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Abstract

A trapped Fermi gas near a collisional resonance provides a unique laboratory for

testing many-body theories in a variety of fields. The ultracold Fermi gas produced

in our lab is comprised of the lowest two spin states of 6Li. At 834 G there is a

collisional or Feshbach resonance between the two spin states. The scattering length

between trapped atoms of opposing spins far exceeds the interparticle spacing of the

gas. On resonance, a strongly interacting, unitary, Fermi gas is created which exhibits

universal behavior. The unitary Fermi gas is a prototype for other exotic systems in

nature from nuclear matter to neutron stars and high temperature superconductors.

For magnetic fields less than 834 G the scattering length is positive, and pairs

Fermi atoms can form molecular dimers. These dimers, comprised of two fermions, are

bosons. At ultracold temperatures the molecular bosons populate the lowest energy

level and form a Bose Einstein Condensate (BEC). For magnetic fields greater than

834G the scattering length between fermions in opposing spin states is negative, like

Cooper pairs formed between electrons in a superconductor. The Bardeen, Cooper,

and Shriefer (BCS) theory was developed to describe the pairing effect in the context

of superconductors. In our experiment we produce an ultracold unitary gas. By

tuning the magnetic field to either side of the Feshbach resonance we can transform

the gas into a weakly interacting BEC or BCS superfluid. Therefore, the region near

a Feshbach resonance is called the BEC-BCS crossover.

This dissertation presents a precision measurement of the hydrodynamic sound

iv



velocity in an ultracold Fermi gas near a Feshbach resonance. The sound velocity

is measured at various magnetic fields both above and below resonance. Moreover,

we are able compare our measurements to theoretical descriptions of hydrodynamic

sound propagation. Further, our measurement of sound velocity exactly reproduces

the non-perturbative case, eliminating the need to consider nonlinear effects. At

resonance the sound velocity exhibits universal scaling with the Fermi velocity to

within 1.8% over a factor of 30 in density. In a near zero temperature unitary gas the

average sound velocity at the axial center was measured, c(0)/vF = 0.364(0.005), as

well as the universal constant, β = -0.565(0.015). The measurement of sound velocity

in an ultracold gas throughout the BEC-BCS crossover provides further evidence of

the continuous connection between the physics of the BEC, unitary, and BCS systems.
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Chapter 1

Introduction

The range and scope of scientific contributions is immense. There are studies whose

social impact can be understood immediately while the value of others can only be

determined from a historical perspective. The study of archeology tells us where we

have been. The study of computer science informs us where we are going. Likewise,

in the hard sciences like biology, chemistry, and physics there are many investigations

that provide the solid advancements that are required today, and others that are

building the basic ground work for future advances.

The inspiration for the first transistor, for example, came about through a study

of the material properties of dirty glass [1]. Now, with the advent of the computer

chip we are so inundated with computers that it is hard to imagine what life would

be like without them. The research presented in this dissertation is a mixture of

pure science and practical investigations. Hopefully at some future time it will be

recognized as having been a contribution to our understanding of the world. Certainly,

our investigations are exploring the vast and promising sphere of the unknown. Our

research also has bearing on diverse systems from nuclear matter to neutron stars

and high temperature superconductors. The latter is of great practical importance.

In this dissertation I present a measurement of the sound velocity in an ultra-cold

Fermi gas. A large amount of research has been conducted in the field of ultra-cold
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atom physics. There are two types of basic particles, bosons and fermions, both of

which are utilized in atom trapping experiments. In a quantum system where energy

levels are discretized, the essential difference between the two basic particles is that

multiple bosons are allowed to occupy the same energy level while fermions are not.

The study of both of these systems at near zero temperatures is complementary as

quantum statistics plays a major role at low temperatures.

Quantum degeneracy was first achieved using bosons with the production of a

Bose-Einstein condensate (BEC) in 1995 in three separate labs [2–4]. The cooling of

fermions into quantum degeneracy took much longer to achieve. The Pauli exclusion

principle inhibits s-wave scattering in single component gases. This difficulty was

overcome with the implementation of a Fermi gas comprised of two spin components

as well as using a thermal bath of bosons to sympathetically cool fermions.

The production of the first degenerate Fermi gas was achieved in 1999 [5] in a

gas comprised of two spin components of 40K. At Duke, our lab produced the first

all-optically trapped degenerate gas in 2001 using the two lowest hyperfine states

of 6Li. This data was later published in March 2002 [6]. In this gas the two spin

components interacted via a negative scattering length. According to the Bardeen

Cooper Schriefer (BCS) theory [7], the degenerate Fermi gas under these conditions

should exhibit superfluidity. However, it was never possible to cool the gas sufficiently

in these experiments to reach superfluidity. In 2001, two groups showed that it was

possible to achieve quantum degeneracy through the sympathetic cooling of fermionic

6Li with the bosonic 7Li [8, 9].

Feshbach resonances turned out to be the key to cooling two component gases

below the superfluid limit [10]. At a Feshbach resonance the s-wave scattering length

between the two components is enhanced. At certain magnetic fields near the res-
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onance the scattering length may be positive or negative, on resonance the s-wave

scattering length diverges to ±∞. Because of the large scattering length on resonance,

cooling is greatly enhanced and degeneracy is more readily achieved.

At resonance, the scattering length becomes larger than interparticle interaction

length and can no longer be used to describe the interactions. As a result, all length

scales except the interparticle spacing and thermal de Broglie wavelength disappear

from the problem, and the gas may be characterized by the density and temperature.

The gas is strongly interacting due to the large scattering length, and because the

system is independent of the interatomic potential the gas is considered to be universal

[11] or unitary [12, 13]. The production of a degenerate, strongly interacting Fermi

gas was first achieved in 2002 by our group [14]. The critical temperature of the

unitary gas is much higher than in the BCS regime. Consequently, it is easier to

create superfluids in unitary system [15]. This was confirmed with the observation of

vortex formation on both sides of the resonance [16]. I will explore the relationship

between our current work and other strongly interacting systems namely the Quark-

gluon plasma and high critical temperature (TC) superconductors.

Near the Feshbach resonance the magnetic field can be used to tune the s-wave

scattering length from ±∞ to both small positive and small negative values. It has

already been noted that negative values in the scattering length indicate BCS type

behavior. When the scattering length is small and positive it is possible to form

bound dimmers comprised of the two spin components of the trapped Fermi gas [17].

As a result, we can start with a Fermi gas, and by changing the magnetic field end up

with a gas of Bose molecules. Thus, it is possible to tune the s-wave scattering length

from negative to positive values through the resonance. We call the entire region the

BEC-BCS crossover, as we observe a continuous connection between the physics of
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the BCS, unitary, and BEC gases [18]. This dissertation treats of our measurement

of the sound velocity in the BEC-BCS crossover [19].

1.1 Motivation for studies

In their seminal papers on the matter, the possibility of a BEC was first proposed

by Bose [20] and Einstein [21] back in 1924. BCS theory was introduced in 1956 [7]

to explain how bound electron pairs behave in superconductors. In 1969 Eagles

drew a connection between BCS and BEC theory [22]. With the advent of the first

atom traps [23,24] the production of these theoretical systems became experimentally

viable. In 1998 theorists started to tackle the many-body problem of the ground state

properties of a Fermi gas with infinite scattering length [25]. It is clear that there

is significant interest in the exploration of each individual region of the BEC-BCS

crossover.

The wide tunability of the collisional properties of a Fermi gas near a Feshbach

resonance allows us to experimentally explore the crossover region. In Section 1.1.1

I will discuss the large amount of theoretical work that attempts to characterize the

physics within the BEC-BCS crossover in its constituent parts as well as a continu-

ous theory. For the rest of this section (Sections 1.1.2 and 1.1.3) I will explore the

relationship between our current work and other strongly interacting systems namely

the Quark-gluon plasma and high critical temperature (TC) superconductors.

1.1.1 Test bed for crossover theories

One of the great features of a trapped Fermi gas near a Feshbach resonance is that it

provides a test bed for a large array of theoretical work because of the great diversity of
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the physics than can be accessed. For positive scattering lengths molecular dimers are

formed. These dimers, comprised of two fermions, are bosons. The Gross-Pitaevskii

equation provides an accurate description of the many-body physics for a dilute Bose

gas at low temperatures [26].

A simple mean-field model was developed to provide predictions of the equation

of state of the zero temperature gas in the BEC-BCS crossover region [28]. In Section

3.3.2 I extend the results of this theory to provide a prediction of the sound velocity

for both the BCS and BEC gases. While this theory does not provide a continuous

description of the gas through the entire crossover region, it is easy to understand and

allows the humble experimentalist a glimpse into the oftentimes complex theoretical

world.

There are many other theoretical investigations that attempt to characterize the

equation of state throughout the crossover region. The BCS theory was generalized

to describe the crossover in terms of the s-wave scattering length as [27]. One result

from this theory is that on the BEC side the molecule-molecule scattering length is

incorrectly predicted to be amol = 2as [17]. In Chapter 7, I will use our measurement of

the sound velocity to show that the molecule-molecule scattering length was correctly

predicted by Petrov using a four-body calculation resulting in the value amol = 0.6a

[29]. State of the art Quantum Monte Carlo techniques are now being employed to

determine the equation of state of the gas at zero temperature [30,31].

The purpose of our measurement of the sound velocity near a Feshbach resonance

was to provide a measure of the equation of state of the gas through the BEC-BCS

crossover region. We use our data to test predictions of the equation of state. In

Section 7.3 I compare our sound velocity data to some of the theories mentioned in

this section.
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1.1.2 Quark-gluon plasma

According to the standard model there are 12 elementary particles, all of which are

fermions. Six of these particles are quarks which combine in different ways, some-

times forming baryons such as protons and neutrons. The strong interactions between

quarks are mediated by gluons in much the same way as photons mediate the elec-

tromagnetic force between charged particles. Under normal conditions quarks are

tightly bound together through their exchange of gluons. However, under conditions

of extreme density and temperature the quarks can become unbound. A collection of

unbound quarks and gluons is called a quark-gluon plasma. A quark-gluon plasma

is thought to be the condition of the universe just tens of microseconds after the big

bang [32].

Since quarks are fermions, and gluons are mediating strong interactions there

is a natural comparison to the resonant fermi gas. Current efforts are underway at

Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) to produce

a quark-gluon plasma. Temperatures reached in these experiments exceed 2 × 1012

Kelvin while trapped fermi gases are cooled to hundreds of nK. This is a difference

of nearly 19 orders of magnitude in temperature. However, one can see similarities in

the behavior of these systems.

At RHIC an experiment was performed in which two gold nuclei accelerated to

100 GeV per nucleon and collided at a glancing blow [33] (i.e. slightly off angle from

head on). The deformed nuclear reaction zone is mimicked by the cigar shape our

atoms take on in the trapping potential. Both systems exhibit the same “elliptic

flow” upon expansion [14]. This type of expansion is evidence that both systems are

nearly perfect fluids, [34,35]. Atom trapping experiments require less resources than

collider experiments. Therefore, there is abundant interest in the use of our system
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to help investigate strongly interacting systems in the context of nuclear matter [36].

1.1.3 High TC superconductors

Ordinary metals conduct electricity with some finite resistance, where electron flow

is impeded by collisions with other matter resulting in ohmic heating. Certain met-

als that can conduct electricity without impedance are known as superconductors.

Superconducting materials can only conduct without resistance below a certain very

cold critical temperature, TC , marked by a phase transition. Superconductors provide

a means of transmitting power without dissipation. The development of supercon-

ductors that could operate at room temperatures would have dramatic economic

consequences.

Even though there has been an incredible amount of interest in producing high

temperature superconductors, currently the highest temperature superconductor needs

to be cooled to TC ≈ 130◦ Kelvin [37]. There has been a lot of effort devoted to un-

derstanding the underlying physics of superconductivity. BCS theory [38] posits that

spin up and spin down electrons in superconductors couple together into what are

called cooper pairs. The connection between the pairs, however, is tenuous and breaks

down in the presence of thermal fluctuations. This same pairing effect is found in

trapped Fermi gases with negative scattering lengths [39]. It is hoped that research

into trapped Fermi gases can help further explain the nature of superconductors.

The exciting thing about trapped fermi gases is that they exhibit phase transitions

into a superfluid state and relatively high temperatures [40–44]. The use of the word

“relatively” here is important. In our experiments we cool the Fermi gas down to

hundreds of nK. The temperature scales of the transition, however, is not governed

by absolute temperature but by the ratio of the absolute temperature to the charac-
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teristic temperature of the gas, the Fermi temperature, TF . In resonant Fermi gases it

is estimated that the critical temperature is roughly TC/TF = 0.20 [45]. Consider the

fact that typical Fermi temperatures in metals are on the order of thousands of degrees

Kelvin. This would translate into a transition temperature in the thousands of degree

Kelvin. Therefore, there is a lot of interest in using studies of strongly interacting

Fermi gases to help develop the next generation of high temperature superconductors.

1.2 Significance of current work

In our measurement of sound velocity we reach a precision level that allows us to

distinguish between a variety of mean-field predictions and quantum Monte Carlo

results. In order to accomplish this feat a complete understanding of the system was

required. One major accomplishment of this work was the identification of sources

of error and bias associated with our measurement (see Chapter 6). Furthermore,

our investigations resulted in a large set of data that can be compared to predictions

of the equation of state of the gas (see Chapter 7). In Section 1.2.1 I will place our

measurement of the sound velocity in the BEC-BCS crossover in the context of recent

experimental and theoretical investigations. In Section 1.2.2 I will my contribution

to the experiment over the years that resulted in the high level of precision of our

measurement.

1.2.1 Original studies of a Fermi gas

in the BEC-BCS crossover

Our measurement of the sound velocity near a broad Feshbach resonance [19] provides

further evidence of the continuous connection between the BCS and BEC superfluids.
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In a gas, the sound velocity c is a function of the derivative of the pressure (P ) with

respect to density (n),

c =

√

1

m

(

dP

dn

)

, (1.1)

where m is the mass of the atoms. The isotropic speed of sound at zero temperature

in both the hydrodynamic limit and a superfluid is [46],

c =

√

n

m

(

∂µ

∂n

)

T

, (1.2)

where µ is the chemical potential of the gas. The measurement of the sound veloc-

ity determines the equation of state, which can be characterized as the relationship

between the chemical potential and density.

Existing measurements of release energy [47], momentum distribution [48], and

cloud size [49] could also be used for testing the equation of state. Precise inter-

pretation of these measurements, however, would depend on microscopic models.

Connecting the release energy to the equation of state requires prior knowledge of the

chemical potential. Measurements of momentum distributions depend on the dynam-

ics of magnetic sweeps [50], which turn off the interactions. Cloud size measurements

are sensitive to the state of the gas at the edges, which, at finite temperature, may

differ from the superfluid core [51] that is probed in the sound speed measurements.

Model-independent measurements of collective breathing mode frequencies [52–55]

probe only the density scaling of the chemical potential, not the magnitude. As a

result, in the universal regime theories with different ground states predict identical

breathing mode frequencies [56, 57], but different sound speeds. Moreover, through

our experimental investigations we are able to evaluate hydrodynamic models of the

sound propagations [46,58,59]. We are also able to compare our data to predictions of
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the equation of state from models [60,77] and quantum Monte Carlos calculations [30].

1.2.2 Contributions to the experiment

A great deal of work went into acquiring the data that made this dissertation possible.

However, none of my work would have been possible without the enormous efforts

expended by other members of our group. Through the work of Ken O’Hara, Stephen

Granade, Michael Gehm, Staci Hemmer, and Joe Kinast a complete atom trapping

and cooling system was in place when I began working in the quantum optics lab

at Duke. The design and implementation of the laser, magnet and vacuum systems,

and all of their associated electronics and support systems can be wholly credited

to them. Beyond establishing a working experiment, Joe Kinast insured that much

system could be automated through computer control. Bason Clancy and Le Luo

were busy constructing the new laboratory apparatus at this time, but they were

always available to offer insight and assistance when asked.

My introduction to experimental education might be called experiential as I

worked on system upgrades. During this period I was assisted by (or, more accu-

rately, I assisted) both Joe and our postdoctoral researcher, Andrey Turlapov. One

upgrade, included the replacing of the Coherent 699 Dye Laser with the newer 899

model. I also played a role in the installation of a new locking region as well as a new

oven region on the main system. I am proud the say that the oven I helped install back

then is still pumping out atoms today. Among the more bizarre problems were the

mystery of the exploding circuit board in the CO2 laser (caused by a coolant leak) and

the case of the consistently glitchy magnetic field flipper box (still unsolved). Much

of the technical difficulties encountered in the lab have been resolved through the

construction of a new experimental apparatus. Our post-doctoral researcher Jessie

10



Patrika along with graduate students Chenglin-Chan and Ethan Elliot shouldered

most of the burden of this project.

While all my early experiences were valuable, there are some experimental exer-

cises of particular relevance to the material covered in this dissertation. First, there

was the initial setup of the green laser beam used to excite our sound wave. Next, I

developed an alignment procedure to maximize the number of atoms that could be

trapped at our coldest temperatures. Also, I was instrumental as our lab produced a

fully degenerate BEC for the first time. All of these procedures can be found in Chap-

ter 4. I also developed a way to measure the condensate fraction from 1-dimensional

density profiles. This procedure for measuring condensate fraction is outlined in Ap-

pendix B. A large amount of care was taken to make sure we removed all sources of

systematic error in our measurement. To this end we developed correction factors for

both systematic errors due to the shape of the trapping potential and for bias in the

atom number measurement. I take personal pride in developing a way to take into

account a systematic shift in the atom number, the details of which can be found in

Chapter 6. Also included in this dissertation is a description of a simple mean field

model (see Section 3.3.2). This theory does not provide a continuous description of

the gas through the entire crossover region, however, it is easy to understand. It offers

some insight into the oftentimes bewildering models developed by our theorist coun-

terparts. Often times we rely too heavily on theoretical results without a completely

understanding how they are produced. I thought it important to include at least one

detailed description of some of the modeling that occurs in our field.

The shear amount of time spend grinding out sound data during the experiment

gives me a sense of accomplishment. Nearly a hundred data points are included in

the final graphs showing the sound velocity over the BEC-BCS crossover in Chapter
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7. Each point consists of about 50 experimental runs. In addition, we performed a

separate breathing mode experiment that corresponds to each data point. Factoring

in the vigilance takes to keep the system performing at an optimal capacity under-

scores my satisfaction with this data set. Persistence is perhaps one of the essential

ingredients in our field.

Even beyond honing a keen understanding of the underlying physics of the system,

the field of atom trapping and cooling requires one to develop a diverse skill set

including but not limited to a working knowledge of vacuum systems, laser system,

electronics, plumbing, computer programming, and analysis. Above all of this is

the essential skill of collaboration. I owe my own in-depth understanding of our

experimental system to the encouragement and support of more senior members of

the group. Perhaps my greatest satisfaction of all comes from passing that knowledge

down to our groups next generation of experimentalists.

1.3 Dissertation organization

Chapter 1, the current chapter, provides an introduction to this dissertation and

places our experimental work in a historical context and in relation to current work

in multiple fields. Chapter 2 provides the basic theoretical background required for

understanding the trapping of Fermi gases near a Feshbach resonance. In it I outline

the physics of a dipole trap and a Fermi gas trapped in a confining potential. Chapter

2 also offers a discussion of the electronic states of 6Li in a magnetic field and the

s-wave scattering length near a Feshbach resonance. Finally, I include an overview of

the zero Temperature theories associated with the limits near a Feshbach resonance

(ideal gas, unitary gas, and weakly interacting Bose gas).
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In Chapter 3, I present the theory of hydrodynamic sound propagation and apply

it to our trapped gas. I determine the theoretical zero temperature sound velocity

in the limits near a Feshbach resonance and discuss the propagation dynamics of a

density wave in a trapped gas with density variation as opposed to a homogenous

system. Also highlighted in Chapter 3 is a description of a simple mean field model

of the equation of state and how it can be extended to provide a prediction of the

sound velocity in the BEC-BCS crossover.

In order to fully understand the sound experiment, it is necessary to provide a de-

scription of the underlying experimental apparatus. Chapter 4 summarizes the basic

experiment as it is employed in our lab. I Include a description of the apparatus, the

physics underlying each stage of the experimental procedure, and important cooling

and trapping techniques. Also included in chapter for are the experimental proce-

dure required to produce a near zero temperature gas in the limits near a Feshbach

resonance.

Chapter 5 details the sound velocity experiment. It begins with the experimen-

tal set up of the blue detuned beam used to excite sound waves in our experiment.

Included in Chapter 5 is an analysis of the propagation dynamics of a density per-

turbation in a trapped gas, outlining how we extract a value for the speed of sound.

In addition to the sound measurement, I describe the complementary measurements

needed to characterize the characteristic energy of the gas, the Fermi energy EF .

Chapter 6 introduces the concepts of systematic and statistical errors. I provide

the error analysis of our measurement. I show how we determine correction factors

for both the anharmonisty of the trap as well as the atom number. At the end of this

chapter I highlight exactly how we extract a single normalized sound velocity value

and its associated error.
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Finally, In Chapter 7 I discuss the results of our experiment. I show why the

theory of hydrodynamic sound propagation [58] we highlight in Chapter 3 is correct.

I also discuss how we can characterize different regions of the crossover with the di-

mensionless parameter 1/(kFa) where a is the s-wave scattering length and kF is the

Fermi wave number. The data is displayed along with zero-temperature theories asso-

ciated with the limits of the BEC-BCS crossover, many-body theoretical predictions

of the equation of state, and state of the are many body nonperturbative quantum

Monte Carlo calculations.

I conclude this dissertation in Chapter 8. Here, the sound velocity experiment

and the results we obtained are summarized. I speculate on improvements to the ex-

perimental apparatus and outline some key experimental concepts I feel are seminal

to conducting a good experiment. The blue detuned beam used to excite our sound

waves is a powerful experimental tool that I hope will be utilized in future experi-

ments. At the end of Chapter 8 I outline a few experiments that can be preformed

in the future.

There are 3 appendices following the bulk of this dissertation. Appendix A pro-

vides a table our sound data presented in the plots of Chapter 7. Appendix B explains

how we can characterize the one dimensional profiles of finite temperature BECs and

extract a condensate fraction. Appendix C provides the mathematica code used to

produce the simple mean field curves.
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Chapter 2

Trapped Fermi gases with tunable
interactions

The field of atom trapping and cooling has experienced a boom over the past few

decades. Ever more complicated experiments and theories are performed and devel-

oped on a daily basis. In this chapter I will attempt to cover the basic theory that is

essential in understanding trapped Fermi gases. We need to understand all complexi-

ties pertaining to our system of interest in order to perform a precision measurement

of the sound velocity.

The model system that is at the heart of all of our experiments is the ideal Fermi

gas in a harmonic potential. This basic system is covered in most texts on thermody-

namics [69], [72]. It is the natural starting point for studies of trapped Fermi gases.

In our lab the trapped atoms are confined in optical fields. Section 2.1 describes the

physics of a dipole trap generated by a focused laser beam. Next, in Section 2.2 I will

describe the physics of a harmonically trapped ideal Fermi gas.

In our experiment we trap the two lowest hyperfine states of 6Li. The interactions

between atoms in these two states greatly effects the physics of the system. These

interaction depend on an external magnetic field. In Section 2.3 I begin with a

description of the electronic ground states of 6Li. Next, I describe the scattering
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process between to two the lowest hyperfine states of 6Li. The presence of a collisional

(Feshbach) resonance (see Section 2.3.3) allows us to alter the basic nature of our

trapped gas. In our experiment we can access ideal and weakly interacting Fermi

systems, strongly interacting systems, and weakly interacting Bose systems by tuning

the magnetic field. In our experimental system there are magnetic fields at which the

physics of the trapped atoms is representative of a particular theory. Presented in

Section 2.4 are the various zero temperature theories associated with:

• An ideal gas

• A unitary Fermi gas

• A weakly interacting BEC.

Each of these systems has a different equation of state. Our sound velocity experiment

provides evidence of a continuous connection between diverse physical systems. This

chapter provides the basic zero temperature thermodynamic relationships a for well

understood systems in the limits near a Feshbach resonance.

2.1 Atomic dipole trapping potential

In our experiment atoms are trapped at the focus of a CO2 laser. The wavelength

of the CO2 laser is far detuned from the atomic resonance of the trapped atoms. At

the focus of the laser is a large electric field gradient. An atom in the presence of

an electric field will polarize. The induced atomic dipole is aligned along the electric

field lines. The atom is then drawn towards the center of the laser focus where the

electric field is strongest.
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In our experiment, the electric field is generated by a Coherent DEOS LC100-NV

CO2 laser. The wavelength of the laser is λCO2 = 10.6 µm, which is far detuned from

the wavelength of the atomic resonance of the 6Li atoms, λ6Li = 671 nm. The induced

atomic dipole depends upon the field detuning and the atomic polarizability. A 6Li

atom will be accelerated by the interaction between induced dipole and the electric

field gradient. The potential associated with the force an atom feels Fdip = −∇Vdip

is given by [62,63],

Vdip = −1

2
αE2, (2.1)

where the bar indicates that the electric field is averaged over many cycles. As we

are working with an optical field we can assume a sinusoidal variation in the electric

field such that E2 = E2/2, and the dipole potential can be written in terms of the

field intensity I = cE2/8π,

Vdip = −2π

c
αI, (2.2)

where c is the speed of light. I and c are positive quantities. Therefore, in order for

the potential to be attractive the polarizability α must be positive.

The polarizability for the ground state of 6Li is [62]

α =
α0ω

2
0

ω2
0 − ω2

, (2.3)

where α0 ≡ 2µ2
eg/h̄ω0 is the static polarizability, ω0 is the atomic transition frequency,

and ω is the frequency of the incident light. µeg is the dipole matrix element between

the ground and excited state of the atom. For our experiment, the static polarizability

is α0 = 24.310−24cm3 [68]. We use a CO2 laser beam for our trapping potential

because it far detuned from the atomic resonance frequency (i.e. ω ≪ ω0). This
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means that the atomic polarizability of a 6Li atom in the electric field of the laser is

approximately equal to the static polarizability,

α ≈ α0. (2.4)

The fact that our polarizability is positive indicates that our potential will indeed be

attractive.

The laser itself is extremely stable and, as a result of the far detuned frequency

and long wavelength, there is a very small probability of scatter. Approximately 1

photon per atom will be scattered every 40 minutes [45]. This means that the lifetime

of the atoms in our dipole trap is very long, see Figure 2.1. The loss of atoms from the

trap can be attributed to very small effects such as position and intensity noise in the

CO2 beam and background gas collisions. In his dissertation Ken O’Hara provides

an in depth discussion of these effects [14].

The geometry of the trapping potential is reflected in the shape of the laser beam

focus. For a gaussian beam propagating in the z-direction the intensity is

I(x, y, z) =
I0

1 + z2/z2
0

e
−2x2

x2
0
−2 y2

y2
0 , (2.5)

where I0 is the maximum beam intensity and x0, y0, and z0, determine the spatial

size of the beam. The Rayleigh range, z0, depends on the beam profile according to

z0 = πx0y0/λ. The resultant potential is,

Vdip(r, z) =
V0

1 + z2/z2
0

e
2x2

x2
0
−2 y2

y2
0 , (2.6)

where V0 = 2π
c
α0I0 is the maximum depth of the potential. The geometry of the laser

18



Figure 2.1: The atomic signal of atoms held in an ultra stable CO2 beam trap for
a variable amount of time. The lifetime of the signal is limited by background gas
collisions. A measure of the number of atoms left in the trap is obtained by probing
with on resonant light and observing the atomic florescence signal on a photomultiplier
tube. We see an exponential decay in the atomic florescence signal with a 1/e time
of 358 seconds, (nearly 6 minutes).
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beam focus is often referred to as “cigar-shaped”. The axial (z-direction) size of the

trap is much larger than in than the radial (x- and y- direction) size. Further, the

trap is nearly cylindrically symmetric (i.e. x0 ≈ y0).

The trap depth is much larger than the characteristic energy of the Fermi gas,

EF . The laser beam is focused to a spot size of about x0 = y0 = 50 µm and has

about P = 60 Watts of power. The intensity of the laser beam on the atoms is

thus I0 = 2P/(πx0y0). This translates to a trap depth of V0/kB ≈ 550 µKelvin in

temperature units.

In our experiment, the trapped atoms occupy the deepest portion of the optical

potential where Vdip are well approximated by a harmonic potential. The approxima-

tion for the external harmonic trapping potential is,

Vdip(r, z) ≈ −V0 +
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.7)

where ωx,y =
√

2V0/mx2
0, y

2
0, and ωz =

√

4V0/mz2
0 . Note that the harmonic potential

has an offset, −V0 that does not vary spatially and therefore imparts no force on the

atoms. This term can be dropped by referring the energy to the bottom of the trap.

In the harmonic approximation our external trapping potential Vext is,

VHO(x, y, z) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2. (2.8)

For some of our measurements we see a systematic error due to anharmonic effects. In

latter chapters I will develop anharmonic correction factors using a gaussian shaped
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trapping potential for Vext,

VGA(x, y, z) = V0

(

1 − e
−mω2

x
2V0

x2−
mω2

y
2V0

y2

)

+
1

2
mω2

zz
2. (2.9)

At lower trap depths where the anharmonic effect is greatest, there is additional con-

finement due to the magnetic field gradient of the applied magnetic fields. At our

lowest trap depths, the magnetic confinement dominates the axial (z-direction) trap-

ping potential. Therefore, in equation (2.9) the variation in the z-direction remains

harmonic.

2.2 Fermi gas in a harmonic trap

Our discussion of trapped gases begins with a noninteracting (ideal) Fermi gas trapped

in a harmonic potential. This is a natural starting point, as ideal Fermi gases are a

well explored physical system covered in the standard undergraduate thermodynamic

texts [69]. Furthermore, we can produce an ideal Fermi gas in our laboratory. This

allows us to run experiments that will be compared to experimentally useful theory

has been worked out in recent papers [18, 73], in order to check for our experimental

methodology.

Our goal in this section is to determine the relationship between the thermody-

namic variables of a trapped ideal Fermi gas. In the previous section we determined

that the harmonic approximation of a dipole trapping potential was, (equation (2.8),

VHO(r) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.10)

where ωi is the trap frequency in one spatial dimension and m is the atomic mass.The
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harmonic oscillator energy levels associated with a single particle trapped in this

potential are,

ǫ(nx, ny, nz) = h̄(ωxnx + ωyny + ωznz), (2.11)

where ni is a non-negative integers and the 1/2 zero point energy factors have been

dropped.

Given that no two fermions can occupy the same energy level, and that our exper-

iments contain a large number of atoms, the total energy of the system far exceeds

the level spacing (E0 ≫ h̄ωi). Therefore, we can replace the discrete single particle

spectrum with a continuous density of states,

g(ǫ) =
ǫ2

2(h̄ω)3
, (2.12)

where ω = (ωxωyωz)
1/3 is the average trap frequency. The Fermi occupation number

as a function of energy is,

f(ǫ) =
1

exp[(ǫ− µ)/(kBT )] + 1
, (2.13)

ǫ is the energy, µ is the chemical potential, kB is Boltzmann’s constant, and T is the

temperature.

To solve for thermodynamic quantities we normalize the total occupation number

to the total number of atoms. The total number of atoms in a system can be calculated

by integrating the product of the density of states and Fermi occupation number over

the range of energies available,

N

2
=

∫ ∞

0

g(ǫ)

exp[(ǫ− µ)/(kBT )] + 1
dǫ. (2.14)
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In our experiment we trap the lowest two hyperfine states of 6Li. According to the

pauli exclusion principle it is perfectly acceptable for one atom from each states to

occupy a single energy level. Therefore, there are twice as many atoms occupying all

of the available energy levels. Taking this into account we have introduced a factor

of 1/2 to the left hand side of equation (2.14).

For the zero temperature condition, the integral in equation (2.14) simplifies

greatly. The Fermi occupation number becomes one for all energies less than or

equal to the Fermi energy and zero for all energies greater than EF . Combining

equations (2.12), 2.13, and 2.14, the total atom number at zero temperature is,

N =
1

(h̄ω)3

∫ EF

0

ǫ2dǫ, (2.15)

where EF is the Fermi energy. EF is the characteristic energy the system. From

equation (2.15) we can solve for the Fermi energy in terms of the measurable quantities

ω and N,

EF = h̄ω(3N)1/3. (2.16)

Quantities that depend on trap totals such as ω and N are termed global. In equation

(2.14) the chemical potential µ is given implicitly as a function of temperature and

atom number. For the zero temperature condition, the global chemical potential is

equal to the Fermi energy,

µG = h̄ω(3N)1/3, (2.17)

For a complete description of our trapped gas, we would like to determine the

local equation of state as well. Local thermodynamic variables like density n(r) vary

throughout the trap (i.e. the gas more dense in the center of the trap and less dense
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at the edges). The discussion of local quantities needs to be set up carefully. We

can make certain assumptions based on our experimental system. The semiclassical

approximation, or Local Density Approximation (LDA) assumes that there is a large

number of atoms contained in a small volume, and that the external potential varies

slowly over this small volume. A complete discussion as to what constitutes these

“small” and “large” values can be found in reference [73].

Assuming that the LDA holds we can calculate local quantities from the Hamil-

tonian of a single particle moving in the presence of an external potential Vext,

H(r,p) =
1

2m
(p2

x + p2
y + p2

z) + Vext(r). (2.18)

By integrating the Fermi occupation number, equation (2.13), as a function of the

Hamiltonian over all momentum space we can calculate the density,

n(r) =
1

(2πh̄)3

∫

f(H(r,p))d3p. (2.19)

We can simplify this integral by using the properties of the delta function, δ(x),

F (x) =

∫

F (y)δ(y − x)dy. (2.20)

We use the above delta function condition to set,

f(H(r,p)) =

∫

f(ǫ)δ(ǫ−H(r,p))dǫ. (2.21)
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As a result, the equation for density becomes

n(r) =
1

(2πh̄)3

∫ ∫

f(ǫ)δ(ǫ−H(r,p))d3p dǫ. (2.22)

This integral with the Hamiltonian expressed in terms of the momentum and harmonic

trapping potential is,

n(r) =
1

(2πh̄)3

∫

f(ǫ)

∫

δ

(

ǫ−
p2

x + p2
y + p2

z

2m
− Vext(r)

)

d3pdǫ (2.23)

After we perform the momentum integral in spherical coordinates we find an equation

for density in terms of an integral over energy,

n(r) =

√
2(m)3/2

π2h̄3

∫

f(ǫ)

∫

(ǫ− Vext(r))
1/2Θ (ǫ− Vext(r)) d

3pdǫ, (2.24)

where Θ is the heavyside function which restricts the integration to energy values

Vext(r) < ǫ. As Vext(r) varies in space, this restriction translates into a spatial re-

striction on the density. In the zero temperature case the Fermi occupation number

is one for all energies below the Fermi energy (which is equal to the global chemical

potential µG) and zero elsewhere. This gives the integral

n(r) =

√
2(m)3/2

π2h̄3

∫ µG

0

f(ǫ)

∫

(ǫ− Vext(r))
1/2Θ (ǫ− Vext(r)) d

3pdǫ. (2.25)

By performing the integral we can solve for the density,

n(r) =
(2m)3/2

3π2h̄3 (µG − Vext(r))
3/2. (2.26)

The equation for density above is valid for regions in space where Vext(r) < ǫ, and
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the density will be zero in all other regions. Solving for µG yields,

µG =
h̄2(3π2)n(r)2/3

2m
+ Vext(r). (2.27)

The above equation is the main result of the LDA for an ideal Fermi system at zero

temperature. In this form, we relate the overall chemical potential of the system, µG

to the trap potential and ǫF = h̄2(3π2)n(r)2/3

2m
the local Fermi energy. Thus our equation

of state for an ideal Fermi gas is,

µL(r) =
h̄2(3π2)2/3

2m
n(r)2/3, (2.28)

where µL is the local chemical potential, which for a zero temperature gas is equal to

the local Fermi energy. And the primary result of the LDA can be restated as,

µG = µL(r) + Vext(r). (2.29)

We can consider the equation (2.29) as a good starting point for calculating thermo-

dynamic quantities in the BEC-BCS crossover region where the atomic interaction

energy is non-zero. The local chemical potential relates the density of the gas to

energy. It can be viewed as the mean field energy of the interparticle interaction at

zero temperature. The local chemical potential at zero temperature is the equation

of state of the gas from which we will determine the density profile in an external

potential.

We show later that a general power law form of the equation of state,

µL(r) = Cn(r)γ, (2.30)
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can be used to treat both Bose and Fermi gases. That means that for the ideal Fermi

gas discussed above, C = h̄2(3π2)2/3 and γ = 2/3. The global chemical potential for

any gas trapped in an external potential that follows the power law equation of state

can then be determined by normalizing the density to the total number of atoms in

a trapping potential,

N =

∫

n(r)d3r, (2.31)

N =

∫

(µG

C
)1/γ

(

1 − Vext(r)

µG

)1/γ

d3r. (2.32)

2.3 Tunable interactions

We trap the two lowest hyperfine states of 6Li in our experiment. As stated previously

we use an applied magnetic field to tune the interactions between these two states.

This section begins by describing the hyperfine splitting of the ground state of 6Li.

The interaction between the two lowest hyperfine states depends upon the scattering

length. Therefore, we will continue our discussion with the derivation of the s-wave

scattering length as and the atomic crosssection σ. Further, the presence and signif-

icance of a collisional (Feshbach) resonance between the two lowest hyperfine states

will be explored.

2.3.1 Electronic states of 6Li

The majority of atom trapping experiments utilize alkali metals atoms. Their rela-

tively simple atomic structure and spectra make them prime candidates for optical

trapping techniques. Many of the basic trapping and cooling techniques described in

Chapter 4 take advantage of the hyperfine structure and Zeeman shifted energy levels
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of our trapped atoms. Therefore, It is useful to present the hyperfine structure and

Zeeman tuning of the 6Li ground state.

The 6Li atom is an isotope of lithium, a fermion composed of 3 protons, 3 neutrons,

and 3 electrons. The ground state of 6Li has a nuclear spin I = 1, and the unpaired

valence electron is in the 2s orbital. This means that the total angular momentum

quantum number is L = 0, and the spin is S = 1/2. The total angular momentum

quantum number which depends on I, L, and S has two possible values in the ground

state, F = 1/2 and F = 3/2. The degeneracy of the ground state is then six fold,

arising from all possible spin projections of the total angular momentum quantum

number. In the F = 1/2 manifold the spin projections are mF = ±1/2 and in the

F = 3/2 manifold the spin projections are mF = ±1/2 and mF = ±3/2. When an

external magnetic field is applied the degenerate states split giving 6 distinct energy

eigenstates.

We can solve for these eigenstates using the hyperfine and Zeeman Hamiltonian,

Hint =
ahf

h̄2 S · I +
µB

h̄

(

ggnd
J S + gII

)

· B, (2.33)

which contains a term for the hyperfine splitting due to the magnetic dipole interaction

between the nuclear and electronic spins as well as the interaction of the nuclear and

electronic spins with an external magnetic field B. In the above equation ahf/h =

152.137 MHz is the magnetic dipole constant, ggnd
J =2.002 is the total electronic g-

factor for the ground state, gI = -0.000448 is the total nuclear g-factor, and µB/h=

1.3996 MHz/gauss is the bohr magneton.
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The eigenstates of equation (2.33) are [74].

|1〉 = sin Θ+|
1

2
, 0〉 − cos Θ+| −

1

2
, 1〉 (2.34)

|2〉 = sin Θ−|
1

2
,−1〉 − cos Θ−| −

1

2
, 0〉 (2.35)

|3〉 = | − 1

2
,−1〉 (2.36)

|4〉 = cos Θ−|
1

2
,−1〉 + sin Θ−| −

1

2
, 0〉 (2.37)

|5〉 = cos Θ+|
1

2
, 0〉 + sin Θ+| −

1

2
, 1〉 (2.38)

|6〉 = |1
2
, 1〉, (2.39)

where the kets |mS,mI〉 give the electronic and nuclear spin projections, mS = ±1/2

and mI = −1, 0, 1. Further the coefficients sin Θ± and cos Θ± in the above equations

are given by,

sin Θ± =
1

√

1 + (Z± +R±)2/2
(2.40)

cos Θ± =

√

1 − sin2 Θ± (2.41)

Z± =
µBB

ahf

(ggnd
J − gI) ±

1

2
(2.42)

R± =
√

Z2
± + 2, (2.43)

which depend upon terms in the internal hamiltonian and the external magnetic field.
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The energy eigenvalues En associated with the eigenstates |n〉 are

E1 = −1

4
(ahf − 2gIµBB + 2ahfR+) (2.44)

E2 = −1

4
(ahf + 2gIµBB + 2ahfR−) (2.45)

E3 =
1

2
(ahf − 2gIµBB − ggnd

J µBB) (2.46)

E4 =
1

4
(−ahf − 2gIµBB + 2ahfR−) (2.47)

E5 =
1

4
(−ahf + 2gIµBB + 2ahfR+) (2.48)

E6 =
1

2
(ahf + 2gIµBB + ggnd

J µBB). (2.49)

The energy eigenvalues are dependent on the magnetic field. As shown in Figure 2.2

at zero field there are just degenerate two energy levels, F = 1/2 and F = 3/2 split

by 3/2ahf . When the field is applied the degeneracy in the system is lifted and there

are six energy levels. In our experiments we trap the two lowest hyperfine ground

states, |1〉 and |2〉.

2.3.2 Atomic cross section and scattering length

Elementary quantum mechanics textbooks, [70,72], as well as previous theses [62,65],

cover the scattering problem of two quantum particles. However, a basic review is

called for as the scattering of two fermions in a trapped gas is an essential element

in the production of degenerate Fermi gases. The s-wave scattering length and the

atomic cross section provide a measure of the interaction strength between two lowest

hyperfine states of 6Li.

We can determine the atomic cross section and scattering length in light of the

basic scattering problem. A quantum particle-particle interaction can be viewed from
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Figure 2.2: The hyperfine energy eigenvalues for the 6Li ground state in frequency
units versus magnetic field. In the experiment a 50/50 mixture of the lowest two
energy eigenstates (|1〉 and |2〉) are trapped.

the vantage frame of one stationary particle, the target, with the second particle

incident. We can view the incident particle as a stream of particles acting as a plane

wave with a wave vector k before the scattering event and a spherical wave with a

wave vector k′ after the scattering event. The outgoing spherical wave amplitude is

a function of the ingoing and outgoing wave vectors, f(k,k′) and can be related to

the differential scattering cross section dσ/dΩ via the equation,

dσ

dΩ
= |f(k,k′)|2d, (2.50)

where the differential cross section is the probability of observing a scattered particle

in units of the solid angle (∆Ω) at a specific solid angle.

Our stream of particles is incident on another particle so we can assume a solid
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sphere potential for the interaction. We can then express the outgoing spherical wave

amplitude in terms of the angle θ between k and k′,

f(θ) =
∞
∑

l=0

(2l + 1)fl(k)Pl(cos θ), (2.51)

where l is a non negative integer representing the angular momentum order, and

Pl(cos θ) are Legendre polynomials. At a specific angular momentum values the

relationship between the outgoing wave amplitude and the scattering phase shift δl is

fl(k) =
eiδl sin(δl)

k
. (2.52)

Further, we can make the argument that for a cold gas the energy associated with

the interaction between two particles very small such that l = 0 [64,65]. This means

that the collisions of interest are s-wave. When we combine equations (2.50) and

(2.52) we find the result for the atomic cross section,

σ =
4π sin2(δ0)

k2
. (2.53)

The definition for the s-wave scattering length [71] is

as ≡ − lim
k→0

tan(δ0)

k
. (2.54)

Therefore, the atomic cross section as a function of the s-wave scattering length

and the wave vector, k, of an atom is,

σ =
4πa2

s

1 + k2a2
s

. (2.55)
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In the limit where the s-wave scattering length is small compared to the wave number

this gives,

lim
kas≪1

σ = 4πa2
s. (2.56)

In the opposite limit where the s-wave scattering length is large compared to the wave

number this gives,

lim
kas≫1

σ =
4π

k2
. (2.57)

The value of the s-wave scattering length depends upon the magnetic field and

has been calculated for the interaction between all of the ground states of 6Li [75].

For the rest of this dissertation I will simply refer to the s-wave scattering length as

a = as.

2.3.3 Fano-Feshbach resonance

The utilization of collisional, or Feshbach, resonances in fermionic atom traps is es-

sential to the production Fermi superfluids. The high rate of collisions allows for an

increased cooling rate, making it possible to reduce the temperature of the gas below

the superfluid critical temperature.

When two atoms collide, the s-wave scattering length depends upon the molecular

potential. 6Li atoms can approach each other along a triplet or singlet potential. The

distinction between these two types of interaction is that for a triplet potential the

valence electrons of the atoms combine to form a triplet spin state where the total

spin STotal = S1 + S2 is equal to one, (STotal = 1), and for a singlet potential the

valence electrons combine to form a singlet state where the total electronic spin is

zero (STotal = 0). According to the energy eigenstate equations that we worked out,

equation (2.34), in a magnetic field a pair of atoms in the two lowest states, |1〉
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and |2〉, is approximately in a triplet state, mS = 1. The spins are parallel and the

energy of the combined state varies with magnetic field approximately as −2µeB.

Conversely, the spins for the singlet state will be antiparallel and have a negligible

magnetic moment.

The triplet state is an open channel for interactions and the singlet state is a closed

channel, which is energetically inaccessible at long range. A Feshbach resonance

occurs when the continuum energy of the open channel is degenerate with the energy

of a bound molecular state in the closed channel. We access a Feshbach resonance in

our experiment by tuning the triplet energy such that it is degenerate with a bound

molecular state in the singlet potential. There are several resonances between states

|1〉 and |2〉. The two most relevant are a narrow resonance that occurs near 550G and

a much broader resonance that occurs near 834 G. The resonant scattering length

near 834G is approximately,

a = abg

(

1 − ∆B

B −B0

)

, (2.58)

where abg = -1405 a0 (a0 is the Bohr radius), B0 = 834.149 G, and ∆B = 300 G [76].

A plot of the scattering length versus magnetic field across this resonance is shown

in Figure 2.3.

The large width of the resonance provides a wide range of magnetic fields in which

strong interactions may occur. Below the Feshbach resonance the scattering length

is positive so the interactions will be repulsive. A bound molecular state exists, and

below the resonance it is accessible. During a collision event with more than two

atoms it is energetically possible for two of the atoms involved in the collision to

form a molecule. The molecule, comprised of two fermions, will be a boson. A gas
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Figure 2.3: The s-wave scattering length a versus magnetic field across a broad
Feshbach resonance at 834.149 Gauss. Below the resonance the scattering length is
positive and the interactions are repulsive. Above the resonance the scattering length
is negative and the interactions are attractive. The Feshbach Resonance is at 834 G.
The inset shows the zero crossing at 528G
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consisting entirely of bosonic molecules will form a Bose Einstein Condensate (BEC)

at sufficiently low temperature. Above the resonance the scattering length is negative

so the interactions will be attractive. At sufficiently cold temperatures the fermions

interact much like cooper pairs according to Bardeen Cooper Schreifer (BCS) theory.

Well below the resonance at 528G the scattering length is zero. In this case the gas

is non interacting and behaves like an ideal Fermi system.

By tuning the magnetic field we can access four radically different types of gases,

a BEC, a BCS system, a gas comprised of strongly interacting fermions, and an ideal

Fermi system. It is because of this versatility that there is tremendous interest in

studying cold Fermi gases in the presence of Feshbach resonances.

2.4 Zero temperature theory in the crossover re-

gion

In this section I will obtain the density profile and calculate the global chemical

potential for the important limits near a Feshbach resonance. In Figure 2.3, there are

regions where,

as → 0− : Ideal Fermi Gas

as → ±∞ : Unitary Gas

as → 0+ : Bose Gas .

Using the main result of the local density approximation equation (2.29),

µG = µL(r) + Vext(r). (2.59)
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the power law form of the equation of state equation (2.30),

µL(r) = Cn(r)γ, (2.60)

and an external harmonic oscillator trapping potential, Vext(r) = VHO(r) where,

VHO(r) =
mωx

2
x2 +

mωy

2
y2 +

mωz

2
z2, (2.61)

we can solve for the density of the trapped gas, n(r).

We can simplify our equations by assuming cylindrical symmetry where ω⊥ =

ωx = ωy and ρ = x2 + y2. Further, we introduce natural radii R⊥ and Rz such that

R2
⊥ = 2µG

mω2
⊥

and R2
z = 2µG

mω2
z
. When we combine equations (2.59), (2.60), and (2.61) we

find that the density of a harmonically trapped gas with a general equation of state

is,

n(ρ, z) =
(µG

C
)1/γ

(

1 − ρ2

R2
⊥
− z2

R2
z

)1/γ

. (2.62)

When as → 0− the atomic cloud is an ideal Fermi gas, where C = h̄2(3π2)2/3/2m

and γ = 2/3. When we normalize to the total number of atoms by integrating the

density (equation (2.62)) over all space where the density is not zero, N =
∫

n(r)dV .

we can recover the above result for the global chemical potential of a zero temperature

ideal gas trapped in a harmonic potential,

µG = EF , (2.63)

where EF = h̄ω(3N)1/3 is the ideal gas Fermi energy.

For a unitary Fermi gas, as → ±∞. The s-wave scattering length diverges and
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all length scales except for the interparticle spacing vanish at zero temperature. The

characteristic length scale of a Fermi system is the inverse of Fermi wave vector,

kF (r) = (3π2n(r))1/3, (2.64)

where kF (r) is a local quantity. When |kFa| ≥ 1, the scattering length is larger than

the interparticle spacing, and the gas is strongly interacting. In the unitary limit the

only length scale in the problem becomes the inverse of the Fermi wave vector, kF .

This is similar to the ideal Fermi gas case where kF is the only relevant length due to

the fact that the scattering length a = 0. At zero temperature this means that the

local chemical potential in the unitary gas must still scale with density in the same

way as it does in the ideal gas, (i.e. µL ∝ n2/3). We can define a universal constant,

β, such that the equation of state for a strongly interacting gas is,

µL(r) = (1 + β)
h̄2(3π2)2/3

2m
n(r)2/3. (2.65)

Equation (2.65) is differs from the equation of state of an ideal Fermi gas only by

a factor of (1 + β). We can therefore define an effective mass, m∗ = m/(1 + β) for

the unitary gas atoms. As the geometric mean frequency ω ∝
√

1/m and EF ∝ ω we

can then see that the global chemical potential will be,

µG = (1 + β)1/2EF (2.66)

Therefore we can define the values C = (1 + β)h̄2(3π2)2/3/2m and γ = 2/3 for the

unitary gas equation of state. Again, we can integrate the density (equation (2.62))

over all space with the above strongly interacting values for our constants, C and
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γ. It is easy to see that when we do this we will recover equation (2.66) for the

global chemical potential of a zero temperature, strongly interacting gas trapped in

a harmonic potential.

There are now many experiments that have measured β. In the sound velocity

experiment, it was determined that [19],

β = −0.564(0.015). (2.67)

which is consistent with recent quantum Monte Carlo calculations which put β =

−0.58 [78], [30], [31], and β = −0.56 [61].

For the Bose limit as → 0+ and pairs of atoms in opposite spin states can fall

into a molecular state. We can no longer use Fermi theory to describe the system,

as the Pauli exclusion principle no longer applies. For a bosonic gas, we can define a

mean-field interaction potential, which is equal to the local chemical potential. The

mean-field interaction potential is [18].

µ =
4πh̄2amol

mmol

nmol, (2.68)

where amol is the molecular-molecular scattering length, mmol = 2m is the molecular

mass, and nmol = 1
2
n is the molecular density. The equation of state for a gas of Bose

molecules in terms of atomic quantities is,

µL(r) =
πh̄2amol

m
n(r), (2.69)

This means that for a Bose gas we can define C = πh̄2amol
m

, and γ = 1. If we use

these values in the general from of the density we (equation (2.62)) we find,
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n(ρ, z) =
µG

πh̄2 amol

m

(

1 − ρ2

R2
⊥
− z2

R2
z

)

(2.70)

In order to determine the global chemical potential we need to normalize to the total

number of atoms,

N =

∫

n0(ρ, z)d
2ρ dz. (2.71)

We can express this integral as

N = 2π

∫ ρmax

0

∫ zmax

−zmax

µG

πh̄2 amol

2m

(

1 − ρ2

R2
⊥
− z2

R2
z

)

ρ dz dρ (2.72)

If we perform the variable substitution, ρ′ = ρ/R⊥ and z′ = z/Rz we get,

N = 2πR2
⊥Rz

µG

πh̄2 amol

2m

∫ ρ′max

0

∫ z′max

−z′max

(

1 − ρ′2 − z′2
)

ρ′dzdρ′ (2.73)

We want to integrate over all of space where the density not zero. Therefore we can

determine our limits of integration from the equation, (1 − ρ′2 − z′2) = 0. If we are

going to perform the z-integral first then the limits are,

z′max =
√

1 − ρ′2 (2.74)

ρ′max = 1, (2.75)

and the integral now becomes,

N = 2πR2
⊥Rz

µG

πh̄2 amol

2m

∫ 1

0

∫

√
1−ρ′2

−
√

1−ρ′2

(

1 − ρ′2 − z′2
)

ρ′ dz′ dρ′. (2.76)

40



This integral can also be solved exactly:

∫ 1

0

∫

√
1−ρ2

−
√

1−ρ2

(

1 − ρ2 − z2
)

ρ dz dρ =
4

15
. (2.77)

Once we substitute in the appropriate values for R⊥, and Rz, we find that the total

number of atoms can be related to µG for a zero temperature Bose gas,

N =
32
√

2

15

µ
5/2
G

amolh̄
2√m ω2

⊥ωz

. (2.78)

After solving for µG we find that the global chemical potential depends upon exper-

imental quantities N and ω in addition to the molecule-molecule scattering length

amol. If we relate µG for a BEC to the ideal gas value for EF we find,

µG =
1

4
EF

(

5amol

√

EFm

2h̄2

)2/5

. (2.79)

To simplify the above equation we can define a global Fermi wave vector EF =

h̄2k2
F0/2m. When we make this substitution we find that for a zero temperature Bose

gas confined in a harmonic potential the global chemical potential is,

µG =
1

4
EF

(

5

2
kF0amol

)2/5

. (2.80)

It is important to note that kF0 is a global quantity related to the global quantity

EF = h̄ω(3N)1/3.

In the above section we have determined thermodynamic quantities, µG and n(r),

in the three limits near the Feshbach resonance for a zero temperature gas trapped

in a harmonic potential. In Chapter 3 we will use these quantities to calculate the
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sound velocity for each limit.
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Chapter 3

Hydrodynamic sound velocity

The ultimate goal of this chapter is to derive an equations for c(0)/vF in terms of

thermodynamic values for an ideal gas, a unitary gas, and a weakly interacting BEC,

where c(0) is the sound velocity at the axial (z-direction) center of the trap and vF =
√

2EF/m is the ideal gas Fermi velocity. The sound velocity can be determined from

hydrodynamic theory. In Section 3.1, I will explore the time evolution of a density

perturbation moving in a radially (x- and y- direction) trapped hydrodynamic gas.

The hydrodynamic equations will be solved explicitly for sound velocity. The sound

velocity will be determined in terms of two equilibrium quantities, the equilibrium

density n0 and the inverse of the derivative of the local chemical potential with respect

the density (∂µL/∂n|n=n0)
−1. The effect of an axial (z-direction) confinement will be

explored in Section 3.2. The dependence of sound velocity on position for harmonic

axial confinement will be shown to be the same for all interaction strengths where

the equation of state is in a power law form.

Furthermore, the local quantities µL(r) and n(r), equation of state parameters C

and γ and the global chemical potential µG derived in Section 2.4 for zero temperature

theories in the limits of the crossover region, will be used to determine the sound

velocity in the ideal Fermi gas, the unitary gas, and the weakly interacting BEC gas.

Finally, I will introduce a simple model based upon mean field theory developed by
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Cheng Chin, [28]. I will use this theory to predict the equation of state throughout

the entire crossover region. Then, I will extend this model to calculate the sound

velocity in a trapped gas.

3.1 Hydrodynamic sound velocity

Sound velocity can be defined as the speed at which a density perturbation will travel

through a given medium. As such sound can be considered a moving perturbation

in the density of our trapped gas. The dynamics of this movement is described by

hydrodynamic equations, namely the continuity equation,

∂tn+ ∇ · (nv) = 0 (3.1)

and the Euler equation for irrotational flow where ∇× v = 0,

m∂tv + ∇
[

µ+ V (ρ, z) +
1

2
mv2

]

= 0. (3.2)

The system in which sound velocity will be measured is a hydrodynamic gas

trapped in a cigar shaped potential. The potential is strongly confining in two direc-

tions and weakly confining in one direction. Sound propagation will be modeled as

a perturbation from the equilibrium condition. The total density is comprised of the

equilibrium density, n0, and a perturbation, ∆n,

n = n0 + ∆n. (3.3)
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For the local chemical potential, one has similarly,

µL = µ0 + ∆µ, (3.4)

and for the stream velocity, since the equilibrium value v0 = 0,

v = ∆v. (3.5)

In their paper on sound velocity, [58], Capuzzi et al. describe the dynamics of

density fluctuations in a Quasi 1-Dimensional (Q1D) gas, that is a gas that is confined

only in two directions by the potential,

V (ρ) =
1

2
mω2

⊥ρ
2, (3.6)

where, cylindrical symmetry dictates x2 + y2 = ρ2, and the gas is infinitely long in

the axial z-direction. At time t=0 a repulsive optical sheet potential is introduced

at the center of the trapped gas and then removed. The repulsive potential causes a

perturbation in the density. Hydrodynamics dictates that the perturbation will move

axially outward in two directions away from the repulsive potential even after it has

been removed. As stated above, the infinite axis of the trap (i.e. the direction of

propagation) is defined as z-axis.

Thus, the equation for total density with a plane-wave perturbation propagating

in the z-direction is,

n(ρ, z, t) = n0(ρ) + δn(ρ)ei(ωt−qz). (3.7)

This then implies the form for the chemical potential, as at zero temperature the
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chemical potential is a function only of density,

µL(ρ, z, t) = µ0(ρ) +
∂µL

∂n
|n=n0δn(ρ)ei(ωt−qz). (3.8)

And finally for plane wave propagation the stream velocity must have the form,

v(z, t) = vze
i(ωt−qz)ẑ. (3.9)

Note that the stream velocity field v has no ρ dependance and only travels in the z-

direction. This is a result of plane wave propagation. We will use the above equations

in combination with the hydrodynamic equations of motion to solve for the velocity

of a traveling plane wave, which is determined from the dispersion relation,

c =
ω

q
. (3.10)

First lets take a look at the continuity equation. Using equations (3.7) and (3.9)

in equation (3.1) we obtain,

iωδn(ρ)ei(ωt−qz) − iqn0(ρ)vze
i(ωt−qz) − 2iqδn(ρ)vze

2i(ωt−qz) = 0. (3.11)

Note that n0 is a zeroith order parameter and δn and vz are first order parameters.

Leaving out all terms higher than first order, the term δn(ρ)vz is dropped as it is

second order. The continuity equation becomes,

iωδn(ρ) = iqn0(ρ)vz. (3.12)

Next, we will look at the Euler equation. Using equations (3.8) and (3.9) in
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equation (3.2) we obtain,

⊥ : ∇⊥

(

µ0 +
∂µL

∂n
|n=n0δn(ρ)ei(ωt−qz)

)

∇⊥V (r) = 0 (3.13)

z : iωvze
i(ωt−qz) − iq

∂µL

∂n
|n=n0δn(ρ)ei(ωt−qz) − 2iqv2

ze
2i(ωt−qz) = 0. (3.14)

Applying the same restrictions as before and leaving out all terms of order higher

than first, we find,

⊥ : ∇⊥

(

∂µL

∂n
|n=n0δn(ρ)

)

= 0 (3.15)

z : iωvz − iq
∂µL

∂n
|n=n0δn(ρ) = 0. (3.16)

Consider the relevance of the ⊥ direction part of the Euler equation. According

to this ∂µL

∂n
δn(ρ) = ∆µ = Constant . This is a result of using a sheet beam, exciting a

plane wave form for our perturbation. For a plane wave traveling in the z-direction the

density perturbation varies radially in the trap, δn(ρ). However, the energy of that

perturbation, as expressed by chemical potential, does not vary radially. As the sheet

beam excitation ∆µ is constant. This means that the density perturbation will main-

tain its form as it propagates through the trap, leaving vz without any ρ dependence.

Also, we know from the equilibrium condition that ∂z [µ0(ρ, z) + V (ρ, z)] = 0.

We can solve for vz in equations (3.12) and (3.16). This gives,

ω2

q2
m

(

∂µL

∂n
|n=n0δn(ρ)

)−1

=
n0(ρ)

δn(ρ)
. (3.17)
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Substituting in the sound velocity c2 = ω2/q2 and simplifying gives us,

c2m

(

∂µL

∂n
|n=n0

)−1

= n0(ρ). (3.18)

We integrate over the ρ dependence in equation (3.18), which yields

c =

(

1

m

∫

n0d
2ρ

∫

(∂µ/∂n|n=n0)
−1 d2ρ

)1/2

. (3.19)

Now that we have an equation for the speed of sound in terms of the density and

the chemical potential it will be possible to solve for the ratio c0/vF . Once we add

axial confinement, we can determine the sound velocity at the axial center (z=0) of

the trap.

3.2 3-dimensional harmonic potential

The addition of a harmonic axial potential transforms the Q1D potential into a 3-

dimensional harmonic potential. In our system, the axial confinement has contri-

butions from magnetic and optical fields produced by electromagnetic coils and an

a CO2 laser, respectively. At high optical intensity, confinement is dominated by

the optical field. However, at low CO2 laser power, while radial confinement is still

dominated by the optical field, the axial confinement is dominated by the magnetic

field curvature. The magnetic field potential is harmonic. The combined optical and

magnetic field potential has the form Vz(z) = 1
2
mω2

zz
2.

We will determine the values of our thermodynamic quantities using the main
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result of the local density approximation equation (2.29),

µG = µL(r) + Vext(r). (3.20)

the power law form of the equation of state equation (2.30),

µL(r) = Cn(r)γ, (3.21)

and an external harmonic oscillator trapping potential, Vext(r) = VHO(r) where,

VHO(r) =
mωx

2
x2 +

mωy

2
y2 +

mωz

2
z2. (3.22)

We can simplify our equations by assuming cylindrical symmetry where ω⊥ =

ωx = ωy and ρ = x2 + y2. Further, we introduce natural radii R⊥ and Rz such that

R2
⊥ = 2µG

mω2
⊥

and R2
z = 2µG

mω2
z
. When we combine equations (3.20), (3.21), and (3.22) we

find that the equilibrium density of a harmonically trapped gas with,

n0(ρ, z) =
(µG

C
)1/γ

(

1 − ρ2

R2
⊥
− z2

R2
z

)1/γ

. (3.23)

In order to calculate the term (∂µL/∂n|n=n0)
−1, we must first know the relationship

between the local chemical potential µL and the density n. From the power law

equation of state (equation 3.21) (∂µL/∂n|n=n0)
−1 is

(∂µL/∂n|n=n0)
−1 = (γC)−1 n

γ
γ−1

0 . (3.24)
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which in terms of spatial variable is,

(

∂µL

∂n
|n=n0

)−1

=
1

γC
(µG

C
)− γ

(γ−1)

(

1 − ρ2

R2
⊥
− z2

Rz

)− γ
(γ−1)

. (3.25)

Introducing a weak harmonic confinement along the z directions, Vz(z) = mω2
zz

2/2

creates a smooth and slow variation in the density along that direction. The power

law relationship between the density and chemical potential still holds. Further, the

radial derivative of a perturbation in density will be much greater than the derivative

of the change in density in the z-direction. Therefore, we can consider the effect of the

axial variation in density and chemical potential with respect to the hydrodynamic

equations as negligible in comparison with the perturbation discussed in the previous

section.

We would like to be able to determine the dependence of the sound velocity with

respect to the axial (z-direction) coordinate, c(z), in light of the addition of axial

confinement. In equation (3.19) in order to determine the sound velocity we integrate

only over the radial direction in both n0 and (∂µL/∂n|n=n0)
−1. This leaves the a

dependence on z. In order to obtain the z-dependent sound velocity we must evaluate

the two integrals in equation (3.19),

c(z)2 =
1

m

∫

n0d
2ρ

∫

(∂µ/∂n|n=n0)
−1 d2ρ

. (3.26)

First, lets solve for the numerator in the 3-dimensional harmonic potential. The

equilibrium density, equation (3.23), integrated over the radial direction is,

∫

n0d
2ρ = 2π

∫

(µG

C
)1/γ

(

1 − ρ2

R2
⊥
− z2

R2
z

)1/γ

ρ dρ. (3.27)
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Calculating the limit of the ρ integration is done by solving the equation
(

1 − ρ2

R2
⊥

− z2

R2
z

)

=

0. The limits for ρ are,

ρmax = R⊥

√

1 − z2

R2
z

(3.28)

ρmin = 0. (3.29)

We can replace our variables with dimensionless quantities, ρ→ R⊥ρ
′ and z → Rzz

′.

Once we do this we find that the equation becomes

∫

n0d
2ρ = 2π

(µG

C
)1/γ

R2
⊥

∫

√
1−z′2

0

(

1 − ρ′2 − z′2
)1/γ

ρ′ dρ′. (3.30)

The integral can be solved as

∫

√
1−z′2

0

(

1 − ρ′2 − z′2
)1/γ

ρ′dρ′ =
γ

2(1 + γ)

(

1 − z′2
)1/γ+1

. (3.31)

Therefore, in the general case for a power law equation of state the numerator in

equation (3.19) is,

∫

n0d
2ρ = 2πR2

⊥

(µG

C
)1/γ γ

2(1 + γ)

(

1 − z′2
)1/γ+1

. (3.32)

Now lets do the same thing for the denominator in equation (3.19). Using equation

(3.25) for the inverse of the derivative of the equilibrium local chemical with respect

to density, (∂µL/∂n|n=n0)
−1, we obtain for the integral in the denominator of equation

(3.19),

∫
(

∂µL

∂n

)−1

d2ρ = 2π

∫

1

γC
(µG

C
)1/γ−1

(

1 − ρ2

R2
⊥
− z2

R2
z

)−(γ−1)/γ

ρ dρ, (3.33)
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making the same replacement ρ → R⊥ρ
′ and using the same limits of integration we

find

∫
(

∂µL

∂n

)−1

d2ρ = 2πR2
⊥

1

γC
(µG

C
)−(γ−1)/γ

∫

√
1−z′2

0

(

1 − ρ′2 − z′2
)1/γ−1

ρ′ dρ′. (3.34)

The integral can be solved as,

∫

√
1−z′2

0

(

1 − ρ′2 − z′2
)1/γ−1

ρ′dρ′ =
γ

2

(

1 − z′2
)1/γ

. (3.35)

The denominator for equation (3.19) is then,

∫
(

∂µL

∂n

)−1

d2ρ = 2πR2
⊥

1

γC
(µG

C
)−(γ−1)/γ γ

2

(

1 − z′2
)1/γ

. (3.36)

When we put equations, (3.32) and (3.36) together we find,

c(z)2 = γC 2πR2
⊥
(

µG

C
)1/γ

2πR2
⊥
(

µG

C
)−(γ−1)/γ

2

γ

γ

2(1 + γ)

(

1 − z′2
)

. (3.37)

The above equation for the sound velocity can then be simplified greatly, producing

the very nice and neat equation for z-dependent sound velocity,

c(z) =

√

γµG

m(1 + γ)

(

1 − z′2
)1/2

. (3.38)

Using the hydrodynamic equations in addition to the most general thermodynam-

ics of trapped gases we have produced a general sound velocity for any z-coordinate

within the trap. Later we will use this equation to explore how the sound velocity

varies within the trapped gas, and we will explore how the sound velocity varies as
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we tune the interparticle interaction energy, which changes γ.

3.2.1 Position dependence of the sound velocity

In the beginning of this chapter we have assumed that a repulsive optical potential

will generate a perturbation that travels axially outward from the point at which it is

generated. Further we have calculated how the velocity of the perturbation will vary

in the presence of a confining potential in the z-direction. Note that in equation (3.38)

the z-dependant sound generally obeys vz(t) = c(0)[1−z(t)2/R2
z]

1/2. This means that

as the sound wave approaches the edges of the cloud it will slow down. If we look at

this equation in terms of position instead of velocity (d z(t)/dt = vz(t)), we can set

up a differential equation for the position, which looks like

d z(t)

dt
= c(0)

(

1 − z(t)2

R2
z

)1/2

. (3.39)

We can then solve for z(t). In our experiment we excite the sound pulse at the

center of the trap. Therefore, assuming z(0) = 0 the position is,

z(t) = Rz sin

(

c(0)t

Rz

)

. (3.40)

This, of course means that the velocity will be,

vz(t) = c(0) cos

(

c(0)t

Rz

)

. (3.41)

The position and velocity vary sinusoidally with time. At the center of the cloud

the position dependence will be nearly linear in time, but as the sound wave nears

the edges of the cloud we should see it slow down. This is an important feature of
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the sound wave propagation, and one that we can use to check our theory. We should

therefore use a sine wave to fit the position vs. time data. The details of this analysis

is expanded upon in Chapter 7

3.2.2 Sound Velocity in the limits near a Feshbach resonance

In the previous section we included the effect of the harmonic potential in the equation

for sound velocity. In this section I will calculate the sound velocity in the ideal gas,

unitary, and BEC limits. We are only interested in the sound velocity along the

axial center of the trap. Therefore, at z = 0 the general equation for sound velocity,

equation (3.38), is,

c(0) =

√

γµG

m(1 + γ)
. (3.42)

So far, all the equations used have been completely general for a gas trapped in a

3-dimensional harmonic potential with hydrodynamic properties. In order to obtain

the ratio c(0)/vF for specific gases we will need the thermodynamic parameters γ and

µG, the global chemical potential, that were found in Chapter 2 in each limit of the

crossover region. Note that in Chapter 2 we expressed µG in terms of the ideal gas

fermi Energy, EF . In our experiment we measure the sound velocity in distance over

time (i.e. velocity) units. The ideal gas Fermi velocity vF defined from EF = 1
2
mv2

F

is the characteristic velocity.

We found that in the far BCS limit, the gas approaches an ideal Fermi system. It

is important to point out that an Ideal Fermi system will not be hydrodynamic.

However, the sound velocity should approach the ideal gas limit as we tune the

interactions further towards the BCS limit. This will remain true for as long as

the gas exhibits hydrodynamic properties. Once the gas is no longer hydrodynamic

54



we will no longer be able to observe the sound perturbation.

In accordance with equation (3.19) we have calculated the two integrals pertaining

to the numerator and denominator of that equation for a general case. Further, we

have calculated µG = EF = 1
2
mv2

F for the ideal Fermi gas, equation (2.63), and found

that the equation of state for a unitary gas gives γ = 2/3. When we use equation

(2.63) and the value of γ = 2/3 in equation (3.42) we find

c(0) =

√

2
3

1
2
mv2

F

m(1 + 2
3
)
, (3.43)

which reduces to

c(0) =
vF√

5
. (3.44)

For a gas in the unitary limit, γ is still 2/3, and the value for µG =
√

1 + βEF =
√

1 + β 1
2
mv2

F , from equation (2.66). When we use these values for µG and γ in

equation (3.42) the sound velocity in a unitary gas at the axial center of the trap is

c(0) =

√

2
3
(1 + β)1/2 1

2
mv2

F

m(1 + 2
3
)

, (3.45)

which reduces to

c(0) =
(1 + β)1/4vF√

5
. (3.46)

We will use a similar method to calculate the sound velocity for a BEC. The value

of the zero temperature global chemical potential in a Bose gas from equation (2.80)

is µG = 1
8
mv2

F

(

5
2
kF0amol

)2/5
and the equation of state for a Bose gas gives γ = 1.
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When we use equation (2.80) and the value of γ = 2/3 in equation (3.42) we find,

c(0) =
1

4

(

5

2
amolkF0

)1/5

vF (3.47)

These are the three equations for the sound velocity in units of the ideal gas Fermi

velocity in the limits of the ideal gas, unitary gas, and weakly interacting BEC. In

the next section we will use a simple mean field model in order to explore how the

velocity might vary between these limits.

3.3 Mean field model for ultra cold gases

The general power law equation of state, equation (2.30) that can be used for both

Bose and Fermi gases is,

µL(r) = Cn(r)γ, (3.48)

In this section I will examine a simple mean field model developed by Cheng Chin [28]

to determine the equation of state of a constant density gas in the BEC-BCS crossover.

Then, I will extend the theory to determine the sound velocity in a trapped gas.

The variation of the sound velocity in crossover region can be understood by

examining the interparticle interactions. To begin with, consider the one dimensional

scattering problem of a particle close to zero energy incident on the attractive square

well potential.

Let the square well potential extend a distance R from the origin, at a depth of

|V0| ≫ the kinetic energy of the particle. This represents the interaction between two

particles, the incident particle and the scatterer. The Schrödinger equation for this
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situation would be,
[

h̄

2M
∂2

r + V (r)

]

ψ(r) = EBψ(r), (3.49)

where ψ(r) is the pair wave function, EB is the binding energy between the two

particles and M is the reduced mass. For the case of Fermi atoms pairing to form

Boson molecules the reduced mass M = 1
2
m, where m is the mass of the Fermi atoms.

For r < R the pair wave function can be solved, ψ(r) = A sin(k0r), where k0 is the

relative wave vector between particles. When V0 ≪ EB, k0 =
√

m
h̄2V0. For r > R

the solution for the pair wave function is ψ(r) = B exp(−κr), where κ =
√

m
h̄2EB.

The boundary conditions for ψ(R) and the derivative of the pair wave function with

respect to r, ∂rψ(r)|r=R are,

ψ(R) = A sin(k0R) = B exp(−κR) (3.50)

∂rψ(R) = Ak0 cos(k0R) = −Bκ exp(−κR). (3.51)

If we take the ratio of the boundary conditions of the pair wave function and its first

derivative we find

ψ(R)

∂rψ(R)
=

1

k0

tan(k0R) = −1

κ
. (3.52)

We recognize the term, − 1
k0

tan(k0R), as the s-wave scattering length, a. which means

κ = 1/a. In the limit where R tends towards zero this means that the normalized

pair wave function is,

ψ0(r) =

√

2

a
exp(−r/a) (3.53)

and the boundary condition at r = 0 is,

ψ0(0) = a∂rψ0(0)|r=0. (3.54)
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Further, when we use this wave function in Schrödinger’s equation (3.49), we find

that the binding energy is, EB = h̄2/(ma2).

3.3.1 A simple mean field model of µL in the BEC-BCS crossover

So far we’ve only considered the wave function for two particles. If we expand our

view to a gas of atoms that interact according to this potential picture, ψ0 can be

considered as the wave function for internal relative atomic motion. Then, in terms of

a gas of atoms, the total wave function would be Ψ(R)ψ0(r), where Ψ(R) is the wave

function for the center of mass motion of an atom relative to R, its position. The

interaction term ψ0(r) is then dependant on the relative position of the two atoms,

r. The mean field equation for a system of particles is,

[

− h̄
2∇2

4m
− h̄2∂2

r

2M
+ Û

]

Ψ(R)ψ0(r) = µΨ(R)ψ0(r), (3.55)

where µ is the chemical potential for two atoms, Û = g|Ψ(R)|2 is the mean field

interaction and g is the interaction term. For a uniform gas at constant density

|Ψ(R)|2 = n and ∇2|Ψ(R)|2 → 0. The mean field equation for a uniform gas at

constant density is,
[

− h̄
2∂2

r

m
+ g(r)n

]

ψ0(r) = µψ0(r). (3.56)

If we consider the gas to be made up of pairs of atoms forming bosons, the expec-

tation value for g should yield the molecular mean field shift,

∫ ∞

0

ψ∗
0ng(r)ψ0dr =

4πamn

2m
(3.57)

where am is the molecule-molecule scattering length. Using equation (3.53) for the
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wave function ψ0 we find that

g(r) = cBEC
h̄2

m
r, (3.58)

where.

cBEC = 4πam/a. (3.59)

Recent four body calculations have determined that am = 0.6a [29]. This form of

ψ0(r) and the equation for g(r) is valid in the BEC limit. A pair wave function that

is valid for the mean field equation (3.56) is,

ψ(r) = NAi [c
1/3
BECn

1/3r − 2c
−2/3
BECµ/E0], (3.60)

where N is a normalization factor, Ai is the Airy special function that has the property

that its second derivative Ai ′′(x) = xAi(x), and E0 = h̄2n2/3/m. Further, equation

(3.54) the boundary condition, ψ(0) = −a∂rψ(r)|r=0 still holds.

Quickly, I will show that equation (3.60) satisfies the mean field equation (3.56).

Take an Airy function dependant on r in the form Ai [Ar + x]. Remembering the

properties of the Airy function we take the second derivative of this function in terms

of r and find,

∂2
rAi [f(r) + x] = A2(Ar − x)Ai [f(r) + x]. (3.61)

For ψ(r), A = c
1/3
BECn

1/3 and x = 2c
−2/3
BECµ/E0. When we use these terms in equation

(3.61) we find,

∂2
rψ(r) =

m

h̄
(µ− g(r)n)ψ(r), (3.62)

which is equivalent to the mean field equation (3.56).
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Next, as a second check of the model, I will show that ψ(r) = NAi [c
1/3
BECn

1/3r −

2c
−2/3
BECµ/E0] (equation (3.60)) exactly reproduces ψ0(r) =

√

2
a
exp(−r/a) (equation

(3.53)) in the dilute BEC limit for small scattering lengths where a → 0+, 2µ →

EB = h̄2/(ma2), and n1/3r ≪ 1. In order to do this we must take the Taylor series

expansion of ψ(r) with respect to the small parameter n1/3r → 0. The first three

terms of this series are,

ψ(r) = ψ(0) +
1

2
c
1/3
BECn

1/3rψ′(0) +
1

6
(c

1/3
BECn

1/3r)2(−c−2/3 µ

E0

)ψ(0) + (O)(n1/3r)2.

(3.63)

Using the boundary condition, ψ(0) = −aψ′(0), and the fact that n2/3EB/E0 = 1/a2

we find

ψ(r) = ψ(0) +
r

2a
ψ(0) +

r2

6a
ψ(0) + (O)(n1/3r)2, (3.64)

which is simply the series expansion of ψ0(r) ∝ exp(−r/a).

Right now ψ(r) represents the pair wave function in the BEC limit. In order to

find the pair wave function in the BCS limit we need a way to determine the mean

field interaction from the properties of a Fermi gas. On the far BCS side as na3 → 0−

the system approaches an ideal Fermi gas. The chemical potential for an ideal fermi

gas at zero temperature is,

lim
na3→0−

µ

2
= ǫF =

(3π2n)2/3h̄2

2m
(3.65)

where ǫF is the density dependent Fermi energy and µ is the chemical potential of

two atoms. We would like so solve for the pair wave function ψ0(r) =
√

2
a
exp(−r/a)

(equation (3.53)) in the BCS limit. The boundary condition ψ0(0) = a∂rψ0(r)|r=0
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(equation (3.54)) in the BCS limit is,

lim
na3→0−

∂rψ(0) = 0. (3.66)

If we use the same form for the interaction term g = cBCS
h̄2

m
r and corresponding

pair wave function ψ(r) = NAi [c
1/3
BCSn

1/3r− 2c
−2/3
BCSµ/E0],we can solve for cBCS in the

BCS limit,

lim
na3→0−

∂rψ(0) ∝ Ai ′[2c
−2/3
BCSµ/E0] = 0. (3.67)

Therefore −2c
2/3
BCSµ/E0 = −α, where α ≈ 2.338 is the first zero of the Airy Function.

This gives,

cBCS = 3π2α−3/2. (3.68)

The Fermi wave number is kF = (3π2n)1/3. We can now put the pair wave function

and the boundary condition in a form valid in the BCS limit in terms of Fermi

variables, kF and ǫF .

ψ(r) = NAi [α−1/2kF r − α
µ

ǫF
] (3.69)

The pair wave functions, equations (3.60) and (3.69) can be used to find the

chemical potential for a particular value of 1/(kFa). For example if we take the

bounder condition, equation (3.54), ψ0(0) = a∂rψ0(r)|r=0 and apply it to the pair

wave function in the BCS limit, equation (3.69) we find,

kFa

α
= − Ai [−αµ/ǫF ]

Ai ′[−αµ/ǫF ]
. (3.70)

Then, we can use mathematical software like Mathematica to numerically solve for

the chemical potential. Figure 3.1 shows the result of this process for both the BEC
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and BCS pair wave functions. The Mathematica code used to generate these curves

and others in this section can be found in Appendix C.

Figure 3.1: The simple mean field model provides a prediction of the local chemical
potential in units of local Fermi energy (µL/ǫF ) for a gas of uniform density (n) versus
1/(kFa). The chemical potential was determined using a simple mean field model in
the BCS limit (Blue) and the BEC limit (Red). For large negative values of 1/(kFa)
the chemical potential in the BCS limit is one. For large positive values of 1/(kFa)
the chemical potential in the BEC limit approaches the binding energy local chemical
potential approaches zero.

The chemical potential, µ determined in the BCS approaches one for large negative

values of 1/kFa. This is as it should be as µ for an ideal Fermi gas at zero temperature

is equal to the Fermi energy. µ determined in both the BCS limit and the BEC limit

approaches the binding energy for large positive values of 1/kFa. However, they to

not approach the binding energy in the same manor. The difference between µ and

Eb is smaller for the simple mean field model determined of µ in BEC limit. This

distinction will become relevant when we extend the model to prediction the sound
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velocity of a trapped gas.

One last limit needs to be explored. Using equation (3.70) we can determine the

chemical potential on resonance where the scattering length diverges, α → ±∞. In

this limit we find that the chemical potential can be determined from,

Ai ′[−αµ/ǫF ] = 0, (3.71)

or −αµ/ǫF = α′, where α′ = 1.019 is the fist zero of Ai ′[x]. As discussed previously

the relationship between the chemical potential of a unitary gas and the fermi energy

of an ideal gas should go as

µ

2
= (1 + β)ǫF , (3.72)

where again µ is the chemical potential for two atoms. This means that the simple

mean field model provides, β = −0.564. This is exactly the value we get for β in the

sound velocity experiment, equation (2.67.)

The simple mean field model can be used to provide insight into the equation

of state over the entire crossover region. µBCS provides reasonable values for the

chemical potential in the BCS, BEC and unitary limit.

Part of the chemical potential will be used in the formation of molecules, therefore

total local chemical potential for a single atom is in fact,

µL = 2
(µ

2
+ Eb

)

(3.73)

We can determine the full equation of state in the crossover region, µL ∝ nγ, from

the equation,

γ =
∂ lnµL

∂ lnn
. (3.74)
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Using the result for the chemical potential in the BCS limit, µBCS, this gives,

γ =
2

3

(

1 +
Eb

µBCS

)−1 (

1 + 1/2
α−3/2kFaǫ

2
F/µ

2
BCS

k2
Fa

2 + ǫF/µBCS

)

. (3.75)

We have only calculated γ for the chemical potential determined in the BCS limit,

see Figure 3.2.

Figure 3.2: γ versus 1/kFa as determined by the simple mean field model in the
BCS limit(Blue) and the BEC limit (Red). The dashed lines are γ = 1 for positive
values of 1/(kFa) and γ = 2/3 for negative values of 1/(kFa).

The γ calculated with the mean field model gives γ = 2/3 in the unitary (1/(kFa) =

0) and ideal gas (1/(kFa) → −∞) limit, and γ = 1 in the weakly interacting BEC

(1/(kFa) → +∞) limit.

64



3.3.2 A simple mean field model of c(0) in a harmonic trap

From the simple mean field model we are able to determine the local chemical poten-

tial µL as a function of a local 1/kFa,

µL

ǫF
= f

[

1

kFa

]

, (3.76)

as shown in Figure 3.1. However, as this model is for a uniform gas we must find a

way to adjust the model so that it represents atoms confined in a trap. Further, in

our experiments we normally express our measurements in terms of ideal Fermi gas

values in an equivalent trap. Right now the chemical potential is expressed in terms

of units of ǫF (n) and plotted against 1/(kF (n)a), both of which are quantities that

depend on the local density.

In order to determine the effect of density and normalize our chemical potential

in the usual way we introduce EF = (3π2n0I)
2/3h̄2/2m and h̄2k2

F0/2m = EF , where

EF = h̄ω(3N)1/3 is the Fermi energy of a trapped ideal gas, n0I is the ideal gas

density at the center of the trap, and kF0 is the ideal Fermi wave number. We can

then rewrite the above equation as

µL

EF

=

(

n

n0I

)2/3

f

[

1

kF0a

(

n

n0I

)−1/3
]

. (3.77)

Once this is done, it is easy to invert this equation such that we have a density as a

function of chemical potential at a particular value of 1/(kF0a),

n

n0I

= F

[

µL

EF

]

(3.78)

According to the local density approximation the global chemical potential µG and
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the trapping potential V (r) = V0(1 − exp(−mω2

2V0
r2)) can be expressed in terms of

the local chemical potential, µL = µG − V (r). In the limit of large V0 the potential

takes the form of a harmonic oscillator, V (r) = mω2

2
r2. Then, the spatial variation of

density is,

n

n0I

= F

(

µG

EF

− mω2

2EF

r2

)

. (3.79)

In order to determine the global chemical potential we must normalize to the total

number of atoms N,

N = n0I 4π

∫ rmax

0

F

(

µG

EF

− r2

σ2

)

r2dr, (3.80)

where σ =
√

2EF

mω2 . In terms of dimensionless variables µ′
G = µG/EF and ρ = r/σ this

integral becomes,

N = n0I σ
34π

∫

√
µ′

G

0

F
(

µ′
G − ρ2

)

ρ2dρ, (3.81)

where the limit of integration rmax =
√

µ′
G arises from the fact that the density goes

to zero when the local chemical potential is zero. The above integral can be further

simplified when we realize,

n0Iσ
3

N
=

1

3π2

(

EF 2m

h̄

2)3/2 (
2EF

mω2

)3/2

=
8

π2
(3.82)

We can then solve for the global chemical potential in units of the ideal fermi energy

from the equation,

1 =
32

π

∫

√
µ′

G

0

F
(

µ′
G − ρ2

)

ρ2dρ. (3.83)

Solving the above integral yields the global chemical potential µ′
G as a function of
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1/(kF0a). In addition, the functions,

n′ = F
(

µ′
G − ρ2

)

(3.84)

µ′
L = n′2/3f

(

1

kF0a
n′−1/3

)

, (3.85)

relate the density and chemical potential to spatial variables. In the above equations,

µ′
L = µL/EF and n′ = n/n0I .

We can now relate the above quantities to the sound velocity. Factors of n0I in the

numerator and the denominator cancel and EF is embedded in µ′
L. When we calculate

the sound velocity as a function of the Fermi velocity a factor of 1/2 appears under

the square root. The equation for the sound velocity, equation (3.19) in terms of the

parameters derived from the simple mean field model is then,

c

vF

=

√

√

√

√

1

2

∫

n′ρdρ
∫

(

∂µ′

L

∂n′

)−1

ρdρ
. (3.86)

We now have all the equations needed to calculate the sound velocity in the BEC-

BCS crossover. The sound velocity in units of the Fermi velocity as determined by

the mean field model presented in this section is shown in Figure 3.3.

Regardless of whether we use cBEC or cBCS as our dimensionless parameter, the

simple mean field model provides a prediction of the sound velocity through the

entire crossover region. However, the theory will only be valid for one curve at a

time. Therefore, this model does not provide a continuous prediction of the sound

velocity. Instead, the simple mean field model provides two curves determined in the

BEC and BCS limits that should be valid only on the BEC or BCS side of resonance

(1/(kF0a = 0) respectively. However, The BCS curve agrees well with our data on
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Figure 3.3: The sound velocity in units of the Fermi velocity (c/vF ) as determined
by the mean field model plotted versus 1/(kF0a). Using the dimensionless variable
cBCS in the model produces a sound velocity that is valid for large negative values of
1/(kF0a) (Blue Line). Dashed lines show zero temperature theoretical curves in the
BEC and BCS limits.
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resonance. In Chapter 7 we will compare this model to the sound data taken in the

BEC-BCS crossover. However, as seen in Figure 3.3, the model approaches the BEC

theoretical curve for large positive values of 1/kF0a when we use cBEC . When we use

cBCS the model replicates the sound velocity for an ideal Fermi gas for large negative

values of 1/kF0a and produces a reasonable value for the dimensionless parameter

β = −0.564 in the unitary limit.

69



Chapter 4

Trapping and cooling

The basic experimental system we use in the atom trapping and cooling lab has

not changed for the past decade. Descriptions of the experimental apparatus and

procedures can be found in previous dissertations produced by former members of

the quantum optics group at Duke [62–67]. However, it important to place the sound

velocity experiment in a broader framework. In this chapter I will provide an overview

of the basic cooling and trapping techniques used in our experiment.

Most of the experimental system used in sound velocity experiment was up and

running when I started working on the sound velocity experiment. However, in order

to run the experiment an understanding of each individual component in necessary.

Atom trapping and cooling experiments are often times very complex and have many

different components. A concerted effort was taken to create the simplest experiment

possible, and in relation to other atom trapping experiments this goal was achieved.

The system is still very complicated and contains many different components. As

a working rule in the lab, each individual component works 95 % of the time, which

means that when your working with 100 different components your only running 0.5

% of the time. In reality, the situation is not that dire. However, good working

knowledge of the basic apparatus is necessary, especially when trouble shooting the

system.
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The experimental apparatus contains a locking region and a main system. Each

of these is comprised of a vacuum system and an atom source or oven. In addition

the main system makes use of various magnetic field generation subsystems. There

are three independent laser beam sources and their associated beam conditioning

components. A Coherent 899 Dye laser generates the laser beams with a wavelength

of 671 nm, used in the MOT, Slower, and Camera systems. The photon source of the

dye laser is the florescence of a liquid dye excited by an external pump laser. The

dye used is LD688 dye dissolved in 2-phenoxyethanol. The external pump laser is a

Coherent Verdi V-10 diode pumped solid state laser. The light from the Verdi is used

in our sound velocity experiment. We generate the light used for the dipole trap with

a Coherent CO2 laser. We condition the laser beams using acusto-optic modulators

(AOs).

In this section I will try to follow, as much as possible, the general sequence of

events an atom goes through during the course of an experiment. I will not cover

the construction of the vacuum and magnet systems other than to say here that the

vacuum system, which is maintained by Ion pumps and sublimation pumps, produces

an Ultra High Vacuum (UHV) environment that reaches the limit of our Ion gauge

at 2 × 10−11 Torr. The magnets are two electro magnetic coils operated in either a

Helmholtz (parallel) or anti-Helmholtz (opposing) current configurations.

During the experiment, solid 6Li is melted and then boiled off in an oven. One oven

expels atoms into our main vacuum system. Next, the atoms enter our Zeeman slower,

where they are (as the name implies) slowed down. Once the atoms exit the slower

they are trapped and cooled in a Magneto Optical Trap (MOT) down to a temperature

of approximately 150 µK. The atoms are then loaded into an optical dipole trap, the

physics of which was discussed in Section 2.1. The atoms are further cooled by
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lowering the intensity of the dipole trap laser to a temperature of approximately 10

nK. Then, the magnets are used to select the various interaction strengths available

across a broad Feshbach resonance (Section 2.3) centered at 834 G. Once the atoms

are conditioned properly we perform our experiment. Data is extracted from the

experiment in the form of two dimensional pictures taken via absorption imaging.

4.1 The oven

We work with a ultra cold gas consisting of 6Li atoms. This begs the question, where

do the atoms come from. The atoms in our experiment start in solid form. They

are placed in an oven, which looks like a corn cob pipe (See Figure 4.1). The pipe

is attached to the system such that the atoms, inserted into the bowl of the pipe in

solid form are injected into the experiment via the stem. The oven is heated to the

point where the atoms first liquify and then boil. Further, a mesh covers in internal

surfaces of the oven in order to recirculate the off-axis, gaseous 6Li atoms that hit the

sides either the bowl or stem of the oven.

The oven is wound with nickel-chromium wire. The windings can be divided into

5 distinct regions. A power supply generates about 20 Amps which is sent into a

current divider in order to supply each of these regions independently. In order to

achieve good flux through the stem of the pipe as well as recirculation through the

mesh, we must apply heat to the oven carefully. The temperature profile used in the

main experiment is summarized in Table 4.1.

The temperature profile indicated in the above table is to be considered approx-

imate. Region 3 is considered the source of the atoms. Regions 1 and 2 are kept

above the boiling point of 6Li to supply Region 3, and Regions 4 and 5 are kept at
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Figure 4.1: Our ovens look like a corn cob pipe. Nickel-chromium wire, wrapped
around five distinct regions of the oven, is used to heat the entire assembly.

Region Temperature (C)
1 320
2 340
3 410
4 310
5 240

Table 4.1: Temperature profile for a typical oven
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temperatures lower than region 3. This causes atoms with off axis velocity that hit

the mesh covering the inner surface of the oven to “wick” back to the source region.

The oven attached to the locking region vacuum system is of similar design.

4.2 Locking region

The dye laser is able to produce a wide range of frequencies. In order to select

the appropriate frequency for the trapping of 6Li we must reference the laser beam

frequency to the atomic resonance. We use the atomic resonance of atoms produced

in the locking region oven for our reference frequency, and control electronics provide

feed back loop to lock the frequency of our laser. The locking region consists of an

oven and a vacuum tee with three window ports. The oven creates an atomic beam

which is intersected by a beam from the dye laser (See Figure 4.2). The intersection is

orthogonal, so there will be no overall Doppler shift due to off axis velocity. However,

we do see evidence of Doppler broadening of the atomic peak. Through the third

window port a photo-multiplier tube senses light from scatter on the atomic resonance.

As can be seen in Figure 4.2, a small amount of light is picked off from the main

beam using a beam splitter that reflects a small amount of light on both the front

and back surfaces. We use an acousto-optic modulator (AO) to shift the frequency of

light from that produced in the dye laser. An AO uses a piezo-electric transducer to

generate acoustical waves in a crystal. These waves create a periodic change in the

index of refraction of the crystal, which acts as a grating. The laser light is then split

into zeroith and first order modes each traveling outward from the AO at a different

angle. The angle and frequency shift of the first order mode is determined by the

drive frequency. Each mode corresponds to a different frequency shift.
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Figure 4.2: The dye laser produces light which is upshifted by a double pass AO
arrangement. This light intersects atoms produced by the locking oven. The light
scatter from the atomic resonance is detected by a photo-multiplier tube (PMT) and
used to lock the dye laser to the atomic resonance.

The AO is set up in a double pass arrangement (See Figure 4.2), which is used

several times in our experiment as it allows us to keep the direction of the beam

fixed. The double pass AO arm consists of a polarizing beam splitting cube (PBS),

two lenses, a λ/4 waveplate and a mirror. A linearly polarized beam passes through

the PBS and is focused onto the AO. We optimize the AO for the first order with an

efficiency of about 80%. The first order mode passes through the λ/4 waveplate and

is reflected back on itself, passing through the λ/4 waveplate again. This results in a

90 degree rotation of the polarization (i.e. if we started with horizontal polarization

we will end up with vertical polarization and vice versa). The light is then focused

back onto the AO where its frequency is shifted again. After the light is recollimated,

it is now reflected by the PBS as its polarization has been flipped. The AO is placed

at the focus of the two lenses of the system so that any angle displacement of the first
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order mode is

The total shift we produce in the double pass AO arm is about 200 MHz. In

Section 2.3 we discussed the electronic ground state of 6Li. Figure 4.3 shows the

excited state transitions. The dye laser can be scanned in frequency through its

control box. We tune the laser frequency such that the light intersecting the atoms is

close to the D2 transition. At this point we can resolve the hyperfine structure of the

ground state. We choose to lock the laser to the F = 1/2 to 2P3/2 transition. This is

done by setting up a feedback loop to the laser control box. A photo-multiplier tube

(PMT) collects the florescence signal generated by the atoms. Then we modulate the

frequency shift produced by the locking AO. The modulated signal resonance signal

detected by the PMT is sent into a lock-in amplifier along with the original sinusoidal

modulation. The lock-in amplifier produces a signal that is the derivative of the

atomic resonance with respect to the frequency of the light (zero if we are sitting on

top of the peak, positive if we are below the peak, and negative if we are above the

peak). The output of the locking amplifier is then sent to the frequency control of

the dye laser, insuring that the dye-laser stays ‘locked’ to the atomic resonance.

4.3 Zeeman slower

The atoms leave the oven at speeds around vatoms = 1.4 × 103m/s and enter the

slower. The atoms are hit by light tuned to the D2 line shown in Figure 4.3 (minus

the upshift from the locking AO). However, due to the speeds at which atoms are

traveling, the resonance is Doppler shifted. The frequency of light that the atoms see,
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Figure 4.3: Energy level diagram of the ground and 2P states of 6Li. The wavelength
of light needed to excite from the ground state to either 2P states is approximately
λ = 671nm. The frequency difference between the 2P excited state transitions is
D2 − D1 = 10.056GHz. Each hyperfine consists of a number of degenerate states
corresponding to F quantum number (i.e. F = 3/2 is four fold degenerate with
mF = (−3/2,−1/2, 1/2, 3/2)).
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νDoppler is increased by the speed at which they are traveling,

νDoppler = ν0(1 +
vatoms

c
), (4.1)

where ν0 is the wavelength of the incident light, and c is the speed of light.

In order for the light to be absorbed by the atom, we must shift the atomic

resonance. This is done by the Zeeman slower. As its name implies, the magnetic

field supplied by the Zeeman slower shifts (a shift due to an applied magnetic field)

the atomic resonance frequency. Comprised of 10 coils (see Figure 4.4) the slower

provides a continuous magnetic field. The field is greatest near the oven, where

νDoppler is largest.

Figure 4.4: The Zeeman slower is comprised of ten electro-magnetic coils. The
current in each coil decreases from the entrance (oven) to the exit (main chamber).
The magnetic field Zeeman shifts the atomic energy levels to stay in resonance with
the light as the atoms decelerates throughout the slower.

An atom absorbing one photon laser light receives a momentum kick equal to the

momentum of the photon. The resultant change in velocity is,

∆v =
h̄k

m
(4.2)

where k = 2π/λ is the wave number for the incident light and m is the mass of

6Li. The atom then emits the photon in a random direction. An atom must absorb
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approximately 14 thousand photons in order to decelerate to zero velocity. Each time

an atom absorbs a photon, the deceleration changes the magnitude of the Doppler

shift. Therefore, the current in each of the coils is calibrated such that the atoms are

constantly in resonance with the incident light [80].

Considering the fact that the atoms are nearly always on resonance with the light

due to the magnetic field supplied by the slower, there is a constant decelerating force

on the atoms. This is called a radiation pressure force and can be characterized by the

wave number of the incoming light and the photon scattering rate, Γsc. The slower

decelerates the atoms from 1.4 kilometers per second to around 30 meters per second

over the course of the one meter length of the slower. The acceleration associated

with the Zeeman slower is,

arad =
Frad

m
= Γsch̄k ≈ 4 ∗ 105 meters/second2. (4.3)

The frequency and polarization of light incident on the atoms is chosen carefully

[64] to insure a two level system. We use laser light straight out of the head of the

dye laser which is shifted about 200 MHz below the D2 line of 6Li. Further, we use

σ+ circularly polarized light.

4.4 Magneto-optical trap (MOT)

If the Zeeman slower does it job, the atoms will exit as a slow moving atomic beam

with a velocity of approximately 30 meters per second, ready to be captured in the

MOT. The MOT in turn builds up atomic density in the center of the vacuum cham-

ber and cools the atoms so that they can be efficiently loaded into the dipole trap. The
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standard MOT (shown in Figure 4.5) is comprised of three sets of counter-propagating

laser beams aligned along orthogonal axis. In addition to the optical beams, there

exists a magnetic field generated by two coaxial electromagnetic coils whose combined

magnetic field is centered on the intersection point of the optical beams. The current

in each coil is applied in opposing directions (anti-Helmholtz). As a result, they pro-

duce a spherical, quadrapole field with a zero field point centered at the intersection

of the optical beams.

Figure 4.5: The MOT traps and cools atoms coming out the Zeeman Slower. 3
orthogonal, counter propagating beam pairs along with a magnetic field generated by
two electromagnetic coils operating in an anti-Helmholtz configuration confines the
atoms in both momentum and space.
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4.4.1 Basic MOT physics

The MOT provides confinement in both space and momentum. First, consider the

one-dimensional analogue to the three dimensional MOT wherein two counter prop-

agating beams are incident on an atom with a velocity only along the direction of

the propagating beams. As mentioned in the previous section, an atom moving in

the presence of near resonant light will experience a radiation pressure force that de-

pends upon the frequency of the laser light as well as the velocity of the atom, due to

Doppler shift. By red shifting the two counter propagating beams (i.e. detuning the

frequency of light below the atomic transition) we can use the Doppler shift to confine

the velocity of the atom. This is known as optical molasses. If we tune below the

atomic resonance then an atom moves towards one of the beams it becomes more in

resonance, scatters more photons, and receives a larger force in the direction opposite

to its velocity. Extend this analogue to three dimensions and the MOT effectively

cools the atoms by damping their velocity.

The spatial confinement is a combined result of the magnetic and optical fields.

The spherical, quadrapole field can again be viewed in a one-dimensional analogue

wherein the gradient of the field varies linearly and is zero at the center d B
d(x)

= xî

center. To further simplify the problem we will consider an atom whose ground state

total angular momentum is Fg = 0. and whose excited state total angular momentum

is Fe = 1. The effect of a magnetic field on the excited state is to Zeeman tune the

mF = 0,±1 sublevels of the excited state. The fact that the field varies linearly

about a zero point means that the Zeeman tuning will shift the excited state energy

differently on either side of the center of the field. Where the field is negative the

mF = 1 excited state sublevel energy will decrease. Where the field is positive the

mF = −1 excited state sublevel energy will decrease.
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We use circularly polarized light to excite from the mF = 0 ground state sublevel

to the mF = ±1 excited state sublevel (σ+ circularly polarized light will excite the

atom to the mF = 1 sublevel, and σ− circularly polarized light will excite to the mF =

−1 sublevel). Now consider two counter propagating beams with opposite circular

polarizations. We have already stated that in order to form an optical molasses we

red shift the light from resonance. Now all we have to do is assign the appropriate

polarization to each beam. In the one dimensional analogue this means that the beam

propagating in the positive direction must have σ+ polarization. Therefore, any atom

that wanders into the region of space where the magnetic field is negative (i.e. x < 0)

will preferentially absorb a photon from the beam of light propagating in a positive

direction and receive a momentum kick in back to the center of the trap. And vice

versa for σ− polarization in the counter propagating beam.

Indeed this is what we do. The combined effect of the optical and magnetic fields

is to confine the atoms in both space and momentum. As the electronic structure

of Li6 is more complex than the simple model we constructed here, there are other

considerations that need to be made.

4.4.2 The 6Li MOT

The ground state and excited state energy levels are shown in Figure 4.3. Ideally,

MOT beams would excite a two level transition without access to any other energy

levels. In this scenario an atom would access the excited state by absorbing a photon

and return to the original ground state once that photon had been emitted. This is

not the case for 6Li. The MOT beams are shifted in frequency to excite transitions

on the D2 line of 6Li from the F = 3/2 ground state. This has the unfortunate

consequence that once in the excited state the atoms can fall back into either ground
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state. Therefore we must add an additional beam, called the “repumper” beam, that

excites on the D2 line from the F = 1/2 transition. The manner in which we create

and combine the laser light is shown in Figure 4.6.

Figure 4.6: Assorted optical and electronic components used to generate the MOT
beams. The MOT beams frequencies are selected by two double pass AO arms. Wave
plates and polarizing beam splitting cubes are used to split the light. Telescopes are
used to expand the beam.

In the locking region AO arm we down shift the light approximately 200 MHz

and lock this to resonance. Therefore the light coming out of the laser is actually
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200 MHz above the resonance from the F = 3/2 ground state to 2P3/2 transition.

In order for the MOT to work the light must be red-shifted (i.e. tuned below the

resonance. Therefore we need to shift the light once more. This is done in the MOT

AO arm. In this arm the frequency of the laser light is shifted to roughly 30 MHz

below the F = 3/2 ground state to 2P3/2 transition. Then a portion of laser light is

split off from the MOT beam and sent into the repump AO arm. Here the light is

down shifted roughly 230 MHz so that it is roughly 30 MHz red detuned from the

F = 1/2 ground state to 2P3/2 transition. The ratio of the MOT to repump beams is

optimized on the MOT signal, and is about 3:1.

The MOT can only cool the atoms to the Doppler limit. For 6Li the Doppler limit

is 140 µK. The set up I described above does not actually cool to this limit. It is

set up for fast loading of the MOT with a significant number of atoms. Furthermore,

we are excited our atoms with bicromatic light and accessing both ground states.

Therefore, two more phases of the MOT are required. We call these phases the

“cooling phase” and the “optical pumping” phase.

In the cooling phase the MOT and repump beams are shifted closer to the atomic

resonance and lowered in intensity. This causes and increase in the density of the

MOT and a decrease in temperature near the Doppler limit. This phase lasts 200 ms.

Next, we need to populate only the F = 1/2 ground state. We do this by turning off

the repump beam. This then prohibits the excitation of the F = 1/2 ground state.

Only the F = 3/2 atoms are excited, and after a few cycles this state is depopulated

as the atoms can relax to either ground state. This phase lasts 200 µs. After the

cooling and optical pumping phases the atoms are as cold and as dense as they will

ever be in a MOT. They are ready to be loaded into the dipole trap.
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4.5 Radio frequency antenna

There are many uses for the radio frequency (RF) antenna. At the beginning of each

experiment we use it to equalize the population of states |1〉 and 2〉 by applying a noisy

pulse. If we were to simply broadcast the RF signal at a single resonant frequency

the states would flip flop and it would be difficult to time the pulse to create an

equal mixture. To equalize the spin states we first tune the high field magnets to

approximately 8 Gauss. Then we broadcast an signal centered on the Zeeman shift

between states |1〉 and 2〉 at approximates 8 MHz. The signal contains a 2 MHz

random noise bandwidth. The large bandwidth and small magnetic inhomogeneity

insures that the populations will equalize to a 50:50 mixture of the lowest two spin

states.

The RF antenna is comprised of two electronic feed-throughs that enter into the

vacuum chamber. Attached to these cylindrical metal rods is a piece of wire bent into

a rectangular loop. This is by no means an efficient antenna. Most of the power sent

to the antenna is reflected back upon itself. However, we do not need much power to

excite RF transitions.

The energy difference between states |1〉, |2〉, and |3〉 is well within the RF fre-

quency range. In Section 2.3 I described the electronic ground state of 6Li. After the

optical pumping phase of the MOT we are left with atoms in the F = 1/2 ground

state. When an external magnetic field is applied the degeneracy of the this state

is lifted and we can resolve the lowest two spin states, |1〉 and |2〉. At high field

the splitting between these states is approximately 80 MHz. Further, the splitting

between states |2〉 and |3〉 at high field is also around 80 MHz (See Figure 2.2).

These transitions are experimentally accessible with our current setup. The RF
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antenna is a powerful tool that can be used for a variety of experiments. We are

already using RF transitions to precisely determine the magnetic field [84] and create

a spin polarized gas [83]. Other uses include creating unequal spin mixtures [86] and

exciting the |2〉 to |3〉 transition to measure molecular binding energy [85].

4.6 Far off resonance trap (FORT)

Once the atoms are trapped and cooled in the MOT, the MOT beams are turned off.

Now the atoms are contained in the potential well generated by the CO2 beam. The

physics of a dipole trap was covered in Section 2.1. Further we discussed the various

interactions accessible to the trapped atoms in Section 2.3. Experimentally there are

few techniques we can use to cool the atoms further cool once they are confined in

the potential well of the CO2 laser.

Figure 4.7: Proper conditioning and control of the CO2 beam used for the dipole trap
requires: a cylindrical telescope, a control AO, a polarization optic, a 10X expanding
telescope, two focusing lenses, a rooftop mirror, a chopper mirror, two beam dumps,
and a power meter.
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Figure 4.7 shows the optical beam path traveled by the CO2 laser beam in our

experiment. First, the beam is conditioned by a set of cylindrical lenses. We use this

cylindrical telescope to insure that the beam curvature matches in both the horizontal

and vertical directions perpendicular to the direction of propagation. Meaning that

when the curvatures are matched the position of beam focus along the axis of prop-

agation (z-direction) will be identical for the two directions perpendicular to beam

propagation. By adjusting of the last lens of the cylindrical telescope we can change

the ratio of the trapping frequencies in all three directions. As noted in Section 2.1 the

trapping frequencies depend on the spatial size of the trapping potential. Therefore,

the elipticity of the beam is directly related to the ratio of the two radial trapping

frequencies (x- and y- direction). However, it is not always in our best interest to

match these two frequencies exactly. We must balance a matching of curvature with

a zeroing of beam elipticity.

Next, the beam passes through an AO, which operates in the same manner as the

AO discussed previously but needs 40 MHz. We send two frequencies into the AO at

32 MHz and 40 MHz. The AO is aligned for maximum power in the 1st order mode

of the 40 MHz beam (around 70 %). We use two frequencies in order to maintain

constant power to the AO so that the index of refraction remains constant. This

avoids unwanted changes in the beam angle. During our forced evaporation procedure,

which will be discussed in detail in Section 4.6.1, we lower the amplitude of the 40

MHz signal, thereby lowering the intensity in the 1st order mode of the 40MHz beam.

Simultaneously, we increase the amplitude of the 32 MHz signal maintaining constant

RF power into the AO. We do this in order to insure temperature stability in the AO.

More information on limiting noise in the CO2 beam can be found in Reference [14].

After the AO we have three beams with significant intensity. The zero order beam
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and the 1st order mode of the 32 MHz beam are sent to beam dumps.

The beam then passes through a polarization optic, which passes horizontal po-

larization and reflects vertical polarization (The polarization coming out of the CO2

laser is linear and horizontal). After the polarization optic the beam is expanded in a

10X telescope. The expanded beam is steered to the UHV system. Just before enter-

ing the vacuum, it passes through the front lens which has a focal length of 19.5 cm.

The front focusing lens is the primary element that determines the FORT position.

It is carefully aligned such that the focus of the lens is centered in the magnetic field

generated by the high field coils. This alignment procedure is explained in detail in

Section 4.6.4. Upon exiting the UHV system the beam is recollimated by the back

focusing lens.

Depending upon the where in the timing sequence the experiment is, the beam

will either be directed into a power meter that also serves as a beam dump, or it will

reflected back upon itself by the rooftop mirror. The is done by an actuated mirror

known as the “chopper” as shown in Figure 4.7. The rooftop mirror is comprised of

two mirrors at a right angle to one another. The line which marks the intersection

of the two mirrors is positioned at a 45 degree angle to the polarization of the beam.

The rooftop mirror serves the dual purpose of reflecting the beam as well as flipping

the polarization. Therefore, the polarization of the back-going beam will be at a 90

degree angle to the front going beam. This is done in order to insure that there are no

interference effects when both beams are ’on‘. Once the back reflected beam reaches

the polarization optic it is reflected into a beam dump. This is done so that the beam

does not reenter the CO2 laser.
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4.6.1 Evaporative cooling

Evaporative cooling, as its name implies, is a process wherein the temperature of the

gas is reduced by allowing “hot” escape from the trap. A “hot” atom is characterized

by its large kinetic energy. An atom can gain kinetic energy through collisions with

other atoms. When these “hot” atoms leave the overall temperature of the gas de-

creases. We can cool through evaporation either passively or actively. The atoms will

collide and exchange energy. Atoms that gain enough energy will exit the trap. We

can increase the evaporation rate through two methods. We can increase the number

of collisions by turning on strong interactions between the two trapped spin states,

and we can lower the trapping potential making it easier for an atom to leave the

trap.

There are three distinct evaporative processes during a typical experiment. First,

we reduce by half the intensity of trapping light by lowering the chopper mirror and

diverting the back reflected beam into a power meter, as discussed in the previous

section. Second, we use the magnetic field to turn on interactions at 300 G and allow

the gas to rest at this field at a fixed trap depth. This is free evaporation. Finally,

we lower the intensity of the trapping beam in such a way as to minimize the final

temperature of the gas. This is forced evaporation and is either done in the weakly

interacting regime at 300 G, or more efficiently in the strongly interacting regime at

834G.

4.6.2 Forced evaporative cooling on resonance

The forced evaporation process performed at 834 G cools the strongly interacting

gas to a temperature of 10 nK. After the beam intensity is lowered, it is held at
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the low well value. During this low well interval a certain amount of free evaporation

occurs. The lower the intensity of the beam the better able we are to achieve near zero

temperature conditions. The most important factor in achieving the lowest possible

well depth is the alignment of the FORT and the center of the high field coils which

would otherwise distort the trap. The details of this alignment procedure will be

discussed in Section 4.6.4. Next we use an exponential curve to re-raise the trap to

our desired trapping potential. Typically, we perform our experiments on the gas at

this stage of the lowering curve, which is know as the “high flat time”. A typical

lowering sequence is shown in Figure 4.8.

Figure 4.8: Typical lowering curve for cooling a Fermi gas in our experiment

Our goal is to maximize the temperature loss of the gas. For example, if we allow

the system to sit indefinitely at the same trapping potential, eventually the probability

of an atom acquiring escape velocity through collisions will become small. We can
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increase the probability by tuning to a region of strong interactions where collisions

will occur more frequently. However, eventually we need to lower the amplitude of

the trapping potential to allow more atoms to escape. It is important that this is

done is such a way as to maximize temperature loss. The lowering sequence shown in

Figure 4.8 consists of four distinct stages. First, we lower the trap according to the

equation,

U(t) = U0

(

1 +
t

τ

)−1.44615

(4.4)

The above equation was developed to take advantage of the natural scaling laws of

the system [79]. As the trap is lowered the evaporation slows and the lowering rate

is slowed to compensate.

For a typical experiment at 834 G the parameters of the lowering curve shown in

Figure 4.8 are, with τ = 0.08 s from in equation (4.4). This means that the low well

Time Point Value (s)
t0 0
t1 4
t2 4.5
t3 4.7
t4 5.2

Table 4.2: Time points for a typical lowering sequence at 834 Gauss

value of the trap will be about 0.34% of the maximum value. By carefully aligning

the FORT on the magnetic field we can further decrease this value to 0.068%. This is

done by adding an offset to the lowering curve. The offset value maintains a continues

curve but adjusts the lowest value. For example, if the lowest value was originally 1%

of total trap depth, a 25% offset would reduce the lowest value to 0.75%. The offset

typically used for our forced evaporation at 834 G is 80%. In our experiment we use

a 4 s lowering curve with a time constant of τ = 0.08 s. With an offset of 80% our
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lowest trap depth is 0.068%.

4.6.3 Forced evaporative cooling of a BEC

The sound velocity experiment was the groups first attempt at measurements on zero-

temperature systems through the entire crossover region. There were many issues to

overcome. One such issue is the fact that while we cool most efficiently at 834 G,

some of our measurements needed to be performed at other magnetic fields. The

Pauli Exclusion principal dictates that no two fermions can occupy the same energy

level of a system. Therefore, a zero temperature Fermi gas has more energy than a

fully condensed Bose Einstein Condensate with the same number of atoms is the same

trapping potential. When we tried to simply switch fields to the weakly interacting

Bose region we found that the condensates we were producing had typical Boltzmann

tails (i.e. the density of the outer gas scaled exponentially, while the inner gas formed

a dense peak that scaled like a BEC). In order to cool the gas further we needed to

add an additional lowering curve (Figure 4.9)

This lowering curve is concurrent with a magnetic field switch. The magnets take

approximately 0.6 s to change fields. Most of the field change occurs in the first few

tenths of a second. We begin the field switch just before the second lowering curve.

This way the atoms are already forming into molecules and condensing into a BEC.

As they do this they will lose internal energy. This energy needs some place to go and

results in an increase in temperature. Therefore, just as the temperature increases, we

are already providing additional forced evaporation. The result is a fully condensed

BEC. Again we rest the atoms at a new low well value, and then re-raise the trap

to some final well depth. Typical time points associated with this lower curve are,

where the time constant associated with the first lowering curve remains τ1 = 0.08s.
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Figure 4.9: Lowering curve used to generate near zero temperature BECs. Initial
lowering occurs at 834 G, then the trap is lowered further as the magnetic field is
tuned into BEC side of resonance.

Time Point Value (s)
t0 0
t1 4
t2 4.4
t3 4.5
t4 4.7
t5 4.9
t6 5.4

Table 4.3: Time points for a the production of a BEC; Lowering begins at 834G,
and additional lowering is accompanied by a field switch to the weakly interacting
Bose region
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The time constant associated with the second lowering curve is τ2 = 1s. There is

also an additional offset value that depends upon the field we are switching to and

controls the lowest trap depth achieved in the additional cooling process. Table 4.4

contains the appropriate values for the additional offset at a variety of fields as well

as the lowest trap depth.

Field Offset Low Well Value
710 G 60% G 0.023%
735 G 60% 0.023%
775 G 30% 0.042%
815 G 15% 0.051%

Table 4.4: Experimental parameters for a the production of a zero temperature gas
on the BEC side of resonance; Lowering begins at 834G, and additional lowering is
accompanied by a field switch into the Bose region

4.6.4 Optical and magnetic bowl alignment procedure

During evaporative cooling the intensity of the CO2 laser is lowered to a small fraction

of its original value. When cooling in the strongly interacting region at 834G the trap

is lowered to 0.068% of its maximum value. For the production of BECs this value

is even smaller. With the optical potential so small, the axial confinement of the

atoms is dominated by bias magnetic field curvature. Also, the radial confinement

has small contributions from the magnetic field as well. We found that we could

improve cooling by exactly centering the dipole trap on the magnetic field center. At

high field the magnetic field is generated by two coaxial coils running parallel current.

This generates a large field at the dipole trap. The potential generated by the field

is due to the magnetic field curvature. It is attractive in the plane perpendicular to

the magnet coils and is repulsive along the axis of the coils.
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For the purposes of this experiment the camera beam propagates along the axis

of the magnetic field coils (y-axis). The pictures taken of the atoms will then be in

the plane perpendicular to the coils where the magnetic field potential is attractive

(x- and z- axis). Therefore, the first alignment step is simple. We allow the gas to

expand from the low well for a long period of time, and we track the center of mass

movement of the atoms as the gas expands. When we are close to the center this

can be as long as 5 ms. If the gas has any translational movement on the screen we

follow up with a corresponding change in the position of the front focusing lens of the

CO2 beam. This change can be along the axial (z-direction) of the trap or the radial

direction of the trap that is the plane of the pictures (x-direction). However, any

change in the front focusing lens must be followed by the same change in the back

focusing lens so as to maintain overlap when both beams are present. These first few

changes (axial) of the trap as well as

Centering the focus of the CO2 beam in the other direction (y-direction) is trickier.

Any change in the FORT position in this direction will only show up as a change in

the focus of the picture, not in any change of position. The solution comes from two

experimental observations. First, we see a dramatic loss of atoms below a certain trap

depth when we are off center. Second, the more aligned the dipole trap and magnetic

field are, the shallower trapping depths we can achieve. Therefore, we can lower the

trap depth to the point where we see dramatic atom loss. Then we adjust the front

focusing lens of the CO2 and either see either a further reduction in atom number or

an increase in atom number. Again the back focusing lens must be adjusted by the

same amount in the same direction.

Care must be taken when making any adjustment to the CO2 lens system. A

large change to the front or back focusing lens can direct the retro-reflected beam
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to an unsafe place resulting in damage to the system (or the system’s operators!).

Therefore any change to the position of either lens must be done is small increments.

I would recommend starting with a change of 5 microns or less on either lens and then

increasing the adjustment once one knows the effect these adjustments have on the

CO2 beam location at every location along its beam path. Furthermore, there might

be some coupling between the various axes of the front focusing lens due to the fact

that the camera plane on the atoms is not exactly orthogonal to the corresponding two

axis of the CO2 beam focus. However, I found that making this adjustment greatly

increases the cooling efficiency of the system and allows us to trap more significantly

more atoms at near zero temperature. This is especially important when we run our

secondary lowering curve to create fully condensed BECs, which require very shallow

traps due to their small chemical potential.

4.7 Absorption imaging

At the end of each experimental sequence we take a picture of the atoms. This is the

primary method of extracting information from the experiment. In our experiment we

use a process called absorption imaging. We hit the atoms with on resonant light and

then look at the shadow cast upon a charge coupled device (CCD) array. Therefore,

we are imaging the shadow cast when light is absorbed by the atoms. We acquire

images using an Andor Technology DV434-BV CCD camera. The camera has a 1024

× 1024 array of 13 µm square detectors.

The beam used for absorption imaging is produced in the red beam conditioning

system (See Figure 4.10) and sent into a fiber optic cable.

The optical beam layout used to image the atoms is shown in Figure 4.11. Also
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Figure 4.10: The camera beam goes through two double pass AO arms and enters
into a fiber optic launch.

shown is the image path of the atoms. As the beam leaves the fiber optic cable it is

expanding. We position a lens to collimate the beam. The focus of the collimated lens

is selected to produce a large diameter beam (approximately 2.5 cm). The beam then

passes into the UHV system and is incident on the atoms. Upon exiting the UHV

system it passes through an imaging lens, gets partially blocked by a razor blade and

then goes through a microscope objective before it reaches the CCD array.

The optical elements between the atoms and the CCD array a placed to transfer

an image of the atoms to the CCD array. The first lens positions the image of the

atoms in the plane of the razor blade. The purpose of the razor blade will be explained

shortly. Then, the microscope objective places the image of the atoms on the CCD

image array.

We utilize the fast kinetics function of our Andor camera. When a photon hits

a pixel of the CCD camera a charge forms on that pixel. In a fast kinetics sequence

the electrons associated with a row of pixels is shifted to the row below it. Once the
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Figure 4.11: Some of the light in the camera beam is scattered off the trapped
atoms. The lens system between the atoms and the camera beam is designed to place
the image of the atoms in the plane of the CCD array.

electrons reach the last row they can be read out by Andor software. The reading

time is much longer than the time it takes to shift a row. The razor blade shades

2 thirds of the CCD array. Immediately after a the image containing the atoms

shadow is obtained one third of the CCD array is shifted down to the dark area

of the array. Then we can take a reference shot on the cleared pixels and use the

fast kinetics function to shift again. The information is then transmitted out of the

camera. Taking a reference shot greatly reduces the noise in our signal.

A description of how this image is processed to determine atomic density can be

found in Section 5.5. The spatial resolution of the images is about 2 pixels at the

CCD array. Once we consider the magnification of the lens system this results in an

image resolution of around 5 microns at the atoms.
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Chapter 5

Sound velocity experiment

This Chapter highlights the experimental and analytic steps taken in order to obtain

a measure of the sound velocity. The speed at which sound travels depends on the

nature of the substance through which it travels. The sound velocity is a basic

quantity that is intimately related to the equation of state. A sound wave is, in

essence, a moving pressure gradient. The velocity of the pressure gradient tells us

about the equation of state of the gas, therefore, something about the gas itself must

be known. To this end we not only measure the sound velocity but the ideal gas Fermi

energy, EF which determines the ideal Fermi velocity vF =
√

2EF/m. We present

our measurements in the form of the sound velocity at the center of the trap in units

of the ideal gas Fermi velocity, i.e. c(0)/vF .

In the previous chapter I described how 6Li is trapped and cooled. In this chapter,

I will discuss how we excite the sound wave (Section 5.1) and investigate the dynamics

of the wave propagation (Section 5.2). In order to obtain a good measure of the sound

velocity, the excitation of the sound wave must be gentle to remove nonlinear effects.

It is shown in Section 5.2.2 that through our analysis of the nonlinear effects of sound

propagation we are able to extrapolate the sound velocity to the zero perturbative

case. Further, we must understand the geometry of the propagating feature in order to

best determine the velocity from density profiles produced in the experiment (Section
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5.3).

All of our measurements take the form c(0)/vF . c(0) is, of course the speed of

sound at the center of the trap in typical length/time units. vF is the Fermi velocity

of an equivalent ideal gas. In order to obtain one data point, we perform both a sound

velocity experiment and a breathing mode experiment in order to evaluate c(0) and

vF , respectively. As discussed in Section 2.2, for an ideal gas at zero temperature

EF = h̄ω(3N)1/3 and vF =
√

2EF/m. This means that vF depends on two measur-

able quantities, the atom number N and the average trap frequency ω. We use the

breathing mode experiment in conjunction with a separate parametric experiment

that measures the individual trap frequencies in order to determine ω (Section 5.4).

The atom number, N, is determined from the sound velocity data in order to insure

the most reliable measure of vF (Section 5.5).

5.1 Exciting a sound wave

We excite a sound wave using a blue detuned laser at 532 nm. The atoms are trapped

in the potential well generated by our CO2 laser. The atoms have a cigar shape, long

in one cartesian coordinate (z-direction) and short and cylindrically symmetric in the

other two (x- and y-directions). The blue detuned beam, when incident on the atoms

is shaped by a cylindrical telescope and when focused on the atoms is a repulsive sheet

potential. At the intersection between the repulsive optical potential and the atoms

the optical intensity varies in one direction (z-direction) and from the point of view

of the atoms extends out infinitely in the other two directions (x- and y-directions)

While the atoms are sitting in the CO2 trap the excitation potential is introduced

at the axial center, perpendicular to the z-axis of the trap, and then removed. The
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atoms at the center of the trap upon which the light is incident are repulsed from

the region of highest intensity. A density perturbation forms and propagates outward

from the center of the trap along the z-axis as a plane wave.

We can increase the repulsive force generated at the atoms by adjusting the inten-

sity of the blue detuned beam. Our blue detuned beam originates from a Coherent

VerdiTM V-10 Diode-Pumped Laser which produces coherent light at 532 nm. We

use the VerdiTM as a pump for our dye laser. However, the dye laser only requires

5.5 Watts of power while the VerdiTM can put out up to 10 Watts. With the use of

two half-wave plates and a polarizing beam splitting cube we can pick off part of the

532 nm beam, Figure 5.1. By adjusting the total power out of the VerdiTM and the

Figure 5.1: Beam path of the 532 nm laser light: the light is expanded and then
shaped by a cylindrical lens telescope before it is focused on the trapped atoms.

two waveplates we can maintain constant power to the dye laser and vary the power

in the beam used to excite the sound perturbation. The beam then passes through

the pinhole and is expanded by a telescope. Then it is shaped by a set of cylindrical

lenses that changes the elipticity of the beam. Next the beam passes through a lens

that focuses it on the atoms. Before entering the UHV system the beam is reflected

off a bichromatic beam splitter. As there is limited access into the UHV system, the
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green beam is passed into the system through the same port as the slowing beam.

These beams are combined at the bichromatic beam splitter which passes light at 671

nm and reflect light at 532 nm.

We apply the repulsive force for only a short amount of time, ∆t =≃ 280µs. This

is done by passing the beam through a pinhole that is attached to a solenoid. The

beam is positioned so that it is blocked initially, but then is allowed to pass as the

pinhole moves through the beam, Figure 5.2. The pinhole mechanism was originally

designed and constructed by Bason Clancy.

Figure 5.2: The green light is applied only for a short time as it passes through a
pinhole.

The physics of the production of the density perturbation is relatively simple. The

electric field of the blue detuned beam induces an out of phase dipole that is repelled

from the high intensity region. The atoms then move according to the interaction

of the induced dipole and the beam’s electric field. The potential generated by the

induced dipole is,

Udip = −1

2
αE2, (5.1)

where the bar indicates that the electric field is averaged over many cycles. As we

are working with optical fields we can assume a sinusoidal variation in the electric

field such that E2 = E2/2. Then the potential can be written in terms of the field
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intensity I = ǫ0cE,

Udip = − 1

2ǫ0c
αI, (5.2)

where ǫ0 is the permittivity of free space and c is the speed of light. As I, ǫ0, and c

are all positive quantities in order to have a repulsive for the polarizability must be

negative, which occurs for blue detuning.

Now that we know the potential our incident light generates, in order to determine

the forces on the atoms we need to assess the geometry of the beam. As stated before

the beam acts as a sheet potential incident on the axial center of the trapped atoms,

as can be visualized in Figure 5.3. The intensity of light must therefore reflect this

Figure 5.3: A sheet potential of green light incident on the axial center of the
trapped atoms

geometry. For a gaussian beam propagating in the x-direction the intensity can be

represented by

I(x, y, z) =
I0

1 + x2

x2
0

exp

(

−2
z2

z2
0

− 2
y2

y2
0

)

, (5.3)

where I0 is the maximum beam intensity and z0, x0, and y0 represent the spatial size of

the beam. The value of x0 is the rayleigh length, which depends on the beam profile,
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x0 = πz0y0/λ. Our beam is passed through a cylindrical telescope such that at the

focus of the beam z0 ≈ 10µm and y0 ≈ 150µm. This means that x0 ≈ 9mm. As the

trapped atoms are only about 25 microns wide in the short direction of the trap (x-

and y-directions) and 150 microns wide in the long direction (z-direction), the beam

can be considered constant in x and y directions and the perturbation created will

be small in comparison to the long axis of the atoms. The sheet potential produced

is then,

Udip(z) = − 1

2ǫ0c
αI0 exp

(

−2
z2

z2
0

)

. (5.4)

The force applied is only in the axial direction of the trap or along the short spatial

profile of the incident beam, z. This leads to a force on the atoms of F = −∇U , or

∂U

∂x
= − z

z2
0ǫ0c

αI0 exp

(

−2
z2

z2
0

)

. (5.5)

The polarizability for the ground state of 6Li is [63]

α =
α0ω

2
0

ω2
0 − ω2

, (5.6)

where α0 is the static polarizability for the ground state of 6Li, ω0 is the transition

frequency for the ground state of 6Li and ω is the frequency of the incident light. For

our experiment, α0 = 24.310−24cm3 [68], ω0 ≈ 2πc/ nm and ω0 ≈ 2πc/ nm.

This means that the polarizability of an optical field with a wavelength of λ = 532

nm incident on 6Li atoms is

α ≈ −1.7α0. (5.7)

The fact that our polarizability is negative indicates that our potential will indeed

be repulsive. We now have a way of characterizing the force imbued by our ’sheet‘
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potential.

5.1.1 Green beam alignment procedure

Both the focus of the green beam and the gas of atoms trapped in the CO2 beam

potential are very small. Our job is made even more difficult by the fact that we are

focusing our beam from so far away. We’re trying to hit a very small object with an

even smaller bullet from a great distance away. Fortunately, we have other means

to align our lens system on the target atoms. Namely, light from the dye laser. We

expend a lot of effort to make sure that we do not have any red light entering into

the system during the evaporative cooling phase of our experiment. A few mW of

power from a stray beam can deplete the FORT of atoms.

Therefore, we pick off a portion of the dye laser beam going into the locking region

that we know is resonant with the atoms. Then we introduce a few mirrors to align

this beam along the green beam path prior to the pinhole shutter. Next, we adjust the

pinhole shutter to pass our test beam. Due to the fact that the light is on resonance

there is a dramatic atom loss in the FORT when the beam is nears alignment. We

use a florescence signal from the atoms right after they are loaded into the FORT at

zero field. This is called the FORT probe experiment.

Initially, we concentrate on the two direction perpendicular to beam propagation.

We make adjustments on the last mirror before the light enters the UHV system.

Then we add a few optical density filters and re-peak atom loss. Once we reach the

point where the signal can no longer be completely destroyed by this adjustment we

can align in all three direction. The position of the focus of the green beam can be

adjusted by moving the focusing lens on a translation stage along the propagation

direction. An additional optical density filter may need to be added to maintain
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signal from the atoms.

Once the position of the red beam is maximized we can repeat this procedure, now

using the green beam and judging the focus position based upon absorption images.

We know that the beam is aligned when the dip in density is at the center of the trap

and maximized.

5.2 Dynamics of sound pulse propagation

Care was taken insure a precision measurement of the sound velocity. We claim that

the data produced in this experiment is a test bed for theoretical prediction. In

order to insure that our data is reliable we devoted ourselves to understanding the

dynamics of sound propagation. In this section I will describe the evolution of the

sound experiment, and the steps taken to insure a deep understanding of the details

of sound propagation particular to our experiment.

Initially, we created a density perturbation and saw that it propagated through

the trap. We recognized that the gas was exhibiting hydrodynamics and that the

measurement of hydrodynamic sound propagation was possible. Next, we scrutinized

the nature of the sound wave. In doing so, we found ways to eliminate all of the

systematic errors we could identify. The systematic errors that will be reviewed in

this section include residual movement of the released atoms and deviations due to

nonlinearity in the propagation.

As the density perturbation travels through the cloud, successive pictures are

taken. We can determine the velocity of the position of the perturbation as a function

of time. As a first try, we excited a sound wave at one edge of the cloud. We

tracked the position of the density perturbation as it moved across the entire cloud.
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Inconsistencies in the data and led us to conclude that there was a some unaccounted

velocity. In Section 5.2.1 I will describe our investigation into this matter and how it

was resolved.

Moreover, we noticed that the density feature we were tracking was more complex

than we originally assumed. Initially we expected to create an increase in density

as the atoms were repulsed from the green beam and pushed into adjacent atoms.

We would then track this density peak. Upon closer observation of the actual sound

wave we discovered that not only did the density peak propagate, but the density

depression or valley propagated as well. In Section 5.2.2 highlights the analysis and

resolution of this nonlinear effect.

5.2.1 Measurement of sound in two directions

It was discovered that there were inconsistencies in the velocity measurements at

identical trap depths. We took a close look at the data and soon discovered that

the entire cloud of atoms had some initial velocity along the long axis of the trap.

Moreover, the center of mass motion was not consistent for different re-raise times or

final trap depths. It was concluded that we were exciting a “slosh” mode during the

cooling procedure when the CO2 beam intensity is lowered and then re-raised to a

final trap value.

Competing against the optical confining potential was the magnetic field potential.

If the two potentials are not perfectly overlapped the gas will migrate towards the

magnetic potential center when the optical intensity is low. Then upon re-raise the

combined center shifts again and the gas oscillates. This effect is seen most strongly

along the long axis (z-direction) of the trap. The direction along which we track the

sound perturbation. This effect was skewing the measurement, either adding to or
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subtracting from the actual sound speed depending upon how the gas was moving.

The period of the sloshing frequency in comparable to the speed of sound in the axial

direction.

We tracked the center of mass of the atom cloud over a period of time and were

able to see it oscillate. It may have been possible to correct for this additional velocity

Figure 5.4: If the atoms have an initial velocity the speed of sound measurement
will be skewed.

on a case by case basis. Instead we opted for a simpler solution. We decided to excite

the sound wave in the center of the trap and track the two counter propagating waves.

Figure 5.5: By tracking two sound waves traveling in opposite directions we are able
to disregard any additional velocity the atoms may have.

While each perturbation might have an additional velocity component with re-

spect to the trap center, the mean velocity of the waves with respect to each other

will remain constant. A simple average of the two separate velocities will yield an
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uncorrupted speed of sound,

c =
c+ ∆v

2
+
c− ∆v

2
. (5.8)

5.2.2 The peaks and the valleys

When we looked closely at the density perturbations we created we observed a non-

trivial shape to the propagating features. Initially, the green beam creates a valley in

the center of the trap bordered by two peaks. As the perturbation travels outward

the valley splits in two. Each counter propagating wave contained a density peak

and a density valley. Furthermore, we discovered that these two features propagated

at different speeds (Figure 5.6). The fact that the sound wave is comprised of both

Figure 5.6: The propagating density perturbation is comprised of a region of in-
creased density (peak) and decreased density (valley) which travel at different speeds.

an increase and a decrease in density begs the question, which feature represents the

true sound velocity for the equilibrium density.

What we discovered when we started analyzing the data was that the peaks move
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noticeably faster than the valleys. This makes sense as the peaks exist is regions

of higher density. Further, it was found that for increasing green beam intensity the

difference between the peaks and the valleys increased as the density in the peaks and

valleys became more disparate. However, the average velocity remained the same, up

to a point (see Figure 5.7). At very large green beam intensities the nonlinearity of

Figure 5.7: We measured the velocity of each feature of the propagating density
perturbation, the peaks (blue/upper dots) and the valleys (red/lower dots) as well
as the average velocity (green/open dots) as a function of the excitation potential
intensity in units of the global chemical potential of the trapped gas.

the system becomes too great, and the average velocity no longer reflects the velocity

at equilibrium density.

For each sound data point taken, an effort was made to optimize the sound ex-

citation. We needed to balance the nonlinear response to the green beam intensity

with our ability to identify the peaks and valleys above the noise in our signal as

they traveled through the cloud. Thus we insured that for all our measurements the

110



green beam intensity was set below the point where nonlinear effects influence the

average velocity. It is clear from Figure 5.7 that by measuring the velocity of both

the peaks and the valleys we can extrapolate the zero perturbation result (i.e. the

sound velocity with UDip = 0.

5.3 Sound velocity c(0)

Here I will go over the basic experimental procedure we used to track the sound

pulse and the analysis techniques used to insure reliable data. The initial cooling

and trapping of the gas, as well as imaging procedure is as described in Chapter 4.

In addition to these procedures we excite the sound pulse and allow it to propagate

through the gas. We use the signal received on a photodiode from the excitation

light to mark the start of the sound pulse. When the sound pulse has traveled

a predetermined amount of time we turn off the CO2 laser trap, allow the gas to

expand and then image.

Figure 5.8: Absorption images acquired at different time points in a sound velocity
experiment
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The data acquired is a two dimensional absorption image as shown in Figure 5.8.

This data is transformed into two-dimensional density (as explained in Section 5.5).

We bin the data along radial (x- and y-direction) axis to obtain the one-dimensional

density profiles for the long axis (z-direction). We also create an average binned axial

distribution from all of the shots acquired in the data series, which we call the “Meta

Average”. The “Meta Average” includes all of the time points except for the time

point of interest. We do this in order to create an average density profile with which

to compare the density profiles at individual time points.

We take five shots for each time point. These shots are averaged together into a

single “Signal” for each time point. In order to determine the peak and valley positions

at each time point we take the difference between “Signal” profile and the “Meta

Average” profile and termed this the “Difference” (i.e. “Signal” - “Meta Average” =

“Difference”). We found that it facilitated analysis to only look at either the positive

or negative deviation of the “Difference” profile. Values in the “Difference” profile

greater than zero were set to zero in order to determine the position of the peaks,

and vice versa for the valleys. Each feature was fit with a gaussian curve.

Figure 5.9 shows this process for one time step. Note that the valley “Difference”

signal is made positive in order to see the feature more clearly. The position of the

gaussian is recorded for each feature at each time point. We take approximately 11

time points and 5 trials at each time point for in for a single sound experiment. Each

shot contains the position of four different features resulting in four data series in

terms of position and time. We fit each of these data series, shown in Figure 5.10,

with a sine function as discussed in Section 3.2.1.

The velocity at the center of the trap determined for each of the four features

tracked in our experiment. The average velocity of the four features is taken as the
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Figure 5.9: On top is a one-dimensional axial density profile of a single time point
“Signal” (black curve) and the average profile “Meta Average” (grey curve). On the
bottom is a profile generated by subtracting “Signal” profile from the “Meta Average”
profile (black curve) and gaussian fits to the density valleys (red curve).
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sound velocity for the experiment. By tracking both the peak and the valley in two

directions we are able to eliminate systematic errors that arise from residual center

of mass movement and nonlinear effects.

5.4 Trap frequency ω

The average trap frequency ω is determined for each experiment using a breathing

mode measurement. Before we perform the breathing mode measurement, however,

we must measure the trap oscillation frequencies independently. Measuring the trap

oscillation frequencies periodically provides a check on one of the most important

factors determining the behavior of the trapped atom cloud, namely the confining

potential. Once we have determined the relationship between all of our frequencies,

we can then used our breathing mode measurement to calculate the average trap

frequency ω.

5.4.1 Parametric resonance experiment

We use a technique called parametric resonance to measure the trap oscillation fre-

quencies. This technique employs a small amplitude modulation of the optical trap

at a particular driving frequency. If the driving frequency is at twice the trapping

frequency the atoms will experience heating which can be seen experimentally as an

increase in the size of the cloud. The resonant frequencies associated with the para-

metric resonance experiment are twice that of the trap oscillation frequencies, 2 ωx,

2 ωy, and 2 ωz.

The parametric resonance experimental procedure is as follows: First, we cool

our atoms, comprised of the two lowest spin states, in the weakly interacting regime
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(300 G) by lowering the power of the optical trapping potential. Then we reraise the

power to the desired depth. At this point we apply the amplitude modulation which

maximally heats the atoms at resonance. Next we ramp the magnetic field to the

zero crossing (526 G) where the interaction between the two spin states is zero. Here

we image the cloud and observe the mean size versus applied frequency.

We perform the parametric resonance experiment for a trap depth of 2% and find

for the radial direction, the resonance frequencies are 1837(3) Hz and 1953(3) Hz

(see Figure 5.11). At the same trap depth we find that the parametric resonance

experiment gives an axial resonance frequency of 82.6(0.3) Hz (see Figure 5.12).

5.4.2 Breathing mode experiment

In order to confirm our parametric results we perform a breathing mode experiment in

the non-interacting gas at 528G. A good discussion as to they dynamics of breathing

mode oscillation can be found in Joe Kinast’s thesis [65]. The basic procedure for the

non-interacting gas breathing mode experiment begins the same way as the parametric

resonance experiment. However, once we have re-raised our power to the desired

depth we sweep immediately to 526 G. Then we turn the trap off for a short amount

of time and then recapture the atoms. The time we choose is designed to allow the

atoms expand for a short amount of time, while not imparting a significant amount

of energy. The gas then oscillates in size around the equilibrium condition.

The breathing mode oscillation frequency depends on the atomic interaction en-

ergy and temperature. For a non-interacting, zero-temperature gas we can expect

the oscillation frequency to be twice that of the oscillation frequency in the plane of

the camera image. We performed this experiment at 526 G in a 2% trap. From Fig-

ure 5.13, we can see that the breathing mode oscillation frequency of 1947(6) agrees
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Figure 5.10: Displayed is the position versus time for each of the four sound features.
The outer most data points (blue dots) are the peak position values, and the inner
most data points (red dots) are the valley values. The grey dashed lines are the fits
to the data using a sine function. The black dashed lines are the measured cloud
border.

Figure 5.11: We performed the parametric resonance experiment at 300G in a 2%
trap and imaged at 526G. Peaks were found at 1837(3) Hz and 1953(3) Hz.
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Figure 5.12: We performed the parametric resonance experiment at 300G in a 2%
trap and imaged at 526G. A Peaks was found at 82.6(0.3) Hz.

Figure 5.13: Breathing mode experiment at 526G for 2% trap depth. Oscillation
frequency for fit is 1947(6) Hz
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well with one of our parametric resonance frequencies, 1953(3). If we define the ra-

dial direction in the camera plane to be the x-direction we can now assign our trap

frequencies.

ωx = 2π × 977(3)Hz (5.9)

ωy = 2π × 919(2)Hz (5.10)

ωz = 2π × 41.3(0.2)Hz (5.11)

5.4.3 Magnetic bowl frequency measurement

There is one more element of the trap oscillation frequencies to discuss. Not only

are the atoms confined in an optical potential, but the are magnetic forces operating

on the atoms as well. In general the radial optical trapping forces much larger than

the radial magnetic trapping forces. However, in the long direction of the trap, the

magnetic bowl forces become significant for shallow optical traps. Since the spring

constants of the optical and magnetic potentials add, the total trapping frequency in

the z-direction can be expressed as

ωz =
√

ω2
zOpt + ω2

zMag (5.12)

We can measure ωzMag by releasing the gas at a very small optical potential that

has been intentionally offset from the center of the magnetic bowl, and watching how

the center of mass of the atomic cloud moves. In this experiment we cool at 834

G in order to reduce the optical potential by as much as possible. We stay at the

extremely low optical potential and release the gas into the optical bowl. This way

the gas expands slowly and we are able to observe the forces imparted to the atoms
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by the magnetic field. Using a sine function fit to the position data the magnetic

Figure 5.14: Magnetic bowl slosh frequency experiment at 834G. The optical trap-
ping potential is turned off and position of the gas depends on the magnetic field
gradient. Oscillation frequency for fit is 20.4(0.0) Hz

bowl oscillation frequency is 20.4(0.0) Hz at 834 G. The magnetic bowl frequency has

a square root dependence on the total field strength, B, where

ωzMag(B) = 2π × 20.4

√

B

834
. (5.13)

The parametric resonance experiments were conducted at 300 G. Therefore the axial

optical frequency is,

ωzOpt =
√

ω2
z − ωzMag(300)2 = 2π × 39.4Hz (5.14)

5.4.4 Average trap frequency ω

If we define ω⊥ =
√
ωxωy as the geometric mean of the two radial trapping frequencies

then we can express all of our trap oscillation frequencies as a product of ω⊥ and some
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factor λi (i.e. ωi = ω⊥λi).

ωx = 1.03 ω⊥ (5.15)

ωy = 0.97 ω⊥ (5.16)

ωzOpt = 0.042 ω⊥ (5.17)

Thus we can write the average frequency in terms of ω⊥ and the magnetic field as

ω =

(

ω2
⊥

√

(λzω⊥)2 + ωzMag(B)2

)1/3

(5.18)

where λz = 0.042.

When we perform the breathing mode measurement at 834 G the result is not

twice the oscillation frequency in the camera plane because of the strong interaction

between states the radial modes are hydrodynamically coupled. A good discussion

of this effect can be found in Joe Kinast’s dissertation [65]. The end result is that

the breathing mode frequency measured is related to the optical trapping frequency

through the equation

ωBM =

√

3

10
ω⊥ (5.19)

We take a breathing mode measurement at 834 G at each trap depth where we

perform a sound velocity experiment. With the above equations we can relate the

breathing mode frequency to the average frequency ω and thus have an accurate

measure of the trapping potential for each sound velocity experiment.

ω =

(

3

10
ω2

BM

√

3

10
(λzωBM)2 + ω2

zMag(B)

)1/3

(5.20)
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where B is the field at which the sound velocity experiment was performed and ωBM

is the breathing mode frequency measured at 834 G at the trap depth at which the

sound velocity experiment was performed.

5.5 Atom number N

In Chapter 4 I discussed the basic procedure involved in acquiring an image on our

CCD camera. In this section I will briefly review the physics behind how we turn this

information into a measure of density. This is a typical procedure in quantum optics

and atomic experiments and has been reviewed numerous times in many different

sources. The basic procedure determines what the effect of a cloud of atoms of

density n(x, y, z) is on the intensity of a beam of resonant light.

dI

dy
= −n(x, y, z)σ(I)I, (5.21)

where I is the intensity of the light and σ(I) is the intensity dependent cross section.

The change in the intensity of light, I, as it travels through the atoms in the y direction

is proportional to the intensity of the light, the polarizability of the interaction α and

the density. For a two level system with near resonant light

σ(I) =
σR

1 + I/Isat + δ2
(5.22)

where σR = 3λ2/(2π) is the resonant optical cross section for a two level quantum

transition at wavelength λ, δ = (ω − ω0)/(Γs/2) is the detuning of the probe beam

from resonance in half-linewidths, and Isat is a the saturation intensity.

Assuming we have a measure of the intensity of light incident on the atoms in the
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image plane of the camera I(x, z) and a measure of the intensity of light before it hits

the atoms I0(x, z), we can now use equation 5.21 to find the column density

n(x, z) =

∫ ∞

−∞
n(x, y, z)dy (5.23)

in terms of the detuning and our intensity profiles

n(x, z) = − 1

σR

(

(1 + δ2) ln

[

I(x, z)

I0(x, z)

]

+
I(x, z) − I0(x, z)

Isat

)

(5.24)

There are further considerations when calculating the atom number. We need to

know what the camera parameters are, the effect of the polarization of the imaging

beam, and what the effect of the image lens system is in terms of attenuation and

magnification. A good discussion of all of these issues and more can be found in Joe

Kinast’s dissertation [65].

The final result for column density is

n(x, z) = −mag
2

σR

(

(1 + δ2) ln

[

I(x, z) + (φ− 1)I0(x, z)

φI0(x, z)

]

+
I(x, z) − I0(x, z)

gcamηcamIsat

)

(5.25)

where φ = 0.97 is the fraction of the input probe beam which can be absorbed by the

atoms do to beam depolarization, gcam = 0.71 is the camera gain, ηcam = 0.5 is the

camera efficiency, and Isat = 2660 photons/pixel. In our measurements the camera

gives us I(x, z) and I0(x, z) in photons/pixel.

The actual size of our camera pixel is 13µm per side. Due to the image lens system

this translates to mag = 2.49µm at the location of the atoms. If our intensities are in

units of photons/pixel we need an extra factor of 2.492 to account for the magnification

and pixel size.
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The final result for the total number of atoms is then

N =

∫ ∫

n(x, z)dxdz. (5.26)

I have described how we produce and measure the velocity of a propagating density

perturbation in our trapped gas. Further, I have described how we eliminate sources of

systematic error and shown that we can account for nonlinear effects. The dynamics of

the propagating feature are discussed as well. The trapping conditions are measured

as well in terms of the trapping frequency and the number of atoms. In Chapter 6 I

will demonstrate how we take into account the error in our measurements and correct

the data for additional systematic effects including the anharmonic correction and a

correction to the atom number measurement.
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Chapter 6

Systematic and statistical error

In our experiment on the sound velocity near a Feshbach resonance, we collected

large amount of data over a wide range of experimental condition. In addition to our

measurement of the sound velocity conducted measurements of the trap frequencies

and atom number in order to determine the characteristic energy of the trap, EF . In

Chapter 5 I presented a detailed account of each of these measurements. For each

data point in the sound experiment we obtain a direct measurement of:

c(0) : Sound V elocity

ωBM : Breathing Mode Frequency

N : Number of Atoms.

Here I will review the process that takes us from our three measured quantities to

the reported value of c(0)/vF vs 1/(kFa) and their associated errors. In Section 6.1

I will review basic error analysis and show how error propagates from our measured

quantities to our reported values.

There are both statistical and systematic errors associated with each measure-

ment. For some systematic errors we have found a way to procedurally eliminate the

source of error (see Chapter 5). For others we will need to determine a correction
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factor to account for the bias in the measurement.

All of analysis thus far has considered a gas trapped in a harmonic potential.

However, our optical trapping potential is Gaussian the radial direction (x- and y-

directions) and Lorentzian in the axial direction (z-direction). Anharmonic effects

are most significant at lower trapping potentials where the potential produced by the

magnetic field curvature (which is harmonic) dominates in the axial direction. In

Section 6.2 I will develop a correction factor that takes into account the systematic

deviation due to anharmonicity.

There is also a bias in our number measurement. From shot to shot one expects

some variation in the atom number. This may be caused by a number of factors

in the trapping and cooling process. This should produce a normal distribution in

the atom number. However, we end up with a skewed distribution due to the fact

that any variation in the camera beam frequency results in apparent number loss. In

Section 6.3 I analyze the skew distribution and determine a correction factor for the

atom number.

6.1 Error analysis

A good example of both how we eliminate systematic error and propagate statistical

error can be seen in the averaging of the four features we track in the sound velocity

experiment. Recall that we create a density perturbation in the axial (z-direction)

center of our cigar shaped trap and that two sound waves counter-propagate towards

the edge of the trap along the z-axis. The sound wave is comprised of regions on

increased density (peaks) and decreased density (valleys). Table 6.1 contains data

from a typical sound experiment. The sound velocities come from a sine function fit
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Sound Feature c(0) ∆c(0)
Right Peak 22.28 0.21
Right Valley 17.87 0.12
Left Valley -17.13 0.18
Left Peak -21.40 0.15

Average 19.67 0.09

Table 6.1: Sound velocity of the four propagating features

to the position versus time data, and the error associated with each fit is the result

of a χ-squared analysis run automatically in our curve fitting program, Igor.

As we discussed earlier, the peaks travel faster than the valleys. Further, it can

be seen that in this experiment the right going features are traveling faster than the

left going features. This is due to residual motion of the center of mass of the atomic

cloud. By taking a simple average of speed at which the each feature is traveling we

can eliminate one source of systematic error and extrapolate back to the infinitesimal

perturbative case (see Chapter 5):

c(0) =
4

∑

i=1

|ci(0)|/4, (6.1)

where ci(0) is the velocity associate with a particular feature (i.e. i = “Right Peak”).

Each velocity of each feature is an independent measurement with its own associ-

ated error. When we propagate the error into the average velocity, c(0) we must do

so appropriately [87]. When a the quantity of interest is the result of several inde-

pendent measurements then sometimes the error in one measurement will happen to

cancel out some of the error in the other. On average, the error in our quantity of

interest will be less than the sum of the errors in its parts.

A reasonable way to propagate errors is to treat them as “perpendicular” and

combine them according to the pythagorean theorem. This idea can be used to derive
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a general rule. Suppose there are two measurements, A and B, and the quantity of

interest is C = f(A, B) for some function f. If A is perturbed by ∆A then C will be

perturbed by the derivative of the function f with respect to A with B held constant,

∂f
∂A

|B∆A. Similarly, the perturbation in C due to a perturbation in B is, ∂f
∂B

|A∆B.

And the total error will be the square root of the sum of the squares of each error as

it impacts on the quantity of interest,

∆C =

√

(

∂f

∂A
|B∆A

)2

+

(

∂f

∂B
|A∆B

)2

. (6.2)

For our measurement of the sound velocity we took the average of the sound speed

of the four propagating features. The function used to combine our independent

measurement is, f(ci) =
∑4

i=1 ci/4. and the partial derivative of the average with

respect to its constituent parts is ∂f(ci)/∂ci = 1/4. Therefore the total error in the

average is,

∆c(0) =

√

√

√

√

4
∑

i=1

(∆ci(0))2/4. (6.3)

This is a simple example of how error may be propagated for independent mea-

surement. In Section 6.4 I will show how this is done to produce the errors associated

with our reported values of c(0)/vF and 1/(kFa)

6.2 Anharmonic correction

In our experiment, every effort was made to reduce the systematic errors in our

measurement. We can use our knowledge of the exact experimental conditions in

order to make corrections to the data. All of the theory discussed thus far has

been for a harmonic trapping potential. Actually, the confining potential of the CO2
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beam is gaussian along the short (x- and y- direction) axis of the cigar shaped trap.

This causes an anharmonic effect. In this section we will calculate an anharmonic

correction factor to the speed of sound. At the end of this section, I will discuss

how we apply the anharmonic correction factor to our data throughout the entire

BEC-BCS crossover.

There is also a correction factor for the breathing mode frequency due to trap

anharmonicity. This correction factor was worked out as part of the heat capacity

measurement and is documented in Joe Kinast’s Thesis, the actual breathing mode

is,

ωBM = ωBM Meas

(

1 − 16mω2
⊥〈x2〉

25V0

)−1/2

, (6.4)

where 〈x2〉 is the mean square size of the trap, and V0 is the amplitude of the trapping

potential. So the correction factor fBM = ωBM/ωBM Meas, is

fBM =

(

1 − 16mω2
⊥〈x2〉

25V0

)−1/2

, (6.5)

Recall that in Chapter 3 we used hydrodynamic equations to calculate the sound

velocity in a trapped gas,

c =

(

1

m

∫

n0 d
2ρ

∫

(∂µ/∂n|n=n0)
−1 d2ρ

)1/2

. (6.6)

The above equation depends upon the equilibrium density as well as the deriva-

tive of the chemical potential with respect to density. In Chapter 2, both of these

quantities were calculated for a gas trapped in a harmonic potential. The calculations
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were done in the general case for a power law equation of state, equation (2.30),

µL(r) = Cn(r)γ, (6.7)

using the local density approximation equation (2.29),

µG = µL(r) + Vext(r). (6.8)

Further, in Section 2.1 I gave the trapping potential of cigar shaped dipole trap

that provides harmonic confinement in the long axis (z-direction) of the trap and

gaussian confinement in the short axis (x- and y-direction) of the trap,

VGA(r, z) = V0

(

1 − e
−mω2

x
2V0

x2−
mω2

y
2V0

y2

)

+
1

2
mω2

zz
2, (6.9)

We need to determine a correction factor each time we performed a spatial integral

in our previous calculations for a harmonic trap.

The speed of sound at the center of the trap (z = 0)for a power law equation of

state when conditions for the LDA were met, equation (3.42) is,

c(0) =

√

γµG

m(1 + γ)
. (6.10)

Therefore, the total anharmonic correction to the speed of sound will depend upon

three parameters, the global chemical potential µG, the integral in the numerator
∫

n0d
2ρ, and the integral in the denominator

∫

(∂µ/∂n|n=n0)
−1 d2ρ. The goal of this

section is to develop a correction factor that we can apply to our measured value of

the sound velocity and obtain the corresponding sound velocity in a harmonic trap
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(i.e. c(0) = ftotalc(0)meas) First, we must develop the individual correction factors fi

that will be combined for a total correction,

ftotal =

√

fµG

fnumerator

fdenominator

. (6.11)

We have already worked out what the theoretical sound velocity should be for a

gas trapped in a harmonic trapping potential at different interaction strengths Section

3.2. Now we will follow a similar procedure proscribed in that section, but substitute

the gaussian trapping potential. In order to simplify the calculation we will start with

a cylindrical coordinate system where ρ2 = x2 + y2 and ωx = ωy = ω⊥.

Next, in order to determine the equilibrium density, we combine the LDA equation

(2.29) and a power law equation of state equation (2.30). When we do this we discover

that the equation for density of a gas trapped in the confining potential, VGA(r, z) is,

n0(ρ, 0) =
(µG

C
)1/γ

(

1 − V0

µG

(

1 − e
− ρ2

2ρ2
0

)

− z2

R2
z

)1/γ

(6.12)

where ρ2
0 = V0

mω2
⊥

. The other equilibrium quantity we need to know in order to calculate

the sound velocity, is the derivative of the local chemical potential with respect to

the density,
(

∂µL

∂n
|n=n0

)−1
. Using a gaussian potential this is,

(

∂µL

∂n
|n=n0

)−1

=
1

γC
(µG

C
)− γ

(γ−1)

(

1 − V0

µ

(

1 − e
− ρ2

2ρ2
0

)

− z2

R2
z

)− γ
(γ−1)

. (6.13)

What follows in the next three subsections are calculations determining the cor-

rection factor fµG
, fnumerator, andfdenominator.
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6.2.1 Correction to µG

Previously, we calculated µG by normalizing to the total atom number, (i.e. inte-

grating the equilibrium density n0 over all of space). We will do this again this time

substituting in VGA for our trapping potential and using the corresponding form of

the density n0. The object is to solve for µG in terms of experimental quantities. For

the harmonic case we solve for µG for the interaction limits of our system. Namely in

the ideal Fermi gas, strongly interacting Fermi gas, and a BEC limits. As the ideal

Fermi gas and strongly interacting fermi gas equilibrium quantities only differ by a

scale factor, there is no need to calculate the correction factor twice.

Therefore, starting with the strongly interacting (SI) case:

The equation for the total number of atoms N is,

N =

∫

n0(ρ, z)dV. (6.14)

Using the form of the equilibrium density for an gaussian potential we find

N = 2π

∫ ρmax

ρmin

∫ zmax

zmin

(

µG

(1 + β) h̄2

2m
(3π2)2/3

)3/2
(

1 − V0

µG

(

1 − e
− ρ2

2ρ2
0

)

− z2

R2
z

)3/2

ρdρdz,

(6.15)

where ρ2
0 = V0

mω2
⊥

.

We will start with a change in variables that will simplify the integrals we need

to solve. First, let ξ → ρ2

2ρ2
0
. Then ρdρ = ρ2

0dξ, and we again let z → Rzz
′,

N =

(

µG

(1 + β) h̄2

2m
(3π2)2/3

)3/2

ρ2
0Rz2π

∫ ξmax

ξmin

∫ z′max

z′min

(

1 − V0

µ

(

1 − e−ξ
)

− z′2
)3/2

dξdz′.

(6.16)

Further, the limits of integration will be determined from the equation
(

1 − V0

µ

(

1 − e−ξ
)

− z′2
)

=
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0. The solution to this equation provides the limits

z′max/min = ±
√

1 − V0

µG

(1 − e−ξ) (6.17)

ξmax = − ln

(

1 − µG

V0

)

(6.18)

ξmin = 0. (6.19)

After integrating in the z-direction we find

N =
3π

8
2πρ2

0Rz

(

µG

(1 + β) h̄2

2m
(3π2)2/3

)3/2
∫ − ln

(

1−µG
V0

)

0

(

1 − V0

µG

(

1 − e−ξ
)

)2

dξ

(6.20)

Therefor the integral of interest then becomes

I2 =

∫ − ln
(

1−µG
V0

)

0

(

1 − V0

µG

(

1 − e−ξ
)

)2

(6.21)

where the subscript ‘2’ denotes exponent of the term
(

1 − V0

µG

(

1 − e−ξ
)

)

. We make

this distinction as we will be coming back to similar integrals with the only difference

being the power to which this term is raised.

A correction should be only a small fraction of the over all quantity. While

equation (6.21) can be solved directly I will also give the results in the form of a

Taylor Series expansion of b = µG

V0
. Thus we can solve equation (6.21):

I2 (b) =

∫ − ln(1−b)

0

(

1 − 1

b

(

1 − e−ξ
)

)2

, (6.22)

exactly,

I2 (b) =
3

2
− 1

b
−

(

1

b
− 1

)2

ln (1 − b) , (6.23)
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and in series form

I2 (b) =
1

3
b+

1

12
b2 + O

(

b3
)

. (6.24)

Returning to the calculation for the total number of atoms we find that we have an

equation for N in terms of trap quantities and the small parameter b = µG

V0
. We can

make the replacement ρ2
0 → V0

mω2
⊥

→ 1
2b
R2

⊥,

N =
3π

8
2π

1

b
R2

⊥Rz

(

µG

(1 + β) h̄2

2m
(3π2)2/3

)3/2

I2 (b) . (6.25)

After some algebra we can eventually solve for µG for a strongly interacting Fermi

gas in a gaussian trap. It is useful to use a form that reflects the solution for µG for

a 3-dimensional harmonic trap multiplied by an anharmonic correction. In this form

µG is,

µG = (1 + β)1/2EF

(

I2 (b)

b/3

)−1/3

. (6.26)

and the correction is

fµG
=

(

I2 (b)

b/3

)−1/3

. (6.27)

Now we will determine the effect of anharmonicity on the calculation for the global

chemical potential in the BEC limit. Again, we must determine µG by integrating over

the equilibrium density n0 in all three spatial directions. The anharmonic correction

to µG, fµG
, for a BEC is calculated in the same manner as above.

The equation for the total number of atoms N in a BEC trapped in a gaussian

potential is,

N = 2π

∫ ρmax

ρmin

∫ zmax

zmin

µG

πh̄2 amol

2m

(

1 − V0

µG

(

1 − e
− ρ2

2ρ2
0

)

− z2

R2
z

)

ρdρdz. (6.28)
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We perform the same change in variables as before, ξ → ρ2

2ρ2
0

and z → Rzz
′, and find

N =
µG

πh̄2 amol

2m

ρ2
0Rz2π

∫ ξmax

ξmin

∫ z′max

z′min

(

1 − V0

µ

(

1 − e−ξ
)

− z′2
)

dξdz′. (6.29)

The limits of integration will also be the same, equation (6.17).

After integrating in the z-direction we find

N =
4π

3

µG

πh̄2 amol

2m

ρ2
0Rz

∫ − ln
(

1−µG
V0

)

0

(

1 − V0

µG

(

1 − e−ξ
)

)3/2

dξ (6.30)

Therefor the integral of interest then becomes,

I3/2 =

∫ − ln
(

1−µG
V0

)

0

(

1 − V0

µG

(

1 − e−ξ
)

)3/2

. (6.31)

This integral can be solved exactly,

I3/2 (b) =
8

3
− 2

b
− 2 (1 − b)2 (π

2
− arcsin

√
1 − b

)

b
√

b (1 − b)
, (6.32)

and the Taylor series form,

I3/2 (b) =
2

5
b+

4

34
b2 + O

(

b3
)

. (6.33)

Returning to the calculation for the total number of atoms we find that we have

an equation for N in terms of trap quantities and the small parameter b = µG

V0
. We

can make the replacement ρ2
0 → V0

mω2
⊥

→ 1
2b
R2

⊥

134



N =
4π

3

µG

πh̄2 amol

2m

1

2b
R2

⊥RzI3/2(b) (6.34)

After some algebra we can eventually solve for µG for a Bose gas in an anharmonic

trap. It is useful to use a form that reflects the solution for µG for a 3-dimensional

harmonic trap multiplied by an anharmonic correction. In this form µG is,

µG =
1

4
EF

(

5

2
kFamol

)2/5 (I3/2 (b)

2b/5

)−2/5

, (6.35)

and the correction factor is,

fµG
=

(

I3/2 (b)

2b/5

)−2/5

. (6.36)

6.2.2 Anharmonic correction to the numerator

The rest of the anharmonic correction is divided into two parts. When we calculated

the sound velocity in a harmonic trap we calculated two integrals for the equilibrium

quantities
∫

n0d
2ρ and

∫ (

∂µL

∂n
|n=n0

)−1
d2ρ which appeared in the numerator and the

denominator of the equation for sound velocity respectively. In order to calculate the

anharmonic correction we must again perform these integrals, but we will use the use

the gaussian form of the equilibrium quantities. Other than this, the method is the

same as the 3-dimensional harmonic case. For simplicity we will set z = 0 as we are

only interested in the velocity at the center of the trap. The integral of the density

over the radial direction in its general form is,

∫

n0d
2ρ = 2π

∫

(µG

C
)1/γ

(

1 − V0

µG

(

1 − e
− ρ2

2ρ2
0

))1/γ

ρdρ (6.37)
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Once we introduce our small quantity b = V0

µG
, make the substitutions ξ → ρ2

2ρ2
0

and ρ2
0 → V0

mω2
⊥

→ 1
2b
R2

⊥, and use the previously defined limits of integration, we find

this equation becomes

∫

n0d
2ρ = 2π

(µG

C
)1/γ

R2
⊥

1

2b

∫ − ln(1−b)

0

(

1 − b
(

1 − e−ξ
))1/γ

dξ. (6.38)

This differs from the 3-dimensional gas result for the numerator by the quantity

fnumerator =
1

b

(1 + γ)

γ
I1/γ. (6.39)

For the unitary gas, γ = 2/3. This means

fnumerator =
1

b

5

2
I3/2. (6.40)

The integral of interest here is,

I3/2 (b) =

∫ − ln(1−b)

0

(

1 − 1

b

(

1 − e−ξ
)

)3/2

. (6.41)

We can find the exact solution,

I3/2 (b) =
8

3
− 2

b
− 2 (1 − b)2 (π

2
− arcsin

√
1 − b

)

b
√

b (1 − b)
. (6.42)

and the Taylor series form,

I3/2 (b) =
2

5
b+

4

34
b2 + O

(

b3
)

. (6.43)
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In the BEC limit γ = 1. This means

fnumerator =
2

b
I1. (6.44)

Here the integral of interest is,

I1 (b) =

∫ − ln(1−b)

0

(

1 − 1

b

(

1 − e−ξ
)

)

. (6.45)

We can find the exact solution

I1 (b) = 1 − (1 − 1

b
) ln(1 − b) (6.46)

and the Taylor Series expansion

I1 (b) =
1

2
b+

1

6
b2 + O

(

b3
)

. (6.47)

6.2.3 Anharmonic correction to the denominator

Further, for a gaussian potential the general form of the denominator is

∫
(

∂µL

∂n
|n=n0

)−1

d2ρ = 2π

∫

1

γC
(µG

C
)− γ

(γ−1)

(

1 − V0

µ

(

1 − e
− ρ2

2ρ2
0

)

− z2

Rz

)− γ
(γ−1)

.

(6.48)

Once we introduce our small quantity b = V0

µG
and make the substitutions ξ → ρ2

2ρ2
0

and ρ2
0 → V0

mω2
⊥

→ 1
2b
R2

⊥ and use the limits as previously defined we find the equation
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becomes

∫
(

∂µL

∂n
|n=n0

)−1

d2ρ = 2π
(µG

C
)− γ

(γ−1) 1

2b
R2

⊥

∫ − ln(1−b)

0

(

1 − b
(

1 − e−ξ
))− γ

(γ−1) dξ.

(6.49)

This differs from 3-dimensional gas result for the numerator, equation (3.36) by the

quantity

fdenominator =
1

b

1

γ
I (γ−1)

γ

. (6.50)

For the unitary gas, γ = 2/3. This means

fdenominator =
1

b

1

2
I1/2. (6.51)

For this integral

I1/2 (b) =

∫ − ln(1−b)

0

(

1 − 1

b

(

1 − e−ξ
)

)1/2

(6.52)

we can find the exact solution,

I1/2 (b) = 2 − 2

√

1

b
− 1 arcsin

√
b (6.53)

and the Taylor series form

I1/2 (b) =
2

3
b+

4

15
b2 + O

(

b3
)

. (6.54)

In the BEC limit, γ = 1. This means

fdenominator =
1

b
I0. (6.55)
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For this integral

I0 (b) = − ln(1 − b)

∫ − ln(1−b)

0

(

1 − 1

b

(

1 − e−ξ
)

)

(6.56)

we can find the exact solution,

I0 (b) = − ln(1 − b), (6.57)

or the Taylor Series expansion,

I0 (b) = b+
1

2
b2 + O

(

b3
)

. (6.58)

6.2.4 Anharmonic correction in the BEC-BCS crossover

Combining the correction to µG, the numerator, and the denominator from equations

(6.27), (6.40), and (6.51), we can solve for the speed of sound in a strongly interacting

gas at zero temperature in a gaussian trap,

fSI =

√

√

√

√

√

(

I2(b)

b/3

)−1/3 I3/2(b)

2b/5

I1/2(b)

2b/3

, (6.59)

or in Taylor series form

fSI =

(

1 − 83

840
b+

17771

470400
b2 + O

(

b3
)

)

. (6.60)

Combining the correction to µG, the numerator, and the denominator from equa-

tions (6.36), (6.44), and (6.55), we can solve for the anharmonic correction to the

139



speed of sound in a BEC,

fBEC =

√

√

√

√

(

I3/2(b)

2b/5

)−2/5 I1(b)
b/2

I0(b)
b

, (6.61)

or in a Taylor Series expansion

fBEC =

(

1 − 59

420
b+

6583

117600
b2 + O

(

b3
)

)

. (6.62)

For some positive values of 1/(kFa) the gas is neither a strongly interacting Fermi

gas nor a BEC, but something in between. In general we consider a gas to be in the

BEC range when 1/(kFa) ≥ 1 and a gas is strongly interacting when 1/(kFa) = 0

when 1/(kFa) < 0 the gas is moving from the unitary regime to the weakly interacting

regime and the unitary correction holds. In the in between can we take a linear

combination of the two correction factors fSI and fBEC .

1

kFa
≤ 0 : f = fUnitary (6.63)

0 <
1

kFa
< 1 : f = (1 − 1

kFa
)fUnitary +

1

kFa
fBEC (6.64)

1

kFa
≥ 1 : f = fBEC (6.65)

Above, we calculated what the sound velocity would be for a unitary gas and a

BEC in an gaussian trap. The data we would like to present would be the simplest

case for theorists to work with. Therefore we will correct for the anharmonicity of

the trap and report the sound velocity for harmonic trap.
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6.3 Correction to atom number N

Precise determination of the atom number is important in our measurements of sound.

In previous experiments it was normal to see about a 15% variation in the number of

atoms measured for a set of repeated experiments. As the Fermi velocity vF ∝ N (1/6)

this results in a 2.5% uncertainty in vF due to atom measurement alone. In order to

increase the accuracy of this measurement it is necessary to take a close look as to

how atom number varies. There are several factors that can cause variation in the

measured atom number. By closely examining these factors we can decouple varia-

tions due actual number variation from systematic effects. The three main sources of

variation in the measured atom number are:

• Variation in the number of the actual number of atoms loaded into the trap

• Instability in the frequency of the laser light used to image the atoms

• Instability in the magnetic field at which the atoms are imaged

It is the first item on the list that we wish to report. It will be the goal of this section

to decouple this information from the data.

6.3.1 Probability distributions

In order to determine the actual atom number (N) from the measured atom number

(NMeas) we will need to arrange our data into probability distributions and employ

a few statistical techniques. A probability distribution pi(x) provides the probability

of a measured value x. We can characterize any distribution with a mean 〈x〉 and a

standard deviation σx,

〈x〉 =

∫

xpi(x)dx (6.66)
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σx =

√

∫

(〈x〉 − x)2 pi(x)dx (6.67)

In order to obtain a probability distribution for the measured atom number we

require a large set of measurements. In a single day we conducted 330 measurements of

the atom number. Figure 6.1 shows the probability distribution PMeas(NMeas/〈NMeas〉)

for the measured atom number. In order to obtain PMeas each atom number is first

normalized to the mean measured atom number and then divided into bins. For ex-

ample, if 10 trials resulted in an atom number between 55% and 65% of the mean then

PMeas(0.6) = 10. The distribution is then normalized such that
∫

PMeas(x)dx = 1.

Therefore, each point on the probability distribution represents the probability of

measuring the atom number at a particular fraction of the mean measured atom

number.

Figure 6.1: 330 atom number measurement divided by the average number of atoms
and normalized to form a probability distribution of the measured atom number.
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For the measured atom number the mean is 〈NMeas〉 and σMeas = 0.13〈NMeas〉.

As in any measurement some of the values for atom number are greater than the

mean and some are less than the mean. Note the shape of PMeas. The distribution

is not symmetric, it has a long tail for lower atom numbers. If the variation in atom

number was only due to a random event like loading atoms into a trap we would

expect a symmetric distribution. Therefore there must be other contributing factors.

If there are two contributing factors to a probability distribution, the combined

probability distribution can be obtained by taking the convolution of the contributing

probability distributions. For example, if there are two ways in which atom number

can vary, each with respective probability distributions f(x) and g(x) then the com-

bined probability distribution is,

p(x) =

∫ ∞

∞
f(k)g(x− k)dk. (6.68)

PMeas is a combined probability distribution. We will employ equation (6.68) ob-

tain the actual probability distribution PAtoms. Through this analysis we will deter-

mine the correction factor for bias in the mean atom number 〈N〉 and atom standard

deviation σN in order to determine the true atom number and its associated error,

〈N〉 = fN〈NMeas〉 (6.69)

σN = fσσN . (6.70)

where fN is the correction factor for atom number and f∆N is the correction factor

for atom number standard deviation.
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6.3.2 Variation in atom number

Our goal is to extract the probability distribution of the actual atom number PAtoms,

from the probability distribution of the measured atom number, PMeas. We can

assume a normal distribution for the actual number of atoms,

PAtoms(N/〈N〉) =
1√

2πσAtoms

exp

[

−(N/〈N〉 − 1)2

2σ2
Atoms

]

. (6.71)

Here 〈N〉 is the mean value for this probability distribution and the atom number

standard deviation σAtoms are is in units of 〈N〉. Figure 6.2 shows the actual atom

probability distribution with an assumed value of σAtoms.

Figure 6.2: The probability distribution of the actual number can be characterized
by a normal or gaussian distribution. This distribution is symmetric as we only expect
random factors to effect the atom number variation.

What we now need to determine is the probability distribution due to alternate

sources of atom number variation. Consider the variation in the frequency of the laser
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light used to image the atoms and the variation in the magnetic field at which the

atoms are imaged. Both factors influence the detuning from the atomic transition

when the atoms are imaged. Detuning always reduces the value of the measured

number of atoms. We define ω as the frequency of the laser light, and ω0 as the

atomic transition frequency, which depends on the magnetic field. The detuning is

then,

δ = ω − ω0 (6.72)

When we measure the laser frequency jitter associated with ω we find that the 95%

confidence interval is 3 MHz. We can determine our magnetic field to 1 Gauss at a

95% confidence interval. The atom transition frequency, ω0 depends on the magnetic

field at about 2.8 MHz per Gauss. This means that our 95% confidence interval for

ω0 is 2.8 MHz. We assume that the probability distributions for the variations in

laser frequency ω and atomic resonance frequency ω0 are normal distributions.

We know from equation (6.68) that the convolution of two distributions gives a

combined distribution. The convolution of two gaussian distributions gives a third

gaussian distribution whose width is the square root of the sum of the squares of the

original two widths. Therefore, the probability distribution of the detuning is normal

with a 95% confidence interval of
√

(2.8MHz)2 + (3MHz)2 = 4.1MHz.

We try our best to match the laser frequency to the atomic resonance frequency

so the mean of the detuning probability will be zero. In statistics, the 95% confi-

dence comprises four standard deviations in a normal distribution. Therefore, the

probability distribution has a standard deviation of 1.03 MHz.

We still need to relate the variation in frequency to our atom number measurement.

When we determined the density distribution from our absorption images in Section
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5.5, we found from equation (5.21), that the measured atom number varies as a

Lorentzian with respect to frequency due to the variation in the absolute cross section

with respect to detuning.

N

〈N〉 ∝ 1

1 +
(

δ
ΓS/2

)2 , (6.73)

where ΓS = 5.9MHz is the 1/2-linewidth of the transition. It is clear from equation

(6.73) that any non-zero value for δ will result in a decrease of the measured atom

number.

Using Mathematica, I generated a random set of 105 frequency detunings centered

at 0 MHz using normal probability distribution with a standard deviation of σ =

1.03 MHz. I then determined N/〈N〉 from equation (6.73) as a function of each

of these detuning values resulting in a set of 105 values of N/〈N〉. This set was

binned from 0 to 1 with a bin width of .025. This binned distribution was then

normalized. The result was a probability distribution Pδ(N/〈N〉) for the atom number

with variation due solely to variation in the detuning. Meaning that for a trap that

is consistently loaded with the exact same number of atoms 〈N〉, we might expect

the distribution in our atom number measurement to look like Pδ (see Figure 6.3).

We have determined probability distribution due to detuning Pδ(N/〈N〉) and mea-

sured atom number PMeas(N/〈NMeas〉). Moreover we know the form of the actual

atom number probability distribution PAtoms(N/〈N〉). There is one more factor to

consider. In PMeas(N/〈NMeas〉) the atom number is normalized to the mean measured

atom number 〈NMeas〉 while in our other two probability distributions the atom num-

ber is in units of the actual atom number 〈N〉. We need to make our probability

distributions consistent. In order to do this we must determine 〈NMeas〉 as a function

of 〈N〉. Fortunately, we have already defined our correction factor fN = 〈N〉/〈NMeas〉.
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Figure 6.3: The atom number can only decrease as a result of detuning. Using
numerical simulation and a constant actual atom number this probability distribution
reflects the variation in measured atom number due to frequency detuning, δ
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We need to insure that the probability distribution still normalizes to one. This is

accomplished by taking the product of PMeas and fN ,

PMeas(N/〈NMeas〉) → PMeas(N/〈NMeas〉fN)fN . (6.74)

Now all of our probability distributions are consistent. The probability distri-

butions for the measured atom number PMeas(N/〈NMeasfN〉)fN is the convolution

probability distribution of the actual atom number PAtoms(N/〈N〉) and the probabil-

ity distribution of atom number due to frequency detuning Pδ(N/〈N〉).

PMeas(x)fN =

∫ ∞

∞
PAtoms(k)Pδ(x− k)dk, (6.75)

where x = N/〈N〉.

In Mathematica I perform a 2-parameter χ-squared fit between the measured atom

number probability distribution and equation (6.75). First, I select a value for σAtoms

and then perform the integral on the right hand side of equation (6.75). Next, I fit

the resulting curve to our measured atom probability distribution by varying fAtoms

until I minimized the square of the difference between the calculated curve and the

measured distribution. I repeat this process for several values of σAtoms and report

the values of σAtoms and fN that minimize the square of the difference signal.

Figure 6.4 shows equation (6.75) and PMeas(x/fN)fN with values of fN and σAtoms

that minimize the chi-squared fit. I found that these values were σN = 0.0542 and

fN = 1.12. This means that our measured mean atom number was only 88.6% of the

actual atom number, and our measured atom standard deviation over twice as much

as the actual atom standard deviation. We can compute f∆N = 5%/13% = 0.38.
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Figure 6.4: The probability distribution for the measured atom number (blue dots)
is fit with the convolution of the probability distribution of the actual atom number
and the probability distribution resulting from variation in measured atom number
due to detuning (black curve).
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With these correction factors we can compute the actual atom number,

NAtoms = 1.13NMeas (6.76)

and the actual atom number standard deviation

∆NAtoms = 0.38∆NMeas. (6.77)

6.4 c(0) in units of vF versus 1/(kFa) and their as-

sociated errors

We now have everything need to compute or reported values of c(0)/vF and 1/(kFa).

The anharmonic corrections to sound was found for the strongly interacting Fermi

gas fSI and in weakly interacting BEC fBEC ,

fSI = 1 − 83

840

µG

V0

+
17771

470400

(

µG

V0

|
)2

+ O
(

µG

V0

3
)

, (6.78)

and

fBEC = 1 − 59

420

µG

V0

+
6583

117600

(

µG

V0

)2

+ O
(

µG

V0

3
)

. (6.79)

where µG is the global chemical potential and V0 is the amplitude of the trapping

potential.

For all negative values of the gas we can use the fSI correction. For some positive

values of 1/(kFa) the gas is neither a strongly interacting Fermi gas nor a weakly

interacting BEC, but something in between. In general we consider a gas to be in the

weakly interacting BEC regime when 1/(kFa) ≥ 1 and a gas is strongly interacting
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when 1/(kFa) = 0. When 1/(kFa) < 0 the gas is moving from the unitary regime to

the weakly interacting BCS regime and the unitary correction holds. 0 < 1/(kFa) < 1

we take a linear combination of the two correction factors fSI and fBEC . The corrected

sound velocity is then,

1

kFa
≤ 0 : c(0) = cmeas(0)fUnitary (6.80)

0 <
1

kFa
< 1 : c(0) = cmeas(0)(1 − 1

kFa
)fUnitary +

1

kFa
fBEC (6.81)

1

kFa
≥ 1 : c(0) = cmeas(0)fBEC (6.82)

Concurrent with each sound velocity experiment we run a breathing mode exper-

iment. We measure the radial (x- and y- direction) breathing frequency, ωBM . The

anharmonically corrected breathing mode is

ωBM = fBMωBM Meas. (6.83)

The breathing mode frequency, one half the parametric frequencies, and the slosh

frequency are all used to calculate the average trap frequency ω The equation for the

average trap frequency is,

ω =

(

3

10
ω2

BM

√

3

10
(λzωBM)2 + ωzMag(B)2

)1/3

, (6.84)

where λz = ωz/
√
ωxωy is the ratio of axial trap frequency to the geometric mean of

the radial trap frequencies, and ωzMag is the magnetic field slosh frequency. The total
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error, ∆ω, associated with the average trap frequency is,

∆ω =

√

√

√

√

∑

i

(

∂ω

∂xi

∆xi

)2

, (6.85)

Lets start with the error associated with λz. For each term in λz (ωx,y,z)we can

compute the error contribution,

∂λz

∂ωi

∆ωi

λz

=
∆ωi

2ωi

(6.86)

The total fractional error associated with λz is the square root of the sum of the

squares of the individual contributions,

∆λz

λz

=

√

(

∆ωx

2ωx

)2

+

(

∆ωy

2ωy

)2

+

(

∆ωz

2ωz

)2

. (6.87)

The fractional error contributions from each term in ω are,

∂ω

∂ωBM

∆ωBM

ω
=

1

3

(

2

ωBM

+
3
10
λ2

zωBM

3
10
λ2

zω
2
BM + ω2

zMag

)

∆ωBM (6.88)

∂ω

∂λz

∆λz

ω
=

1

10

λzω
2
BM

3
10
λ2

zω
2
BM + ω2

zMag

∆λz (6.89)

∂ω

∂ωzMag

∆ωzMag

ω
=

1

3

ωzMag

3
10
λ2

zω
2
BM + ω2

zMag

∆ωzMag. (6.90)

Therefore

∆ω

ω
=

1

ω

√

(

∂ω

∂ωBM

∆ωBM

)2

+

(

∂ω

∂λz

∆λz

)2

+

(

∂ω

∂ωzMag

∆ωzMag

)2

(6.91)

The sources of error is the average trap frequency are ∆ωBM , ∆λz, ∆ωzMag. Of these
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∆ωzMag is consistently small and has no significant contribution to the overall error

in ω.

In our paper on sound velocity we discounted the contribution of ∆λz and ap-

proximated the total error in the average trap frequency as, ∆ω ≈ ∆ωBM

ωBM
ω.

The final measurement we make is in Atom Number. In the previous section we

developed a correction to atom number that corrects both the mean value as well as

the error.

N = fNNMeas (6.92)

∆N = f∆N∆NMeas. (6.93)

where fN = 1.13 and f∆N = 0.38.

The average trap frequency and atom number are both used to determine the

Fermi Energy, EF = h̄ω(3N)1/3. The total error in the Fermi energy can be calculated

from its constituents contributions,

∆EF = EF

√

(

∆ω

ω

)2

+

(

∆N

3N

)2

. (6.94)

From the total error in the Fermi energy we can determine total error in the Fermi

velocity, vF =
√

2EF/m,

∆vF = vF
1

2

∆EF

EF

(6.95)

and the Fermi wave number, h̄kF =
√

2EFm,

∆kF = kF
1

2

∆EF

EF

. (6.96)

The total error in our reported value of c(0)/vF can be calculated from its constituents
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contributions,

∆
c(0)

vF

=
c(0)

vF

√

(

∆c(0)

c(0)

)2

+

(

∆vF

vF

)2

. (6.97)

Finally the total error in our reported value of 1/(kFa) is simply,

∆
1

kFa
=

1

kFa

∆kF

kF
. (6.98)
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Chapter 7

Sound velocity results

We measured the sound velocity in an ultra-cold Fermi Gas comprised of the lowest

two hyperfine states of 6Li across a broad range of interaction strengths. In doing

so we are able to test hydrodynamic models of sound propagation and predictions

characterizing the equation of state of this gas.

First, I will compare the equations based upon plane wave propagation with those

obtained from isotropic sound propagation. Next, I will introduce the dimensionless

parameter 1/(kFa), and explain why we characterize the various regions of interest

near the Feshbach resonance by this parameter. Lastly, I will examine the data

acquired across the whole BEC-BCS crossover and assess what we can learn from

the data. Our sound velocity data are compared to the simple mean field model

developed in Section 3.3.2, the zero temperature theory at the limits near a Feshbach

resonance, and many-body models predicting a continuous equation of state in the

BEC-BCS crossover. Focus will be placed on the BCS, Unitary, and BEC regimes

individually as well as the crossover region in general.
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7.1 Isotropic versus plane wave propagation

In previous chapters we discussed the theory behind the propagation of sound in a

trapped gas. One thing that has been left out, however, is a review of isotropic sound

propagation. Isotropic sound propagation assumes a gas in equilibrium and evaluates

the speed of sound in terms of the density,

cI(n) =

√

n
∂µL

∂n
/m. (7.1)

In the general case for a power law equation of state, µL = Cnγ so the isotropic

sound velocity is,

cI(n) =
√

γCnγ/m. (7.2)

Using the local density approximation where the global chemical potential is µG =

µL + VExt we can get the position dependent isotropic sound for a gas trapped in a

harmonic potential,

cI(x, y, z) =

√

γµG

m

(

1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)1/2

. (7.3)

When we take the line of sight average (i.e. the velocity averaged in the direction

of propagation of the camera beam) we find,

〈cI(y, z)〉 =

∫

n(x, y, z)c(x, y, z)dx
∫

n(x, y, z)dx
. (7.4)

We are interested in the line of sight average, as the 2-dimensional density distribution

we obtain from our images is just this, an average in the direction of the propagating
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camera beam. If we perform the above integral we find that the line of sight average

of isotropic sound equation is,

〈cI(y, z)〉 =
128

45π

√

γµG

m

(

1 − y2

R2
y

− z2

R2
z

)1/2

. (7.5)

Further, if we were to average over the other radial direction as well, 〈c(z)〉 =
∫

n(x, y, z)c(x, y, z)dxdy/
∫

n(x, y, z)dxdy, we would find that the equation for the

radially (x- and y-direction) averaged isotropic sound is,

〈cI(z)〉 =
5

6

√

γµG

m

(

1 − z2

R2
z

)1/2

. (7.6)

However, we excite the sound wave with a repulsive sheet potential. According

the hydrodynamic theory the velocity should not depend on the radial coordinates of

the trap (x- and y- direction). Instead the density perturbation created by a sheet

potential travels in the z-direction as a plane wave. We found that the equation for

sound velocity under these conditions is,

c =

(

1

m

∫

n0d
2ρ

∫

(∂µ/∂n|n=n0)
−1 d2ρ

)1/2

. (7.7)

In the general case for a zero temperature gas that obeys a power law equation

of state (µL = Cnγ), is trapped in a harmonic potential, and follows the LDA (µG =

µL + VExt), we have shown that the above equation reduces to,

c(z) =

√

γµG

m(1 + γ)

(

1 +
z2

R2
z

)1/2

, (7.8)

where c(z) is the speed of sound in the axial (z-direction) center of the trap. This
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equation depends upon γ and µG, the global chemical potential.

We want to observe that the sound propagates according to the theory [58] dis-

cussed in Chapter 3. It is important to test our theory against the data. There are

two significant qualitative results derived in the section covering hydrodynamic the-

ory. First, the sound velocity is constant over the radial direction (x- and y- direction)

of the trap (i.e velocity should not have any dependence on the radial position of the

trapped gas). This is different from isotropic sound propagation where the velocity

does vary in the radial of the atomic cloud.

In order to confirm the velocity remains constant over the radial direction of the

trap find the velocity in small radial bin. Instead of integrating across the radial

direction of the trap to obtained a fully binned distribution, we measure the speed of

the propagating features at specific values of ρ. The the sound velocity as a function

of ρ is shown in Figure 7.1. We find that the velocity remains constant across most

Figure 7.1: The sound velocity is plotted as a function of the radial (ρ) coordinate.
We find the velocity remains constant across the radius of the cloud. The dotted line
is isotropic sound propagation at z=0.

of the cloud. We can plainly see that the velocity does not propagate according
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to isotropic sound theory (dotted line). Thus we can conclude that our plane wave

description of the sound pulse is valid.

Second, dependence of the position and velocity of the sound pulse on time is

sinusoidal, equations (3.40) and (3.41).

z(t) = Rz sin

(

c(0)t

Rz

)

(7.9)

vz(t) = c(0) cos

(

c(0)t

Rz

)

. (7.10)

This is actually true for isotropic sound propagation as well. Note that in both in

equation for isotropic sound propagation and plane wave propagation, that the sound

velocity ∝
(

1 + z2

R2
z

)1/2

. As the density wave travels through the gas it moves from an

area of high density at the center to low density at the edge. As one might expect the

speed at which the perturbation travels at the edge is slower than in the center of the

trap. In order to account for this variation the position versus time data was not fit

to a straight line. Instead we used a sine wave fit as predicted from our hydrodynamic

model. We then extrapolate the velocity at the center of the trap. When we track

the position of the wave versus time we find that a sin function provides a good fit

to the data.

In Figure 7.2 I present the position versus time data in a new form. Recall that

we track four independent features, two peaks (regions of increased density) and two

valleys (regions of decreased density). In this figure, I have changed the sign of the

time values for two of the features in order to more clearly display the sine function fit.

Further, as the peak position is not in the center of the trap in at t = 0 I have shifted

the entire the peak data set by ∆t = ±∆z/c(0). Note that the period and amplitude

of the sine function is different for the peak and valley data. This is consistent as the
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Figure 7.2: Peak (red dots) and Valley (blue dots) position plotted versus time and
fit with a sine function (red and blue curves). The cloud edge (dotted lines) is shown
as well.
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valley are regions of low density and the peaks are regions of high density relative to

the equilibrium density.

By examining the ρ-dependence of the sound velocity, I have verified that the

velocity is indeed propagating as a plane wave. Also, the sinusoidal variation in the

position versus time has been confirmed. These tests help us insure that we are

utilizing the correct hydrodynamic model of sound propagation.

7.2 Dimensionless parameter 1/(kFa)

In Section 2.3 we discussed the interparticle interaction at the limits of the crossover

region. Previously we discussed theories corresponding to the limits of the crossover

region as a function of the s-wave scattering length:

as → 0− : Ideal Fermi Gas

as → ±∞ : Unitary Gas

as → 0+ : Bose Gas .

The generally accepted way to characterize our gas near the Feshbach resonance

is to utilize the dimensionless quantity 1/(kFa). Here kF is the global Fermi wave

number and a is the s-wave scattering length. In previous chapters it was important

to distinguish local and global quantities and we denoted the global Fermi wave vector

as kF0. However, in this chapter I will use kF to denote the global quantity. There

are two main advantages in using the dimensionless quantity 1/(kFa) to organize our

data. First, the quantity does not diverge at the Feshbach resonance when a→ ±∞.
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Second, the value kF contains important information about the length scale of the

trapped gas without being dependent on the magnetic field. For example, we can

adjust the value of 1/(kFa) by adjusting the trap depth instead of the magnetic field.

Unless of course the magnetic field is tuned to the Feshbach resonance in which case

1/(kFa) = 0 at all trap depths.

In characterizing the trapped gas by 1/(kFa) we can identify regions of interactions

as opposed to limits. Strong interactions exist on both sides of the resonance where

|kFa| > 1. Outside of this region the Fermi wave number is greater than the scattering

length and the gas can be characterized as weakly interacting. The regions that will

be investigated in this chapter are,

1

kFa
< −1 : Weakly Interacting BCS

−1 <
1

kFa
< 0 : Strongly Interacting BCS

1

kFa
= 0 : Unitary Gas

0 <
1

kFa
< 1 : Strongly Interacting BEC

1 <
1

kFa
: Weakly Interacting BEC .

In our experiment on sound velocity we took data over a range of magnetic fields

and trap depths. Recall that the magnetic field determines the s-wave scattering

length,

a = abg

(

1 − ∆B

B −B0

)

, (7.11)

where abg = -1405 a0 (a0 is the Bohr radius), B0 = 834.149 G, and ∆B = 300 G [76].
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A plot of the scattering length versus magnetic field across this resonance is shown

in Figure 2.3. Also the global Fermi wave number is a function of the Fermi energy,

h̄kF =
√

2mEF , (7.12)

where EF = h̄ω(3N)1/3 depends upon the number of trapped atoms as well as the

geometry and intensity of the trapping potential.

7.3 Sound velocity in the BEC-BCS crossover

When we take data at 834G, the Feshbach resonance, 1/(kFa) = 0 regardless of the

value of the Fermi wave vector as the s-wave scattering length diverges, a → ±∞.

These means that the value of c(0)/vF taken at resonance should be constant at any

trap depth. The density at the center of the trap is a function of the trap intensity.

In order to insure that the value of c(0)/vF remains constant with density (i.e. c(0)

and vF scale together as a function of density) we performed the experiment over a

large range of trap depths varying the intensity of the laser at the final trap depth

from 0.068% to 10%. This corresponds to a factor of 50 in density at the center of

the trap.

The experiment is so sensitive that it actually revealed an error in our magnetic

field calibration. Originally, what we thought was 834 G turned out to be 820 G. We

were able to see the value of c(0)/vF vary as the final trap depth became extremely

shallow, and the value of kF approach the s-wave scattering length. Figure 7.3 shows

the sound velocity as a function trap depth of the data taken at 820 G. See how the

velocity at the lowest two trap depths are significantly lower than the velocity at the
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Figure 7.3: Sound velocity, c(0)/vF as a function of trap depth, U/U0 at 820G.

higher trap depths. This is due to the fact that at the low trap depth the value of

the Fermi wave vector kF , which scales as n1/3, is very small. The small value of kF

competes with the very large value of the s-wave scattering length a, and the value

of 1/(kFa) is non-zero.

After calibrating the magnetic field we found that this effect went away. Figure

7.4 shows the value of c(0)/vF versus the fractional trap depth at resonance. When

we use the correct magnetic field, the data varies statistically about an average as is

not a function of the final trap depth.

The equation for the sound velocity in a unitary gas at the axial center of the trap

is,

c(0)

vF

=
(1 + β)1/4

√
5

. (7.13)

The average value of c(0)/vF is used to determine β. β as a function of the sound
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Figure 7.4: Sound velocity, c(0)/vF as a function of trap depth, U/U0 at 834G

velocity is,

β =

(√
5
c(0)

vF

)4

− 1. (7.14)

Table 7.1 gives a summary of the sound velocity data taken in the unitary gas. In

our experiment we measured the sound velocity of a unitary gas and determined the

value of c(0)/vF = 0.364(0.005) and β = −0.561(0.025). The errors reported are the

standard deviation of the data. Note that the standard deviation associated with the

β measurement is much greater in proportion to the value of β as it depends on the

sound velocity to the fourth power.

One further note on the β determination, in our paper on sound velocity [19]

we reported that β = −0.564(0.002). Here we choose to include data from 820 G

excluding only the two data points taken at the lowest trap depths. Also, the error

reported is the standard error.
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Trap Depth c(0)/vF β
0.07% 0.364 -0.562
0.10% 0.357 -0.593
0.20% 0.361 -0.576
0.50% 0.374 -0.511
0.75% 0.363 -0.568
1.00% 0.369 -0.536
2.00% 0.365 -0.556
5.00% 0.361 -0.575
10.00% 0.362 -0.573

Average 0.364(0.005) -0.561(0.025)

Table 7.1: Sound velocity, c(0)/vF , and β taken at 834 G over a range of trap depths.

In addition to the data taken on resonance we measured the sound velocity over

a range of magnetic fields (650G to 1100G) and trap depths (0.02% to 10%) cor-

responding to a range of values in 1/(kFa) (-1.3 to 6). Figure 7.5, shows the sound

velocity (c(0)/vf )as a function of 1/(kFa). In addition to the data I have included the

curves we generated in Section 3.3.2 using a simple mean field model. For negative

values of 1/(kFa), the data agrees well with the simple mean field curve generated

in the BCS limit (blue/upper curve). The BCS curve also agrees well with the data

for a unitary gas at 1/(kFa) = 0 and beyond into the strongly interacting BEC re-

gion, 0 < 1/(kFa) < 0.5. At some point (1/(kFa) ≈ 0.5) the data diverges from the

BCS curve and starts to resemble the simple mean field curve generated in the BEC

limit (red/lower curve). In the weakly interacting BEC region, 1/(kFa) > 1 the data

agrees well with the BEC curve. However, in the farthest BEC limit there are some

discrepancies that will be discussed later in this section.

We are interested in how the sound velocity approaches the zero temperature

theory in the limits near our Feshbach resonance at 834 G. Equation (7.13) is the
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Figure 7.5: Sound velocity, c(0)/vF as a function of 1/(kFa) (Black Dots). Curves
are generated from a simple mean field model. Upper curve (Blue) corresponds to the
BCS mean field curve. Lower curve (Red) corresponds to the BEC mean field curve.
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velocity at resonance. The equation for the sound velocity in an ideal gas is,

c(0)

vF

=
1√
5
. (7.15)

The velocity should approach equation (7.15) as the gas is tuned further into the BCS

limit. The equation for the sound velocity in a BEC is,

c(0) =
1

4

(

5

2
amolkF

)1/5

vF , (7.16)

where amol is the molecular scattering length which depends on a. Note that the

above equation varies with 1/(kFa). By comparing to BEC theory we will be able to

make an evaluation as to the dependance of amol(a) on a. Figure 7.6 shows the sound

velocity data taken over the crossover along with the zero temperature theoretical

curves in the limits of the crossover region.

Note that the value of c(0)/vF increase as we move further into the BCS regime

(more negative) from the unitary gas limit (1/(kFa) = 0. I mentioned that the

region of strong interactions is considered to be where |kFa| > 1. When we cross

this threshold the gas is no longer hydrodynamic. We find that as we tune further

into the BCS regime, the gas becomes ballistic. It becomes difficult to image the

density perturbation as it traverses the atomic cloud. As the measurement becomes

more difficult the error in the measurement increases. Note the large error bars

associated with the most negative values of 1/(kFa). Eventually, the system is no

longer hydrodynamic and we cannot observe the hydrodynamic sound propagation at

all.

However, one can see that the gas does behave how we expect it to. The sound

velocity is indeed approaching the ideal gas value (dashed line). It is only due to the
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Figure 7.6: Sound velocity, c(0)/vF as a function of 1/(kFa) (Black Dots). The
sound velocity in a unitary gas is represented by the large yellow dot. The sound
velocity in the BCS (negative values of 1/(kFa)) and BEC (positive values of 1/(kFa)
are represented by the black dashed curves.
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fact that as we proceed further into the weakly interacting region the hydrodynamics

fail that we cannot see sound propagate in an ideal gas under the current experimental

procedure.

When we tune the magnetic field towards the BEC side of resonance the fermions

become diatomic molecules. These molecules are comprised of two fermions and are

bosons. When the gas is cooled to sufficiently cool temperature the gas becomes a

fully condensed BEC. There is much debate as to what the equation of state should

be for the strongly interacting region on this side of the resonance, 0 < 1/(kFa) < 1.

This is the in-between region where the gas in neither a unitary gas nor a weakly

interacting BEC.

We use the predictions from Reference [29], where an exact solution to the four-

fermion scattering problem gives amol(a) = 0.6a in the zero temperature BEC theory

curve. For smaller values of 1/(kFa),(1 < 1/(kFa) < 3) the data agrees well with the

zero temperature BEC theory (dashed line). However, in the far molecular regime

(3 < 1/(kFa) < 5) the data is systematically lower than either curve, and in the

furthest molecular regime (5 < 1/(kFa)) the data is systematically higher than either

curve.

The lower measured speed may arise from coupling of first and second sound.

Second sound is predicted to travel slower than first sound [46]. It does not appear

that temperature is a concern as we observe no thermal component (as shown in

Appendix B). In the furthest molecular regime the trap depth and magnetic field

were tuned to minimize kF and a simultaneously. In this case, after release the

chemical potential was not large enough compared to the remaining magnetic trapping

potential to obtain adequate expansion for ideal absorption imaging.

Finally, we compare our data to models predicting the sound velocity across
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the entire crossover region. Figure 7.7 shows our sound velocity data along with

two curves. The first curve is a mean field model based on the Legget ground

state (purple/upper) [17]. The second is from a quantum Monte Carlo calculation

(green/lower) [30]. The Legget curve (purple/upper) predicts a significantly higher

sound velocity for all but the most negative points. In the BEC region this is mainly

due to the fact that the Legget ground state predicts amol(a) = 2a. The quantum

Monte Carlo result is in much better agreement with our data. Although the data

are slightly lower than the prediction for 1/(kFa) > 1. Our data can used to test

prediction of the equation of state for the entire crossover region.
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Figure 7.7: Sound velocity, c(0)/vF as a function of 1/(kFa) (Black Dots). Curves
are generated from a simple mean field model. The upper curve (Purple) corresponds
to a mean field model based on the Legget ground state. The lower curve (Green)
corresponds to a quantum Monte Carlo calculation.
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Chapter 8

Conclusion

This dissertation highlighted a precision measurement of the sound velocity near a Fes-

hbach resonance. This measurement was made possible through the implementation

of various procedural upgrades on an existing cooling and trapping apparatus [62–67].

Our experiment is the first to measure sound in an ultracold Fermi gas over the entire

BEC-BCS crossover.

In a near zero temperature unitary gas the average sound velocity at the axial

center was measured, c(0)/vF = 0.364(0.005), as well as the universal constant, β =

-0.565(0.015). The measured sound velocity in units of the Fermi velocity was used

to evaluate many-body theories predicting the equation of state. The data agrees will

with weakly interacting Bose theory in the far BEC regime with a molecular scattering

length of am = 0.6a, [29]. On the BCS side and at resonance the data agrees with a

simple mean field model developed by Cheng Chin [28], who is now at the University

of Chicago. I extended the simple mean field model to provide predictions of the

sound velocity in a trapped gas. Through the entire crossover region the data most

closely resembles the results of a quantum Monte Carlo calculation provided to us

by Gregory Astrakharchik who works at the Universitat Politcnica de Catalunya, in

Barcelona, Spain. We found that in our experiment sound propagated as a plane

wave as described by Pablo Capuzzi [58] from Pisa, Italy.
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Deep insight into the dynamics of sound propagation in our system allowed us

to conduct a precision measurement. We were careful to take into account nonlinear

effects and systematic errors in our measurement to insure that the data reflected

the sound velocity of a gas trapped in a harmonic potential. In this dissertation I

provided a complete analysis of the error associated with our measurement.

In the remaining sections of this chapter, I will provide a brief summary of the

bulk of this dissertation. Next, I will discuss anticipated upgrades to the experimental

system, both procedural and technical. Finally, I will speculate on the promise of

future experiments on the system

8.1 Chapter summary

In Chapter 1, I began by observing the field of atom trapping and cooling from a

historical perspective. Our experiment was also placed in the context of ongoing work,

both theoretical and experimental. A direct connection was made to the fast expanse

of theoretical prediction of the equation of state through the BEC-BCS crossover and

to other strongly interacting systems in nature.

I highlighted the basic theoretical background required for understanding the trap-

ping of Fermi gases near a Feshbach resonance in Chapter 2. Then, I outlined the

physics of a dipole trap and the various zero temperature theories associated with the

limits of the BEC-BCS crossover region: the ideal gas limit, the unitary gas limit,

and the weakly interacting Bose gas limit. Chapter 2 also provided a description of

the electronic states of 6Li in a magnetic field, which was the basis of my discussion

of the s-wave scattering length between the lowest two hyperfine states of 6Li near a

Feshbach resonance.
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Chapter 3 included a description of the theory of hydrodynamic plane wave sound

propagation in a trapped gas. The hydrodynamic theory of sound propagation was

used to evaluate the theoretical zero temperature sound velocity in the limits near

a Feshbach resonance. Chapter 3 concluded with a description from a simple mean

field model of the equation of state and the sound velocity prediction resulting from

this model in the BEC-BCS crossover.

Chapter 4 summarized the basic experiment apparatus. Highlighted in Chapter

4 are the procedures employed to produce a near zero temperature gas over a range

of interaction energies. I illuminated the physics underlying each stage of the experi-

mental procedure, and provided a detailed account of important cooling and trapping

techniques.

In Chapter 5, I described the details the sound velocity experiment. Beginning

with the experimental set up of the blue detuned beam used to excite sound waves in

our experiment, I went on to outline our analysis of the propagation dynamics of a

density perturbation in a trapped gas. Chapter 5 also provided a detailed account of

the evolution of the sound velocity experiment. I described a few potential sources of

bias in our measurement and what we did to eliminate them. In addition to the sound

measurement, I described the complementary measurements needed to determine the

characteristic energy of the gas, the Fermi energy EF .

Chapter 6 outlined the error analysis of our measurement. I showed how we

determined the correction factors pertaining to anharmonic trapping conditions and

bias in the atom number measurement. Previously I had detailed how I acquired a

velocity for a moving density perturbation. In Chapter 6, I detailed the steps taken

to transform that velocity into a measure of the speed of sound at the axial center

of a harmonic trap in units of the fermi velocity as well as the error associated with
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reported values.

In Chapter 7 I discussed the results of our experiment. I showed that sound travels

as a plane wave in our experiment. I also compared our data to the zero temperature

theories in the limit of the BEC-BCS crossover, a mean-field theory based on the

Legget ground state, a quantum Monte Carlo calculation, and the simple mean field

model presented earlier in this dissertation. The value of the universal sound velocity

in units of the Fermi velocity and the universal constant β are reported in Chapter 7

as well.

8.2 Future experimental system upgrades

Recently, construction has been completed on an overhaul of the experimental ap-

paratus I used to take the sound velocity data. The new lab is now more closely

resembles the system constructed by Bason Clancy and Le Luo, former members of

our group. The new experimental apparatus is more compact and less complicated.

In the immediate future the green beam conditioning optics can be reinstalled. In

addition to the schematic shown in Figure 5.1 an AO has been purchased for the 532

nm beam. This allows for greater control of the intensity of the and opens up new

realms of experimentation.

Another avenue that is currently being investigated is replacing the dye laser sys-

tem with a diode pumped solid state laser. Laser technology is constantly improving

and there are currently lasers on the market which would suit our needs. A lot of

effort is expended to maintain our dye laser system. We lose precious time waiting

for the laser to stabilize, aligning the laser, and periodically changing out the dye.

The advantages of a turn key laser system would be immense in terms of ease of use
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and stability.

Finally, the major undertaking of revamping the experimental apparatus allows

us a golden opportunity to refine our experimental processes. This is a chance to

take a step back and reevaluate experimental procedures. By making the two labs as

similar as possible we can optimize our productivity by sharing insights, procedural

know-how, and control software between the two labs.

8.3 Outlook

The shaped laser light from the Verdi laser gives us a powerful experimental tool. We

have used the repulsive potential generated by the green beam to excite a sound wave

in our gas. With the additional intensity control of an AO we are able to perform

additional experiments. We had already begun to take some of preliminary data

before the overhaul of the experimental apparatus. Two experiments in particular

appear to be relevant to the ongoing work on trapped gasses. First, we measured

the sound velocity in finite temperature gases on resonance. Second, by increasing

the intensity of the potential we are able to completely separate the gas. When the

repulsive potential is removed, the two atomic clouds accelerate towards each other

and collide. As a result we are able to observe interesting non-linear effects in the

unitary gas.

Another possibility is using the repulsive potential of the green beam to excite the

atoms locally. By modulating the intensity of the green beam at specific frequencies

we might be able to excite localized parametric or slosh modes. These experiments

may lead to the observation of second sound in the form of a thermal wave, as we

might be able to heat the trapped atoms locally. Another exciting possibility is the
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measurement of viscosity. We might be able to create a local deformation of the

trapped atoms from which we would be able to measure the shear viscosity.

There are an infinite number of experiments that could be run. In determining

the next are of exploration we must take into account the tools available to us, the

feasibility of the experiment, and the importance of the work in a broader context.

With the simplicity of our system as compared to other atom trapping experiments

and the experience of the current lab members, we are in a position to conduct some

very interesting experiments.
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Appendix A

Sound data tables

In this Appendix I report all of the data and associated that is contained in the figures

in Chapter 7.
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Date Field % CO2 c(0) vF
c(0)
vF

∆ c(0)
vF

1
kF a

∆ 1
kF a

Power (mm/s) (mm/s)
7/25/2006 700 0.02% 4.44 20.86 0.2130 0.0054 5.822 0.087
7/25/2006 700 0.03% 4.76 22.95 0.2075 0.0045 5.290 0.074
7/25/2006 700 0.04% 4.99 21.90 0.2276 0.0054 5.544 0.048
7/25/2006 700 0.04% 5.28 23.49 0.2247 0.0075 5.168 0.049
7/24/2006 700 0.05% 5.13 24.35 0.2108 0.0038 4.986 0.046
7/24/2006 700 0.05% 5.37 24.43 0.2200 0.0067 4.971 0.058
7/21/2006 700 0.06% 4.68 25.61 0.1828 0.0051 4.742 0.054
7/21/2006 700 0.07% 4.70 26.90 0.1748 0.0049 4.514 0.026
9/28/2006 700 0.07% 5.39 28.98 0.1861 0.0034 4.190 0.029
9/28/2006 700 0.07% 5.31 28.54 0.1862 0.0040 4.254 0.028
9/28/2006 700 0.07% 5.40 28.71 0.1881 0.0027 4.230 0.027
10/24/2006 700 0.07% 5.50 28.04 0.1961 0.0051 4.331 0.023
7/26/2006 709 0.03% 4.50 24.18 0.1862 0.0052 4.427 0.033
7/26/2006 709 0.07% 5.45 28.73 0.1898 0.0024 3.725 0.024
10/24/2006 720 0.07% 6.12 29.29 0.2089 0.0040 3.122 0.019
7/26/2006 724 0.03% 5.41 25.51 0.2122 0.0065 3.380 0.027
7/26/2006 724 0.07% 6.41 30.46 0.2104 0.0041 2.831 0.013
7/28/2006 740 0.07% 6.86 31.04 0.2209 0.0032 2.175 0.019
10/24/2006 740 0.07% 6.34 27.75 0.2284 0.0071 2.433 0.019
9/29/2006 740 0.20% 8.93 38.35 0.2328 0.0031 1.761 0.009
10/17/2006 748 0.75% 13.40 49.72 0.2694 0.0059 1.192 0.005
7/28/2006 753 0.07% 7.82 31.99 0.2443 0.0030 1.702 0.007
9/29/2006 759 0.20% 10.41 38.44 0.2709 0.0033 1.273 0.008
10/17/2006 759 0.20% 10.07 38.59 0.2609 0.0042 1.269 0.007
9/29/2006 759 0.75% 15.13 50.53 0.2994 0.0065 0.969 0.005
10/24/2006 764 0.07% 7.92 32.34 0.2448 0.0036 1.379 0.007
7/31/2006 768 0.07% 7.41 31.11 0.2382 0.0058 1.327 0.016
10/17/2006 768 0.07% 7.57 29.16 0.2596 0.0046 1.416 0.011
9/29/2006 779 0.20% 11.68 39.09 0.2988 0.0029 0.837 0.005
9/20/2006 779 0.75% 16.84 50.49 0.3335 0.0039 0.648 0.003
9/20/2006 779 0.75% 16.47 51.28 0.3212 0.0026 0.638 0.003
9/20/2006 779 0.75% 17.01 51.43 0.3307 0.0022 0.636 0.002
9/26/2006 779 0.75% 14.96 47.78 0.3130 0.0027 0.685 0.003
7/31/2006 783 0.07% 8.97 32.03 0.2799 0.0049 0.931 0.005
10/24/2006 788 0.07% 8.73 30.40 0.2870 0.0043 0.866 0.005
8/2/2006 799 0.20% 13.13 40.06 0.3276 0.0024 0.477 0.002
8/1/2006 799 0.33% 15.24 43.59 0.3496 0.0032 0.439 0.002
8/1/2006 799 1.00% 19.66 56.54 0.3477 0.0026 0.338 0.002

Table A.1: Sound Velocity Data
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Date Field % CO2 c(0) vF
c(0)
vF

∆ c(0)
vF

1
kF a

∆ 1
kF a

Power (mm/s) (mm/s)
10/24/2006 803 0.07% 9.26 31.85 0.2907 0.0044 0.523 0.003
8/2/2006 821 0.07% 10.88 31.48 0.3455 0.0061 0.208 0.003
8/2/2006 821 0.20% 14.04 41.09 0.3418 0.0033 0.159 0.001
7/17/2006 821 0.33% 15.62 43.15 0.3619 0.0037 0.152 0.001
8/31/2006 821 0.75% 19.99 54.19 0.3689 0.0022 0.121 0.000
7/17/2006 821 1.00% 20.40 55.13 0.3701 0.0024 0.119 0.000
8/25/2006 821 1.00% 20.80 54.85 0.3793 0.0028 0.119 0.000
8/29/2006 821 1.00% 21.39 57.94 0.3692 0.0026 0.113 0.000
9/11/2006 821 2.00% 23.40 65.05 0.3597 0.0028 0.101 0.001
9/12/2006 821 2.00% 22.06 62.07 0.3553 0.0026 0.105 0.000
9/12/2006 821 2.00% 22.25 63.21 0.3520 0.0027 0.104 0.000
7/17/2006 821 3.00% 26.11 75.15 0.3475 0.0034 0.087 0.001
8/30/2006 821 4.00% 28.41 78.04 0.3641 0.0028 0.084 0.000
8/8/2006 821 5.00% 29.81 79.20 0.3764 0.0040 0.083 0.000
9/7/2006 821 5.00% 28.90 79.61 0.3630 0.0034 0.082 0.000
8/22/2006 821 7.50% 31.78 89.76 0.3541 0.0042 0.073 0.000
8/30/2006 821 9.00% 33.10 94.18 0.3515 0.0045 0.070 0.000
7/13/2006 821 10.00% 34.98 96.39 0.3629 0.0040 0.068 0.000
7/17/2006 821 10.00% 34.87 96.44 0.3616 0.0038 0.068 0.000
8/8/2006 821 10.00% 35.64 97.27 0.3664 0.0069 0.067 0.000
8/22/2006 821 10.00% 34.78 96.95 0.3587 0.0042 0.068 0.000
12/5/2006 834 0.07% 11.03 30.31 0.3638 0.0120 0.002 0.000
12/6/2006 834 0.10% 10.91 30.55 0.3572 0.0051 0.002 0.000
12/5/2006 834 0.20% 14.19 39.32 0.3608 0.0040 0.002 0.000
12/6/2006 834 0.50% 17.20 45.99 0.3740 0.0034 0.002 0.000
12/5/2006 834 0.75% 18.55 51.16 0.3625 0.0037 0.001 0.000
12/5/2006 834 1.00% 20.71 56.11 0.3691 0.0037 0.001 0.000
12/6/2006 834 2.00% 22.28 61.03 0.3651 0.0031 0.001 0.000
12/6/2006 834 5.00% 29.01 80.36 0.3610 0.0045 0.001 0.000
12/5/2006 834 10.00% 35.27 97.56 0.3615 0.0043 0.001 0.000
10/6/2006 847 0.75% 21.02 56.54 0.3718 0.0031 0.103 0.000
9/11/2006 847 2.00% 24.06 65.31 0.3684 0.0030 0.089 0.000
8/21/2006 867 0.20% 15.18 39.33 0.3860 0.0034 0.352 0.002
10/10/2006 876 0.20% 15.96 42.81 0.3728 0.0028 0.400 0.001
10/6/2006 876 0.75% 22.05 56.26 0.3919 0.0030 0.304 0.001
9/11/2006 876 2.00% 24.59 64.27 0.3826 0.0030 0.266 0.001
8/21/2006 906 0.20% 15.45 39.66 0.3895 0.0031 0.673 0.004

Table A.2: Sound Velocity Data (continued)
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Date Field % CO2 c(0) vF
c(0)
vF

∆ c(0)
vF

1
kF a

∆ 1
kF a

Power (mm/s) (mm/s)
10/6/2006 906 0.75% 22.28 56.87 0.3917 0.0026 0.469 0.002
10/6/2006 906 0.75% 22.29 56.58 0.3940 0.0033 0.472 0.002
9/11/2006 906 2.00% 25.34 65.26 0.3883 0.0024 0.409 0.002
8/21/2006 946 0.20% 15.61 39.70 0.3932 0.0057 0.930 0.006
8/31/2006 946 0.75% 22.78 54.33 0.4192 0.0032 0.680 0.003
10/10/2006 950 0.20% 16.50 43.42 0.3800 0.0054 0.871 0.003
10/6/2006 950 0.75% 23.21 56.72 0.4091 0.0030 0.667 0.003
8/29/2006 961 1.00% 23.88 58.14 0.4108 0.0040 0.691 0.002
8/21/2006 985 0.20% 18.66 40.44 0.4614 0.0101 1.108 0.008
10/10/2006 1014 0.20% 21.56 42.67 0.5052 0.0158 1.164 0.004
10/6/2006 1014 0.75% 23.83 57.74 0.4126 0.0068 0.860 0.003
10/10/2006 1053 0.20% 20.71 43.58 0.4753 0.0239 1.264 0.003
10/2/2006 1097 0.75% 24.31 58.33 0.4168 0.0056 1.029 0.004
10/2/2006 1097 0.75% 23.80 57.88 0.4112 0.0022 1.037 0.005
10/2/2006 1097 0.75% 22.89 57.06 0.4012 0.0055 1.052 0.006
10/6/2006 1097 0.75% 25.61 59.20 0.4326 0.0108 1.014 0.006

Table A.3: Sound Velocity Data (continued)
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Appendix B

Condensate Fraction

In the bulk of this thesis I discussed the various zero temperature theories associated

with the limits near a Feshbach resonance. One of these limits is the BEC limit

where the Fermoion atoms pair and become Bose molecules. In this Appendix I will

explore finite temperature Bose thermodynamics. The goal of this appendix is to

discover a density distribution that can be used to fit finite temperature Bose gases.

In a Bose gas at finite temperature below the critical temperature, TC , a portion of

the molecules will form a condensate and the rest, the thermal component will obey

Boltzman statistics. By comparing the actual density distribution that we obtain from

our absorption images to the theoretical curve we can determine the BEC fraction.

B.1 One Dimensional Profiles

The theory of uniform Bose gases is found in most texts on statistical mechanics and

thermal physics [81], [82], [69]. The ratio of the density of thermal atoms, nT , to

the overall density, n, can be related to ratio of the temperature, T , over the critical

temperature, TC ,

nT

n
=

(

T

TC

)3/2

. (B.1)
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This means that the ratio of the atoms in the condensate, nBEC , to the overall density

is,

nBEC

n
= 1 −

(

T

TC

)3/2

. (B.2)

The critical temperature can be considered a local quantity. The critical temperature

varies with overall density according to the equation,

kBTC =

(

1

2.612

)

h̄2

m
n2/3, (B.3)

where m is the molecular mass and kB is Boltzmann’s constant.

The above equations hold for temperatures T < TC . In a trapped gas in thermal

equilibrium the temperature is constant, and the density varies spatially, densest in

the center at diffuse at the edges. This means that the local critical temperature

TC(r) will be greater than the temperature of the gas in some regions and less than

the temperature of the gas in others. As a consequence, portions of the gas will be

completely thermal while others will be a mixture of thermal and condensed atoms.

If the temperature is greater than the critical temperature (T > TC) the distribu-

tion of thermal atoms follows the Maxwell Boltzman distribution [26],

nT (r) =

(

2πh̄2

mkBT

)−3/2

e−VHO(r)/kBT . (B.4)

When temperature is less than the critical temperature (i.e. T < TC(r)) we can

combine equations (B.1) and (B.3) to obtain,

nT (r) =
1

2.612

(

mkBT

h̄2

)3/2

. (B.5)
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Note that in equation (B.5) the thermal density distribution depends only on tem-

perature and does not vary in space.

Now lets do the same thing for the condensate density distribution nBEC . For

temperatures, T > TC there will be no condensate and nBEC = 0. For temperatures

below the critical temperature, T < TC the condensate fraction density distribution

will scale according to zero temperature Bose statistics which we have already worked

out in the bulk of this thesis. The condensate density distribution in a harmonic trap

from the Bose equation of state and the local density approximation is,

nBEC(r) =
µG

C

(

1 − r2

σ2
r

)

, (B.6)

where σr =
√

2µG

m
1

ωHO
.

The critical temperature is a local quantity that depends on density. It is impor-

tant to note the for a finite temperature gas µG depends upon the trap frequencies,

total number of molecules, and the temperature, and will not be equivalent to the

global chemical potential at zero temperature. Therefore, at some critical spatial

position, σC , corresponding to a critical density nC , there is a transition from the

completely thermal gas at the edge of the cloud to a mixture of condensate and

thermal components in the center. We already have defined the radius at which the

condensate fraction goes to zero, thus we can equate this with the critical radius,

σC = σr.

Figure B.1 shows the overall density distribution of a BEC with a thermal compo-

nent. At the edge of the gas the density follows the Maxwell Boltzman distribution

and the gas is comprised solely of thermal molecules. Once the local critical tem-

perature exceeds the temperature of the gas, the gas is a mixture of a condensate
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Figure B.1: Density distribution in a finite temperature Bose gas.
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molecules and thermal molecules. The density of the thermal molecules remains

constant while the density of the condensate molecules can be determined from zero

temperature Bose statistics. The overall density distribution is the sum of the density

of the thermal molecules and the density of the condensate molecules,

n(r) = nT (r) + nBEC(r). (B.7)

We use 2-dimensional absorption imaging to extract data from our experiment.

One these images are obtained they are converted into 2D density distributions which

are line of sight averages of the density. The 2D density distributions are then binned

to create a 1D density profile. Therefore, we need to determine the 1D density

distribution for both the thermal and condensate distributions. Assuming cylindrical

symmetry and the normal cigar-shape of the trap the 1 D density profile is,

n(z) = 2π

∫ ∞

0

n(ρ, z)ρdρ. (B.8)

When we break the overall density into its constituent parts we find,

n(z) = 2π

∫ ∞

0

nT (ρ, z)ρdρ+ 2π

∫ ∞

0

nBEC(ρ, z)ρdρ. (B.9)

Lets start with the condensate density. We need to define two critical radii,

σρC =
√

2µG

m
1

ω⊥

and σzC =
√

2µG

m
1

ωz
such that beyond the ellipsoid bound by the

surface ρ2/σ2
ρC + z2/σ2

zC = 1 the condensate fraction is zero. For the 1D density

profile this gives,

nBEC(z) = 2π

∫

√
1−z2/σzCσrC

0

µG

C

(

1 − ρ2

σ2
ρC

− z2

σ2
zC

)

ρdρ, (B.10)
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for |z| < σzC and

nBEC(z) = 0, (B.11)

for |z| > σzC . There is a change in variables that will greatly simplify our calculation.

Let ρ → ρ′/σρC and z → z′/σzC . Now the equation for the non-zero 1D profile on

the condensate density becomes,

nBEC(z) = 2π
µG

C σ2
ρC

∫

√
1−z′2

0

(

1 − ρ′2 − z′2
)

ρ′dρ′. (B.12)

Once we solve this integral the 1 D condensate density is,

nBEC(z) =
π

2

µG

C σ2
ρC

(

1 − z2

σ2
zC

)2

: |z| < σzC (B.13)

nBEC(z) = 0 : |z| > σzC (B.14)

Now lets consider the thermal distribution. Lets define the thermal amplitude,

AT =
(

2πh̄2

mkBT

)−3/2

, and thermal radii, σρT =

√
2kBT/m

ω⊥

, σzT =

√
2kBT/m

ωz
. Now the

equation for the thermal density outside the critical ellipsoid defined by the surface,

ρ2/σ2
ρC + z2/σ2

zC = 1, is,

nT (ρ, z) = AT e
− ρ2

σ2
ρT

− z2

σ2
zT . (B.15)

and the thermal density inside the ellipsoid is simply the thermal density at the

surface because the thermal density is constant in the thermal/condensate mixture.

nT (ρ, z) = AT e
−

σ2
ρC

σ2
ρT = AT e

−σ2
zC

σ2
zT . (B.16)

The ratios σρC/σρT are equivalent σzC/σzT and equal to µG/(kBT ).
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The 1D density profile can be calculated as,

nT (z) = 2π

∫ ∞

0

AT e
− ρ2

σ2
ρT

− z2

σ2
zT ρdρ, (B.17)

for |z| > σzC . When |z| < σzC we need to be careful. Part of the integral will

occur outside the critical ellipsiod where the thermal density varies according to the

Maxwell Boltzman distributions and part of the integral will occur inside the critical

ellipsoid where the thermal density is constant. The surface of the ellipsiod is defined

as ρ2/σ2
ρC + z2/σ2

zC = 1. Therefore the point where we need to switch the equation

for thermal density from constant to Maxwell Boltzmann is ρ =
√

1 − z2/σ2
zC

2
σρC .

The integral is then,

nT (z) = 2π

∫

√
1−z2/σzCσρC

0

AT e
−

σ2
ρC

σ2
ρT ρdρ+2π

∫ ∞

√
1−z2/σzCσρC

AT e
− ρ2

σ2
ρT

− z2

σ2
zT ρdρ, (B.18)

for |z| < σzC .

Once we perform the integral the 1D profile reduces to

nT (z) = πATσ
2
ρT

[

e
− z2

σ2
zT e

−
(

1− z2

σ2
zC

)

σ2
ρC

σρT2
+
σ2

ρC

σ2
ρT

e
−

σ2
ρC

σρT2

(

1 − z2

σ2
zC

)

]

: |z| < σzC(B.19)

nT (z) = πATσ
2
ρT e

− z2

σ2
zT : |z| > σzC (B.20)

This combined with our equation for the 1D condensate density profile is the

overall density of a finite temperature BEC.
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B.2 Curve Fitting

The 1 Dimensional profiles we worked out in the previous section may seem com-

plicated. But when you break them down it turns out that we can fit the finite

temperature profiles with just four fitting parameters. Lets make the following sub-

stitutions and see what happens.

π

2

µG

C σ2
ρC → A1

πATσ
2
ρT → A2

σρC

σρT

→ R

The 1D BEC density profiles can be expressed,

nBEC(z) = A1

(

1 − z2

σ2
zC

)2

: |z| < σzC (B.21)

nBEC(z) = 0 : |z| > σzC (B.22)

and the 1D thermal density profiles can be expressed,

nT (z) = A2

[

e
− z2

σ2
zT e

−
(

1− z2

σ2
zC

)

R2

+R2e−R2

(

1 − z2

σ2
zC

)

]

: |z| < σzC (B.23)

nT (z) = A2e
− z2

σ2
zT : |z| > σzC . (B.24)

The variable in the fits are σzT ,σzC ,A1,A2, and R. However, we know that the

ratios σzC

σzT
= σrC

σrT
= R. Therefore R is not a free parameter and we can fit with four

variables. Figure B.2 shows the 1-dimensional profiles.

Once we have the four parameter fit we can calculate the condensate fraction by
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Figure B.2: Integrated density distribution in a finite temperature Bose gas.

integrating the 1-D densities over the z-direction,

NBEC

N
=

∫∞
−∞ nBEC(z)dz

∫∞
−∞ nT (z) + nBEC(z)dz

. (B.25)

The temperature of the gas is a function of the condensate fraction,

T

TC0

=

(

1 − NBEC

N

)2/3

, (B.26)

where TC0 is the global critical temperature which is the critical temperature at the

center of the trap according to equation (B.3).

Figure B.3 shows the results of fits using Igor to density profiles of BECs at various

condensate fractions.
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Figure B.3: 1-dimensional profiles of several BECs at various condensate fractions.
Condensate fraction is noted. Fits include overall density n(x) (Red) and thermal
density nT (x) (Blue).
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Appendix C

Simple Mean Field Model

The mathematic code used to produce the figures in this thesis pertaining to the

Simple Mean Field Model
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