltzmann statistics.

While the finite temperature Thomas-Fermi shapes derived in Section A.3.3 will

naturally tend toward classical shapes at high temperature, it is worthwhile to

present the analytic forms in the classical regime to facilitate a discussion of

temperature measurement techniques in Section 6.3.

The spatial profiles for harmonically confined classical gases are gaussian and

have been derived elsewhere (see, for example, previous theses from this group

[23,24]). The three-dimensional spatial profile for a noninteracting gas with N/2
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particles per spin state is
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N
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The two- and one-dimensional profiles are, respectively,
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and
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Appendix B

Imaging at high magnetic field

As discussed in Chapter 5, our primary method for extracting information from

our system involves absorption imaging of the fermion clouds in the presence of

a bias magnetic field. The bias field causes Zeeman tuning of the energy states

which we use for imaging. For the magnetic fields of interest, the degree of Zeeman

tuning of these states is large enough that the use of AOs to generate the desired

frequency shift in the probe beam is inconvenient. While we still use AOs so

we can accurately control the duration of the imaging probe pulse, the primary

technique for generating the desired frequency involves briefly disengaging the

servo system which keeps the dye laser locked to the D2 transition and shifting

the dye laser’s frequency using a GPIB programmable power supply. Once the

imaging process is complete, the dye laser is returned to its original frequency

and the frequency servo is engaged once again.

I will present information regarding the Zeeman tuning of the ground and

excited states in the presence of a magnetic field in Section B.1. This will tell us

the frequency shift required to conduct imaging at high magnetic field. However,

the process of shifting the dye laser’s frequency involves feeding a voltage to the

control box for the laser. Calibrating the relationship between this shift voltage

and the associated frequency shift is covered in Section B.2.
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B.1 Zeeman tuning of the ground and excited

states

In Section 2.4, we saw that the energy eigenvalues associated with the |1〉 and |2〉
hyperfine ground states assume the following form:

E1(B) = −1

4

(
ahf − 2 gI µB B + 2 ahf R+

)
(B.1)

E2(B) = −1

4

(
ahf + 2 gI µB B + 2 ahf R−)

. (B.2)

Recall that in the preceding expressions, ahf/h = 152.137 MHz is the hyperfine

coupling constant and ggnd
J = 2.002 is the total electronic g-factor for the 6Li

ground state, gI = −0.000448 is the total nuclear g-factor, µB is the bohr mag-

neton, and B is the external magnetic field. The R± factors that appear in (B.1)

and (B.2) are

R± =

√
(Z±)2 + 2. (B.3)

Z± =
µB B

ahf

(ggnd
J − gI)± 1

2
. (B.4)

Equations (B.1) through (B.4) provide all the necessary information about the

energy level tuning of the |1〉 and |2〉 hyperfine ground states as a function of

magnetic field.

In Section 5.4, we saw that the Zeeman tuning of the desired excited state is

given by

Eex(B) = µB

(
−3

2
gex

J + gI mI

)
B, (B.5)

where gI = −0.000448 and gex
J = 1.335 for the excited state. As the g-factor
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for the nucleus is much smaller than the g-factor for the electron, (B.5) can be

approximated by

Eex(B) ' −3

2
µB gex

J B. (B.6)

Now that the tuning of the ground and excited states has been established, we

are in a position to consider the absolute frequency shifts needed to image on

a transition between one of the hyperfine ground states and the desired excited

state. To do this properly, we need to outline a few properties of our frequency

standard which was first discussed in Section 3.2.6. Recall that the frequency

standard is established by monitoring the fluorescence from the perpendicular

intersection of a beam from the dye laser and an atomic beam of 6Li inside the

locking region vacuum system. The perpendicular intersection of the beams means

that the frequency of the D2 transition can be detected without any Doppler shifts.

Furthermore, as this excitation and detection occurs in the absence of a magnetic

field, the hyperfine structure is visible in the form of two quantum transitions

(from the F = 1/2 and F = 3/2 ground state manifolds). If the dye laser is

scanned over the D2 line, the resulting fluorescence signal looks like Figure B.1.

The lower frequency transition (the tall peak) represents transitions from the

F = 3/2 ground state manifold to the excited state, while the higher frequency

transition (short peak) is associated with transitions between the F = 1/2 ground

state manifold and the excited state. Under normal operation, the dye laser’s

reference cavity is locked to the taller fluorescence peak.

Before writing an equation for the total frequency shift between the hyperfine

ground states and the excited state, we should consider some frequency offsets

which exist in the system. Recall that our locking scheme places the dye laser

output frequency roughly 200 MHz below the F = 3/2 ground state to excited
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Figure B.1: Fluorescence in arbitrary units as a function of laser frequency in
GHz (this is not an absolute frequency). We see here the D2 line in 6Li. The
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peaks are separated by roughly 228 MHz. Under normal operation an electronic
servo locks the dye laser cavity to the tall fluorescence peak.
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state transition. Further, as discussed in the previous paragraph, we are inter-

ested in the tuning of the hyperfine states which start in the F = 1/2 ground

state manifold at zero magnetic field. These states are excited at a frequency

roughly 228 MHz larger than the F = 3/2 ground state to excited state transi-

tion. Hence, to excite the F = 1/2 ground state on the D2 transition at zero

magnetic field, we would need to upshift the laser frequency by roughly 428 MHz.

This is accomplished by two AOs in series in the camera beam path. Each AO

is set up in a double-pass configuration, such that the total frequency shift for

each AO is roughly 215 MHz. Using two AOs in series has the added benefit that

turning off the amplitude control to the AOs provides better protection against

leakage light than one AO alone. After exiting the second AO, the probe beam

is directed to a fiber which guides the probe beam toward the vacuum system.

What is important for our discussion here, however, is that the probe beam is

designed to be resonant with the F = 1/2 ground state to excited state transition

when the laser is locked and the atoms are at zero magnetic field. If we consider

(B.1) and (B.2), we see that for the two F = 1/2 states E1(0) = E2(0) = −ahf .

This non-zero value arises because when calculating the energy eigenvalues for the

hyperfine ground state, the “zero” is taken to be the energy level if one neglects

the coupling between the electronic and nuclear spins. When calculating how the

energy levels of the |1〉 and |2〉 states shift as function of magnetic field, however,

we want to set our energy origin at their zero magnetic field position. This is

readily accomplished by adding ahf to (B.1) and (B.2). Then the total frequency
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shifts for imaging on the |1〉 and |2〉 states at nonzero magnetic field are

∆E1(B) = Eex(B)− E1(B) + ahf (B.7)

∆E2(B) = Eex(B)− E2(B) + ahf , (B.8)

where Eex(B) is given by (B.6), and E1(B) and E2(B) are given by (B.1) and

(B.2), respectively. Equations (B.7) and (B.8) are plotted in frequency units in

Figure B.2 as a function of magnetic field. As (B.7) and (B.8) yield increasingly

negative values with increasing magnetic field, we conclude that the excited and

ground state energy levels involved in the imaging process tune toward each other

as a function of magnetic field. Consequently, to image on resonance at high

magnetic field, we need to shift the dye laser’s frequency to a lower value during

the imaging process. Some details of this operation are addressed in Section B.2.

B.2 Determining the frequency-to-voltage con-

version factor

During normal operation, the dye laser’s frequency is locked to the atomic fluo-

rescence from the locking region vacuum system. A servo system keeps the dye

laser on the atomic resonance by sending an error voltage to the “EXT SCAN”

input on the back of the 699 dye laser control box. This BNC post takes a ±5

volt input which is capable of driving the dye laser through the complete range

of the frequency scan. The range of the frequency scan is specified by the con-

trols on the front of the dye laser control box. When the laser is locked to the
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external signal provided by the atomic fluorescence from the locking region, the

voltage sent to the “EXT SCAN” post remains relatively constant, with small

fluctuations to compensate for excursions in the dye laser’s frequency.

When conducting high field imaging, however, the servo system is briefly dis-

engaged, and the voltage sent to the “EXT SCAN” input is shifted by an amount

that depends on several factors. As we saw in Section B.1, the hyperfine ground

states of interest Zeeman tune as a function of magnetic field. Hence, both the

magnetic field and the desired imaging transition must be considered when de-

termining this voltage shift. Furthermore, the frequency scan range specified by

the user on the front panel of the dye laser’s control box will be important in

determining the voltage which corresponds to the desired frequency shift.

As seen in Figure B.2, to image either spin state |1〉 or |2〉 at magnetic fields

up to 1000 gauss, we will need to be able to decrease the dye laser’s frequency

by about 1.5 GHz. To make this possible, when locking the dye laser, we must

place the atomic fluorescence peak near the upper portion of a frequency scan

whose width exceeds 1.5 GHz. To provide sufficient headroom, we set the dye

laser to have a 2.3 GHz wide scan. As the full 2.3 GHz scan should correspond

to ramping the input to the “EXT SCAN” post from -5 to +5 volts, we conclude

that the frequency-to-voltage conversion should be 2300 MHz per 10 volts, or 230

MHz/volt. However, this is a somewhat crude estimate of the frequency-to-voltage

conversion.

A better conversion factor can be obtained by using a Fabry-Perot interferom-

eter. Using a Coherent 240-2-B Fabry-Perot interferometer with a free spectral

range of 1.5 GHz, we can more precisely determine the frequency-to-voltage con-

version. With the dye laser scan width set to 2.3 GHz, and with the dye laser
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locked to the D2 fluorescence from the locking region, set the interferometer to

show two modes at once. Next, run a timing file which unlocks and shifts the

laser. If you fail to specify a frequency shift voltage, you will find that the dye

laser frequency remains at its “locked” value during the unlock and shift sequence.

However, as you specify larger and larger frequency shift voltages, you will find

that the modes on the interferometer will shift by a larger and larger amount. On

an oscilloscope, set cursors to mark the locations of the detected peaks from the

interferometer when the laser is locked. Then, find the voltage required to make

one of the detected peaks jump to the location of the adjacent peak. In doing so,

you find the voltage needed to shift the dye laser frequency by 1.5 GHz, the free

spectral range of the interferometer. Measurements indicate that it takes roughly

5.7 volts to shift the dye laser frequency 1.5 GHz, or approximately 263 MHz/volt.

This is a little more than 10% larger than the conversion factor crudely estimated

from knowledge of the dye laser’s frequency scan width.



Appendix C

Custom Software Upgrades

Much of the custom software required to operate the experimental system was

developed and installed by Stephen Granade, and has been described in his dis-

sertation [23]. Here, I describe recent software upgrades as well as new tools that

have been added to the lab’s custom software library. In Section C.1, I describe

two new usages of the DG535 Stanford Pulse Generators which are employed for

precise timing control. The remainder of the appendix is devoted to describing

the operation of two LabVIEW virtual instruments (VIs). In Section C.2, I dis-

cuss the operation of AutomateAcquisition.vi, which allows the user to automate

the acquisition of data. Finally, to send the so-called “lowering curves” to the

experimental system for conducting forced evaporation, we have been using the

LabVIEW program named Arbitrary Waveforms.vi. In Section C.3, I will de-

scribe the operation of this program. We begin, however, with a description of

the usage of the Stanford Pulse Generators.

C.1 New usage of Stanford Pulse Generators

The DG535 Stanford pulse generators, hereafter referred to as SPGs, are assigned

tasks that require high timing precision. For example, the processes of exciting

290
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the breathing mode, turning off the CO2 laser and generating the resonant probe

pulse are all handled by SPGs. The operation of the generators is relatively simple.

Upon receiving an external trigger, an SPG can output up to 4 independent timing

events, labelled A, B, C and D. The user can define the delays between each of

these timing events. While the output voltages and impedances of the SPG can be

configured by the user, they are essentially digital instruments: each output of the

SPG can exist in an “on” or “off” position. While there are only 4 independent

timing events, there are a greater number of outputs on the SPG. The outputs

labelled with a single letter (A, B, C, or D) change state according to the delay

times commanded by the user and remain in that state until all timing tasks are

completed by the SPG, at which point all channels are returned to their initial

states. However, there are also outputs which correspond to square pulses. These

outputs are labelled A-up-B-down, A-down-B-up, C-up-D-down, and C-down-D-

up (on the front panel of the SPGs, these outputs are identified by the upright or

inverted square pulses sandwiched between the letters A and B or C and D). The

A-up-B-down channel, for example, will emit a square pulse with a rising edge

when event A occurs and a falling edge when event B occurs.

In Section C.1.1, I will outline a software upgrade to Alter Channels.vi which

allows us to conduct simple error checking of the SPGs prior to running each

timing file. In Section C.1.2, I will describe the current scheme for storing con-

figurations in the SPGs to prevent timing errors which can arise when switching

between timing files.
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C.1.1 Error checking from within Alter Channels.vi

Due to the complexity of some of the timing files which control the 32 timing

channels and the SPGs, it is easy to send an invalid command to the SPGs. In

the past, the control of the timing system was a one-way street. The timing

system software would send commands to the system, but was unable to read

back information from elements within the timing system.1 This is no longer the

case. A simple error checking scheme has been implemented which will prevent

the user from making many common mistakes when commanding the operation

of the SPGs.

This software upgrade was deemed necessary because while certain SPG errors

can be detected by the LabVIEW software, LabVIEW was not able to detect all

such errors, including some of the most common ones. As the LabVIEW software

could not detect some SPG errors, the only way to become aware of such errors

was to read the front panel of the SPGs, which tended to occur only when the

system was obviously misbehaving or during the process of shutting down the

system.

The software upgrade amounts to a relatively small change in the diagram

panel of Alter Channels.vi. A small portion of the Alter Channels diagram panel

is shown in Figure C.1. The sub-VI SPG Error Check.vi handles all of the error

checking and alerts the user to the existence of errors in any of the SPGs. The

user must specify the GPIB address of all of the SPGs using a numeric array.

SPG Error Check.vi works by querying the SPGs for the existence of all classes

of errors. If no errors are reported, Alter Channels.vi proceeds by running the

1The only element which was able to record information from the system and funnel it back
to the computer was the Andor CCD camera, which is involved in only a small portion of the
timing system’s operation.
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Figure C.1: Near the bottom of the large While loop on the Alter Channels.vi
diagram panel is a Sequence structure nested inside a Case structure. The first
panel of the Sequence structure sends GPIB commands to the SPGs (and any
other GPIB programmable instruments needed for that timing file). The second
panel of the Sequence structure checks for errors in the SPGs using the sub-VI
SPG Error Check.vi. The user must tell the program the GPIB addresses of the
SPGs using a numeric array.
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timing file. If an error is reported, the user is alerted to the class of error that

has occurred. For an explanation of the error, the user must consult the SPG

owner’s manual. In closing, I note that the additional time required to perform

this error checking is small compared to the overall cycle time of the experimental

apparatus.

C.1.2 Use of stored configurations

As noted earlier, each SPG can output 4 time edges (A, B, C, and D) or pulses (la-

belled A-up-B-down, C-up-D-down, A-down-B-up, and C-down-D-up). In some

experiments, all of the available time edges will be used, while in others, one or

more may be unnecessary. This creates a potential danger if you are not careful

when writing timing files. Suppose that in timing file #1, you use pulses A-up-

B-down and C-up-D-down, and you program the appropriate pulse widths and

delay times. Then, suppose you switch to timing file #2, in which you wish to

use pulse A-up-B-down only. If you forget to turn off pulse C-up-D-down, this

pulse will still be output when you run timing file #2, an obviously undesirable

scenario. To overcome this problem, it is safest to make use of configurations

which can be stored in nonvolatile RAM in the SPGs.

Perhaps it is easiest to think of the stored configurations like templates. In

each timing file that requires the use of an SPG, select the template that most

closely matches your goals, then write only a few commands that modify that

template. Using stored configurations makes the GPIB programming process

cleaner, and reduces the likelihood that unintended pulses will remain active from

a previous timing file. The process of writing a configuration and storing it in the

SPG’s memory is handled by the timing file named SPG Configurations.txt. This
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file is located in the same directory as the other timing files.

After a few introductory notes at the beginning of the file, there are two

major sections. The first contains a list of all the GPIB commands that are

used to define the various configurations. The second portion of the timing file

contains a list of the 32 channels used in the timing system. This list of channels

is necessary to avoid getting an error from Alter Channels.vi when you run the

SPG Configurations.txt file.

For each configuration listed in the SPG Configurations.txt timing file, there

are several parts. First, there is a brief description of when you should use that

particular configuration. Next, there is a list of GPIB commands that define a

particular configuration. Finally, in the commented out lines at the end of each

configuration are a list of the commands that need to be used in each timing file

that makes use of that particular configuration.

If you want to understand all of the commands in the configuration file, you

should refer to the SPG manual. However, it is worthwhile at this point to

outline the general structure of the command sequence in the configuration files.

For each configuration, the first command is CL. This restores the SPG to its

factory default settings. That is, it sets the trigger mode to single shot, and it

configures the external trigger to occur at +1 volt on a positive slope with a high

impedance termination. All delay times are set to zero with T0 as the sync edge.

All outputs are configured to drive high impedance loads to TTL levels. All edges

are returned to normal polarity (the A, B, C, and D outputs all produce rising

edges). The commands that follow the CL command modify the factory default

settings. The next line usually sets the trigger mode to External and sets the

trigger level to 2.5 volts. Subsequent lines often configure the output impedances,
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levels, and offsets of various edges or pulses. This is the location where one can

set a given pulse to be “off” in a particular configuration. By starting from the

factory default settings, you have already ensured that all pulse durations are

zero seconds. However, as an added level of security, you can set the output

amplitude for channels you wish to remain off to 0.1 volts (the minimum allowed

pulse amplitude). Finally, each configuration concludes with the ST command,

which stores the configuration in the SPG’s nonvolatile RAM.

As mentioned earlier, there are also commented out lines that contain GPIB

command sequences that need to be called in the timing files that use that par-

ticular configuration. The first command is always RC, which recalls a stored

configuration. The remaining commands require numeric values of timing vari-

ables that must be generated in the individual timing files. Places where you need

to input a timing variable are indicated by braces.

Typically, you should not need to run the SPG Configurations.txt file unless

you notice an error in one of the configurations, or you need to write a new

configuration. However, when you write a new configuration or modify an

existing one, you must run the SPG Configurations.txt file in Alter

Channels.vi to send the updated configurations to the SPGs. Also, be

very careful when modifying an existing configuration; the behavior of

all timing files that use that stored configuration will change.

C.2 AutomateAcquisition.vi

AutomateAcquisition.vi (often referred to as “the VI” in the remainder of Sec-

tion C.2) is a crude attempt to automate the acquisition of data during lengthy
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data runs. It relies heavily on the machinery developed in Alter Channels.vi, and

as it was written hastily, some of the programming choices were not especially

elegant. What it lacks in beauty, however, it compensates for in function. Exper-

iments such as the studies of the breathing mode would not have been possible

without it.

Use of the program is fairly straightforward. First, the user selects a particular

timing file to be used in the data run. Next, he or she specifies a timing file

parameter that is to be varied during the data run. The user provides a start

and stop value for this parameter, as well as a step size. The VI then generates

a bunch of timing files in which the timing parameter of interest is varied from

“start value” to “end value” in units of “step size.” (The user also has the option

of providing a comma separated list of parameter values in lieu of the start, stop

and step values). The VI then randomizes the order of the timing files (to reduce

the effect of systematic drifts in the experiment) and runs the files one at a

time. When used in conjunction with the FK AR autolevel autosave.pgm BASIC

program written for the Andor MCD software, the VI will automatically run the

experimental system and save the data.

C.2.1 Intended usage of AutomateAcquistion.vi

When choosing between saving data manually using Alter Channels.vi and au-

tomating the data acquisition process using AutomateAcquisition.vi, consider the

following questions:

• Will you need to vary a particular experimental parameter during the course

of a data acquisition run?
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• If the answer to the first question is “yes”, will you need to vary this para-

meter over a wide range of values?

• Can the experimental parameter of interest be adjusted in the timing file?

• Will the data acquisition process be lengthy? (On the order of hours, for

example).

• Are you lazy, tired, or some combination of the two?

If the answer to all of the above questions is “yes”, then AutomateAcquisi-

tion.vi will likely be useful to you.

C.2.2 Using AutomateAcquisition.vi

The following series of steps should guide you through the process of using Au-

tomateAcquisition.vi. You can automate only the running of the experiment, or

you can automate the processes of running the experiment and saving the data.

There are separate subsections for these two cases.

To automate running of the system only

If you want to automate the control of the experimental apparatus while still

saving data manually, do the following:

1. If you are going to be saving background corrected images of your data,

make sure that you have already taken a background using Alter Chan-

nels.vi. Unfortunately, AutomateAcquisition.vi does not allow you to ac-

quire a background image.
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2. Examine the timing file you are going to use during your data acquisition

run. With the exception of the timing parameter that will be varied during

the data run, make sure that all of the timing parameters in the timing file

are set to the desired values.

3. Open AutomateAcquisition.vi and make sure you are looking at the contents

of the tab named “Load Timing File” (the leftmost tab). Press the little

folder icon at the right of the “Timing File” path control box to bring up

an “open file” dialog box. Select the desired timing file, and click “Open”.

Next press the large “Load Timing File*” button in the upper right portion

of the tab. (Make sure that the VI is running at this point). You should

now see the contents of the timing file in the “Text of Timing File” window

at the bottom of the screen.

4. Scroll through the “Text of Timing File” window until you find the timing

parameter that you wish to vary during the experimental run. Highlight

and copy this parameter.

5. Click on the “Configure Acquisition Sequence” tab (the middle tab). On

this tab, you will define the range of values over which to vary the timing

parameter of interest. The box in the upper left corner of the tab defines the

paths to various files needed to run the program; these filepaths should not

need to be changed often. In the box labelled “ACQUISITION SEQUENCE

PARAMETERS”, click in the text line beneath “Name of Timing Parame-

ter to be Varied” and paste the value that you copied in step 4. When

pasting this timing parameter, the lead “$” is optional. (The VI will accept

both $mot loading time and mot loading time, for example). You have two
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options for defining the range of values over which the timing parameter

of interest will be varied. A toggle switch named “List Creation Method”

at the right selects between the options. When the toggle switch is in the

“up” position, you should enter values in the “Start Value”, “End Value”

and “Step Size” boxes. During the course of the experimental run, Auto-

mateAcquisition.vi will vary the “Name of Timing Parameter to be Varied”

from “Start Value” to “End Value” in units of “Step Size”. Make sure that

“Start Value” is less than “End Value”. When the “List Creation Method”

toggle switch is in the “down” position, the timing parameter of interest

will be varied using a comma-separated list of values that can be entered in

the box to the right of the toggle switch. Note that a Mathematica note-

book named List for automated acquisition.nb (located in the LAB1 DOCS

directory on the network) can be used to create a comma-separated list of

parameter values which can be copied and pasted into Automate Acquisi-

tion.vi.

6. In the upper right corner of the “Configure Acquisition Sequence” tab is

a button labelled “Prepare Acquisition Sequence”. Press this button. You

should now see a sample text file in the window named “PREVIEW SAM-

PLE MODIFIED TIMING FILE.” Scroll through the timing file until you

find the timing parameter that you wish to vary. Verify that the value of

this parameter has been set equal to the provided “End Value.”

Note that the “Trial Number” control is meaningless when you do not intend

to automate the process of saving images.

7. Click on the rightmost tab named “Take Data.” A description of each of
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the controls and indicators is provided below.

• “Start Acquisition Sequence” button: press this button to begin the

data run

• “Stop” button: press this button to stop the data run after the present

loop of the timing file is completed

• “Queue Array” control: allows you to look at the sequence of timing

files that will be employed during the data run

• “Queue Offset” control: when set to zero, this control will instruct

the VI to loop through the entire list of timing parameters. When set

to a positive integer, this control allows the user to start a data run

“midway” through the list of timing parameters. (This feature might

be useful, for instance, if the laser falls out of lock midway through a

data run and you need to stop the program while you relock the laser.

When you restart the program, you can set the “queue offset” control

to start at the value of the timing parameter immediately before you

lost laser lock).

• “Currently Acquiring Shot Number” indicator: displays how many

shots you have taken during the present data run

• “Shots Remaining” indicator: displays how many shots are left in the

present data run

• “Present Shot” indicator: displays the value of the experimental para-

meter for the piece of data presently being acquired

• “Last Shot Acquired” indicator: indicates the value of the experimental

parameter for the previous loop of the timing file.
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• “Alter Channels Indicators*” box of indicators: displays several of

the indicators from the front panel of Alter Channels.vi. These are

provided so you can track the progress of each acquisition.

To begin the data run, simply set “Queue Offset” to the desired value (usu-

ally zero) and press “Start Acquisition Sequence.” When you press the start

button, a dialog box will appear. If you are not going to be automating the

image saving process, you can ignore this dialog box. Just press “Continue.”

The VI will loop through all the desired values of the timing parameter and

then stop. If you wish to stop the data acquisition process prematurely,

press “STOP.” The VI will complete data acquisition for the present value

of the timing parameter and then stop data acquisition. When the end of

the data run is reached (either when you press “STOP” or when the VI

naturally completes the data loop), another dialog box will appear. If you

are not automating the image saving process, you can ignore this dialog

box. Simply press “CONTINUE.”

Note: at the beginning of a data run, AutomateAcquisition.vi will loop

through the first value of the experimental parameter 3 times. This is

done because we have noticed that system performance varies depending on

the duration of MOT loading. It is recommended that you not save any

data until you reach the third shot at the first value of the experimental

parameter.

To automate running the system and saving the images

If you wish to automate the processes of running the system and saving the

images, do the following:
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1. Complete steps 1 through 5 listed in the section titled “To automate

running of the system only.”

2. In the upper right corner of the “Configure Acquisition Sequence” tab is

a button labelled “Prepare Acquisition Sequence.” Press this button. You

should now see a sample text file in the window named “PREVIEW SAM-

PLE MODIFIED TIMING FILE.” Scroll through the timing file until you

find the timing parameter that you wish to vary. Verify that the value of

this parameter has been set equal to the provided “End Value.”

Finally, note the “Trial Number” control just below the “Prepare Acqui-

sition Sequence” tab. When you automate the image saving process, Au-

tomateAcquisition.vi will assign filenames to the recorded data using the

following format:

(value of timing parameter)T(trial number).asc

If you want to take multiple data points at a given value of the timing

parameter of interest, you will need to take several data runs. (At present,

AutomateAcquisition.vi does not allow the user to take several data points at

each value of the experimental parameter). In this case, you will need to set

the “Trial Number” control to 1 for the first data sequence, 2 for the second

sequence, and so on. BE CAREFUL HERE: IF YOU NEGLECT

TO UPDATE THE “TRIAL NUMBER” CONTROL AT THE

BEGINNING OF A DATA RUN IN WHICH YOU WISH TO

ACQUIRE A SECOND (OR THIRD, OR FOURTH...) PIECE

OF DATA FOR EACH VALUE OF THE TIMING PARAMETER

OF INTEREST, YOU MIGHT OVERWRITE SOME OF YOUR
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PREVIOUS DATA.

3. Click on the rightmost tab named “Take Data.” A description of each of

the controls and indicators is provided below.

• “Start Acquisition Sequence” button: press this button to begin the

data run

• “Stop” button: press this button to stop the data run after the present

loop of the timing file is completed

• “Queue Array” control: allows you to look at the sequence of timing

files that will be employed during the data run

• “Queue Offset” control: when set to zero, this control will instruct

the VI to loop through the entire list of timing parameters. When set

to a positive number, this control allows the user to start a data run

“midway” through the list of timing parameters. (This feature might

be useful, for instance, if the laser falls out of lock midway through a

data run and you need to stop the program while you relock the laser.

When you restart the program, you can set the “queue offset” control

to start at the value of the timing parameter immediately before you

lost laser lock).

• “Currently Acquiring Shot Number” indicator: displays how many

shots you have taken during the present data run

• “Shots Remaining” indicator: displays how many shots are left in the

present data run

• “Present Shot” indicator: displays the value of the experimental para-

meter for the piece of data presently being acquired
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• “Last Shot Acquired” indicator: indicates the value of the experimental

parameter for the previous loop of the timing file.

• “Alter Channels Indicators*” box of indicators: displays several of

the indicators from Alter Channels.vi. These are provided so you can

conveniently track the progress of each acquisition.

To begin the data run, simply set “Queue Offset” to the desired value (usu-

ally zero) and press “Start Acquisition Sequence.” A dialog box will appear.

The dialog box reminds you to perform tasks that will be discussed in more

detail in the remaining steps.

4. The dialog box first reminds you that you need to set the “Trial Num-

ber” control to the right value. Next, you are reminded that you should

have already saved a background image in the Andor MCD program (this

task should have been completed in step 1). Next, you are told to select

FK AR autolevel autosave.pgm using “Run program by filename” (available

in the File menu) in the Andor MCD program. When you have opened this

program in Andor MCD, search for line of code which defines datadirec-

tory$. Set datadirectory$ equal to the desired filepath for the data you will

save. When you start running FK AR autolevel autosave.pgm, the Andor

MCD program will display a dialog box reminding you to properly set the

target directory for the data. Press any key to dismiss this dialog box. With

the Andor MCD program now running, you can return to AutomateAcqui-

sition.vi and press “CONTINUE” to dismiss the dialog box reminding you

to complete all the tasks discussed in this step.

5. At this point, both the Andor MCD program and AutomateAcquisition.vi
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should be running. The VI will run the system with a given value of the

timing parameter of interest, and the Andor MCD program will automati-

cally save the data with the appropriate filename. The VI will loop through

all the desired values of the timing parameter and then stop. If you wish to

stop the data acquisition process prematurely, press “STOP.” The VI will

complete the data acquisition for the present value of the timing parameter

and then stop data acquisition. When the end of the data run is reached (ei-

ther when you press “STOP” or when the VI naturally completes the data

loop), another dialog box will appear. This dialog box urges you to press

the “Stop” button in the Andor MCD program once it is finished saving the

most recent data shot. If you do not stop the Andor MCD program, it will

save files with an incorrect filename when you start acquiring images again.

Note: at the beginning of a data run, AutomateAcquisition.vi will loop

through the first value of the experimental parameter 3 times. This is done

because we have noticed that system performance varies depending on the

duration of MOT loading. To be certain that all data is acquired under

similar conditions, the Andor MCD program will not save any data until

the third shot at the first value of the experimental parameter.

C.2.3 Operation of AutomateAcquisition.vi

This section describes in more detail the operation of the VI. The information

that follows will be useful if you encounter some bugs in the VI or if you attempt

to upgrade the VI at some point in the future.

The initial stages of the program are fairly straightforward. First, you read
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in a given timing file. Next, you tell the VI which timing parameter you wish

to vary, and then you provide the VI with a start value, an end value, and a

step size for this timing parameter. (Alternatively, you can provide the program

with a comma-separated list of timing parameter values). When you instruct

the VI to prepare the acquisition sequence, it generates a different timing file for

each value of the timing parameter. Suppose you want to vary the $time of flight

variable from 200 µs to 500 µs in steps of 100 µs. When you press “PREPARE

ACQUISITION SEQUENCE” in the “Configure Acquisition Sequence” tab, the

VI will generate 4 timing files: 200.txt, 300.txt, 400.txt and 500.txt. The timing

files are generated in the following manner: the VI searches through the original

timing file and locates the timing parameter variable name. It then sets the

parameter equal to the “Start Value”. It saves a new timing file with the name

(Start Value).txt. It then repeats the process for all other values of the timing

parameter. These timing files are placed in the same directory as the original

timing file.

Next, the VI randomizes the order of these newly generated timing files. This

is done to compensate for systematic drifts in the experimental apparatus. When

you press the “START ACQUISITION SEQUENCE” button on the “Take Data”

tab, the VI takes the first timing file from the randomized list of timing files, com-

mands Alter Channels.vi to load the timing file, and then run it. (Note that a

copy of Alter Channels.vi appears in the diagram screen for AutomateAcquisi-

tion.vi). At the beginning of each data run, the first timing file in the queue

will be run 3 times. This is done in the hope that the user will save only the

third piece of data, thereby minimizing the impact of long MOT loading times

on system performance. When the end of an acquisition run is reached, all of the
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timing files (200.txt, 300.txt, 400.txt and 500.txt, in the example introduced in

the previous paragraph) are deleted. If you press “STOP” before the end of an

experimental run, these files will not be deleted.

As AutomateAcquisition.vi works its way through the list of timing files (200.txt,

300.txt, 400.txt and 500.txt, in the example scenario) it saves a list of filenames

to a text file called NameHolding.txt located in the following directory: Jet-

project/jetlab/Network Harddrives for Lab Computers/LAB1 DOCS/Computer

Control System/Control VIs and Programs/Timing System – Automated Acqui-

sition. The first line of this text file lists the filename to be used by

FK AR autolevel autosave.pgm in the Andor MCD program when saving the first

file. The second piece of data will be saved under the filename listed on the second

line of the NameHolding.txt file, and so on. Unfortunately,

FK AR autolevel autosave.pgm is written in Andor BASIC, which has a puny set

of file handling capabilities. When the read() function is called in Andor BASIC,

the program will read only the first line of text in a text file. If you call the

read() function yet again for the same text file, it will read the second line of

that text file, and so on. As long as the name of the text file does not change,

Andor BASIC will continue to read successive lines of that text file. As a result,

the user must always remember to press STOP in the Andor MCD

program at the end of a data acquisition run. If not, the Andor MCD

program and AutomateAcquisition.vi will fall out of sync. Consider:

each time you start a new data run in AutomateAcquisition.vi, the VI will delete

the old NameHolding.txt file and begin generating a new one. Consequently, if

you failed to stop Andor MCD after the most recent data run (suppose you took

40 shots in the data run), it will look on the 41st line of NameHolding.txt file for
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a filename. Of course, at this point, AutomateAcquisition.vi has already deleted

the old NameHolding.txt file and generated a new one which is only one line long

after the first piece of data is acquired. Andor MCD will get cranky, which will

undoubtedly make you cranky as well. The VI will display dialog boxes reminding

the user to avoid this problem by stopping the Andor MCD program at the end

of each data run.

Finally, it is important to note one more aspect about the way in which pieces

of data are automatically saved: AutomateAcquisition.vi and

FK AR autolevel autosave.pgm are written under the assumption that the read-

out time for the camera CCD array is long. How long? Long enough that by

the time the image is finally ready to be saved, AutomateAcquisition.vi has al-

ready started running the next timing file. It is important to note that the VI

does not update NameHolding.txt until it reaches the end of a particular timing

file. This should not be a problem under most circumstances since the camera

shots are usually taken less than 2 seconds from the end of a timing file, and it

typically takes close to 10 or 15 seconds to read out a camera shot. By this time,

NameHolding.txt file will have been updated, and LabVIEW and Andor will be

in sync. If short readout times are used, however, then pieces of data might not

be saved with the appropriate name.

C.3 Arbitrary Waveforms.vi

In the process of performing forced evaporation, two Agilent 33250A signal gen-

erators are used to control the depth of the FORT via amplitude modulation of

the RF signal supplied to an IntraAction AO at the CO2 laser’s output. The
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mathematical expression used to determine the FORT depth as a function of

time is given in [23,24], and when used in conjunction with measurements of the

laser power transmitted through the AO as a function of the AO crystal’s RF

drive amplitude, the user can establish the relationship between the amplitude

control voltage directed to the AO and the resulting FORT trap depth. This AO

amplitude control voltage versus time curve is referred to as the “lowering curve.”

When the Agilent 33250A signal generators were first added to the system

to control the process of forced evaporation, the process of programming them

involved a number of steps. First, the user needed to modify the timing file to

establish the desired lowering curve parameters (how long to lower the trap, etc.).

Next, these same parameters needed to be updated in a Perl script. This Perl

script would then be executed, and would produce several output files which con-

tained the lowering curves in various formats. One of these formats was designed

to be used with Agilent’s software for controlling the 33250A signal generators.

After the lowering curves were imported into the Agilent program, they were sent

via GPIB cable to the signal generators. Once the lowering curves were stored

in the signal generator’s memory, the user would then need to walk to the signal

generator and execute a series of keystrokes on the front panel to configure the

generator to output the lowering curve once upon receiving an external trigger.

This process would need to be completed for each signal generator.

Clearly, the sequence described in the previous paragraph could become te-

dious, especially when experimenting with lowering curve parameters to determine

the optimum lowering sequence. Arbitrary Waveforms.vi was written to automate

many of these steps. In Section C.3.1, I will describe the proper usage of Arbi-

trary Waveforms.vi, and in Section C.3.2 I will discuss the operation of the VI in
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greater detail.

C.3.1 Using Arbitrary Waveforms.vi

The front panel of Arbitrary Waveforms.vi is displayed in Figure C.2. There

are 8 subsections of the front panel and their outlines are denoted by the green

boxes. Each of these subsections will be described in turn. The box in the

upper left corner is labelled “GPIB Addresses” and contains two numeric controls

with which the user can specify the GPIB address of the two Agilent 33250A

arbitrary waveform generators which are used in the lowering curve sequence.

Below this is a box containing two push buttons, one labelled “Disable Outputs”

and the other labelled “Send.” Pressing the Disable Outputs button will disable

the outputs of both arbitrary waveform generators while pressing the Send button

will initiate the process of creating the lowering curves and sending them to the

arbitrary waveform generators (this latter process will be described in greater

detail throughout the remainder of this section). To the right of these boxes is a

subsection named “File Path Specifications.” Here, the user can define the path

to reach the root directory of the timing system, the path to the Perl script for the

lowering curve, and the path to the timing file directory. These path constants

should be changed only when alterations in the timing system control directory

structure have been made. To the left of the File Path Specifications area is a

section labelled “Input Parameters.” This panel contains the most critical input

controls for the VI. The dropdown list “Lowering Curve Generator” allows the

user to select the Perl script to be used for generating the lowering curves. The

“Select Timing File” box allows the user to select the desired timing file using the

numeric control at the left. The “Tau (sec),” “Recompress to,” “Offset (mV),”,
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“Tau 2 (sec),”, and “Final Depth” controls are used to set critical parameters for

the lowering curves. These controls will be discussed in greater detail in a moment.

Below the “File Path Specifications” and “Input Parameters” boxes is a box with

a horizontal row of round LED indicators with a status key shown at the left.

Above each LED is a descriptive name of a process that occurs when the user

presses the Send button. When the LED is dark green, the process has not begun.

When the LED is blinking yellow, the associated process is in progress. When

the LED switches to a bright green color, the process has been completed. When

all of the LEDs have turned bright green, the process of sending the arbitrary

waveforms has been completed. Below the box of LEDs is a section that contains

two graphs showing the lowering curves being sent to the two arbitrary waveform

generators. To the right of this box is a small box containing a push button

labelled “VIEW NOTES.” Pressing this button will display a dialog box showing

helpful hints on the usage of the VI. Above this box is a subsection of the front

panel labelled “Lowering Parameters.” There are a number of indicators in this

box which show the parameters associated with the lowering curve which were

read from the user-selected timing file.

While this array of controls and indicators might seem daunting at first, the

learning curve for using Arbitrary Waveforms.vi is not especially steep. The

following discussion will help acclimate you to the VI while describing the basics of

its operation. For a more detailed nuts-and-bolts discussion of the VI’s operation,

please see Section C.3.2.

Before delving into too much detail, it is worth describing how the Agilent

33250A arbitrary waveform generators and Arbitrary Waveforms.vi fit into the

grand scheme of an experimental sequence. The process of forced evaporation
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Figure C.2: Front panel of Arbitrary Waveforms.vi. The operation of the VI is
described in the text.

involves a number of steps. First, the bias magnetic field must be set to the ap-

propriate value; this is accomplished using the timing file and a power supply on

the system. With the bias magnetic field at the desired value, the depth of the

FORT can be lowered. This process is controlled by the 33250A arbitrary wave-

form generators. The generators receive an external trigger from the 32 channel

breakout panel and begin to output waveforms which control the lowering (and

reraising) of the FORT. These lowering curve waveforms must be stored in the

arbitrary waveform generators ahead of time using Arbitrary Waveforms.vi (that

is, the lowering curves must be sent to the arbitrary waveform generators be-

fore the timing file is run). Once the process of forced evaporation and FORT

recompression is completed, other elements in the system handle the remaining

experimental manipulations. Of course, these other devices on the experimental
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system must have information regarding the lowering curve sequence and dura-

tion. As a result, many of the lowering curve parameters must be defined in the

timing file, so all of the devices on the system have access to that information.

However, there are some experimental parameters which are relevant to only the

arbitrary waveform generators, and these parameters are defined on the front

panel of Arbitrary Waveforms.vi. It is worthwhile outlining where each of these

parameters are defined, as well as their meaning. We will begin with a discussion

of each parameter’s meaning.

A single lowering sequence consists of four time intervals, as seen in Figure C.3.

The first time period is referred to as the “lowering time,” in which the trap depth

U(t) obeys

U(t) = U0

(
1

1 + t/τlc

)1.45

, (C.1)

where U0 is the initial trap depth, t is the time elapsed from the start of lowering,

and τlc is the lowering time constant [23, 24]. Suppose we lower the trap depth

over a time period denoted by tlower. Then U(tlower) is the trap depth at the

conclusion of the lowering sequence. The trap depth is maintained at this value

for a length of time referred to as the “low flat time.” At the conclusion of “low

flat time,” the trap depth is reraised to a user-specified value Ufinal over a time

period defined by the “raise well time,” traise. An exponential curve governs the

reraising process, such that if the time origin t = 0 corresponds to the start of

reraising, we have

U(t) = Ufinal exp

{
(traise − t) ln [U(tlower)/Ufinal]

traise

}
. (C.2)

Finally, the trap is held at depth Ufinal for a duration specified by “high flat
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Figure C.3: The normalized trap depth is plotted as a function of time after the
start of the forced evaporation sequence. For a single lowering curve sequence,
there are four distinct time periods: the lowering time, the low flat time, the raise
well time, and the high flat time.

time.”

The combination of “lowering time,”, “low flat time,”, “raise well time,” and

“high flat time” constitutes a single lowering curve sequence. When this scheme

for conducting forced evaporation was first implemented, a single lowering curve

sequence was all that was required for each experimental cycle. Since that time,

however, more complex experimental manipulations have required expanding the

capabilities of the system to conduct two lowering curve sequences in succession.

Such a lowering curve is displayed in Figure C.4. The second lowering and rerais-

ing sequence proceeds in exactly the same fashion as the first lowering and rerais-

ing sequence. The time dependence of the trap depth during “lowering time 2”

is governed by (C.1) and the time dependence of the trap during “raise well time

2” is given by (C.2). Finally, it is important to note that the time constants and

time durations used in the first and second lowering sequences are completely in-
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Figure C.4: The normalized trap depth is plotted as a function of time after the
start of forced evaporation. For the dual lowering curve sequence, there are eight
distinct time periods, as labelled on the above graph.

dependent. Different lowering time constants can be used during “lowering time”

and “lowering time 2,” just as different trap depths can be selected for “high flat

time” and “high flat time 2.”

Now that the various portions of the lowering curve have been identified, I

will outline where these various parameters are defined in the custom software.

The durations of the different parts of the lowering curve sequence are defined

in individual timing files. Since Arbitrary Waveforms.vi must have access to

this information, there are precise naming conventions that must be used when

writing the timing files. These names are nearly identical to the names shown

in Figure C.4, with some slight modifications. As the timing files are processed

by a Perl script, and as variables in Perl must be preceded by a $ sign and

cannot have spaces in them, the various lowering names must be slightly modi-

fied. The following is the name list that must be employed when writing timing

files if those timing files are to be used successfully by Arbitrary Waveforms.vi :
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$lowering time, $low flat time, $raise well time, $high flat time, $lowering time2,

$low flat time2, $raise well time2, and $high flat time2.

As noted earlier, there are several lowering curve parameters that are needed

by Arbitrary Waveforms.vi alone, and these parameters can be entered directly

from the front panel of the VI. The dropdown list “Lowering Curve Generator”

allows the user to select the Perl script to be used for generating the lowering

curves. The user must also specify the desired timing file using the “Select Timing

File” control. The control labelled “Tau (sec)” corresponds to the value of τlc used

in (C.1) for the first lowering sequence, while “Tau 2 (sec)” is the corresponding

lowering time constant for the second lowering curve sequence. The “Recompress

to” control lets the user specify the desired trap depth during “high flat time”

in percent (with 100% representing maximum trap depth). The “Final Depth”

control lets the user set the desired trap depth during “high flat time 2.” Finally,

to obtain the most effective cooling, it is convenient to have a control that permits

the user to provide a small DC shift in the voltage which controls the trap depth.

This degree of freedom is provided by the “Offset (mV)” control. By setting this

control to a negative value, the trap depth during “low flat time” and “low flat

time 2” can be made shallower.2 Or, if the user wishes to have a deeper trap at

the lowest well depth, “Offset (mV)” should be set to a positive value. Note that

as there is only one “Offset” control, the user does not have the freedom to use

different offsets for the two lowering curve sequences. At present, we find that

setting “Offset (mV)” to a value between -120 and -180 mV provides the most

effective evaporative cooling.

2In actuality, setting the Offset control to a negative value makes the trap shallower through-
out the entire lowering curve sequence. However, the effect is most apparent at the lowest trap
depths.
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Now that most of the necessary background information has been developed,

the following subsection will provide the sequence of steps one should follow to

use Arbitrary Waveforms.vi.

Step-by-step instructions for using Arbitrary Waveforms.vi

The following is a step-by-step guide to using Arbitrary Waveforms.vi.

1. Begin by setting the $lowering time, $low flat time, $raise well time,

$high flat time, $lowering time2, $low flat time2, $raise well time2, and

$high flat time2 variables to the desired values from within the desired tim-

ing file. If you wish to have only one lowering and reraising sequence in the

timing file, set all variables that end in 2 equal to zero. Be sure to save the

timing file after the alterations are complete.

2. Open Arbitrary Waveforms.vi and make sure that it is running. Select the

desired lowering curve from the drop down list on the front panel.

3. Select the timing file you modified in Step 1 in the “Select Timing File”

control on the front panel.

4. On the front panel of the VI, enter the desired values for the following

variables: “Tau (sec),” “Tau 2 (sec),” “Offset (mV),” “Recompress to,”

and “Final Depth.” Note that if you are going to use only one lowering and

reraising sequence, then “Tau 2 (sec)” and “Final Depth” will be irrelevant.

5. Double check that all of your timing parameters are set to the desired values,

and then press the “Send” button on the front panel. The VI will read the

timing parameters from the timing file and display them in the “Lowering
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Parameters” pane on the front panel. Verify that these numbers match

those you entered in the timing file.

6. The VI will output the lowering curves to the arbitrary waveform generators.

You can monitor the progress of the VI by watching the blinking LEDs in

the center of the front panel. When the process is complete, a dialog box

will be displayed informing the user that the arbitrary waveform generators

are ready. Pressing “OK” dismisses the dialog box and enables the outputs

of the arbitrary waveform generators.

7. The lowering curves are now stored in the arbitrary waveform generators

and the generators will output those waveforms upon receiving a trigger

from the 32 channel breakout panel. You can now run the timing file from

within Alter Channels.vi or Automate Acquisition.vi.

If you wish to disable the outputs of the arbitrary waveform generators, simply

press the “Disable Outputs” button on the front panel of the VI. Finally, before

moving on to a technical discussion of the operation of Arbitrary Waveforms.vi

in Section C.3.2, I will outline the steps to take when you wish to add a lowering

curve or a timing file to the available lists of files on the front panel.

Adding lowering curves to the drop-down list

Adding new lowering curves to the drop-down list in Arbitrary Waveoforms.vi

is a multi-step process which is described in the Notes section of the VI (which

can be accessed by pressing the “VIEW NOTES” button on the VI’s front panel

when the VI is running). The instructions for adding a new lowering curve are

repeated here.
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1. Stop the VI. On the front panel, select the last item in the dropdown list

labelled “Lowering Curve Generator”. Next, right click on the drop-down

list and select “Add Item After.” A text cursor will begin flashing in the

drop down list. Type the name of the lowering curve you wish to add to

the list and hit “Enter” on the numeric keypad.

2. Switch to the diagram, and look at frame #1 in the 10-frame sequence

structure in the center of the diagram window. (If you cannot see this

sequence structure, you might need to change the value of the very large case

structure.) Inside the 10-frame sequence structure is a small case structure

which lists the names of the lowering curves. Make sure you are looking

at the highest numbered case in the case structure. Right click on the

header in the case structure and select “Add Case After.” LabVIEW will

automatically generate a name (in this case, a number) for the case you wish

to add. Hit “Enter” to select this number. Now, place a string constant

containing the name of the new lowering curve in the new case window and

wire it to the string exit tunnel on the left side of the case structure.

The new lowering curve should now be available to you.

Adding new timing files to the list in Arbitrary Waveforms.vi

Adding a new timing file to the list of available timing files in Arbitrary Wave-

forms.vi is relatively straightforward. When the VI is first opened and the user

presses the Run button, the VI will generate a list of all the timing files in the

timing files directory. Consequently, if you created a new timing file after you

started running Arbitrary Waveforms.vi, you will need to stop and restart the VI
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in order for it to recognize the new timing file.

C.3.2 Operation of Arbitrary Waveforms.vi

The preceding subsections were designed to present the basic knowledge one needs

to use Arbitrary Waveforms.vi. This subsection goes into greater detail regarding

the operation of Arbitrary Waveforms.vi and is intended to be of assistance to

those who wish to expand or modify the existing code. An explanation of the

operation of the code is most easily conducted by considering the sequence of

events that occur when the “Send” button is pressed on the front panel of the VI,

so that will be the general method employed in this section. Please note that the

details below are accurate for version 8.0 of Arbitrary Waveforms.vi. If someone

fails to update the version number when saving changes to the VI following an

upgrade, these notes might not be applicable.

If you look at the diagram for Arbitrary Waveforms.vi, you will note a very

large sequence structure with two frames. In the zeroth frame is a simple bit of

code which reads the list of timing files from the timing file directory. This is the

first event that occurs when you first run the VI. Note also that this is the only

time that the VI checks to see which timing files are available. As noted earlier,

if you write a new timing file after you have started Arbitrary Waveforms.vi, you

will need to stop and restart the VI before it will recognize the new timing file.

The next and final frame in the very large sequence structure contains the

remainder of the code for the VI. Contained inside the very large frame of the

sequence structure is a large While loop. The large While loop has three essential

elements: a small case structure toward the bottom which allows the user to dis-

play a notes dialog after pressing “VIEW NOTES” on the front panel of the VI, a
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small While loop that disables the outputs of the arbitrary waveform generators

when the “Disable Outputs” button is depressed on the front panel, and a large

While loop which contains the code that determines the sequence of events that

occur when the user presses the “Send” button on the front panel. As the opera-

tion of the first two elements in the preceding list are relatively straightforward, I

will concentrate on the contents of the large While loop which contains the code

for sending the waveforms to the arbitrary waveform generators.

Inside the large While loop is a large case structure whose input is the “Send”

button on the front panel of the VI. If the “Send” button is not pressed, no action

is taken (the “False” instance of the case structure). However, when the “Send”

button is pressed, and the “True” case of the case structure is accessed, a minute-

long series of events occurs. The sequencing of these events is controlled by an

11-frame sequence structure. The following enumerated list details the actions

of each frame in the sequence structure. The lead number in the following list

corresponds to the numeric frame identifier shown at the top of the sequence

structure.

0. Both arbitrary waveform generators are initialized using the sub-VIs de-

signed for the Agilent 33250A waveform generators. Further, all of the

indicator LEDs are reset to the dark green state. Finally, at a later stage, a

new Perl script named Modified Lowering Curve.pl will be generated. This

frame deletes this file that remained from the previous time the program

was run.

1. Here the outputs are disabled for both arbitrary waveform generators. Also

in this frame, the lowering curve Perl script specified by the user on the
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front panel is read and converted into a string.

2. There are two sequence structures embedded in this frame of the larger

sequence structure. In the small sequence structure in the lower left corner

of this frame, the timing file specified by the user is read and converted

to a string. This string is then searched for each of the timing parameters

($lowering time, $low flat time, etc.). Note that the parameters from the

timing file will not be identified properly unless they have precisely the

names that are listed in this sequence structure. The string values of the

timing parameters are then converted to numeric values and displayed on

the front panel of the VI. The string values of the lowering curve parameters

read from the timing file are also passed to the sequence structure in the

upper portion of this frame. This sequence structure searches the string

contents of the lowering curve Perl script for specific strings and replaces

those strings with the values read from the timing file. The original Perl

script which was read in Step 1 does not contain the numeric values for

the lowering parameters. The locations in the Perl script where we wish

to insert numeric values for the lowering parameters are marked by dummy

strings with names such as “inputlowertime” and “inputlowflattime.” The

LabVIEW code will replace the string “inputlowertime” in the Perl script

with the numeric value of $lowering time from the timing file. The next

frame of the sequence structure replaces the string “inputlowflattime” with

the numeric value of $low flat time read from the timing file, and so on. For

the correspondence between the dummy strings in the lowering curve Perl

script and the associated source of the numeric values, see Table C.1. Once

all of the dummy strings have been replaced with numeric values drawn from
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Dummy string in Perl script Variable name in timing file Front panel control

inputlowertime $lowering time –
inputlowflattime $low flat time –
inputraisetime $raise well time –
inputflattime $high flat time –
inputloweringtime2 $lowering time2 –
inputlowflattime2 $low flat time2 –
inputraisewelltime2 $raise well time2 –
inputhighflattime2 $high flat time2 –
inputtau – Tau (sec)
inputtau2 – Tau 2 (sec)
inputfracdepth – Recompress to
inputfracdepth2 – Final Depth

Table C.1: The above table gives the correspondence between the dummy vari-
ables in the lowering curve Perl script and the associated numeric values in the
timing file or the front panel of Arbitrary Waveforms.vi. A dash indicates that
information regarding that particular timing parameter is not located in the in-
formation source (timing file or front panel of VI) which labels that column.

the timing file or the front panel of the VI, the resulting string is passed to

the next frame in the sequence structure.

3. The string containing the modified Perl script is written to a new Perl script

named Modified Lowering Curve.pl which is placed in the same directory as

the original Perl script.

4. Here, the modified Perl script (Modified Lowering Curve.pl) is executed.

The execution of the Perl script results in the creation of several new files.

Of these, the files amp35wave.txt and amp40wave.txt will be used in later

frames in this sequence structure.
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5. This frame forces a 0.5 second pause in the execution of the program to be

certain that the amp35wave.txt and amp40wave.txt files have been gener-

ated.

6. This frame sends GPIB commands to the arbitrary waveform generator

which controls the amplitude of the ≈ 32 MHz signal sent to the AO. Note

that for historical reasons some of the files associated with the 32 MHz

signal are labelled with “35” (amp35wave.txt, for example). At the top of

the frame, the durations of the various lowering curve segments are added

together to calculate the period of the lowering curve. This is converted

to a frequency and added to an array of GPIB commands to be sent to

the arbitrary waveform generator. Next, the upper and lower voltage limits

are specified. The maximum voltage for the arbitrary waveform generator

is specified by the variable $topamp35 in the lowering curve Perl script.

Then, the text file amp35wave.txt (which was generated in Step 4) is read

and the data from this file is converted to integer values which maximize the

output resolution of the arbitrary waveform generator. Finally, the arbitrary

waveform generator is configured to operate in burst mode, outputting the

arbitrary waveform once upon receiving an external trigger. The output

impedance of the arbitrary waveform generator is set to 2 kΩ.

7. This frame forces a 0.1 second pause between the sending of data to the

first and second arbitrary waveform generators.

8. This frame conducts essentially the same steps for the 40 MHz generator

as those done in Step 6 for the ≈32 MHz generator, with the following

exceptions. The maximum magnitude of the 40 MHz control voltage is
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specified by the variable $topamp40 in the lowering curve Perl script, and

the text file amp40wave.txt is used as the source of the data points for

the lowering curve. Finally, note that this is the frame where the “Offset

(mV)” control comes into play. The amplitude of the lowering curve can

be effectively stretched or compressed by a small amount to either raise or

lower the trap depth.

9. This is the error-checking frame. Both arbitrary waveform generators are

sent an error query. If either generator experienced an error, that error is

reported to the user and the user is given the option of enabling the outputs

of both generators (even though one or both experienced an error) or leaving

the generators disabled. If no errors are encountered, the user is informed

that both generators are ready to continue. The user can press “OK” to

dismiss this dialog box, at which point both arbitrary waveform generators

will be enabled.

10. Finally, some of the indicator LEDs are reset to their default colors.

In closing, the reader is cautioned once more that the preceding discussion

is applicable for version 8.0 of Arbitrary Waveforms.vi. Newer versions might

feature code which is not described in the preceding discussion.
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