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Abstract

This thesis describes the first all-optical production of a degenerate Fermi gas of

atoms. In the experiment, a Magneto-Optical-Trap (mot) containing ' 1− 3×108

atoms of 6Li at a temperature of 150 µK is used to load an optical trap formed by

the focus of a 65W CO2 laser beam. The optical potential has a depth of 700 µK

and trap oscillation frequencies of 6.6 kHz in the radial direction and 275 Hz in the

axial. Approximately 3×106 atoms are transferred to the optical trap and the mot

is extinguished. A uniform magnetic field of 100G is applied to the atoms, tuning

the s-wave scattering length to ' -100 a0. This initiates free evaporative cooling

in the sample. After 6 s, evaporation has stagnated and 1.3×106 atoms remain at

a temperature of 50 µK. The intensity of the CO2 laser is then lowered to drive

forced evaporative cooling. After 60 s of forced evaporative cooling, 1×105 atoms

remain at a temperature ≤ 4µK. For this number of atoms, the Fermi temperature,

TF =8µK. With T/TF ≤ 0.5, the sample is clearly degenerate.

In addition to the experimental work, this thesis presents three theoretical re-

sults of note: 1) The development of a Monte-Carlo model for simulating a classical

or near-classical gas in a Gaussian well. This model extends previous techniques

for harmonic wells to a case which approximates the potential well of an optical

trap. The application of the model to temperature measurement, trap frequency

measurement, and cloud size in an anharmonic potential is presented. 2) The de-

velopment of a Fokker-Planck approach to studying the evolution dynamics of trap
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populations in response to fluctuations in the trapping potential. The heating that

results from such fluctuations was a primary factor in early failures of optical traps.

Understanding these heating processes allowed our group to construct the first opti-

cal trap capable of storing atoms for more than a few seconds. 3) The development

of an analytical treatment which relates the signal-to-noise ratio of atomic imaging

techniques to the physical characteristics of the imaging equipment and the specific

imaging technique. This treatment was used to design the imaging system used in

the aforementioned experiments.
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Chapter 1

Introduction

1.1 Overview

Quantum-mechanical effects typically exhibit themselves only on microscopic scales

as a result of the extremely small size of Planck’s constant, h. Systems where

quantum effects are manifest on mesoscopic or macroscopic scales tend to be quite

rare, and yet are some of the most intriguing systems in all of physics. Lasers,

neutron stars, and superconductors are all examples of such macroscopic quantum

ensembles.

One of the first, if not the first, proposal for a macroscopic quantum system was

Albert Einstein’s paper in which he discovers the quantum-mechanical phase transi-

tion we know today as Bose-Einstein Condensation [1]. This paper, written during

the transition period between the “old” and “new” quantum mechanics expands on

his earlier paper where he develops Bose-Einstein statistics [2]. A Bose-Einstein

Condensate, or bec results when a non-interacting gas of particles that obey be-

statistics are cooled below a transition temperature. At this point, a quantum

mechanical phase transition occurs, and there arises a macroscopic occupation of

the ground state. In 1995, seventy years after the original proposal, physicists suc-

ceeded in producing becs [3–5]. The following years have seen a phenomenal burst

1
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of experimental and theoretical exploration of condensates. In 2001, in recognition

of their tremendous scientific accomplishment, Eric Cornell, Wolfgang Ketterle, and

Carl Weiman were awarded the centennial Nobel Prize in physics “for the achieve-

ment of Bose-Einstein condensation in dilute gases of alkali atoms, and for early

fundamental studies of the properties of the condensates.”

Of course, we know that there are two types of quantum statistics. Not long after

Einstein expanded Satyendra Nath Bose’s work [6] into be-statistics, Enrico Fermi

and P.A.M. Dirac were simultaneously formulating Fermi-Dirac statistics [7,8]. be-

statistics apply to particles with integer spin, called bosons, while fd-statistics apply

to particles with half-integer spin, called fermions.

Just as it is possible to create a macroscopic quantum state of bosons, it is

possible to create a macroscopic quantum state of fermions. Unfortunately, the

nature of fd-statistics, namely that fermions obey the Pauli exclusion principle [9],

means that the systems evolve smoothly from classical to quantum behavior and lack

a dramatic hallmark of entry to the quantum regime. Further, quantum statistics

dictate that it is much more difficult to create a degenerate Fermi gas (dfg) than

it is to create a bec. As a gas of bosons is cooled, bosonic enhancement [10] makes

it more likely that an atom in the thermal component is scattered into the ground

state. In contrast, as a gas of fermions is cooled, the lower lying states fill, and the

Pauli exclusion principle then slows any cooling process as fewer and fewer low-lying

states are available.

It then seems natural to ask: If it is so difficult to produce dfgs, and if they

lack much of the dramatic behavior of becs, why attempt to study them? The

answer is threefold. First, they are the natural counterpart to becs. Physicists

are obviously interested in thoroughly exploring both quantum statistical regimes.
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Second, the physics of dfgs appears in many important physical systems (e.g.

superconductors). By studying a new dfg system, especially one where many in-

teraction parameters are widely-tunable, physicists hope to gain insights into broad

classes of fermionic behavior. Third, it has recently been realized that in the limit of

strong interactions, Fermi systems become universal [11,12]. All important physical

parameters become proportional to the Fermi energy with different constants of pro-

portionality, which are independent of the nature of the interaction. Thus tabletop

experiments in a strongly-interacting atomic dfg can determine the proportionality

constants, which also apply to systems such as nuclear matter and compact stellar

objects. This is a tremendously exciting development.

It is interesting to note that our motivation for studying dfgs has progressed

through all three of these rationales. When we began our cooling and trapping

experiments, we settled on a fermionic isotope primarily because so much of the

field was focused on becs. We felt that we could contribute more by striking out

into relatively unexplored territory rather than following the crowd. Quickly, we

recognized the analogies between an atomic dfg and other dfg systems, and focused

on the creation of an atomic superfluid via the Bardeen-Cooper-Schrieffer (bcs)

pairing mechanism [13] as the most interesting analog. Production of a fermionic

atomic superfluid [14] became our primary long-term goal.

Our interest in the superfluid remained, even as further analysis showed that

a true bcs pairing interaction would require exceedingly low temperatures. At-

tention in the field focused on the use of Feshbach resonances [15] to magnetically

tune the interatomic interaction to extremely large and attractive values, where the

superfluid transition temperature would become experimentally attainable. A num-

ber of groups developed detailed theories of superfluidity in this strongly-interacting
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regime, under the name resonance superfluidity [16–18]. Even in this modified form,

superfluidity was deemed interesting because of the general analogies that could be

drawn between the atomic system and other fermionic systems.

In the past few months, we have succeeded in creating degenerate samples in

this strongly-interacting regime [19]. As we did so, we began to appreciate the

import of the theoretical predictions of universality in strongly-interacting Fermi

systems. While superfluidity still remains a major goal of our group, we now view

exploration of this universal behavior as the most compelling rationale for studying

dfgs.

1.2 Significance of Current Work

This thesis presents the first all-optical production of a degenerate Fermi gas, and

the fourth degenerate atomic Fermi gas ever created. While this makes the exper-

imental effort significant in its own right, degeneracy has never been the ultimate

goal of our research. Degeneracy is instead a significant milestone in our efforts

and an excellent starting point for our further explorations of the physics of Fermi

gases.

Reaching this point has taken many years and the efforts of many people. The

path to degeneracy was not clear, however, and required the sustained development

of broad concepts as well as analytical and experimental techniques. In addition

to the experimental results presented within, this thesis attempts to document the

development of the many ideas that were central to our eventual achievement of

degeneracy—in essence, documenting the route to degeneracy.

A more detailed characterization of the degenerate Fermi gas produced in this ex-

periment is contained in the concurrent thesis of my coworker, Stephen Granade [20].
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Both of our theses build on the tremendous foundation laid down previously by Ken

O’Hara [21]. A discussion of the primary results of this thesis are contained in the

sections below.

1.2.1 All-Optical Production and Detection of a Degenerate

Fermi Gas of 6Li

The primary experimental result of this thesis is the first all-optical production of a

degenerate Fermi gas of 6Li atoms. With this experiment, we have shown that it is

possible to create a degenerate Fermi gas of atoms without using a magnetic trap.

Evaporative cooling in a spin-polarized sample of fermions is not possible. For

this reason, most groups [22–24] have attempted to create a degenerate Fermi gas

by confining both bosons and fermions in a magnetic trap. Thermal equilibrium

between the two species then ensures that evaporatively cooling the bosons results

in cooling of the fermions. This approach is known as sympathetic cooling. It is

relatively simple to remove the bosons at the end of the cooling process, leaving

a spin-polarized degenerate Fermi gas. However, the most interesting physics of

fermion systems require multiple spin states; specifically mixtures that cannot be

contained in a magnetic trap. These other groups must then transfer their degen-

erate gases to optical traps and use some form of state preparation to create the

desired mixture.

By working directly in an optical trap, we avoid the need for this complexity.

We directly create the desired mixture and evaporatively cool that mixture in the

optical trap. The experiment begins with '1 − 3×108 6Li atoms confined in a

Magneto-Optical-Trap (mot) at a temperature of '150µK. In the center of the

mot, a 65W CO2 laser beam is focused to a spot with a 1/e2 intensity radius of
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'47µm. The focused CO2 laser beam creates an additional trap potential for the 6Li

atoms The optical trap has a depth '700µK and trap frequencies of 6.6 kHZ in the

radial direction and 275Hz in the axial direction. We tune the mot laser fields into

resonance with the 6Li cycling transition and transfer ' 3×106 atoms into the optical

potential, after which, we extinguish the mot laser fields and magnetic gradient.

We then apply a 100 G magnetic field to the atoms, tuning their scattering length to

'-100 a0, initiating evaporative cooling in the sample. After 6 s, evaporative cooling

has stagnated and the CO2 laser trap contains '1.3×106 atoms at a temperature

of '50µK. We then initiate forced evaporative cooling by adiabatically lowering

the CO2 laser intensity. After 60 s of forced evaporative cooling, the atomic sample

contains '1×105 atoms at a temperature ≤ 4µK. For this number of atoms, the

Fermi temperature, TF = 8 µK. With T/TF < 0.5, the sample is clearly in the

degenerate regime.

At this point, we have the exact atomic system required for future experiments,

with no need for transfer or further state preparation. We are therefore in the ideal

situation for moving forward in the exploration of atomic dfgs.

1.2.2 Monte-Carlo Model

This thesis describes a numerical computer model for simulating a classical gas

trapped in a (possibly time-dependent) three-dimensional Gaussian confining po-

tential. The model uses standard Monte-Carlo techniques to generate a random

atomic ensemble, which is then evolved forward in time according to the technique

known as Bird’s method [25], an approach for applying Newton’s laws in Monte-

Carlo simulations.

Through this model we gained some of our first insights into the general behavior
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of trapped atomic gases. It has allowed us to rapidly simulate ideas to test their

worth. The model played a direct analytical role during the experiments of Ken

O’Hara’s thesis [21], where it formed the heart of our temperature measurement

technique.

Perhaps the greatest contribution of the model has been that it has allowed us

to investigate the effect that an anharmonic trapping potential has on the atomic

cloud. Initially, we believed that the anharmonic nature of the trap would not play

a big role, since the cold atoms would reside primarily at the bottom of the well

where it is close to harmonic. While this is certainly true in the limit of extremely

cold temperatures, we found that the effects of the anharmonicity were more sig-

nificant than we expected. This directly led to our rejection of in situ imaging

as a temperature measurement technique. Further, the anharmonicity leads to a

notable shift between measured trap frequencies and the “true” trap frequency—a

shift which we must account for in our analysis.

1.2.3 Fokker-Planck Treatment of Noise-Induced Heating

Motivated by the early failure of optical traps, our group proposed the mechanism

of noise-induced heating, whereby fluctuations in the trapping potential heat the

atoms contained within. A previous publication of ours provides the basic physics

of this mechanism [26], and a subsequent one develops a Fokker-Planck equation

approach for more accurately modelling the resulting heating and trap loss [27].

This thesis provides a detailed discussion of the development of the Fokker-

Planck equation relevant to this effect and presents a previously unpublished ana-

lytical treatment of the equation. As part of this treatment, the long-time behavior

of the equation is studied in two important limits. Further, in these two limits, the
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equation is converted to a form suitable for numerical solution and a full stability

analysis of the numerical technique is performed. The results of the numerical so-

lution are discussed and the long-time behavior is shown to be consistent with the

analytical predictions.

The most striking result of these studies is the fact that in the long time limit,

the system evolves into a state where the trap population continues to decay while

the mean energy of the trapped atoms remains constant (the system has evolved

into an single eigenmode). This behavior is qualitatively identical to that reported

by early optical trap researchers [28]—a fact which strengthened our conjecture that

it was noise-induced heating which limited the performance of early optical traps.

1.2.4 Signal-To-Noise Analysis of Imaging Techniques

When we began investigating the possibility of using direct imaging of the atomic

cloud as our means of data collection, it became necessary to develop a quantitative

technique for evaluating potential cameras, imaging techniques, and optical designs.

To that end, we developed a simple signal-to-noise model that relates the physical

parameters of the camera, optical characteristics of the imaging system, and the

details of the imaging technique to the signal-to-noise ratio produced in the data.

We used the model to evaluate prospective cameras and to design the imaging

system. The development of the model is presented in this thesis and an imaging

system similar to ours is analyzed.
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1.3 Organization

Chapter 2 introduces the reader to the basic physics of cooling and trapping. mots,

forts, and evaporative cooling are discussed from both theoretical and practical

contexts. Evaporative cooling in an optical trap differs in a number of particulars

from evaporative cooling in a magnetic trap. This chapter looks at the problem of

evaporative cooling in an optical trap and culminates with a derivation of how to

optimally lower the intensity of an optical trap to produce a dfg.

Chapter 3 derives the equilibrium spatial and momentum distributions of atoms

in the Maxwell-Boltzmann and Fermi-Dirac regimes. In addition, the effect of

ballistic expansion on the spatial distributions is examined, and the resulting time-

dependent distributions are derived. These results will prove important during the

analysis of the experimental data.

Chapter 4 introduces the Monte-Carlo model. We developed a computer pro-

gram which uses Monte-Carlo techniques to numerically simulate the behavior of

a classical gas trapped in a three-dimensional Gaussian potential. Over the years,

the program has allowed us to quickly simulate many experiments, gaining valuable

insight into the general behavior of trapped gases and the complications introduced

by an anharmonic confining potential.

When we initiated our cooling and trapping efforts, optical traps were not suit-

able for work with degenerate gases. All previous optical traps suffered from un-

explained heating and trap loss. We formulated a simple model of noise-induced

heating where fluctuations in the trapping potential heat the trapped atoms. Chap-

ter 5 presents the physics of these mechanisms and the details of a Fokker-Planck

approach we developed to more accurately study the evolution of the population

distributions. Analysis of the Fokker-Planck equation as well as computer simula-



CHAPTER 1. INTRODUCTION 10

tion show evolution characteristics very similar to those reported in early studies

of optical traps—supporting our conjecture that noise-induced heating limited the

performance of early traps.

Chapter 6 describes the experiment used to create a degenerate gas of 6Li.

This chapter provides detailed descriptions of the apparatus (focusing especially on

upgrades to the equipment developed during the course of the experiments presented

in this thesis), as well as step-by-step descriptions of the procedure.

Every experimental run culminates in an absorption image of an expanding

atomic cloud. Chapter 7 introduces the physics of atomic imaging in general and

the details of the specific case used in this experiment in particular. The chapter

concludes with a signal-to-noise analysis which relates image quality to physical

imaging parameters. This analysis was particularly useful in evaluating cameras

and imaging systems when we were designing that portion of the experiment.

Combining the imaging physics of Chapter 7 with the theoretical atomic distribu-

tions of Chapter 3, Chapter 8 develops a technique for analyzing the experimental

images to determine the number, temperature, and degeneracy parameter of the

experimental trials. The chapter demonstrates conclusively that the experiment

succeeded in producing a degenerate gas of 6Li.

Chapter 9 is the conclusion of the thesis. This chapter summarizes the major

results of the thesis as well as potential (and completed) upgrades to the apparatus

and the future outlook for research on degenerate fermi gases.

There are several appendices to this thesis. Appendix A is a detailed presenta-

tion of the physical, optical, and collisional properties of 6Li, and how these change

with applied external fields. The appendix is written at an introductory level, and

includes properties not directly related to this thesis in the hopes that it may be
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excerpted to serve as a general reference to 6Li within our research group.

Appendix B discusses the techniques for generating random numbers from non-

uniform probability distributions given a source of uniformly-distributed random

numbers. This topic is central to implementation of the Monte-Carlo code of Chap-

ter 4. The specific details of the Monte-Carlo implementation are presented in this

chapter.

Appendix C provides listings of all the computer codes used in this thesis.



Chapter 2

Basic Cooling and Trapping
Techniques

For thou wilt mark here many a speck, impelled
By viewless blows, to change its little course,
And beaten backwards to return again,
Hither and thither in all directions round.

—Lucretius (c. 50 bce)

2.1 Overview

This thesis is ultimately concerned with atomic cooling and trapping. An atomic

trapping technique confines atoms in a small spatial region, while an atomic cooling

technique confines atoms in a small region of momentum space. The benefits of

working with trapped and cooled atoms are manyfold, but the two primary gains

are long interaction times as a result of the atoms being trapped and reduced

thermal fluctuations as a result of the atoms being cooled. This thesis is concerned

with creating and investigating a degenerate Fermi gas—a system which forms at

extremely low temperatures. Thus, our choice of trapping and cooling techniques

are constrained by the stringent requirements of our goal.

This chapter addresses the basic physics of the trapping and cooling techniques

utilized in this thesis. For greater detail, the reader is advised to consult earlier

12
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theses by students from this group [21,29,30].

2.2 Magneto Optical Traps (MOTs)

2.2.1 Characteristics

Our experiment begins with a Magneto-Optical Trap [31] (mot). The mot is the

workhorse of the cooling and trapping field. It both traps and cools the atoms, and

is comparably easy to implement. A typical mot contains a relatively large number

of atoms (' 106-109) at relatively low temperatures (' 3-150µK).

The mot operates via strong optical interactions with the atoms (as described

in the next section). The result of this interaction is that the atoms are constantly

“jostled” by the optical fields. As a result, while a mot produces relatively low

temperatures and relatively high densities, it falls far short of the requirements for

quantum degeneracy. It is useful as a first-stage in the experimental process, where

it excels as a source of atoms for the subsequent cooling and trapping techniques

used in this thesis.

2.2.2 Physics

As mentioned above, the mot acts both as a trap and as a cooling technique. The

cooling capability is provided by Doppler cooling—a method first observed in a mot

precursor known as optical molasses [32].

Doppler Cooling

To understand Doppler cooling, we consider the system known as one-dimensional

optical molasses. In this system, an atom is placed in a pair of counterpropagating
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laser beams, each of which is detuned slightly below an optical resonance in the

atom (ω < ω0). A schematic of the process is shown in Figure 2.1. If the atom

has a velocity to the left, the Doppler shift induced by its motion tunes the beam

propagating to the right closer into resonance, while tuning the beam propagating

to the left farther out of resonance. As a result, the radiation pressure force is

imbalanced between the two beams, and the atom feels a net force to the right—

opposing its initial velocity. A similar argument holds if we assume the atom has

an initial velocity to the right. In either case, the net force on the atoms serves to

decelerate the atom. The atom acts as if it is moving through a viscous fluid (hence

the name “optical molasses”). A plot of the net force on the atom as a function of

velocity is given in Figure 2.1.

A three-dimensional version can be created by producing three pairs of mutually-

orthogonal, red-detuned counterpropagating beams with a common intersection.

The velocity of an atom can always be described in terms of components along the

three orthogonal beam-pairs. At the intersection of the beams, all three velocity

components experience doppler cooling.

While Doppler cooling effectively reduces the momentum (and hence the tem-

perature) of the atoms, it is effectively a random walk in momentum space (albeit

one where the probabilities are biased in terms of motion towards the momentum

origin). This has two immediate consequences which we must address.

First, although the momentum is kept near zero, there is no spatial confinement

for the atoms. It is possible for the atoms to random-walk out of the beams, and

hence to leave the viscous-damping region. This lack of confinement is what led

to the development of the mot. The mot superimposes a spatial confinement

mechanism on top of Doppler cooling. The next section addresses this confinement
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Figure 2.1: Physical basis of Doppler cooling. a) One-dimensional Doppler cooling
as seen in the laboratory frame. The atom has an initial velocity to the left, and the
beams are detuned to the red of the atomic transition, ω0. b) The same situation
in the reference frame of the atom. Here, the atom is at rest, and the two beams
appear to have different frequencies as a result of the Doppler effect. The left beam
is shifted towards resonance, while the right beam is shifted away from resonance.
Thus, the atom preferentially interacts with the left beam, and the light pressure
applies a force which decelerates the atom. c) Here we see a plot of the force on
the atom as a function of its velocity. This plot is for the specific detuning value
∆ = −Γ/2, but the characteristics are fairly general. The two dashed lines show the
forces from the two individual beams, while the solid curve shows the total force.
Note that for a range of velocities near the origin, the total force is linear. This
represents viscous damping.
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mechanism.

Second, like any random-walk process, Doppler cooling can be viewed as dif-

fusion. The biasing in favor of steps towards the origin means the atom does not

diffuse arbitrarily far away, but it also means that the atom cannot sit precisely

on the origin. The net effect is a balancing between the cooling effect produced by

the optical molasses, and the diffusion effect produced by the random momentum

kicks. The result is a limiting temperature, known as the Doppler cooling limit. It

is given by

TDoppler =
~Γ
2kB

, (2.1)

where Γ is the natural linewidth of the optical transition. For 6Li, Γ/2π = 5.872MHz

(see Table A.4) and TDoppler = 140µK. It is the existence of this sizable, non-zero

limit which makes the mot suitable only for the first-stage of quantum degeneracy

studies

Spatial Confinement: The Quadrupole Field

Doppler cooling works by introducing a force that is linear in the atom velocity

FDoppler = −αv. (2.2)

The mot differs from optical molasses by adding another force—one that is linear

in the atom position

Fconfine = −βx. (2.3)

It does this by using an applied magnetic field gradient. The gradient itself exerts a

negligible force in comparison to the optical beams, however, the presence of a field

gradient causes a spatially dependent Zeeman shift that is also state dependent.
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Figure 2.2: Zeeman tuning of the levels. The applied magnetic field gradient splits
the magnetic sublevels of the excited state and tunes them as shown.

This spatially-dependent tuning affects the optical force balance in an analogous

manner to the velocity-dependent tuning supplied by the Doppler effect.

In analyzing this situation, we consider a one-dimensional system for simplicity.

Further, we consider an atom with a total ground state angular momentum of F = 0,

and a total excited state angular momentum of F ′ = 1. A fully three-dimensional

model which includes the actual level structure of 6Li is well beyond the scope of

this section, and adds no important insights. In Figure 2.2, we see a schematic of

how the levels tune as a result of the field gradient.

By applying a pair of red-detuned, counterpropagating laser beams of specific

polarizations, we can use the spatial tuning of the energy levels to cause a linear

restoring force. In Figure 2.3, we show a σ̂�-polarized beam from the right and a

σ̂+-polarized beam from the left. Since the ground state has F = 0, the σ̂� beam

can only drive transitions to the mF ′ = −1 sublevel of the excited state, while the

σ̂+ beam can only drive transitions to the mF ′ = 1 sublevel of the excited state.

An atom in the ground state sees a spatially-varying detuning with respect to the
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Figure 2.3: Physical basis of spatial confinement. a) One-dimensional spatial
confinement. The atom has an initial position to the right of the origin, and the
beams are detuned to the red of the unshifted atomic transition, ω0, and have the
polarizations shown. Because of the Zeeman tuning of the levels, the atom is tuned
into resonance with the σ̂� beam and out of resonance with the σ̂+ beam. The
atom interacts preferentially with the σ̂� beam and feels a net force to the left
(towards the origin). b) Here we see a plot of the force on the atom as a function
of its position. This plot is for the specific detuning value ∆ = −Γ/2, but the
characteristics are fairly general. The two dashed lines show the forces from the
two individual beams, while the solid curve shows the total force. The position
is given in units of Γ/2κ, where Γ is the natural linewidth of the transition and
κ = (µBg/~)(∂|B|/∂x), with g the gyromagnetic ratio. Note that for a range
of positions near the origin, the total force is linear. This represents a harmonic
restoring force.
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two beams. If the atom is to the right of the origin, it is closer into resonance with

the σ̂� beam, and the atom preferentially interacts with it. The net radiation force

pushes the atom back towards the origin. A similar argument holds if the atom is

to the left of the origin.

A three dimensional system can be arranged by providing a magnetic field gra-

dient in three orthogonal directions. A pair of anti-Helmholtz coils produces a

quadrupole magnetic field with the desired properties. It has a field zero at the cen-

ter of the coil pair, and has a linear gradient in the field magnitude |B| in all three

directions. If we center the anti-Helmholtz coil pair on the common intersection of

optical molasses beams, we can use these beams as the counterpropagating beam

pairs in the confinement scheme (the requirement of specific polarizations has no

effect on the Doppler cooling).

2.2.3 Final MOT Configuration

A mot, then, is a pair of anti-Helmholtz coils, centered on the common intersection

of three, red-detuned, mutually-orthogonal, pairs of counterpropagating, oppositely-

circularly-polarized laser beams. This configuration results in a spatial restoring

force and a viscous damping force. The net effect is to produce a ball-shaped

atomic gas at or below the Doppler limit (additional effects in three-dimensional

mots can produce temperatures below the Doppler limit for some atoms—alas, 6Li

is not one of these atoms). A schematic of a mot setup is shown in Figure 2.4.

2.2.4 Real World Complications

Unfortunately, the real world is not quite as simple as the system we have considered

here. Alkali atoms (the favorite choice for cooling and trapping experiments), by
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Figure 2.4: Configuration of a mot. The full geometry of a mot. The anti-
Helmholtz coils are centered on the common intersection of the three, mutually-
orthogonal beam pairs.
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virtue of their single, unpaired electron, have a ground state that is split into a

hyperfine doublet (see Section A.4). As a result, a mot designed as described above

would lose spatial confinement over time as the branching ratio for decays from the

excited state eventually moved the population into the hyperfine groundstate that

is dark—that is, unconnected to the excited state by the optical transition. The

problem can be avoided by making the mot beams bi-chromatic. The addition

of a second laser frequency (termed the repumper), detuned from the first by the

hyperfine splitting of the groundstate, couples the former dark state to the same

excited state as the mot frequency. A small amount of repumper power is sufficient,

in most cases, to keep the unwanted hyperfine groundstate empty.

6Li, however, is not one of those cases. The short lifetime of the excited state

means that its hyperfine splitting is unresolvable (see Section A.4). As a result,

the rate at which atoms decay to the dark state is greatly enhanced and therefore

we must apply a correspondingly greater amount of repumper power to keep the

mot operating. In fact, the powers of the two frequencies must be of same order

of magnitude. In such a system, the “repumper” is providing a non-negligible force

and the system is more accurately viewed as using two mot transitions rather than

the mot and repumper transitions of other alkali systems.

2.3 Dipole Force Trap

2.3.1 Characteristics

For the primary trap of our experiment, we rely on a dipole-force trap [33, 34]. A

dipole-force trap uses one or more laser beams to provide spatial confinement for

the atoms, but does not cool them. In fact, dipole-force traps optically heat the
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atoms they contain, although the heating rate can be reduced by using laser beams

that are detuned far from resonance. A dipole-force trap of this type is known as a

Far Off-Resonance Trap [35] (fort).

We use a special case of the fort, where the laser beams are so far from the

resonance frequency of the atoms that the interaction between the atoms and the

electric field of the laser can be treated as quasi-electrostatic. The result is some-

times referred to as a QUasi-ElectroStatic Trap [36] (quest). We use this termi-

nology only in this chapter—where it is important to make the distinction between

dipole-force traps, forts, and quests. In all other parts of this thesis, we refer to

our apparatus as an optical trap, a CO2 laser trap, or a fort.

To a good approximation, the trapping potential of a quest is independent of

the internal state of the atom. Further, the detuning from resonance is so great that

the interaction between the atoms and the optical field is purely coherent scattering.

In this regime, the optical scattering rate is just proportional to the cube of the laser

frequency. With the infrared laser frequencies used in quests, the scattering rate

is so low, and the energy of a scattered photon is so small, that the optical heating

is completely negligible. As a result, a quest is a purely conservative potential. It

is the ideal, state-independent bowl for experiments with ultracold atoms.

2.3.2 Physics

The Dipole Force

The trapping potential arises from the interaction between the electric field of a

optical field and the dipole moment that the electric field induces in an electrically-

neutral object like an atom. For this reason, the interaction is sometimes referred

to as the ac Stark effect, in analogy to the dc Stark effect (see Section A.5.2). The
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interaction potential for the induced dipole is

U = −1

2
p · E. (2.4)

Here, p is the dipole moment induced in an atom of polarizability α (p = αE).

The bar indicates an average over a number of optical cycles. Finally, the factor of

one half represents the fact that it is an induced dipole moment rather than a fixed

dipole moment. Inserting the expression for p gives us

U = −1

2
αE2. (2.5)

For an optical field, E is sinusoidal and the average of E2 over a number of cycles

is of course E2/2, where E is the slowly-varying field amplitude. Thus we can write

the potential as

U = −1

4
αE2 = −2π

c
αI (cgs-Gaussian) = − 1

2ε0c
αI (mks), (2.6)

where I is the optical intensity. Note that the sign of α will determine whether

an atom is attracted to or repelled from maxima in the optical field. We treat the

atoms as a two-level atomic system interacting with a classical electric field. The

interaction is given by µ · E, with µ = er the electric dipole moment operator

(see Section A.6.1). First-order time-dependent perturbation theory allows us to

calculate 〈µ〉, the expectation value of the dipole moment operator. Rewriting

p = αE as 〈µ〉 = αE we find

α =
µ2

~

[
1

ω0 − ω
+

1

ω0 + ω

]
. (2.7)
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a) ω < ω0
b) ω > ω0

Figure 2.5: Heuristic model of polarizability. The detuning-dependence of the
sign of the atomic polarizability can be heuristically determined by considering the
atom as a driven oscillator. Considering a familiar driven oscillator system we see
that: a) For driving below the natural frequency of the oscillator, the driven system
follows the forcing function, and the polarizability is positive. b) For driving above
the natural frequency of the oscillator, the driven system is 180◦ out of phase with
the driving, and the polarizability is negative.

In the above, µ is the dipole moment matrix element for a transition between the

two levels.

From this result, we can see that the sign of α is determined by the sign of the

first term in the brackets. The polarizability is positive when the driving frequency

is below the resonance frequency (ω < ω0) and negative when the driving frequency

is above the resonance frequency (ω > ω0). Another way of expressing this is that

the dipole oscillates in phase with the driving field when the excitation is below

resonance and out of phase with the driving field when the excitation is above

resonance. We can intuitively understand this behavior by recognizing that the

atom is acting as a driven harmonic oscillator. Thinking of a mass-spring system

driven by a supporting hand (see Figure 2.5), we immediately realize that the mass

moves with the hand for slow driving, while the mass moves in opposition to the

hand for fast driving.

Our two-level model is, of course, an oversimplification. In general, the ground
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and excited states have fine and hyperfine structure (see Section A.4). The polar-

izability of the ground state for this more complicated system is a sum of terms of

the form (2.7),

α =
1

~
∑

|g〉,|e〉
µ2

eg

[
1

ωeg − ω
+

1

ωeg + ω

]
, (2.8)

where µeg is the dipole moment transition matrix element between a specific hy-

perfine ground state |g〉 and a specific hyperfine excited state |e〉 and ωeg is the

associated transition frequency.

In a quest, however, the extreme detuning simplifies matters greatly. The

frequency-dependent terms in (2.8) become equal for all transitions. Effectively, the

fine and hyperfine structure cannot be resolved as a result of the extreme detuning.

As a consequence, the two-level approximation is once again valid. The net effect is

a completely hyperfine state-independent polarizability, and hence hyperfine state-

independent trapping potential.

In this limit, the trap potential is given by

U = −1

4
α0E2 = −2π

c
α0I (cgs-Gaussian) = − 1

2ε0c
α0I (mks), (2.9)

where α0 is the static polarizability of the atom as used in the dc Stark Effect

(see Section A.5.2).

For the case of 6Li, the 2P excited state dominates, and the sum can be simplified

even further. Ignoring all other excited states leads to the expression

α =
2µ2

0

~ω0

, (2.10)

where µ0 is the dipole moment of the 2S − 2P cycling transition, and ω0 is the



CHAPTER 2. BASIC COOLING AND TRAPPING TECHNIQUES 26

corresponding frequency (see Section A.6.3). For 6Li, this expression agrees with

the more complicated result (2.8) to within a few percent.

Optical Scattering Rate

As briefly mentioned earlier, dipole-force traps heat the atoms they contain. This

is a result of optical scatter, and the heating process is identical to the momentum-

space diffusion discussed in the context of optical molasses and the mot (Sec-

tion 2.2.2).

We can again use first-order time-dependent perturbation theory to calculate

the photon scattering rate. Fermi’s Golden Rule gives us

Γscat =
3πc2

2~ω3
0

(
ω

ω0

)3

A2

[
1

ω0 − ω
+

1

ω0 + ω

]2

I, (2.11)

with A the Einstein A-Coefficient

A =
4ω3

0µ
2

3~c3
(cgs-Gaussian) =

ω3
0µ

2

3πε0~c3
(mks). (2.12)

Again, for a real atom, we need to consider a sum of contributions of the

form (2.11)

Γscat =
∑

|g〉,|e〉

3πc2

2~ω3
0

(
ω

ωeg

)3

A2
eg

[
1

ωeg − ω
+

1

ωeg + ω

]2

I. (2.13)

This equation also simplifies dramatically in the limit of extreme detuning. In a

quest,

Γscat =
2A

~ω0

(
ω

ω0

)3

U0, (2.14)

where U0 is the well-depth (the reader should note that an identical result can be
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achieved in terms of the Larmor power). The factor of (ω/ω0)
3 is what makes the

quest so useful. Extremely low photon scattering rates are possible. For our system

(6Li in a CO2-laser based quest), the scattering rate is 2 photons per atom per

hour. The recoil energy of a CO2-laser photon at 10.6µm is 14 nK in temperature

units. At our scattering rate, this produces a heating rate on the order of 10 pK/s.

With the energy scale of the system on the order of 1 µK, this is a completely

negligible heating rate. Thus, the trapping potential is perfectly conservative.

2.3.3 Trap Geometry

Dipole-force traps fall naturally into two classes: blue-detuned and red-detuned [37].

A blue-detuned trap repels atoms from the region of highest intensity, while a red-

detuned trap attracts them. Spatial confinement in a blue-detuned trap requires

surrounding the atoms with regions of high intensity. As a result, the trap geome-

tries tend to be rather complicated—involving multiple beams or hollow beams.

However, blue detuned traps have the natural advantage of very low scattering

rates, as the atoms spend little time in regions of high optical intensity. This

practical advantage of a blue-detuned trap has lessened, however, as a result of

the development of red-detuned quests, which can also avoid optical scatter as

described above.

Red-detuned traps need only to have a local intensity maximum to spatially

confine atoms. The simplest geometry, and the one we use in our experiments, is a

simple, focussed beam. The transverse Gaussian profile provides a radial maximum

on the axis, while the focus provides a longitudinal maximum. A schematic of

the potential well generated by a single, focused-beam red-detuned trap is shown

in Figure 2.6.
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Figure 2.6: Trapping potential of a single-beam fort. The top image shows a
focussed Gaussian beam. The middle image is the trapping potential in a horizontal
plane through the axis of the beam. The bottom image is the corresponding contour
plot of the trapping potential. Note a common feature of single-beam forts:the
confinement in the radial direction is significantly stronger than the confinement in
the axial direction. This results in elongated, “cigar-shaped” clouds.
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For a focused Gaussian beam, the intensity is [38]

I(r, z) =
I0

1 + (z/z0)2
exp

[−2r2

a2

]
. (2.15)

Here I0 is the peak intensity in the beam, z0 is the Rayleigh range (z0 = πa2/λ),

and a is the 1/e2 intensity radius of the beam at the focus. Inserting this intensity

profile in the expression for the potential well of a quest (2.9) yields

U(r, z) = − U0

1 + (z/z0)2
exp

[−2r2

a2

]
, (2.16)

where

U0 =
2π

c
α0I0 (cgs-Gaussian) =

1

2ε0c
α0I0 (mks). (2.17)

To determine the oscillation frequencies of the trap, we Taylor expand the trap

potential about the center

U(r, z) ' −U0 +
U0

z2
0

z2 + 2
U0

a2
r2 + . . . . (2.18)

The second and third terms must be equivalent to the standard harmonic oscillator

potential energy terms

U0

z2
0

z2 ≡ 1

2
mω2

zz
2, (2.19)

2
U0

a2
r2 ≡ 1

2
mω2

rr
2. (2.20)
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From this we can determine

ωz =

√
2U0

mz2
0

, (2.21)

ωr =

√
4U0

ma2
. (2.22)

2.3.4 Real World Complications

An actual quest does not differ dramatically from the simplified view presented

in this section. The experimenter must, of course, attempt to minimize distortions

to the beam as a result of abberations, vignetting (the clipping of the beam from

apertures that are too small), etc. Any distortions not only affect the minimum

focus size, and hence the deepest well that can be achieved with a laser of a given

power, but also change the intensity profile at and near the focus, resulting in

deviations to the potential shape discussed above.

For a long time, groups were unable to construct forts or quests with long

storage times. Trap lifetimes were limited to at most a few seconds—far shorter

than expected based on optical scattering rates or loss rates due to background

gas collisions. Eventually, we postulated that the atoms were being heated by

fluctuations in the trapping potential caused by fluctuations in the trapping laser.

We developed a simple formalism which relates the fluctuation spectrum to the

resulting heating rate (see Chapter 5). As a result, we built our quest using an

ultrastable CO2 laser. The result was a storage time in excess of 300 s [21, 39]—a

full two orders of magnitude longer than previous forts and quests. It is now

accepted that an effective fort or quest must utilize an ultrastable trapping laser.

Loading the trap brings additional challenges. The two lasers most often used
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for quests are the CO2 and the Nd:YAG. Both lasers emit radiation that is out

of the visible range. The Nd:YAG produces near-infrared light at λ=1064 nm and

the CO2 produces infrared light at λ=10.6µm. Using these lasers as the source of

a quest necessarily involves very high laser powers. Working with high-powered,

invisible beams requires extreme care from the experimenter.

Further, the initial alignment of the system is quite difficult. The challenge is to

place the focus of an invisible beam, roughly 50 µm in radius and extending for about

0.5mm, into the center of a mot of radius 3mm. To make this even more difficult,

both the focus and the mot occur inside a vacuum system, away from direct access.

The first time that our group attempted this, it took almost six months before we

succeeded. We ultimately relied on a technique utilizing visible beams to place the

optics as close to the correct position as possible and a spectroscopic technique to

detect the minute effect which the misaligned CO2 beam had on the atoms (see [21]

for a detailed discussion). Once we had a signal, of course, we could peak it up.

Further, once the system was aligned the first time, we gained valuable knowledge

on the precise location of the mot within the vacuum system—information that

makes subsequent alignment simpler.

2.4 Evaporative Cooling

2.4.1 Characteristics

Most, if not all, experiments involving degenerate atomic gases use evaporative cool-

ing as the cooling technique. Evaporative cooling gets its name from the conceptual

similarity it shares with the cooling process experienced by a bowl of hot soup or a

cup of hot coffee. Collisions in the trap preferentially eject high-energy atoms from
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Figure 2.7: Evaporative cooling process. a) Collisions in the gas have produced
a “thermal tail” of atoms which extends above the well depth. These atoms are
unbound. b) The unbound atoms leave the system, each carrying much more than
the mean atomic energy Eavg. c) Collisions between the atoms rethermalize the
cloud, reducing the temperature, and producing another thermal tail. At this point,
the system begins over at a). Note that, while the effect is portrayed as a discrete
process, in reality the escape and rethermalization happen continuously. When the
cloud has cooled to a point where a negligible faction of the thermal tail extends
above the well, the evaporation stagnates. Some additional technique (e.g. rf-knife,
continuous lowering) is then required for evaporation to continue.

the trap (in fact, the ejected atom necessarily will have an energy greater than the

mean energy of the trapped cloud). Further collisions in the trap rethermalize the

remaining atoms. The new mean energy and energy spread are lower than before

the ejection of the “hot” atoms—hence the cloud is now at a lower temperature. A

schematic of this process is shown in Figure 2.7.

The success of evaporative cooling hinges on elastic collisions between atoms

dominating the inelastic collisions. At the temperatures characteristic of cooling and

trapping experiments, the kinetic energies of the atoms are insignificant compared
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to the energy differences between atomic states. Inelastic collisions in ultracold

systems are then almost exclusively exothermic and release tremendous amounts of

energy into the system (in 6Li, the release would be on the order of 10 mK, some 3-4

orders of magnitude larger than the temperature scales we work with). This release

either ejects the atoms directly from the trap, heats the cloud through secondary

collisions, or a combination of the two effects. Any of these three possibilities are

inimicable to work at ultracold temperatures. For evaporative cooling to succeed,

the elastic collision rates in the system must dominate the inelastic collision rates.

By working with the two lowest hyperfine ground states of 6Li, we dramatically

suppress all inelastic rates in the system, making it an excellent candidate for evap-

orative cooling.

Eventually, as the cloud gets cooler and cooler, the likelihood of a collision

producing an atom capable of escaping the well becomes smaller and smaller (in

fact, evaporation rate scales as e−U/T , where U is the well depth in temperature

units, and T is the cloud temperature). When the evaporation rate is highly-

suppressed by this exponential, the system is said to have stagnated. In previous

work on becs, researchers enabled continued evaporation in their magnetic traps by

employing an rf-knife technique. This approach utilizes the fact that the internal

state energies of the atoms tune spatially in the magnetic trap as a result of the

Zeeman effect. By applying an rf-field that matched the splitting between trapped

and untrapped states for atoms in a specific field magnitude on the periphery of

the atomic cloud, they could eject only the hottest atoms from the trap. By slowly

tuning the rf-field to match splittings at positions closer and closer to the center

of the trap, the experimenters were able to effectively have a time-dependent well

depth. With a suitable lowering curve, the problem of stagnation could be avoided.
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In our optical trap, the atoms escape from the well without the help of an rf-

transition. How would we avoid stagnation? Simple. By continuously lowering the

intensity of the CO2 laser beam, we can easily lower the depth of the well. The sit-

uation differs slightly from the time-dependent well depth in the rf-knife scenario,

however. In our scheme, lowering the intensity also “loosens” the trap—it lowers

the oscillation frequencies. The elastic collision scattering rates scale with the oscil-

lation frequencies of the trap. Hence, lowering the well could have a dramatic effect

on the evaporation rate. This effect does not happen with the rf-knife technique,

as the underlying potential is not being modified—a manufactured “leak” in the

well is being lowered. Any technique that avoids stagnation is a forced evapora-

tion process. The difference between these two methods of forced evaporation is

illustrated in Figure 2.8.

Because of this difference, we could not simply lower our well according to the

schemes developed by the bec researchers. We had to develop our own understand-

ing of evaporative cooling in a continuously-lowered optical potential.

2.4.2 Physics

As part of a prior thesis by this group [21], Ken O’Hara developed a full s-wave

Boltzmann-equation model of evaporative cooling. This model fully treated evapo-

ration of a two-state mixture of fermionic atoms in a time-dependent Gaussian well.

The results were quite encouraging. The calculations showed that evaporation to

degeneracy in such a system should be possible. The calculations and model were

quite complex, however, and took an extremely long time to complete. We have

since developed simple scaling-law expressions for evaporation in the system [40].

These scaling laws, based on simple physical principles and heuristic arguments,
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a) b)

Figure 2.8: Methods of forced evaporation. a) The continuous-lowering method
used in this thesis. Stagnation is avoided by lowering the well-depth in a manner
that remains below a portion of the thermal tail. Note the loosening of the trap as
it is lowered. This arises because the oscillation frequencies of the trap are functions
of the well depth (ν ∝ √

U). b) The rf-knife technique used in magnetic trapping.
An applied rf-field combines with the spatial Zeeman tuning of the trapping field
to produce a “leak” on the periphery of the cloud. The rf-frequency is adjusted
over time to move the spatial location of the leak and keep it on the periphery of
the cloud.
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match the Boltzmann-equation model to an uncanny degree of accuracy. Below we

reproduce the derivation of the scaling laws. They provide a quite accurate model

of evaporative cooling in a continuously-lowered optical potential.

Evaporative Cooling Scaling Laws

We begin by writing an expression for the change of energy of the trapped gas

as the well depth is changed. We must include not only the energy taken out by

evaporation, but (what differs from rf-knife techniques) the work done by the gas

on the potential as the gas expands in the loosening trap. We write the energy loss

due to evaporation as

∆Etotal = ∆N ∆Eatom. (2.23)

In the above, ∆Eatom is the average energy carried away by an evaporating atom.

From studying the s-wave Boltzmann equation, we find that for any trap potential

that is harmonic at the bottom,

∆Eatom = U +
(η − 5)

(η − 4)
kBT = U + αkBT, (2.24)

for U À kBT , where U is the trap depth, T is the cloud temperature, and η =

U/(kBT ) À 1.

To get an expression for the work done by the gas on the potential, we make the

assumption that the evaporation process is carried out near stagnation, where the

efficiency of evaporation is very high. This implies that η À 1, and the atoms see a

nearly harmonic potential. In a harmonic potential, the average potential energy of

a cloud with total energy E is E/2. We can then write the work done in responding
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to a change in the potential of ∆U as

W =
∆U

U

E

2
. (2.25)

Combining (2.24) and (2.25), and writing the result in differential form, we find

the differential equation for the energy of the gas

Ė = Ṅ(U + αkBT ) +
U̇

U

E

2
. (2.26)

We then make the assumption that we are dealing with a classical gas. In

this limit, the total energy of of the cloud is E = 3NkBT . This implies Ė =

3ṄkBT + 3NkBṪ . Inserting these relations into (2.26) yields

3ṄkBT + 3NkBṪ = Ṅ(U + αkBT ) +
U̇

U

3NkBT

2
. (2.27)

To eliminate one of the three system variables (N, U, T ), we make the further as-

sumption that we will lower the well in a manner that maintains η as a constant (an

approach which ensures thermal equilibrium). From this we find the relationships

T =
1

kBη
U, (2.28)

Ṫ =
1

kBη
U̇ . (2.29)

Inserting these in (2.27), and collecting terms gives the differential equation

Ṅ

N
=

(
3

2 (η′ − 3)

)
U̇

U
, (2.30)

where we have defined η′ = η + α for simplicity.
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Of course, U(t) is an arbitrary function at this point (subject only to the con-

straint that it maintains η as a constant). Thus we cannot derive an explicit solution

to (2.30). However, we can find an implicit solution. The form of (2.30) allows us

to immediately write

ln

(
N

N0

)
=

(
3

2 (η′ − 3)

)
ln

(
U

U0

)
, (2.31)

where N0 and U0 are the trap population and well depth at some convenient time

origin. This expression can, of course be rewritten as our desired scaling law

N

N0

=

(
U

U0

) 3
2 (η′−3)

. (2.32)

While it is useful to have a scaling law that relates the trap population to the

well depth, it does not address the most important question we would like answered,

namely: How far do we have to lower the well to approach the degenerate regime?

For this, we need to develop a relationship between the phase-space density of the

atoms and the well depth. The phase-space density of a classical gas is

ρ = N

(
hν

kBT

)3

. (2.33)

Here, ν is the geometric mean of the trap oscillation frequencies. This parameter

varies as the well depth changes

ν ∝
√

U. (2.34)

Inserting this result in (2.32) and making use of (2.28) and (2.29) leads to the
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new scaling laws

ρ

ρ0

=

(
U0

U

) 3 (η′−4)

2 (η′−3)

, (2.35)

=

(
N0

N

)η′−4

. (2.36)

This is the primary result we seek. It allows us to estimate how far we must lower

the fort in order to achieve a desired increase in the phase-space density. There is

one more scaling law worth deriving. If we assume that the elastic collision cross-

section is energy-independent (i.e. the collision cross-sections are not unitarity-

limited (see Section A.7.2)), the collision rate, γ is proportional to

γ ∝ Nν3

kBT
. (2.37)

Using this relationship, we can derive the final scaling law

γ

γ0

=

(
U

U0

) η′
2 (η′−3)

. (2.38)

These scaling laws reveal one very striking feature. The form of (2.36) is identical

to that for an rf-knife technique [41] where the knife is lowered to maintain η as

a constant! Evaporation in a continuously lowered potential is just as efficient in

terms of trap population as an rf-knife. This answers one of the major objections

to this form of evaporation. Many researchers had intuitively believed that forced

evaporation based on a continuous lowering of the well would be an inherently

“wasteful” approach. In hindsight, we can now clearly see that this is not true,

provided that the well is lowered slowly so the atoms only leave via evaporation. In

such a situation, the only change to the phase-space density comes from evaporation,
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as adiabatic lowering of a potential well cannot affect the phase-space density of

the trapped cloud. Thus, in both approaches, we see that the only loss of atoms

and the only change in phase space density arise from the evaporation process. It

is therefore not surprising that the two techniques have the same efficiency. The

reader should note, however, that this assumes a given value of η. In reality, optical

traps naturally achieve values of η that are significantly higher than in magnetic

traps. As a result, while they share the same expression for efficiency, the higher η

in optical traps means that, practically, they are much more efficient than magnetic

traps.

One place where the two techniques differ significantly is in the elastic collision

rate. In an rf-knife approach, as mentioned previously, the oscillation frequencies

of the trap do not change. Viewing (2.37) in light of the constant value of ν and

a slow scaling of N with U in an rf-knife technique, we see that it is possible for

the collision rate to actually increase as the evaporation process advances and the

temperature of the cloud decreases. This situation is known as runaway evaporation

and plays a significant role in many bec experiments. Because of the loosening of

the trap in the continuous lowering approach, runaway evaporation cannot occur.

Many researchers believed that this would make the approach unfit for reaching

degeneracy. This is incorrect. Runaway evaporation is never required to achieve de-

generacy. Without runaway evaporation, the evaporation process is merely slowed.

Provided that the system has a low loss rate due to background gas collisions and

inelastic processes, as well as low optical (see Section 2.3.2) and noise heating rates

(see Chapter 5), there is no limit to how long the experimenter can wait to reach

degeneracy (subject only to the patience of the experimenter). All of these con-

ditions apply in our experiment. Further, optical traps are typically tighter than
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magnetic traps—their initial values of ν are larger, and hence, so are the collision

rates. Finally, the exceedingly large scattering lengths available in the 6Li sys-

tem [42] produce correspondingly large scattering rates. Thus, it is not a foregone

conclusion that forced evaporative cooling via a continuously-lowered potential well

cannot produce degeneracy.

We now use the scaling laws to determine if degeneracy is possible in our system.

It is quite easy for our system to produce η = 10 via evaporation in a well of constant

depth. If we choose this value for our lowering process, we find η′ = 10.8. Inserting

this in the general scaling laws above we get the scaling laws for this particular

lowering approach

N

N0

=

(
U

U0

)0.19

, (2.39)

ρ

ρ0

=

(
U

U0

)−1.3

, (2.40)

γ

γ0

=

(
U

U0

)0.69

. (2.41)

After free evaporation at a constant well depth, our trap produces values of

η '10-20, with a phase-space density in the range ρ '0.003-0.008. Using the lower

value of phase space density in (2.40), we find that we should have to lower the well

by a factor of no more than 85 to achieve degeneracy at ρ = 1. Taking this as our

target, (2.39) and (2.41) tell us that we should expect to have at least 43% of the

atoms remaining and that the collision rate should have slowed by a factor of no

more than 22. These results appear promising. But how long would it take to lower

the trap by this factor? This is the topic of the next section.
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Derivation of the Lowering Curve

In our derivation of the scaling laws, we made the assumption that we lower the

well in a manner that maintains η as a constant. With that assumption, we derived

the differential equation (2.30). We were able to solve this equation implicitly to

determine our first scaling law. If we had the evaporation rate equation for Ṅ/N ,

we could substitute into the differential equation to find an explicit solution for U .

Luckily, the s-wave Boltzmann equation allows us to get exactly such an expres-

sion for Ṅ/N . To lowest order, the Boltzmann equation is [21, 40]

Ṅ = −2(η − 4) e−ηγN. (2.42)

We rewrite this equation as

Ṅ

N
= −

(
3

η′

)(
1

τ

)
γ

γ0

, (2.43)

where we have defined

1

τ
=

2

3
η′(η − 4) exp[−η]γ0 (2.44)

for a reason that will become clear soon. We then insert the scaling law in (2.38)

to write

Ṅ

N
= −

(
3

η′

)(
1

τ

)(
U

U0

) η′
2 (η′−3)

. (2.45)

Inserting the differential equation (2.30) yields

U̇

U
= −2 (η′ − 3)

η′

(
1

τ

)(
U

U0

) η′
2 (η′−3)

. (2.46)
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Making the simplifying definition b = η′/(2 (η′ − 3)), this becomes

U̇

U
= − 1

bτ

(
U

U0

)b

. (2.47)

This equation yields the desired solution

U(t) = U0

(
1

1 + t/τ

) 2 (η′−3)

η′
. (2.48)

We can specialize to the case we considered previously. There we assumed η = 10

and ρ0 = 0.003. This information alone is not enough to specify the lowering curve.

We must also know γ0. In the classical regime, we can write the collision rate as [40]

γ0 =
8π2N0Mν3a2

kBT0

, (2.49)

where M is the mass of the atoms and a is the scattering length.

Taking reasonable values for our system (ν = 1300, a = −300a0, N = 4×105,

T0 =30µK), we find that the proper lowering curve is

U(t) = U0

(
1

1 + t/1.2

)1.446

. (2.50)

From this lowering curve, we can see that we need to lower for approximately 25 s

to reach the U/U0 = 85 level where we expect to reach degeneracy. On a timescale

this short, the system will not decay significantly as a result of background-gas colli-

sions, nor will optical or noise heating have significantly affected the temperature of

the cloud. Finally, it is within the “patience limit” of the experimenter. Therefore,

based on the scaling law analysis, forced evaporation via continuous lowering of the

trapping potential is a viable technique for producing degenerate samples in our



CHAPTER 2. BASIC COOLING AND TRAPPING TECHNIQUES 44

0.001


0.01


0.1


1


Ph
as

e 
Sp

ac
e 

D
en

si
ty




300
250
200
150
100
50
0


Trap Depth (
µ
K)


Direction of Time

Figure 2.9: Comparison of scaling law and Boltzmann equation: phase-space den-
sity. For the system parameters in the text, the solid curve shows the phase-space
density prediction of the scaling law (2.35), while the circles show the output of the
s-wave Boltzmann equation. (From [40]).

system.

Comparison With the s-Wave Boltzmann Equation

With this lowering curve, how well do the scaling laws compare to the results of the

s-wave Boltzmann equation? In Figure 2.9 and Figure 2.10, we see figures from [40]

which compare the two approaches for the specific system parameters and lowering

curve defined above. In each graph, the solid curves are the scaling law prediction

while the symbols show the result of the Boltzmann equation. The first graph shows

how the phase-space density of the cloud changes as the well is lowered, while the

second shows the change in the trap population and in the collision rate as the well

is lowered.

Clearly the two approaches agree extremely well. The scaling laws match the
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Figure 2.10: Comparison of scaling law and Boltzmann equation: number and
collision rate. For the system parameters in the text, the dashed curve shows
the trap-number prediction of the scaling law (2.32), while the triangles show the
output of the s-wave Boltzmann equation. The solid curve shows the collision rate
prediction of the scaling law (2.38), while the squares show the output of the s-wave
Boltzmann equation. (From [40]).
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full Boltzmann equation all the way to ρ = 1 despite all of the classical assumptions

made in their derivations! Further, the results of the Boltzmann equation confirm

that a lowering curve of the form given in (2.48) does indeed approximately maintain

η as a constant (during the Boltzmann simulation η varied between 9.6 and 10.

The computational difficulty of the two methods easily differs by several orders of

magnitude—making the scaling laws the clear choice for “everyday” calculations in

the classical regime and up to the onset of degeneracy.

2.4.3 Real World Complications

The greatest experimental challenge of implementing this technique is to perform

the lowering curve in a manner that does not introduce additional trap fluctuations

and associated noise (see Chapter 5). The simplest method for lowering the well-

depth is to use an acousto-optic (ao) modulator. There are a number of methods

for modulating the power of an ao, but they all rely on a voltage signal with the

shape of the desired modulation. The challenge, then, is to create a quiet voltage

signal of the form (2.48). The requirements are quite stringent. The methodology

we used is discussed in Chapter 6.

The reality of working with a physical beam and physical devices as opposed to

mathematical abstractions adds another complication. We are, in reality, not free

to lower the well to an arbitrary level. Nonlinearities in drive electronics, thermal

responses in the ao, and other effects all conspire to make it difficult to lower

the well in a controlled manner by more than a factor of approximately 250. Thus,

there is a limit on the phase-space increase which can be achieved by this technique.

Luckily, our initial phase-space density is such that we need to lower the well by

less than this factor to achieve degeneracy.



Chapter 3

Trapped Atomic Clouds:
Equilibrium Distributions and
Ballistic Expansion

How ’tis that, while the seeds of things are all
Moving forever, the sum yet seems to stand
Supremely still, except in cases where
A thing shows motion of its frame as whole.

—Lucretius (c. 50 bce)

3.1 Overview

This chapter addresses two important questions about the atomic clouds produced

in atomic cooling and trapping experiments: “How is their shape related to the

shape of the trapping potential?” and “When released and allowed to expand

ballistically, how does their shape vary with time?” In the experiment presented

in this thesis, the data were collected by imaging the atomic cloud after ballistic

expansion. In order to extract useful information from the images, it is imperative

to have an answer to the two questions listed above.

47
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3.2 3-D Spatial and Momentum Distributions

In general, the probability of a particle occupying a particular choice of coordi-

nates is proportional to the product of the occupation number and the density of

states [43]

P (q) ∝ f(q) g(q). (3.1)

Here, q represents the coordinates of interest, f is the occupation number for a

state at those coordinates, and g is the density of states at q.

For a gas of atoms at equilibrium, the generalized density of the cloud is pro-

portional to this probability

n(q) ∝ P (q) ∝ f(q) g(q). (3.2)

As is typical, the proportionality constant is chosen such that the density normalizes

to the total number of atoms

n(q) =
Nf(q) g(q)∫
dq f(q) g(q)

. (3.3)

If we work in Cartesian coordinates in x-p phase-space, the density of states is a

constant and cancels in (3.3), leaving the expression

n(x,p) =
Nf(x,p)∫

dx dp f(x,p)
. (3.4)

Generating expressions for the spatial and momentum distributions is then as
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simple as integrating out the appropriate dimensions:

n(x) =
N∫

dx dp f(x,p)

∫
dp f(x,p) (3.5)

n(p) =
N∫

dx dp f(x,p)

∫
dx f(x,p). (3.6)

Proceeding further requires us to specify a form for the occupation number f .

3.2.1 The Classical Gas

In a classical gas at temperature T , the occupation number f is given by a term

proportional to the standard Boltzmann factor [10]

f(x,p) = λ e−H(x,p)/kBT Θ[−H(x,p)]. (3.7)

Here, λ = exp[µ/(kBT )] incorporates the chemical potential µ [10], H(x,p) is the

Hamiltonian for the system, and Θ[−H(x,p)] is a theta function that accounts for

the effects of a finite well-depth U0. For the remainder of this chapter, we will

assume U0 À T so that we can neglect the theta function. The high-temperature

case where the effects of this term cannot be neglected is explored in Section 4.4.2.

Expanding (3.5) and (3.6), gives

n(x) =
N∫

dx dp e−H(x,p)/kBT

∫
dp e−H(x,p)/kBT (3.8)

n(p) =
N∫

dx dp e−H(x,p)/kBT

∫
dx e−H(x,p)/kBT (3.9)
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Writing the Hamiltonian as

H(x,p) =
p · p
2m

+ V (x), (3.10)

with m the atomic mass and V (x) the trapping potential, we find another impor-

tant simplification. Since the Hamiltonian appears in a simple exponential, we can

separate exp(−H/kBT ) into the product of two exponentials, one incorporating the

kinetic energy and one incorporating the potential energy. Making this substitution,

we find the general expressions for a classical gas:

n(x) =
Ne−V (x)/kBT

∫
dx e−V (x)/kBT

(3.11)

n(p) =
Ne−p·p/(2mkBT )

∫
dp e−p·p/(2mkBT )

=
N

(2mkBT )3/2 π3/2
e
− p2

x+p2
y+p2

z
2mkBT . (3.12)

The momentum distribution is independent of the shape of the trapping po-

tential (and is also independent of its depth in the low-temperature case we are

considering), and simply reproduces the standard Maxwell-Boltzmann result [10].

The spatial distribution, however, is dependent on the trapping potential. Below

we investigate two important trapping potentials.

3-Dimensional Gaussian Potential

We typically approximate the trapping potential of the fort as a 3-Dimensional

Gaussian. We then take the trapping potential as

V (x) = −U0 exp

[
−

(
x2

a2
x

+
y2

a2
y

+
z2

a2
z

)]
, (3.13)

where U0 is the trap depth, and ax, ay, and az are the 1/e-widths of the trapping
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potential. Inserting this expression in (3.11), we find

n(x) =
N exp

[
U0

kBT
exp

[
−

(
x2

a2
x

+ y2

a2
y

+ z2

a2
z

)]]

∫
dx exp

[
U0

kBT
exp

[
−

(
x2

a2
x

+ y2

a2
y

+ z2

a2
z

)]] . (3.14)

Further analytical simplification is not possible, hence any further work with

this expression must utilize numerical techniques. Indeed, investigating the cloud

shapes in this trapping potential was one of the initial motivations for the creation

of the Monte-Carlo code which is the subject of Chapter 4.

Harmonic Potential

For low enough temperatures, almost any trapping potential appears harmonic. If

we Taylor-expand the 3-D Gaussian potential, we find the harmonic approximation

V (x) = −U0

[
1− x2

a2
x

− y2

a2
y

− z2

a2
z

]
. (3.15)

Inserting this result in (3.11), the overall constant in the potential cancels, and we

are left with the expression

n(x) =
Ne

−U0
kBT

�
x2

a2
x

+ y2

a2
y

+ z2

a2
z

�
∫

dx e
−U0
kBT

�
x2

a2
x

+ y2

a2
y

+ z2

a2
z

� =
N

bxbybz π3/2
e
−
�

x2

b2x
+ y2

b2y
+ z2

b2z

�
, (3.16)

where we have defined bx = ax

√
kBT/U0, and similarly for by and bz.

We therefore conclude that a trapped classical gas in a harmonic potential forms

a cloud that is a 3-D Gaussian. Further, the 1/e-widths of the cloud are dependent

on the temperature of the cloud. This observation led us to initially consider the

size of a trapped cloud as a viable thermometer for a classical gas. This notion was
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later rejected for reasons detailed in Section 4.5.3.

3.2.2 The Fermi-Dirac Gas

The treatment of a Fermi-Dirac gas necessarily complicates our calculations. For the

temperatures accessed in this experiment, we can make the semiclassical Thomas-

Fermi approximation [44]. In this case, we can still ignore the discrete nature

of the oscillator states and may continue to use the continuum density of states

formalism used above. Of course, for the Fermi-Dirac gas, we must use the Fermi-

Dirac distribution for the occupation number [10] (again we assume U0 À T so that

we need not include a theta function incorporating the effects of a finite well-depth)

f(x,p) =
1

λ−1eH(x,p)/kBT + 1
, (3.17)

where λ = eµ/kBT with µ the chemical potential.

Inserting this into (3.5) and (3.6) yields integrals of the form

I1 =

∫
dp

λ−1 exp
[

H(x,p)
kBT

]
+ 1

(3.18)

I2 =

∫
dx

λ−1 exp
[

H(x,p)
kBT

]
+ 1

(3.19)

To calculate I1, we note that the momentum contribution to the Hamiltonian is

isotropic and convert to spherical coordinates to find

I1 =

∫ ∞

0

dp 4πp2

λ−1 exp
[

H(x,p2)
kBT

]
+ 1

. (3.20)

Equations of this form are expressible in terms of the polylogarithm function [45].
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The polylogarithm function has its primary definition in terms of a series

Liν [z] =
∞∑

l=1

zl

lν
, |z| < 1. (3.21)

However, for our immediate purposes, we require the integral representation

Liν [z] =
z

Γ(ν)

∫ ∞

0

dt tν−1

et − z
, Re(ν) > 0. (3.22)

From this, we find that I1 can be expressed as

I1 = −(2πmkBT )
3/2 Li3/2

[
−λ e

−V (x)
kBT

]
. (3.23)

In the above, we have taken H(x, p2) = p2/2m + V (x). Further progress, as well as

any progress on I2 requires us to choose a form of the confining potential. Given

the temperature ranges for which use of Fermi-Dirac statistics is necessary, it is

reasonable to treat the potential in the harmonic limit.

Harmonic Potential

Now that we have specialized to the harmonic potential, we can write the final

form of I1. Inserting our expression for the harmonic potential (3.15) into our prior

result (3.23), yields

I1 = −(2πmkBT )
3/2 Li3/2

[
−λ exp

[
U0

kBT

(
1− x2

a2
x

− y2

a2
y

− z2

a2
z

)]]
. (3.24)

However, before we can apply a similar technique to I2, we must first deal with
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the anisotropy of V (x). If we make the transformations

x′ =
x

ax

, y′ =
y

ay

, z′ =
z

az

, (3.25)

we can scale out the anisotropy. In this case, I2 is

I2 = axayaz

∫
dx0

λ−1 exp
[

H(x0,p)
kBT

]
+ 1

. (3.26)

In this scaled coordinate system, we can write the potential as

V (x0) = V (r′) = −U0(1− r′2). (3.27)

A similar approach to that used on I1 then gives us the expression for I2

I2 = −axayaz

(
πkBT

U0

)3/2

Li3/2

[
−λ exp

[
1

kBT

(
U0 −

p2
x + p2

y + p2
z

2m

)]]
. (3.28)

Inserting the results for I1 and I2 into (3.5) and (3.6) and converting the re-

maining integrals to spherical coordinates yields

n(x) =
N Li3/2

[
−λ exp

[
U0

kBT

(
1− x2

a2
x
− y2

a2
y
− z2

a2
z

)]]

axayaz 4π
∫∞

0
dr′ r′2 Li3/2

[
−λ exp

[
U0

kBT

(
1− r′2

)]] (3.29)

n(p) =
N Li3/2

[
−λ exp

[
1

kBT

(
U0 − p2

x+p2
y+p2

z

2m

)]]

4π
∫∞
0

dp p2 Li3/2

[
−λ exp

[
1

kBT

(
U0 − p2

2m

)]] . (3.30)

The remaining integrals can be evaluated by expressing the polylogarithms as

infinite sums using (3.21), and switching the order of the sum and integral. Since we

will be using this trick repeatedly, an example is in order. Taking the denominator
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of (3.30) as I3, we find:

I3 = 4π

∫ ∞

0

dp p2 Li3/2

[
−λ exp

[
1

kBT

(
U0 − p2

2m

)]]

= 4π

∫ ∞

0

dp p2

∞∑
j=1

(
−λ exp

[
1

kBT

(
U0 − p2

2m

)])j

j3/2

= 4π
∞∑

j=1

(
−λ exp

[
1

kBT
(U0)

])j

j3/2

∫ ∞

0

dp p2 exp

[ −jp2

2mkBT

]

= (2πmkBT )
3/2

∞∑
j=1

(
−λ exp

[
1

kBT
(U0)

])j

j3

= (2πmkBT )
3/2 Li3

[
−λ exp

[
U0

kBT

]]
. (3.31)

We can then rewrite the distributions in (3.29) and (3.30) in their final form

n(x) =
N

bxbybzπ
3/2

Li3/2

[
−λ e

U0
kBT e

−
�

x2

b2x
+ y2

b2y
+ z2

b2z

�]

Li3

[
−λ e

U0
kBT

] (3.32)

n(p) =
N

(2mkBT )
3/2 π3/2

Li3/2

[
−λ e

U0
kBT e

− p2
x+p2

y+p2
z

2mkBT

]

Li3

[
−λ e

U0
kBT

] . (3.33)

Here bx = ax

√
kBT/U0 as before, and similarly for by and bz.

The astute reader will have realized that this derivation has overdetermined the

normalization. Typically, in Fermi systems, the value of the chemical potential µ is

chosen such that ∫
dx dpf(x,p) ≡ N. (3.34)

The derivation above does not preclude such a choice. However, the forms in (3.32)
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and (3.33) remain normalized for any value of µ. The benefit of the above approach

is that it produces a high degree of symmetry between the Fermi-Dirac results and

the classical results of (3.12) and (3.16).

3.3 2-D and 1-D Spatial and Momentum Distri-

butions

In our experiment, we will be extracting information in the form of absorption

images of the atomic cloud. Such a technique necessarily integrates out information

in the direction of the probe laser. The resulting 2-D distribution is known as the

column density [46]. Further, in analyzing the data, we will often find it useful to

integrate the measured distributions in one direction to produce 1-D profiles which

can be least-squares-fit to theory. This section derives the 2-D and 1-D distributions

from the 3-D results of the preceding section. The trapping potential is always taken

to be harmonic

3.3.1 2-D Distributions

We take the y-axis as the direction of propagation of the probe laser. Thus we need

to integrate our prior results in this direction.
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The Classical Gas

Integrating the classical results of (3.12) and (3.16) is straightforward. We find:

ñ(x, z) =
N

bxbz π
e
−
�

x2

b2x
+ z2

b2z

�
(3.35)

ñ(px, pz) =
N

(2mkBT ) π
e
− p2

x+p2
z

2mkBT (3.36)

The Fermi-Dirac Gas

In this case, we must integrate the results in (3.32) and (3.33). To do the integrals,

we make use of the trick of writing the polylogarithms as sums (see (3.31)). We

find:

ñ(x, z) =
N

bxbzπ

Li2

[
−λ e

U0
kBT e

−
�

x2

b2x
+ z2

b2z

�]

Li3

[
−λ e

U0
kBT

] (3.37)

ñ(px, pz) =
N

(2mkBT ) π

Li2

[
−λ e

U0
kBT e

− p2
x+p2

z
2mkBT

]

Li3

[
−λ e

U0
kBT

] . (3.38)

3.3.2 1-D Distributions

The 1-D distributions are derived by integrating along the z-axis, using the same

techniques as before. The symbol ň has been used to represent the 1-D distributions.
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The Classical Gas

The distributions are:

ň(x) =
N

bx

√
π

e
−x2

b2x (3.39)

ň(px) =
N√

2mkBT
√

π
e
− p2

x
2mkBT (3.40)

The Fermi-Dirac Gas

The distributions are:

ň(x) =
N

bx

√
π

Li5/2

[
−λ e

U0
kBT e

−x2

b2x

]

Li3

[
−λ e

U0
kBT

] (3.41)

ň(px) =
N√

2mkBT
√

π

Li5/2

[
−λ e

U0
kBT e

− p2
x

2mkBT

]

Li3

[
−λ e

U0
kBT

] . (3.42)

In Figure 3.1, the classical gas distribution of (3.39) is compared to the Fermi-

Dirac gas distribution in a variety of temperature ranges.

3.4 Ballistic Expansion

It is an easy task to determine how these distributions are affected by ballistic

expansion of duration, τ . Gravity has a negligible effect for the expansion times

used in our experiments (although the following treatment can easily be extended

if necessary). Hence, during ballistic expansion, the atoms undergo non-accelerated
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Figure 3.1: Comparison of classical and quantum 1-D density distributions. The
1-D spatial distributions, ň(x), are plotted for the classical gas (solid line) and the
Fermi-Dirac gas. In the high-temperature limit, the Fermi-Dirac gas is indistin-
guishable from the classical gas. As the temperature decreases (dotted lines) the
distributions flatten and spread as the Fermi pressure begins to manifest itself. In
the zero-temperature limit (dashed line) the Fermi-Dirac gas exhibits a shape which
is dramatically different from the classical gas.
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motion, and their coordinates evolve according to

x = x0 + vxτ, (3.43)

where vx is the x-velocity of the atom (and similarly in y and z).

We then reorder this equation to give an expression for x0

x0 = x− px

m
τ. (3.44)

Here, we have also chosen to work in terms of px, the x-momentum, for a reason

which will become clear.

3.4.1 The Classical Gas

For the classical gas we know that, at the time of release, the atomic spatial distri-

bution is given by (3.16). We replace the variables x, y, and z in this distribution

with our expressions for x0, y0, and z0 to convert this distribution into the spatial

distribution at time τ for atoms with momenta px, py, and pz. To generalize from

a specific momentum, we must integrate out the momentum variables. All mo-

menta are not equally represented in our initial distribution, however. To properly

account for this fact, we must include a weighting function that is given by our

previously-derived momentum distribution in (3.12) (but with its normalization set

to 1 instead of N),

n(x, τ) =
N

bxbybz(2mkBT )3/2π3/2

∫
dp e

− p·p
2mkBT e

−
�

(x− px
m τ)2

b2x
+

(y− py
m τ)2

b2y
+

(z− pz
m τ)2

b2z

�
.

(3.45)

We can complete the square to generate Gaussians in the momenta. After
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completing the integral, we find that we can write the answer as

n(x, τ) =
N

cxcycz (2mkBT )3/2 π3/2
e
−
�

x2

c2x
+ y2

c2y
+ z2

c2z

�
, (3.46)

where we have made the definition

cx = bx

√
1 +

2kBT

mb2
x

τ 2 = bx

√
1 + ω2

xτ
2, (3.47)

and similarly for y and z. Here ωx is the initial trap frequency in the x-direction in

circular units. Note that the form of (3.46) is identical to the distribution in (3.16),

except for the scalings of the form

bx → bx

√
1 + ω2

xτ
2 = cx. (3.48)

This is known as ballistic scaling. It is a general scale transformation which holds

for any freely expanding system with an initial Maxwell-Boltzmann momentum

distribution. Applying it to the lower-dimensional results of (3.35) and (3.39), we

find

ñ(x, z, τ) =
N

cxcz π
e
−
�

x2

c2x
+ z2

c2z

�
(3.49)

ň(x, τ) =
N

cx

√
π

e
−x2

c2x . (3.50)

3.4.2 The Fermi-Dirac Gas

Although we discovered the scale transformation in (3.48) based on classical ar-

guments, it has recently been shown to hold for quantum systems as well [47].

Thus, the strong symmetry between the classical and Fermi-Dirac results continues
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to hold. Applying the scale transformation to the previously derived Fermi-Dirac

results in the expressions

n(x, τ) =
N

cxcyczπ
3/2

Li3/2

[
−λ e

U0
kBT e

−
�

x2

c2x
+ y2

c2y
+ z2

c2z

�]

Li3

[
−λ e

U0
kBT

] , (3.51)

ñ(x, z, τ) =
N

cxczπ

Li2

[
−λ e

U0
kBT e

−
�

x2

c2x
+ z2

c2z

�]

Li3

[
−λ e

U0
kBT

] , (3.52)

ň(x, τ) =
N

cx

√
π

Li5/2

[
−λ e

U0
kBT e

−x2

c2x

]

Li3

[
−λ e

U0
kBT

] . (3.53)



Chapter 4

The Monte-Carlo Model

If God has made the world a perfect mechanism, He has
at least conceded so much to our imperfect intellects that
in order to predict little parts of it, we need not solve
innumerable differential equations, but can use dice with
fair success.

—Max Born

4.1 Overview

In Chapter 3, we derived the static spatial distributions of a classical atomic gas

in harmonic and gaussian confining potentials. The gaussian result, however, was

expressible only as an integral. In addition, predicting the dynamics of the gas in

a static or time-varying potential is well beyond the analytical machinery used in

the prior chapter.

To attempt to address these issues, even if only for the classical gas, we developed

a Monte-Carlo computer model (sometimes referred to as a molecular dynamics

model in other fields). In this model a number of “atoms” are placed probabilisti-

cally in a mathematical representation of the confining potential. The number of

simulated atoms is often less than the number of physical atoms we are attempting

to simulate, but is large enough that the statistical nature of the ensemble becomes

evident. Once the atoms are placed in the well, the simulation proceeds forward in

63
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small time-steps, updating the state of all the simulated atoms at each step.

Since we have complete knowledge of the state of the atoms at all times, we

can easily extract any data we wish: spatial distributions, velocity distributions,

temperatures, trap population, etc.

4.2 Bird’s Method

The algorithm used to evolve the state of the system in time is known as Bird’s

Method [25]. The algorithm involves the following steps:

1. Generate an appropriate initial condition

2. Update the position of the particle, according to its velocity

3. Update the velocity of the particle, according to the forces acting on it at its

previous position

4. Treat interparticle collisions

5. Repeat steps 2-4 for the duration of the simulation

The astute reader will note that steps two and three are merely a numerical

integration of the equations of motion. We can decouple the effect of collisions from

the equations of motion by recognizing that, for a dilute gas, the mean-free-path

is quite large compared to the distance a particle propagates in a time-step. This

means that collisions are exceedingly rare on the time scales we are dealing with

and can be treated as occurring “between” time-steps without materially affecting

the result.

Collisions are handled by randomly selecting pairs of particles to collide. The

probabilities are weighted such that the number of collisions at any time-step is
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appropriate for the collision cross-section involved. If a particle is selected for colli-

sion, its collision partner is selected from nearby atoms. The collision is simulated

by giving one atoms a random velocity (direction and speed), while the velocity of

the other atom is updated to conserve energy and momentum of the pair. Inelastic

collisions are not treated.

This algorithm is essentially a numerical integration of Newton’s laws. This

means that, for suitably small time-steps, the output of the algorithm converges to

the correct physical behavior.

4.3 Implementation

This algorithm has been implemented in the C programming language. Details of

the program change slightly depending on the specific experiment which is being

simulated. A representative version is included in Section C.4.

As implemented, the code does not include collisions. This was done for a

practical reason—inclusion of collisions dramatically increases the length of the

computation for a given number of simulated atoms. We are free to make this

simplification since the mixture of atoms we work with are collisionless at zero

magnetic field (in this thesis the atoms undergo collisions only during evaporative

cooling—all other portions of the experiments are performed at zero field where

collisions are not possible). Further, even if we were to work in a system that

is not collisionless (for example the |1〉 − |3〉 mixture of an earlier thesis by this

group [21]), often the effects we are interested in are single-particle effects and the

lack of thermalization and damping in our simulation does not affect the result.

The most difficult portion of the implementation lies in properly generating the

initial conditions. For each atom, the program tracks the three spatial and three
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velocity components.

The confining potential is technically gaussian in two dimensions and lorentzian

in the third, but we approximate this as a three-dimensional gaussian well,

U = −U0 e
−(( x

ax
)2+( y

ay
)2+( z

az
)2)

. (4.1)

In the above, U0 is the well-depth and the ai are the 1/e-radii of the potential in the

ith-direction. The well is isotropic if viewed in a scaled coordinate system where

the distance along each axis is measured in units of the ai. In this system, the well

is given by

U = −U0 e−r′2 . (4.2)

Since the confining potential is isotropic in this coordinate system, the spatial

distribution of the atoms is as well. The kinetic energy of the particles is isotropic

in the original, unscaled coordinate system, implying isotropy of velocity in that

coordinate system. We can then assume Maxwell-Boltzmann statistics to write the

probability distributions for the velocity in the original coordinates and the radial

position in the scaled coordinates,

p(v) ∝ v2 exp

[
−mv2

2kT

]
, (4.3)

p(r) ∝ r2 exp

[
U0 e−r2

kT

]
. (4.4)

Note that the above expressions are similar in form. Both contain a Jacobian factor

that is the square of the “radial” variable and an exponential function of that

variable which is of the form of a Boltzmann factor of the appropriate (kinetic or
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potential) energy.

When generating the initial conditions, a radius and a velocity are randomly

chosen according to the probability distributions in (4.3) and (4.4). The details of

how to generate random variables according to arbitrary distributions is discussed

in Appendix B. The corresponding potential and kinetic energies are then calcu-

lated, and their sum is computed. If the sum is greater than or equal to zero, the

atom is unbound and we reject the values of v and r, and begin again. If the total

is less than zero, the atom is bound and we convert the radial coordinates into

Cartesian by randomly choosing values of θ and φ and using the standard spherical

to Cartesian conversion. The spatial coordinates are then scaled by the ai values

to convert into physical space and the coordinates and velocity components are

recorded for the atom. We then repeat the process as necessary to generate the

desired number of atoms.

4.4 Validation

Before we can begin to trust the predictions of the program, it must be validated.

To validate the program, we test the major algorithms on known cases to see if the

output reproduces the expected results. There were three tests run on the program.

In the first, the output of the random number generators was tested to see if the

output obeyed the expected distribution functions. In the second, the resulting

atomic distribution was tested to see if it had the expected energy distribution.

In the final test, the motion of a single atom was tracked to see if it followed the

expected equations of motion.
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4.4.1 Random Number Generation

In Appendix B, I discuss how to generate random numbers according to arbitrary

probability distributions. The first test of the program is to see whether these

routines do, in fact, produce random numbers that are distributed in the expected

manner.

For this test, the 100,000 random radii and speeds were generated for a number

of test cases. In all cases the depth of the potential well was 700 µK. The three

different cases involved temperatures of 700 µK, 150µK, and 35µK, respectively.

In each case, the values were converted into a 500-bin histogram, the shape of

which should be proportional to probability distribution of the random numbers.

This shape was then fit to the functions (4.3) and (4.4). The only free parameters

in the fit were the overall constant of proportionality and the temperature of the

distribution. The results are shown in Figure 4.1. The extracted temperature

was, in every case, within approximately 1% of the expected temperature. From

this, we conclude that the random-number-generation algorithms are performing as

expected.

4.4.2 Atomic Ensemble Generation

Of course, the generation of random numbers according to the probability distribu-

tions given in (4.3) and (4.4) are not the whole of the algorithm for generating a

simulated atom. Once a velocity/radius pair is generated, the total energy for the

pair (kinetic plus potential) is calculated. Only if the total energy is negative, and

hence the atom bound in the well, do we keep the pair. For this portion of the val-

idation, 100,000 simulated atoms were generated for the same three cases (700 µK,

150µK, and 35µK atoms in a 700 µK-deep well) and their radii and speeds were
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Figure 4.1: Validation of the random number generation algorithms. Each case
shows the actual distribution of the radii and speeds (jagged histogram) and an
analytical fit with the temperature and an overall scaling as the only free parameters
(smooth curve). Each graph gives the temperature extracted by the fit. In all cases
the agreement is excellent. The random numbers were generated at temperatures
of a) 700 µK, b) 150µK, and c) 35 µK.
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converted into 500-bin histograms as in the previous section.

Figure 4.2 shows that the speed- and radii-distributions do not, in general, follow

the probability distributions we used to generate the random numbers. In the figure,

the smooth curves are the fits from Figure 4.1, normalized to have the same area

as the histograms in Figure 4.2. Clearly, only the lowest-temperature case does

not modify the probability distributions. The physical rationale for this is actually

quite easy to understand. The probability distributions (4.3) and (4.4), especially

for high temperatures, can produce atoms with too much energy to be bound in the

well. Since we are only dealing with bound atoms, the rejection of unbound pairs

modifies the probability distributions for high temperatures. Only in the case of

extremely high well-depth-to-temperature ratios is the probability of an unbound

pair negligible. In this case the resulting probability distribution is unmodified. The

reader should note that this effect is essentially another example of the acceptance-

rejection method [48] of modifying probability distributions (see Section B.3).

If the distributions are modified, how will we know if we are producing the

proper distribution? The probability of an atom having energy E can be written in

terms of the density of states, D(E), and the occupation number f(E) as

p(E)) ∝ D(E) f(E) = D(E) e−E/kBT , (4.5)

where kB is the Boltzmann constant. Here the occupation number has been replaced

by a Boltzmann factor, as is appropriate for a classical gas.

Previously, our group derived the density of states for a gaussian well of depth

U0 [21],

DGauss(E) = g(E)DHO(E). (4.6)
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Figure 4.2: Radius and speed distributions of bound atoms. Each case shows the
actual distribution of the radii and speeds (jagged histogram) and the analytical
fits of Figure 4.1 (smooth curve). The discrepancy in the high-temperature cases
is easily understood. In those cases the random number generators produce many
radius/speed pairs that are unbound. Ignoring these pairs effectively modifies the
distributions. Only in the high well-depth-to-temperature case are unbound atoms
unlikely, and hence the distributions agree. The random numbers were generated
at temperatures of a) 700 µK, b) 150µK, and c) 35 µK.
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Here, DHO(E) is the well known harmonic-oscillator density of states:

DHO(E) =
E2

2~3ωxωyωz

, (4.7)

with ωi the oscillator frequency in the i-direction.

We found g(E) to be given by

g(E) =
16

π

α3/2
√

1− β

β2

∫ 1

0

dww2
√

eα(1−w2) − 1, (4.8)

with β ≡ E/U0 and α ≡ − ln(1− β) defined for simplicity.

This means that the probability of total energy E for an atom bound in a

gaussian well can be written as

p(E) ∝ E2e−E/kBT
α3/2

√
1− β

β2

∫ 1

0

dww2
√

eα(1−w2) − 1. (4.9)

The multiplicative constants have been dropped as we will always be normalizing

the distribution to match an unnormalized histogram.

We can take the 100,000 randomly generated bound atoms and compute the

total (kinetic plus potential) energy for each. Once again, 500-bin histograms are

generated for the three cases (700 µK, 150µK, and 35µK). In Figure 4.3, these

histograms are plotted, along with the corresponding theoretical predictions based

on (4.9). The theoretical predictions had no free parameters other than an overall

scaling to match the normalization of the histograms. The correspondence between

the histogram and the theoretical expectation is excellent in all cases. Thus we may

conclude that the Monte-Carlo program produces accurate bound atomic ensembles.
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Figure 4.3: Validation of the simulated atomic ensembles. Each case shows the
actual distribution of total energy for the bound atoms (jagged histogram) and the
expected analytical distribution (smooth curve) from (4.9). The only free parameter
in the analytic distribution is the overall normalization. Agreement is excellent in
all three cases. The atoms were generated at a temperature of a) 700 µK, b) 150µK,
and c) 35µK.
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4.4.3 Atomic Motion in the Well

We now see that the Monte-Carlo program generates realistic atomic ensembles.

The only remaining validation task is to show that the motion of the atoms in the

well obeys the proper equations of motion.

For this test, a potential well is designed that has oscillation frequencies of 100,

1000, and 2000 Hz in the three directions for particles with E ¿ U0. A low-energy

particle of mass, m, in a gaussian well of depth, U0 has an oscillation frequency in

the i-direction of

νi =

√
U0

2π2ma2
i

, (4.10)

where ai is the 1/e-dimension of the trapping potential in the i-direction. This arises

from representing the potential by the harmonic term in the Taylor expansion of

the potential. Correspondingly, to have a trap frequency of νi in the i-direction, the

trap must have a 1/e dimension in the i-direction of

ai =

√
U0

2π2mν2
i

. (4.11)

Thus, to generate the desired trap frequencies in a trap of depth 700 µK, we specify

1/e dimensions according to (4.11).

A low-energy atom is placed in the well (thereby avoiding the anharmonicity

inherent at higher energies) and its position and velocity are tracked throughout

the evolution of its motion. In Figure 4.4, a portion of the position evolution is

shown for all three cartesian directions. The amplitude of the oscillation does not

decay over many (>1000) oscillations. The full position evolution in each direction

is then analyzed with a discrete Fourier transform (dft) to extract the oscillation

frequencies. The second part of Figure 4.4 shows the power spectrum (given by the
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square of the dfts) for each direction. In each direction there is a sharp spike located

at precisely the expected oscillation frequency. There are no features anywhere else

in the spectra. Thus, we have shown that the motion of the atoms in the well

precisely reproduces the expected physical motion.

4.5 Applications

Having satisfied ourselves in the validity of the Monte-Carlo model (at least in the

collisionless regime), we utilized it in a number of situations over the past several

years. This section discusses these uses of the code and provides representative

results.

4.5.1 Parametric Resonance

How can we know the parameters of the CO2 trap? The focus occurs inside the

vacuum chamber where we can not access it. Even if we could, the power density is

so high (> 2MW/cm2), that working at the focus would be difficult and dangerous.

We do know the power of the beam and the static polarizability of 6Li. If we could

measure the three trap frequencies, we could determine the trap depth and the three

1/e dimensions of the gaussian well (subject, of course, to the caveat that the CO2

trap must closely approximate a Gaussian well).

Luckily, this is possible without access to the beam focus through the use of

the phenomenon of parametric resonance [49]. Parametric resonance is a process

where the modulation of the spring constant of an oscillator at twice its natural

frequency produces a resonant response. While details of this mechanism are dis-

cussed in greater detail in Chapter 5, the underlying physics is readily understood.
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Figure 4.4: Validation of the atomic motion. A low energy atom was placed in
a trap with oscillation frequencies of 100, 1000, and 2000 Hz. In a) a portion of
the position evolution of the atom in each direction is shown. The amplitude of
the oscillation did not decrease during the period of observation. In b) the power
spectrum in arbitrary units (given by the square of the dft) of the atomic motion in
each direction is shown. Each spectra has a sharp peak at the expected oscillation
frequency as its sole feature.
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By modulating at twice the natural frequency, the conversion from velocity (kinetic

energy) to displacement (potential energy) occurs at a low spring-constant, while

the opposite conversion occurs at a high spring constant. The result is a cycle of

ever increasing peak velocities and displacements.

At the time we built our first CO2 laser trap, the process of using parametric

resonance to measure trap parameters was an established technique [50]. However,

we had no experience using this technique, and we were faced with a number of

uncertainties. How much modulation was required? How broad would the resonance

be? Would we be able to accurately determine the trap frequencies from the location

of the peaks? Would the anharmonic nature of the gaussian well cause unexpected

complications? The situation was further complicated by the fact that, at that

time, our experiment did not have a charge-coupled-device (ccd) camera that could

directly image the atomic distributions in the trap (or after release in time-of-flight

imaging). All our atom measurements were made using fluorescence resonance

signals as detected by a photomultiplier tube (pmt). We decided to simulate the

proposed experiments with the Monte-Carlo code to hopefully gain some answers

to our many questions.

Because we were working with pmt signals, the experimental protocol was

planned as follows:

1. Modulate the trap depth at a factor ε at a frequency Ω for a duration ∆t.

2. Suddenly lower the trap to a fraction f of its full depth. This releases atoms

that had total energies above fU0.

3. Measure the remaining trap population by applying a resonant probe pulse

and recording the fluorescence signal detected by the pmt. This signal should
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Figure 4.5: Simulated results of a parametric resonance experiment. The cir-
cles are the output of the Monte-Carlo code. The solid line has been included to
guide the eye. The general shape of the peak appears to be a systemic feature of
parametric resonance in a gaussian well.

be lowest when the atoms have been resonantly excited upwards in the trap.

4. Repeat for a range of Ω values. The resonance should be appear as a dip in

the signal when Ω is in the vicinity of 2ωtrap.

In Figure 4.5, we see the output of the Monte-Carlo code for a simulated gaussian

beam trap with a natural frequency ωtrap of 1000Hz. The trap is 700 µK deep and

contains atoms initially at 70 µK. The modulation index ε is 20% and lasts for a

duration ∆t of 1.0 s. The well was lowered to 10% of it full value (f=0.1) for the

number measurement.

The results show that we should be able to detect the parametric resonance

frequency of this hypothetical trap. The shape of the resonance, consisting of a

broad shelf at frequencies below the peak, and a sharp drop-off at frequencies above

the peak is a general feature of resonance peaks in gaussian wells. At high-energy,
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a gaussian well is soft—that is, its trap frequencies are energy dependent and are

less than or equal to the harmonic frequency of the well bottom. As a result, there

are atoms in the well that are resonant with lower frequencies (producing the shelf)

but no atoms resonant with higher frequencies (resulting in the rapid drop-off).

As the temperature of the atoms increases further, the number of atoms res-

onant at lower frequencies increases, eventually “pulling” the peak towards lower

frequencies. The shift tends to saturate at approximately 10% of the resonance fre-

quency. The shift appears to be a consistent feature of high-temperature excitation

in a gaussian well, and we saw it often in many of our early simulations (we now

work with significantly colder atoms, so it does not appear). The effect has recently

been seen in analytical treatments of the system [51].

4.5.2 Release and Recapture

As mentioned previously, a pmt was our only method for making measurements of

the atoms in our early experiments [21]. To determine the temperature of the atomic

cloud in those experiments, we used a technique known as release-and-recapture [32].

The concept of release-and-recapture is simple enough. The trapping potential is

suddenly turned off and then back on again after a variable delay time. While the

potential is off, the atoms expand ballistically (the release). When the trapping

potential is restored, some fraction of atoms will have moved to a position where,

given their kinetic energy, they are now unbound. The remainder are once again

bound in the trap (the recapture). After a short delay to allow the unbound atoms

to leave the vicinity of the trap, a resonant probe beam measures the number of

atoms that have been recaptured. A plot of how this number varies as a function of

the delay time produces a curve which can be used to determine the temperature
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of the cloud.

An analytical expression can be developed to describe the number of atoms that

remain trapped. However, it contains an integral over six dimensions (three spatial

and three momentum) which cannot be evaluated in closed form. The integral

must be determined numerically. As we were preparing to write the computer code

to calculate the integral, we realized that the Monte-Carlo code could be trivially

modified to simulate the experiment with clouds of various temperatures.

Measuring the temperature of the cloud then became an exercise in determining

which simulated curve best matched the experimental data. The results are shown

in Figure 4.6. The data and the analysis are from the experiment of [52]. The circles

represent the experimentally measured data (the error bars indicate the standard

deviation of the mean for the several measurements at each point). The curves

represent the output of the Monte-Carlo code for clouds of differing temperatures.

The solid line is the temperature (25 µK) that had the best correspondence to the

data. The other two curves (15 µK and 35µK) are shown for comparison. Thus we

were able to conclude that the temperature of the atomic cloud was approximately

25µK.

4.5.3 Variation of Cloud Size

Eventually, we acquired a ccd camera capable of high-resolution images of the

atomic distributions (see Chapter 7 for a discussion of the relevant techniques and

the associated physics). Clearly, one of the highest priorities was to develop an

imaging-based method of temperature measurement. At that time, the size of the

imaging signal was not large enough that we could use time-of-flight imaging, as

it reduces the signal even further as the cloud expands ballistically. Therefore, we
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Figure 4.6: Using the Monte-Carlo code to determine temperature. The graph
shows the correspondence between the experimentally measured data (circles) and
the output of the Monte-Carlo code with a cloud temperature of 25 µK (solid line).
The dashed curves are Monte-Carlo output for temperatures of 15 µK and 35µK.
They are presented for comparison.

were limited to in situ imaging of the atomic cloud in the trap.

In Chapter 3, we developed expressions for the spatial distribution of an atomic

cloud in harmonic and gaussian wells. In a harmonic well, the cloud takes on a

gaussian density profile, with the 1/e length scale in the i-th direction given by

bi = ai

√
T/U. (4.12)

Here, ai is the 1/e length scale of the trapping potential in the i-th direction, T is

the temperature of the cloud, and U is the well depth in Kelvin. Hence, we could

determine the temperature of the cloud by measuring the 1/e length scale of the

cloud in the axial direction (the radial size is too small for accurate measurement)

since we know the ai and U for our trap.

This technique worked passably well, but is, after all, only an approximation.
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The real trap is not harmonic, and its true gaussian nature must have some effect

on the characteristic size of the cloud as a function of temperature. We began

investigating the size of the effect with the Monte-Carlo code.

The Monte-Carlo code is used to generate atomic distributions at different values

of T/U . To mimic the measurement technique we are using in the experiment,

the distributions are then fit to a gaussian and the 1/e length scale is extracted.

In Figure 4.7, bi/ai is plotted as a function of T/U .

If the atoms are held in a harmonic well, (4.12) predicts that there should be a

square-root dependance. While the overall shape is approximately square-root in

nature, there are significant deviations. To better see the deviation from harmonic

behavior, we introduce a scaling factor α, defined through the relation

bi = α ai

√
T/U, (4.13)
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Figure 4.8: Deviation of gaussian 1/e cloud size from the harmonic result. Here
the scale factor α is plotted versus temperature for the data of Figure 4.7. Harmonic
behavior appears in the low-T/U limit, but the magnitude of the deviation at rela-
tively low (T/U ' 0.1) temperatures, as well as the fact that at high-temperatures,
the cloud gets smaller than a harmonically-confined cloud are quite surprising.

and plot α as a function of T/U as shown in Figure 4.8. We see that we recover the

harmonic result α = 1 in the extreme low-T/U limit. However, as T/U is increased

from zero, the cloud first becomes significantly larger than the harmonic prediction,

then dramatically smaller than the harmonic value! This result is actually very

surprising, since a gaussian well, as a soft oscillator, is less confining than the

equivalent harmonic well.

This surprising result made us reconsider the methodology we were using. We

had been fitting the distributions to a gaussian—the expected shape of the cloud

in a harmonic well. If the cloud shape varied from a gaussian, it was possible that

the fit routine itself was responsible for the deviations we were seeing. We then

developed an approach that did not rely on curve fits.

For each distribution, we computed the root-mean-square size of the cloud in
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.

the i-th direction, ci ≡
√

i2. For a gaussian distribution, ci = bi/
√

2, so we can

write

ci = β
ai√
2

√
T/U, (4.14)

in analogy with (4.13). In Figure 4.9, we see the results.

Again, we recover the harmonic result in the low-T/U limit. Once again the

cloud begins to grow faster than the harmonic result as T/U increases. However,

the size of the deviation is even larger than we first believed! Clouds as cold as

10% of the well depth are 40% larger than we would expect based on a harmonic-

well estimate. Also, the cloud size again becomes smaller than the corresponding

harmonically-trapped cloud when T/U approaches 0.5.

Can we believe these counterintuitive results? To double check, we performed
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an analysis based on the analytic techniques introduced in Chapter 3. The analysis

agrees with the Monte-Carlo model on all accounts (solid line in Figure 4.9). The

dramatic effect that the gaussian potential has on the cloud shape discouraged us

from continuing to use in situ cloud-size measurements as a thermometry technique.

Luckily, at about this time, improvements in the trapping apparatus began provid-

ing signals large enough for us to switch to time of flight imaging. However, we

learned an important lesson from this analysis—the anharmonicity of the gaussian

well can dramatically impact the behavior of the atoms, even when they are quite

low in the well.



Chapter 5

Dynamics of Noise-Induced
Heating

For then our atoms, which in order lay,
are scatter’d from their heap, and puff’d away. . .

—John Dryden

5.1 Overview

In previous chapters we presented analytical and numerical tools for understanding

and exploring trapped atomic clouds. These tools allow us to describe the equi-

librium distributions of both classical and Fermi gases, as well as the dynamics of

a classical gas. In earlier work, our group identified noise-induced heating of the

atoms as a possible cause of the poor trap lifetimes in early optical traps [26]. Our

ultimate experimental goals depended on being able to construct or purchase a CO2

laser with suitably low levels of noise. A major result of [26] was a relationship be-

tween the noise-spectra of the laser and the related heating timescales. However, in

that work, the timescales were derived for the simplified case of a single particle in

an infinite well. An important question, then, is: How are the timescales modified

when we consider an atomic ensemble in a finite well? This chapter develops the

tools necessary to answer that question and provides the answers that we found

86
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(and which were subsequently published in [27]).

5.2 Fluctuations in the Trapping Potential

We consider two different types of fluctuations in trapping potential. There can

be position noise in the location of the trap center. Alternatively, there can be

intensity noise in the trapping laser beam. This translates into a modulation of

the trap spring constant. This section addresses each of these mechanisms in the

context of a harmonic confining potential, and derives the heating rate for each in

terms of the measurable fluctuation spectrum [26,27].

5.2.1 Position Noise

Position noise in the trap center results in a side-to-side shaking of the trap. Shaking

the trap can heat the atoms in much the same way that side-to-side shaking of a

bowl which contains a ball can excite the ball. We consider the one-dimensional

case and write the Hamiltonian:

H =
p2

2m
+

1

2
mω2

trap [x− ε(t)]2 , (5.1)

where ε(t) is the fluctuation of the trap center in time. The perturbation is written

as

H ′(t) = −m ω2 x ε(t), (5.2)

where we have dropped the ε2(t)-term since we are only going to work to first order

and it is spatially constant. Because the perturbation contains only a single power

of x, it drives n − 1 ↔ n and n ↔ n + 1 transitions between quantum states of
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the harmonic oscillator. Using Fermi’s Golden Rule, we can derive the average

transition rates between these adjacent levels, and hence the average heating rate.

Given this perturbation, the heating rate is given by

〈
Ė

〉
=

π

2
mω4

trap Sx(ωtrap). (5.3)

Here, Sx(ωtrap) is the one-sided power spectrum of fluctuations in the trap center,

evaluated at the harmonic trap frequency. From Parseval’s theorem,

∫ ∞

0

dωSx(ω) ≡ 〈
ε2(t)

〉 ≡ ε2
0, (5.4)

where ε0 is the rms position fluctuation in the trap center. For brevity in future

sections, we make the definition

Q̇ ≡ π

2
mω4

trap Sx(ωtrap). (5.5)

Thus we can write the average heating rate due to position fluctuations in the

trapping potential as
〈
Ė

〉
= Q̇. (5.6)

5.2.2 Intensity Noise

Fluctuations in the laser intensity result in modulation of the trap spring-constant.

This can heat the atoms through the well known process of parametric resonance [49].

In parametric resonance, a parameter of the oscillator (such as the spring constant)

is modulated. Resonant excitation occurs when the modulation is at twice the

natural frequency of the (undisturbed) oscillator.
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We write the Hamiltonian for this case as

H =
p2

2m
+

1

2
mω2

trap [1 + ε(t)] x2. (5.7)

Here ε(t) is the fractional intensity fluctuation of the laser

ε(t) =
I(t)− I0

I0

, (5.8)

where I0 is the time-average laser intensity.

We proceed as before. The perturbation Hamiltonian is

H ′(t) =
1

2
ε(t) mω2

trap x2. (5.9)

Here we see that, unlike the perturbation for position noise, this perturbation de-

pends on x2. Hence, it drives n − 2 ↔ n and n ↔ n + 2 transitions between

quantum states of the harmonic oscillator. Again using Fermi’s Golden Rule, we

can determine the average transition rates between these linked levels, and hence

the average heating rate. In this case we find

〈
Ė

〉
=

π

2
ω2

trap SI(2ωtrap)E. (5.10)

Here SI(2ωtrap) is the one-sided power spectrum of fractional intensity fluctuations,

evaluated at twice the natural frequency of the undisturbed oscillator. This factor

of two confirms that this is a parametric process. Note that the heating rate is

energy dependent, and leads to exponential heating.
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We define the heating rate constant, Γ

Γ =
π

2
ω2

trap SI(2ωtrap). (5.11)

This allows us to write the heating rate as

〈
Ė

〉
= Γ E. (5.12)

5.3 The Fokker-Planck Equation

The previous sections describe how the average energy of the atoms increases as

a result of position and intensity fluctuations in the trapping laser. While crude

estimates of the trap lifetime can be generated from these results (by dividing the

well depth by the total heating rate, for example), such an approach necessarily

misses many important details.

We have shown that the fluctuations drive transitions between the discrete states

of the harmonic oscillator. While we can derive average rates for these transitions,

the underlying process is probabilistic. This type of situation is known as a Markov

Chain. However, to a very good approximation, we can ignore the discrete nature

of the states of the harmonic oscillator and treat the states as a continuum. When

we do this, we have changed the Markov Chain into a Markov Process. A standard

technique for describing the time-evolution of statistical distributions subject to a

Markov Process is the Fokker-Planck equation [53]. The Fokker-Planck equation is a

partial-differential diffusion equation for a distribution function. In order to provide

a more detailed description of the noise-induced heating process, we developed a

Fokker-Planck equation that describes the evolution of n(E) (the number density
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of atoms as a function of energy) as a result of position and intensity fluctuations

in the trapping laser.

The general form of a one-dimensional Fokker-Planck equation is [54]

∂W (x, t)

∂t
= LFP W (x, t). (5.13)

Here, W (x, t) is the generalized statistical distribution, while x and t are general-

ized space and time variables, respectively. The symbol LFP is the Fokker-Planck

operator given by

LFP(x) = − ∂

∂x
D(1)(x) +

∂2

∂x2
D(2)(x). (5.14)

In the above, D(1) and D(2) are the drift and diffusion coefficients, respectively for

the random process forcing the evolution. They are expressible as [54]:

D(1)(x) =
d

dt
〈x〉 , (5.15)

D(2)(x) =
1

2

d

dt

(〈
x2

〉− 〈x〉2) . (5.16)

5.3.1 One Dimensional Fokker-Planck Equation

We can compute the the values of the drift and diffusion coefficients from the average

transition rates. In one dimension, we find [27]:

D(1)(E1) = Q̇1 + Γ1E1, (5.17)

D(2)(E1) = Q̇1E1 +
Γ1

2
E2

1 . (5.18)

In the above, Q̇1 and Γ1 are the constants we defined in (5.5) and (5.11). In-

serting these values for D(1) and D(2) into the general form for the Fokker-Planck
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equation (5.13), and taking the energy E1 as the generalized spatial dimension and

n(E1, t) as the statistical distribution we wish to evolve, we find

∂n(E1, t)

∂t
=

∂2

∂E2
1

[(
Γ1

2
E2

1 + Q̇1E1

)
n(E1, t)

]
− ∂

∂E1

[(
Γ1E1 + Q̇1

)
n(E1, t)

]
.

(5.19)

Performing the differentiations and collecting similar terms results in the some-

what simpler form

∂n(E1, t)

∂t
=

(
Γ1

2
E2

1 + Q̇1E1

)
∂2n(E1, t)

∂E2
1

+
(
ΓE1 + Q̇1

) ∂n(E1, t)

∂E1

. (5.20)

5.3.2 Three Dimensional Fokker-Planck Equation

Of course, our trap exists not in one dimension, but in three. We must therefore find

a way to extend the treatment above to three dimensions. The drift and diffusion

coefficients become the sum of the drift and diffusion coefficients in the x, y, and z

directions:

D(1)(E) =
∑

i=x,y,z

(
Q̇i + Γi 〈Ei〉E

)
, (5.21)

D(2)(E) =
∑

i=x,y,z

(
Q̇i 〈Ei〉E +

Γi

2
〈Ei〉E

)
. (5.22)

Here 〈· · ·〉E indicates an average over all states of fixed total energy E = Ex+Ey+Ez.

This form of D(1) and D(2) do not appear very tractable. However, we can make the

assumption of sufficient ergodicity and dramatically simplify the results. For our

system, sufficient ergodicity is equivalent to a statement that, for a given value of

total energy E, all possible combinations of Ex, Ey, and Ez are equally likely. How

valid is this assumption? It appears quite reasonable, as our system rapidly explores
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configuration space as a result of inter-particle collisions and trap anharmonicities.

For a sufficiently ergodic system in a harmonic well, it is easy to show that

〈Ex,y,z〉E = E/3 and
〈
E2

x,y,z

〉
E

= E2/6. Inserting these values into (5.21) and (5.22)

we find:

D(1)(E) = 3Q̇ + ΓE, (5.23)

D(2)(E) = Q̇E +
Γ

4
E2. (5.24)

In the above, we have defined the average heating rate Q̇ and heating rate constant

Γ as follows:

Q̇ =
Q̇x + Q̇y + Q̇z

3
, (5.25)

Γ =
Γx + Γy + Γz

3
. (5.26)

Here Q̇i and Γi represent the appropriate values of Q̇1 and Γ1 in the i-direction.

Inserting (5.23) and (5.24) into the general form of the Fokker-Planck equa-

tion (5.13) and proceeding as before yields the desired result

∂n(E, t)

∂t
=

(
Γ

4
E2 + Q̇E

)
∂2n(E, t)

∂E2
− Q̇

∂n(E, t)

∂E
− Γ

2
n(E, t). (5.27)

Here E = Ex + Ey + Ez is the total energy and Q̇ and Γ are the averages defined

in (5.25) and (5.26).
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5.4 Solving the Fokker-Planck Equation

We can bring several types of analytic and numerical machinery to bear on the

problem of solving (5.27). The next few sections describe several approaches and

the insights we can gain from each.

5.4.1 Stationary Solution

We can derive the stationary solution to the general Fokker-Planck equation as

follows. For a stationary solution, there is no time evolution, hence ∂n(E, t)/∂t = 0.

This implies that LFP Wstat(x) is zero. Therefore we can make the sequence of steps:

∂

∂x
D(1)(x)Wstat(x) =

∂2

∂x2
D(2)(x)Wstat(x)

D(1)(x)Wstat(x) =
∂

∂x
D(2)(x)Wstat(x) (5.28)

D(1)(x)

D(2)(x)
D(2)(x)Wstat(x) =

∂

∂x
D(2)(x)Wstat(x).

The solution to the last line is clearly

D(2)(x)Wstat(x) = C exp

[∫
D(1)(x′)
D(2)(x′)

dx′
]

, (5.29)

where C is the constant required to normalize Wstat(x). Solving for Wstat(x), we

can write

Wstat(x) = C exp

[
− ln D(2)(x) +

∫
D(1)(x′)
D(2)(x′)

dx′
]

, (5.30)

with C defined as before. Specializing to our notation and inserting the values of

D(1) and D(2), we find that the stationary solution is

nstat(E) = 4 CE2. (5.31)
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We see the striking result that the stationary solution is proportional to the

density of states of the 3-D harmonic oscillator. In fact, this correspondence holds

true in arbitrary dimensions. However, for this solution to hold, we must have an

infinitely deep potential well and an infinite number of atoms. A physical system,

of course, can not supply either, and the introduction of boundary conditions in-

evitably leads to deviation from the solution in (5.31). Thus, we invariably will see

a time dependence to all solutions.

5.4.2 Eigenmode Analysis: General

To address physical solutions, we must address the full, time-dependent equations.

If we make the separation Ansatz

n(E, t) = φ(E) e−λt, (5.32)

and insert it into (5.27), we obtain the defining differential equation for the eigen-

modes φλ(E):

(
Γ

4
E2 + Q̇E

)
∂2φλ(E)

∂E2
− Q̇

∂φλ(E)

∂E
+

(
λ− Γ

2

)
φλ(E) = 0. (5.33)

This equation does have an analytical solution in terms of generalized special

functions:

φλ(E) =C1 F

(
−1 + A

2
,−1− A

2
;−1;−ΓE

4Q̇

)

+ C2

(
ΓQ̇E

4

)2

F

(
3− A

2
,
3 + A

2
; 3;−ΓE

4Q̇

)
, (5.34)
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where F is the Gauss hypergeometric function [55], and A =
√

9 + 16λ/Γ.

Boundary Conditions

Since we cannot experimentally provide a harmonic well of infinite depth, we the-

oretically treat a truncated harmonic well of depth U0. We start by remembering

that we can write the function n(E) as the product of the occupation number f(E)

and the density of states g(E)

n(E) = f(E) g(E), (5.35)

where the density of states for a 3-D harmonic oscillator is

g(E) =
E2

2~3ωxωyωz

. (5.36)

The occupation number f(E) is the probability that a state of energy E is occupied.

For any harmonic oscillator, g(0) = 0, since the minimum energy of an oscillator

is ~ω/2. Further, since we are considering a truncated harmonic oscillator, there

cannot be any particles at E = U0, so f(U0) = 0. Therefore, from (5.35), we see

that the appropriate boundary conditions for our system are

n(0) = 0 (5.37)

n(U0) = 0. (5.38)
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In terms of the eigenmodes, φλ, this becomes

φλ(0) = 0 (5.39)

φλ(U0) = 0. (5.40)

Applying the constraints (5.39) and (5.40) restricts the possible values of C1

and C2 in (5.34), as well as the possible values of λ. We will not perform these

calculations for the fully general hypergeometric case. However, we will perform

this analysis for the simplified cases of pure position and pure intensity noise in

subsequent sections of this chapter.

Initial Condition

We now have an eigenmode solution to the separation Ansatz we made in (5.32).

To incorporate our desired initial condition, we would proceed as is typical by

expanding the initial condition in terms of the eigenmodes

n(E, 0) =
∑

λ

Bλ φλ(E), (5.41)

where the weighting coefficients, Bλ are defined by

Bλ =

∫ U0

0

dE ′ n(E ′, 0) φλ(E
′). (5.42)

Thus the final solution is

n(E, t) =
∑

λ

Bλ φλ(E) e−λt. (5.43)
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5.4.3 Eigenmode Analysis: Pure Position Noise

While extremely general, the hypergeometric function is not the most convenient of

mathematical functions. This section considers the case where Γ = 0 (pure position

noise), while the next section addresses Q̇ = 0 (pure intensity noise). In these limits,

we can not only obtain solutions in terms of less arcane functions, but also extract

important information about the long-time behavior of the system.

In the limit that Γ = 0, the trap experiences pure position noise. In this case

the differential equation (5.33) for the eigenmodes φλ(E) reduces to

E
∂2φλ(E)

∂E2
− ∂φλ(E)

∂E
+

λ

Q̇
φλ(E) = 0. (5.44)

This equation has the solution

φλ(E) = C1 E J2

(√
4λE/Q̇

)
− C2 E Y2

(√
4λE/Q̇

)
, (5.45)

where J2 and Y2 are the Bessel functions of order 2 [55].

From (5.39), we conclude that C2 is necessarily zero, since the second term of (5.45)

diverges at E = 0. Further, we find that satisfying (5.40) requires

J2

(√
4λU0/Q̇

)
= 0. (5.46)

Since this is only true for specific values of λ, we have a discrete eigenvalue spectrum

in the case of pure position noise. We can write the allowed values of λ as

λp =
z2

p

4

Q̇

U0

, (5.47)
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where zp are the zeros of J2.

Thus, for the boundary conditions we specified, the full solution is

φλ = C1 E J2

(√
4λE/Q̇

)
, (5.48)

with λ a value of the form (5.47). The first few values of λ are

λ = 6.59365
Q̇

U0

, 17.7125
Q̇

U0

, 33.7552
Q̇

U0

, 54.7300
Q̇

U0

, . . . (5.49)

Long-Time Behavior

Remembering that the φλ decays as e−λt, we expect that, in the long time limit,

the behavior will be dominated by the lowest mode, and the system will decay as

n(E, t) ∝
tÀ0

e
−6.59 Q̇

U0
t
. (5.50)

Further, since an eigenmode has a constant spatial shape, when the lowest eigen-

mode dominates, the mean energy of the system is a constant. Thus, the system

evolves towards a constant mean energy. We can write the mean energy as a function

of time

Ē(t) ≡ Etot

N
=

∫ U0

0
dE E n(E, t)∫ U0

0
dE n(E, t)

. (5.51)

In the long time limit, n(E, t) can be replaced by the lowest eigenmode. The result

is

Ē =
tÀ0

∫ U0

0
dE E2 J2

(
5.14

√
E/U0

)

∫ U0

0
dE E J2

(
5.14

√
E/U0

) . (5.52)

From this, we find that in the long-time limit, the mean energy of the system

approaches Ē = 0.544 U0.
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5.4.4 Eigenmode Analysis: Pure Intensity Noise

In the Q̇ = 0 limit, the system is driven by pure intensity noise. The differential

equation (5.33) for the eigenmodes φλ(E) reduces to

E2 ∂2φλ(E)

∂E2
+

(
4λ

Γ
− 2

)
φλ(E) = 0. (5.53)

The resulting solution is

φλ(E) = C1

√
E e

iA
2

ln E + C2

√
E e

iA
2

ln E, (5.54)

where A =
√

(16λ/Γ)− 9.

This solution automatically satisfies the boundary condition at zero (5.39). Ap-

plying the other condition (5.40), we find that

C2 = −C1 e−iA ln U0 . (5.55)

Inserting this into (5.54) and redefining the initial constant lets us rewrite the

solution as

φλ(E) = C3

√
E sin

(
A

2
ln

(
E

U0

))
, (5.56)

with A defined as before. This solution satisfies both boundary conditions (the

divergent nature of the logarithm at E = 0 is contained within the bounded sine

function), without forcing discrete values of λ. Unlike the case of pure position

noise, then, this system has a continuous eigenvalue spectrum. The eigenvalue λ

can take on any value that satisfies

λ ≥ 9

16
Γ. (5.57)
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We must also modify our expansion of the initial condition. The sums in (5.41)

and (5.43) must be replaced with integrals over λ.

Long-Time Behavior

Once again, we remember that the φλ decays as e−λt. Unlike the previous case, the

lack of a discrete eigenvalue spectrum means that the system does not ever cleanly

evolve into a single mode, as there are always competing modes arbitrarily close

to the lowest mode. Instead, we can make the claim that the decay will have the

lowest mode as an asymptotic limit, and thus that the decay rate will always be

greater than or equal to the decay rate of the lowest mode

n(E, t) ∝
tÀ0

e−β Γ t β → 9

16

+

as t →∞. (5.58)

The calculation of the mean energy at long times is also complicated by the

continuous eigenvalue spectrum. Computing the mean energy for an arbitrary value

of A, we find

Ē =

∫ U0

0
dE E3/2 sin

(
A
2

ln
(

E
U0

))

∫ U0

0
dE

√
E sin

(
A
2

ln
(

E
U0

)) =
9 + A2

25 + A2
U0. (5.59)

The lowest eigenvalue is λ = 9 Γ/16, for which A = 0. The associated mode

has a mean energy Ē = 9 U0/25. The continuous eigenvalue spectrum makes this

the asymptotic limit of the mean energy. Further, at long time the mean energy is

always greater than or equal to the mean energy of the lowest mode

Ē =
tÀ0

(
9

25
+ δ

)
U0 δ → 0+ as t →∞. (5.60)
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5.4.5 Numerical Solution via Finite-Difference Techniques

We can now fully treat the problem analytically. Any desired initial condition can

be evolved in the truncated harmonic well with any amount of position and intensity

noise. However, for anything but a few eigenmodes, the problem rapidly exceeds our

capabilities when treated as a pencil and paper problem. The best approach evolves

the Fokker-Planck equation numerically, and turns to the analytical solutions for

insight into the results. The next section details the methodology of our numerical

solution technique.

Dimensionless Form

We begin our numerical treatment of the problem by rewriting the 3-D Fokker-

Planck equation of (5.27) in dimensionless form. While the energy rescaling is

obvious

E = U0 ε, (5.61)

we have two possible time rescalings

t =
U0

Q̇
τ, (5.62)

t =
1

Γ
τ. (5.63)

The former works well unless Q̇ = 0, while the latter works unless Γ = 0. Since we

are interested in both cases, we must develop two different dimensionless equations.

We will refer to the equation arising from (5.62) as the dimensionless position noise

equation, while the result of (5.63) will be known as the dimensionless intensity

noise equation. The reader should note that both equations can accommodate a

mixture of the two noise sources. It is only in the Q̇ → 0 and Γ → 0 limits that the
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equations become intractable.

Making the scalings above, we find the dimensionless position noise equation is

∂n(ε, τ)

∂τ
=

(
ΓU0

4Q̇
ε2 + ε

)
∂2n(ε, τ)

∂ε2
− ∂n(ε, τ)

∂ε
− ΓU0

2Q̇
n(ε, τ). (5.64)

while the dimensionless intensity noise equation is

∂n(ε, τ)

∂τ
=

(
1

4
ε2 +

Q̇

ΓU0

ε

)
∂2n(ε, τ)

∂ε2
− Q̇

ΓU0

∂n(ε, τ)

∂ε
− 1

2
n(ε, τ), (5.65)

We will find it convenient to define a parameter to describe the relative mixture

of intensity and position noise. We define

XQ ≡ ΓU0

Q̇
, (5.66)

XΓ ≡ Q̇

ΓU0

. (5.67)

Inserting (5.66) into (5.64), we find the dimensionless position noise equation can

be written as

∂n(ε, τ)

∂τ
=

(XQ

4
ε2 + ε

)
∂2n(ε, τ)

∂ε2
− ∂n(ε, τ)

∂ε
− XQ

2
n(ε, τ). (5.68)

Making the equivalent substitution, we find that the dimensionless intensity noise

equation is

∂n(ε, τ)

∂τ
=

(
1

4
ε2 + XΓ ε

)
∂2n(ε, τ)

∂ε2
−XΓ

∂n(ε, τ)

∂ε
− 1

2
n(ε, τ). (5.69)
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Note that in this form, the two equations differ only by the mapping

XQ ↔ 1 1 ↔ XΓ. (5.70)

Finite Difference Method

We will employ a finite-difference technique to solve (5.68) and (5.69) numerically.

We will discretize the problem and work on a grid in ε and take discrete timesteps

in τ . The gridpoints are separated by distances of ∆ε and the timesteps by ∆τ (we

will discuss the actual values of ∆ε and ∆τ later). We will denote the value of the

function n(ε, τ) at the j-th gridpoint and the m-th timestep as nm
j .

There are many ways of converting derivatives into functions on gridpoints.

The technique we will use is known as the centered-space, forward-time (csft) [55]

method for reasons which will become immediately clear. We represent a spatial

derivative at the j-th gridpoint as

n′mj =
nm

j+1 − nm
j−1

2∆ε
. (5.71)

We represent a second spatial derivative as

n′′mj =
nm

j−1 − 2nm
j + nm

j+1

∆ε2
. (5.72)

Both approximations are correct to second-order in ∆ε. A time derivative is ex-

pressed as

ṅm
j =

nm+1
j − nm

j

∆τ
. (5.73)

This is a first-order approximation in ∆τ .

Inserting these derivative representations into (5.68) and collecting similar terms,
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we find the update procedure for the dimensionless position noise equation in our

finite difference method

nm+1
j =

[(XQ

4
ε2
j + εj

) (
∆τ

∆ε2

)
−

(
1

2

)(
∆τ

∆ε

)]
nm

j+1

+

[(XQ

4
ε2
j + εj

) (
∆τ

∆ε2

)
+

(
1

2

)(
∆τ

∆ε

)]
nm

j−1 (5.74)

+

[
−2

(XQ

4
ε2
j + εj

) (
∆τ

∆ε2

)
−

(XQ

2

)
(∆τ) + 1

]
nm

j .

Here εj is the ε-value at the j-th gridpoint. For the case of the dimensionless

intensity noise equation, we insert the derivative representations into (5.69) to get

the update procedure

nm+1
j =

[(
1

4
ε2
j + XΓ εj

)(
∆τ

∆ε2

)
−

(XΓ

2

)(
∆τ

∆ε

)]
nm

j+1

+

[(
1

4
ε2
j + XΓ εj

)(
∆τ

∆ε2

)
+

(XΓ

2

)(
∆τ

∆ε

)]
nm

j−1 (5.75)

+

[
−2

(
1

4
ε2
j + XΓ εj

)(
∆τ

∆ε2

)
−

(
1

2

)
(∆τ) + 1

]
nm

j .

These equation show how to calculate the value of a gridpoint at timestep m+1,

based only on values of gridpoints at timestep m. It is customary to graphically

represent the nature of the update procedure with a computational cluster. This is

done in Figure 5.1. This figure demonstrates the relationship between gridpoints at

consecutive timesteps.

Once we have an initial condition (n0
j for all j from 0 to jmax), and boundary con-

ditions (nm
0 and nm

jmax
), we simply apply the update procedure for all non-boundary

condition gridpoints (j = 1 to j = (jmax− 1)) in each timestep before repeating the

procedure at the next timestep.

The specific initial condition can be any function we desire, sampled at the



CHAPTER 5. DYNAMICS OF NOISE-INDUCED HEATING 106

n
j-1

m+1

n
j

m+1

n
j+1

m+1

n
j-1

m

n
j

m

n
j+1

m

Figure 5.1: Computational cluster for the finite-difference method. This figure
shows how a gridpoint in the numerical calculation is related to gridpoints at an
earlier timestep. This is the cluster for the csft method.

gridpoints we use in the model. The boundary conditions we use are the same ones

we derived in the analytical treatment of the problem (5.37), namely

nm
0 = 0 (5.76)

nm
jmax

= 0. (5.77)

The remaining issue which we must address is the overall stability of the numer-

ical approach and the constraints that stability places on ∆ε, ∆τ , and jmax.

Von Neumann Stability Analysis

We can analyze the stability of the algorithm by making the Ansatz [53]

nm
j = Ameikjε. (5.78)

The numerical approximation is stable (that is errors do not grow without bound)

if |A| ≤ 1 for all values of k. Inserting the Ansatz into the update procedures (5.74)
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and (5.75) and dividing through by Am and eikjε yields

A = [B − C]eikε + [B + C]e−ikε − [2B + D], (5.79)

where B, C, and D are defined as

B =

(XQ

4
+ 1

)(
∆τ

∆ε2

)
(5.80)

C =

(
1

2

)(
∆τ

∆ε

)
(5.81)

D =
XQ

2
∆τ − 1, (5.82)

for the dimensionless position noise equation and

B =

(
1

4
+ XΓ

)(
∆τ

∆ε2

)
(5.83)

C =

(XΓ

2

)(
∆τ

∆ε

)
(5.84)

D =
1

2
∆τ − 1, (5.85)

for the dimensionless intensity noise equation. Note also that we have evaluated

the update procedure at ε = 1 for our definition of B. This is the maximum value

of B over the entire range of ε.

We can rewrite (5.79) as

A = 2B (cos(kε)− 1)− i 2C sin(kε)−D. (5.86)

The equation describes an ellipse in the complex plane as kε varies. The center of

the ellipse is offset 2B + D to the left of the origin. The semi-major axis of the
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Figure 5.2: Trajectory of the stability function. This graph shows the trajectory
traced out by the tip of the vector defined by the complex number A. To ensure
that the numerical technique is stable, the magnitude of the vector must always be
≤ 1.

ellipse is 2B, and the semi-minor axis is 2C. See Figure 5.2 for a schematic.

In the case of the dimensionless position noise equation, we know this is the

proper orientation because if we write B in terms of C as

B =

(XQ

4

)(
∆τ

∆ε2

)
+

(
2C

∆ε

)
, (5.87)

we immediately see that the second term alone is greater than C, since ∆ε is neces-

sarily less than 1. Hence, B − C > 0 and we can confidently say B > C. A similar

argument holds for the dimensionless intensity noise equation.

The value of |A| is given by the length of the vector from the origin to points on

the ellipse shown in Figure 5.2. Clearly, the largest magnitude occurs at the leftmost
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point of the ellipse. At that point, the magnitude is |A| = 4B + D. Expanding

this expression based on the definitions of B and D, we find for the dimesnionless

position noise equation that the numerical approach is stable if

(XQ + 4)

(
∆τ

∆ε2

)
+

(XQ

2

)
(∆τ)− 1 ≤ 1. (5.88)

We move the constant to the other side of the inequality:

(XQ + 4)

(
∆τ

∆ε2

)
+

(XQ

2

)
(∆τ) ≤ 2. (5.89)

We note that since ∆ε ¿ 1, we can essentially ignore the second term to find

(XQ + 4)

(
∆τ

∆ε2

)
. 2. (5.90)

From this we get the final stability criterion for the dimensionless position noise

equation

∆τ

∆ε2
. 2

XQ + 4
. (5.91)

A similar analysis can be made for the case of the dimensionless intensity noise

equation. In that case, we find the stability criterion is

∆τ

∆ε2
. 2

1 + 4XQ

. (5.92)

5.4.6 Characteristic Results

A computer code which numerically solves the Fokker-Planck equation for arbitrary

initial condition, and subject to the boundary conditions and stability criterion of

the preceding sections was developed by this group. In the past, we used it to
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Figure 5.3: Position noise-induced atom loss as a function of time. The curves
show how the number of trapped atoms decreases with (dimensionless) time as a
result of position noise-induced heating. The top solid curve is an initial condition
that starts low in the well, the middle solid curve is an initial condition that starts
moderately high in the well, while the lower solid curve is an initial condition that
starts high in the well. The dashed line shows the slope of the decay rate of the
lowest eigenmode. Note that the different cases quickly reach a point where they
decay at the rate of the lowest eigenmode.

investigate the noise-induced atom loss rate, and to show that the loss rate can be

significantly faster than simple estimates would suggest [27]. The computer code

used to perform the simulation is shown in Section C.5. This section provides an

overview of some of our earlier results.

Pure Position Noise

We began by considering the case of pure position noise. We generated various

initial conditions with different mean energies (the details of the initial condition

are unimportant to the qualitative results we present). The evolution of the number

of trapped atoms as a function of (dimensionless) time is shown in Figure 5.3.

The most important feature to note in this figure is that all the curves decay at
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Figure 5.4: Position noise-induced energy evolution. The curves show how the
mean energy of the trapped atoms evolves as a function of (dimensionless) time as
a result of position noise-induced heating. The top solid curve is an initial condition
that starts high in the well, the middle solid curve is an initial condition that starts
moderately high in the well, while the lower solid curve is an initial condition that
starts low in the well. The dashed curve shows the mean energy of the lowest
eigenmode. Note that the different initial conditions quickly evolve to this value.

the same rate in the long-time limit despite their different initial conditions.

Working with the same initial conditions, we can investigate how the mean

energy of the trapped atoms evolves as a function of time. The results of this

investigation are shown in Figure 5.4. Note how the individual curves converge on

a constant value regardless of their initial energies.

We can explain both the constant decay rate at long time and the constant

mean energy at long time in terms of the eigenmode expansions we developed when

treating the Fokker-Planck equation analytically. Remember that the solution is a

sum of eigenmodes, each decaying according to their associated eigenvalue:

n(E, t) =
∑

λ

Bλ φλ(E) e−λτ . (5.93)
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In the case of pure position noise, we showed that the lowest eigenmode decayed as

exp(−6.6 Q̇ t/U0) ⇒ exp(−6.6 τ). Further, we showed that the mean energy of this

eigenmode is Ē = 0.544 U0 ⇒ ε̄ = 0.544. These results exactly match the long-time

behavior shown in Figure 5.3 and Figure 5.4.

Pure Intensity Noise

Similarly to the case of pure position noise, we can investigate the effects of pure

intensity noise by using the Fokker-Planck equation to evolve initial conditions with

differing mean energies. The number and mean energy evolution for these different

initial conditions are shown in Figure 5.5 and Figure 5.6, respectively.

Unlike the case of pure position noise, we note that while the decay curves are

becoming more similar, and while the mean energies are converging, the process

seems quite slow. In our analytical treatment of pure intensity noise, we predicted

just such behavior as a result of the continuous eigenvalue spectrum. We expect

the long-time decay to be faster than exp(−9 Γt/16) ⇒ exp(−9 τ/16). Also, we

expect the long-time value of the mean energy to be Ē ≥ 0.36 U0 ⇒ ε̄ ≥ 0.36. The

numerical results seem to bear this out.

Mixed Noise

When we consider a combination of position and intensity noise, we find that the

atom number decreases more rapidly than we expect. We can explain this effect

in terms of the types of heating produced by each type of fluctuation. Position

noise produces a constant heating rate, regardless of the energy of the atom, while

intensity noise has an exponential heating rate that heats atoms high in the well

much faster than those low in the well. The combination of the two is able to
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Figure 5.5: Position noise-induced atom loss as a function of time. The curves
show how the number of trapped atoms decreases with (dimensionless) time as a
result of intensity noise-induced heating. The top solid curve is an initial condition
that starts low in the well, the middle solid curve is an initial condition that starts
moderately high in the well, while the lower solid curve is an initial condition that
starts high in the well. The dashed curve shows the decay rate associated with
the lowest eigenmode. Note that while the three solid curves are becoming more
parallel, they are not responding as fast as the decay curves for pure position noise
heating. We would expect this slow, asymptotic approach to the limit based on the
continuous eigenvalue spectrum.
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Figure 5.6: Intensity noise-induced energy evolution. The curves show how the
mean energy of the trapped atoms evolves as a function of (dimensionless) time as a
result of position noise-induced heating. The top solid curve is an initial condition
that starts high in the well, the middle solid curve is an initial condition that starts
moderately high in the well, while the lower solid curve is an initial condition that
starts low in the well. The dashed curve shows the mean energy of the lowest
eigenmode. Note that while the three solid curves are converging on one another
and the limit, they show only an asymptotic behavior. This behavior is expected
as a result of the continuous eigenvalue spectrum.
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work synergistically. The position noise efficiently heats atoms low in the well,

thereby moving them from a region where the exponential heating of intensity noise

is ineffective into a region where the exponential heating is significantly faster than

the constant heating provided by position noise. Thus, the combination of the

two heating mechanisms avoids the drawbacks of both, and the atom loss rate is

significantly enhanced. A plot of the number evolution for a variety of mixtures of

position and intensity noise is shown in Figure 5.7. We present results for XQ = 0.5,

2.0, and 5.0.

Analysis of Results

In this section we have discovered a number of qualitative results about noise-

induced evolution of trapped atoms in a harmonic well. First, we have shown that

the loss rates can be significantly faster than the simple estimates we developed

prior to a Fokker-Planck model. Second, we have shown that the loss rate for a

process with position and intensity noise is greater than the sum of the two loss

rates individually. Finally, we have discovered that the system evolves into the

lowest eigenmode where the long-time behavior of the system combines continual

atom loss with a non-varying mean energy (or temperature). This is exactly the

confusing behavior which was observed in early optical trapping experiments [28].

Thus, our results lend credence to the argument that it was indeed noise-induced

heating which limited the lifetime of optical traps.

5.5 Gaussian Confining Potential

The treatment in this chapter has been entirely within the context of a harmonic

confining potential. In general, the potential in our experiment is much more closely
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Figure 5.7: Position and intensity noise-induced atom loss. In each graph the top
solid curve is an initial condition that starts low in the well while the lower solid
curve is an initial condition that starts high in the well. Each graph shows the
number loss for different mixtures of position and intensity noise, XQ. a) XQ = 0.5,
b) XQ = 2.0, c) XQ = 5.0. The loss rates are significantly enhanced over position
or intensity noise alone.
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approximated as a Gaussian. We have developed a Fokker-Planck equation similar

to the one presented here, but which describes noise-induced heating in a Gaussian

well. However, as part of the derivation, we are forced to make the assumption that

the fluctuation spectra are white noise, that is, constant:

Sx(ν) = α (5.94)

SI(ν) = β. (5.95)

Based on our measurements of several different lasers, we believe that the real

fluctuation spectra are not approximately constant, and hence that the Gaussian

model does not currently describe real-world systems.

In the future, we suspect it may be possible to derive a Gaussian well Fokker-

Planck equation based on the assumption of brown noise, that is:

Sx(ν) =
α

ν2
(5.96)

SI(ν) =
β

ν2
. (5.97)

Such spectra are known to arise naturally in systems with multiple relaxation mecha-

nisms. Further, our measurements show that the fluctuation spectra of several lasers

does closely approximate brown noise. This is promising area for future theoretical

work.

Finally, our experiments now produce temperatures so low that the potential

well is, to a good approximation, harmonic. Thus we can use the models derived in

this chapter with reasonable results.



Chapter 6

Experimental Setup and
Procedure

. . . no one believes an hypothesis except its originator, but
everyone believes an experiment except the experimenter.

—W.I.B. Beveridge

6.1 Overview

The key experimental result of this thesis is the successful preparation of a degener-

ate Fermi gas of 6Li via all-optical means [20]. To provide the reader with a context

for the remainder of the chapter, the first section provides a top-level overview of

the experimental procedure. Since this effort has spanned several theses, we next

summarize the major apparatus changes introduced for this thesis, before beginning

the detailed discussions of the experimental subsystems and procedure that make

up the remainder of this chapter.

6.2 Overview of the Experimental Procedure

While the experiment as a whole is quite complicated, the broad outlines of the

procedure are quite simple. We initially prepare 6Li atoms in a mot at a temper-

ature of approximately 140µK (see Section 2.2). A small fraction (' 1-3%) of the

118
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atoms in the mot are transferred to a fort created by a focused CO2 laser beam

(see Section 2.3). The transferred atoms exist in a roughly 50-50 mixture of the

two lowest hyperfine ground states (see Section A.4). Although collisions between

spin-polarized atoms are highly suppressed at low temperatures as a result of the

Pauli exclusion principle, the presence of two distinct hyperfine states ensures that

collisions are allowed (see Section A.7.3). For the two states we work with, the elas-

tic scattering cross-section is zero at zero field (see Section A.7.3). A dc magnetic

field is applied to the sample to “turn-on” elastic collisions between the two states.

This initiates the evaporative cooling process (see Section 2.4).

After a short time, the gas has cooled to the point where collisional ejection of

atoms from the trap is extremely unlikely. At this point, evaporative cooling stag-

nates (see Section 2.4). To proceed further, we adiabatically lower the intensity of

the trap laser, reducing the trap depth and increasing the probability of collisional

ejections. By lowering the trap in a controlled manner, we can maintain efficient

evaporative cooling into the degenerate regime. Once we have finished the evapora-

tive cooling process, we switch off the dc magnetic field and adiabatically raise the

trap depth. This maintains the degeneracy parameter we achieved in the lowered

well, and places the sample in a confining potential that is well characterized and

invariant between experimental trials. To characterize the degenerate gas, we sud-

denly turn off the trapping potential. As the cloud expands, we illuminate it with

a near-resonant probe beam, and record the absorption profile with a ccd camera

(we will address this topic in Chapter 7). From this profile, we can extract all the

important experimental information about the degenerate sample (we will address

this topic in Chapter 8).
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6.3 Major Apparatus Changes in this Thesis

The effort to produce a degenerate sample of 6Li stretches back approximately

five years and portions of the trapping apparatus are over seven years old. As such,

significant portions of the apparatus and experimental methodology date from prior

theses [21,29,30]. While a detailed description of the remainder of the experimental

apparatus is provided later in the chapter, this section describes the major additions

and changes to the apparatus during the progress of this thesis.

6.3.1 Commercial CO2 Laser

In prior experiments in our group [21], the fort was produced by a home-built, CO2

laser with a maximum power of approximately 70W. For this thesis, we installed

a Coherent-deos LC-100NV commercial CO2 laser with a maximum power of ap-

proximately 140 W. This rf-discharge laser is powered by an ultrastable Agilent

6573A dc power supply.

The original decision to construct a CO2 laser was based on the necessity of

having a trapping laser with very low intensity noise fluctuations. As discussed

in Chapter 5, intensity fluctuations can lead to heating of the trapped atoms [26,27],

and were most likely responsible for the short confinement times exhibited in early

forts [28]. The Coherent-deos laser was originally developed for the laser radar

(lidar) industry and exhibits extremely good intensity stability. We characterized

the effect of intensity noise on a trap by the exponential heating rate, Γ which

is a function of the trap fluctuations (5.11). In Figure 6.1, we plot 1/Γ as a

function of trap frequency for the measured fluctuation spectrum of the deos laser.

In Figure 6.2, we provide a high-resolution view of low frequencies. Note that for

trap frequencies as high as 7 kHz, 1/Γ &104 s. These values are large enough that
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Figure 6.1: Noise-heating lifetime as a function of trap frequency (low-resolution).

we expect negligible noise-induced heating during the experiment.

The nearly twofold increase in laser power not only increases the number of

atoms loaded into the fort, but the deeper well makes the initial evaporative

cooling more efficient as well (the increased difference between the well depth and the

initial cloud temperature means that each ejected atom carries away proportionally

more energy). This greater efficiency results in a larger number of atoms at the

end of the evaporative cooling process, and hence an improved signal-to-noise ratio

during imaging.

As an additional benefit, the commercial laser is substantially safer than the

home-built laser for a number of reasons. First, the plasma in the commercial laser

is produced by an rf-excitation of a sealed gas sample. This requires only a stable,

35V dc power supply, and contact with the plasma is impossible. The home-

built laser excited a flowing gas sample with an electric discharge. The discharge

was energized by a 13 kV dc power supply. Further, the exhaust of the system
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Figure 6.2: Noise-heating lifetime as a function of trap frequency (high-resolution).

required a connection to ground to avoid static build-up of dangerous voltages on

the fittings. Second, the fact that the new laser is excited by rf means that the laser

intensity can be pulse-modulated. The control panel for the laser has a knob that

adjusts the duty-cycle of the pulse-modulation from 0% to 100%. Consequently, the

average laser power can be varied anywhere from 1-140W. Thus, during alignment

procedures, we can work with low-power beams. This is in contrast to the home-

built laser, which always produced 70W.

Although the size, ellipticity, and curvature of the new beam are different, we

simultaneously modified the beam-conditioning optics so that the size and location

of the focus remain roughly the same as in our previous experiments. The net result

is a potential well that is significantly deeper than our previous implementations.
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6.3.2 CO2 Laser Intensity Lowering System

As discussed in Chapter 2, we provide forced evaporative cooling by continuously

lowering the intensity of the laser beam (see Section 2.4.2). While this, in itself,

is not new, previous experiments by this group [52] used a simple exponential low-

ering curve as opposed to one of the shape (2.48)—which should provide superior

evaporation. Unlike the exponential lowering curve, this new shape is not easily

generated by analog electronics. To provide a means for lowering the laser intensity

according to this curve, we developed a new method for controlling the output of

the ao-modulator. The new system bypasses a large portion of the control elec-

tronics in the rf-supply portion of the IntraAction GE-4050 ao-driver. An external

rf source (Agilent E4423B) is amplitude modulated by the desired lowering curve.

This curve is produced by an Agilent 33250A digital arbitrary waveform generator.

The amplitude modulated rf signal is injected into the input of the rf-amplifier in

the ao, which then produces a laser intensity proportional to the lowering curve.

The switch to digital generation of the lowering curve gives us the ability to

easily generate arbitrary intensity modulations. This has three important benefits.

First, the same system can be used for parametric-resonance measurements of the

trap oscillation frequencies (see Section 4.5.1). We merely replace the traditional

lowering curve with a sinusoidal amplitude modulation. Second, we can rapidly

switch between different lowering curves in a controlled fashion. This allows us to

respond to variations in trap loading by adjusting the constants in the lowering

curve. Finally, we can easily correct nonlinearities in the ao. By measuring the

laser output as we modulate with a known function (e.g. a ramp), we can determine

how the output of the ao varies from what we command. We can then generate

a “correction function,” which we digitally apply to a desired modulation function
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before sending it to the waveform generator. This corrects for the nonlinearities in

the ao.

6.3.3 Retroreflected Loader

Based on the analysis in [56], we expect dramatic enhancement of the number of

atoms loaded into the fort as the well depth is increased. While the new CO2

laser provides a significant increase over the well depth we achieved with the home-

built laser, we realized that a simple technique could further increase our well depth

during fort loading.

By retroreflecting the CO2 laser during the loading phase, we can increase the

intensity at the focus of the trap by a factor of approximately 1.5 over the single

beam alone. By using a “rooftop”-mirror to reflect the beam, we can rotate the

polarization by π/2. This has two important benefits. First, it avoids the formation

of a standing wave in the trapping region (it does create a polarization-gradient [57],

but the detuning of the fort is so great that the interaction is purely scalar, so this

has no effect on the atoms). Thus, we retain the simple potential well of a single-

beam trap, despite doubling our well depth. Second, by giving the retroreflected

beam an orthogonal polarization to the original beam, we can use a polarization

analyzer near the output of the laser to reject the retro-reflected beam into a beam-

dump, and thereby avoid feeding it back into the laser resonator where it might

cause noise.

The beam from the CO2 laser is focused into the trapping region by a lens just

outside the vacuum system. After coming to a focus in the trapping region, the

beam begins to diverge. In order to retroreflect the beam, we must first recollimate

it. We do this with a lens just outside the exit window. The recollimated beam then
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strikes the rooftop mirror, has its polarization rotated by π/2 and is retroreflected.

It then strikes the recollimating lens, which now acts to focus the beam back into

the trapping region. The input lens now acts as a recollimating lens, as the beam

heads back towards the ao (see Figure 6.3 A).

However, we do not always wish to have the retroreflected beam present. One

of the primary features of our system is the extreme stability of the trapping po-

tential. Slight relative motions of the two beams can lead to significant modula-

tion of the trapping potential—and consequently, heating of the atoms. Thus, we

want the retroreflected beam to only be present during the loading phase of the

experiment. We realized that the the beam shape just after the rooftop mirror

is Fourier-transform-related [38] to the beam shape at the trap. Hence, the trap

shape is primarily dominated by the low-frequency spatial components of the beam

at the rooftop mirror. This property allows us to insert a deflecting mirror into the

beam at the rooftop mirror without significantly disturbing the trapping potential

(the only effect is a gradual reduction in well-depth to the single-beam value). To

accomplish this, we developed a piece of equipment we call the “chopper”, in honor

of its guillotine-like motion.

A deflecting mirror is mounted to ball-bearing races which travel a vertical

track. A pneumatic cylinder lifts the mirror during the loading phase, exposing the

rooftop mirror to the laser and producing a retroreflected beam. After we initiate

evaporative cooling in the trap, but before we begin lowering the laser intensity, the

pneumatic supply is turned off, and the cylinder now acts as a dashpot as gravity

pulls the deflecting mirror down. After several seconds, the mirror has traversed

the entire beam, thoroughly blocking the rooftop mirror, deflecting the laser into a

beam-dump, and extinguishing the retroreflected beam (see Figure 6.3 B). Because
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Figure 6.3: Operation of the retroreflected loader. In A), we see the system when
the chopper is raised and the retroreflected beam is present. Note that all beams
contain both horizontal (original) and vertical (retroreflected) polarization. In B)
the chopper has been lowered into the beam path and deflects the beam to a beam
dump.
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evaporation is present, the atomic cloud simply cools as the well depth is slowly

reduced by the chopper, finally stagnating in the single beam potential, and ready

for the initiation of forced evaporation.

6.3.4 CCD Imaging System

In previous theses, we gathered information about the atomic clouds solely through

resonance fluorescence [58]. A resonant (or near-resonant) beam excited the atoms

and a photomultiplier tube (pmt) recorded the resulting fluorescence. This tech-

nique is works quite well at determining the number of trapped atoms, but any

measurement of atomic spatial distributions requires complicated arrangements of

resonant beams and reliance on multiple assumptions about the initial shape of

the cloud. Since many of the effects we wished to study had direct connections

to the shape of the cloud, we decided to implement an imaging system using a

charge-coupled device (ccd). The imaging techniques uses a near-resonant beam to

illuminate the atomic cloud. The atoms cast a shadow on the beam, and the result

strikes the imaging sensor in the ccd camera. The physics of imaging are discussed

in Chapter 7.

We use an Andor Technology slow-scan DV434-BV ccd camera. The camera

has a 1024×1024 pixel sensor with a pixel size of 13 µm. The camera contains a

thermo-electric cooler (tec) that allows us to maintain the sensor at -40 ◦C. At this

temperature, the dark-current (charge-buildup that is uncorrelated to the actual

light striking the sensor) is reduced to well less than 1 e−/pixel · image. The read-

out electronics operate slowly (approximately 1 s per image) to minimize electronic

noise—yielding an rms electron noise per pixel of less than 2. The sensor has a

quantum efficiency of approximately 95%. The exposure time is effectively set by
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the duration of the illuminating pulse. The imaging optics provide an approximate

magnification of M ' 4.

The camera observes the cloud at an angle of 35 ◦ from the long axis of the cloud.

This produces an apparent foreshortening of the cloud which must be accounted for

in any analysis of the images.

6.3.5 Timing System

Previous experiments in our lab used daisy-chained Stanford Research Systems

DG535 Digital Pulse Generators to provide the ttl control pulses to the various

pieces of experimental equipment. Unfortunately, a single DG535 can produce a

sequence containing at most 8 ttl edges. Worse, a single channel could be fired only

once in the experimental sequence. Given the large number of edges we required

and the high cost of DG535s, we were forced to use single pulse outputs to control

multiple pieces of equipment. The consequence of this coupling was that changing

the control sequence was a highly non-trivial exercise. Simply shifting the turn-on

point of a single piece of equipment could take one or more days of work.

To avoid this problem in the future, we switched to an entirely computer-

controlled timing system. A detailed discussion of this timing system is presented

in the concurrent thesis by Stephen Granade [20]. The new system uses a National

Instruments DIO6533 Digital Pattern Generator card to produce the desired ttl

edges. This card has 32 independent ttl outputs which can be switched an ar-

bitrary number of times in the experimental sequence. We developed a standard

format for a timing file—a textual description of how we wished the 32 channels

to be controlled. A software program (written by Stephen Granade) reads in this

description, parses it into a gigantic matrix which describes the on/off state of each
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channel at every time step in the experiment (The size of the timestep is user de-

fined. We typically use 100 µs—meaning that for an experiment lasting 60 s, the

matrix is 32×(6×105)), and stores it in computer memory. The National Instru-

ments card is then triggered, and it outputs the desired pulse sequence directly from

memory.

The large number of channels, along with the ability to output arbitrary ttl

signals on a single channel makes it possible to independently control every piece of

experimental equipment. This makes creating new timing files simple—we need only

describe exactly what we want the individual components to do. Further, storing

the description of the timing in software (the timing file) rather than in hardware

(the interconnections between DG535 pulse generators) means that changing ex-

periments is now a matter of simply loading a new file. A timing file, once created,

exists forever, waiting for the next time it is needed. Thus, in mere seconds, we can

switch from one type of experiment to another.

6.4 Experimental Setup

This section provides a description of the remainder of the experimental setup. For

additional descriptions of these components the reader is directed to the earlier

thesis by Ken O’Hara [21] and a concurrent thesis by Stephen Granade [20].

6.4.1 Main Vacuum Chamber

The heart of any atomic cooling and trapping experiment is the vacuum chamber.

In our experiment, the primary science chamber is a stainless-steel chamber custom

build by mdc Vacuum Products. A drawing of the vacuum chamber is shown
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in Figure 6.4. The chamber is roughly in the shape of an inverted “T.” The primary

observation cluster (and hence, the trapping region) is located at one end of the

horizontal portion of the chamber. All of the ports are standard ConFlat (cf)

knife-edge fittings with a copper gasket.

The chamber is maintained at ultra-high vacuum (uhv) levels (P ≤1×10−11 Torr).

The pumping is provided at ports V1 and V2. Port V1 is attached to a 300 liter/s

ion-pump. An ion-pump creates a region of high electric field between a cathode

and anode. Any atom that wanders into the high-field region is ionized and the

resulting electron and positively charged ion are electrostatically drawn to the ap-

propriate titanium electrodes, where their (substantial) speed embeds them in the

material, effectively removing them from the chamber.

To achieve an even better vacuum than can be provided by the ion-pump, we

have a titanium-sublimation (Ti-sub) pump attached to port V2. A Ti-sub pump

consists of one or more large filaments of titanium. Driving a high-current (47A)

through the filament causes the a sputtering action that deposits a monolayer of

titanium on all surfaces in direct line-of-sight with the filament. The current is then

turned off after 7minutes. Titanium is a getter—a highly-reactive element that

bonds strongly to all but the most inert atomic species. Thus, with application

of a titanium monolayer, we turn the interior walls of the vacuum chamber into

a very effective “pump” with a pumping speed of many thousands of liters per

second. Eventually the monolayer becomes saturated, requiring the reapplication

of current to the filament and deposition of a new monolayer. Additionally, as

noted above, titanium does not work well on inert atoms like the noble gases (most

notably helium). Thus, a Ti-sub pump should always be used in conjunction with

a species-independent pumping mechanism (such as an ion-pump).
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Figure 6.4: Main experimental vacuum chamber (not to scale). The port labels
will be used throughout the text to describe the experimental setup.



CHAPTER 6. EXPERIMENTAL SETUP AND PROCEDURE 132

There are two more ports that are not used for optical access to the trapping

region. Port G contains an ionization vacuum gauge which we use to monitor the

vacuum in the main chamber. Port S2 provides a physical connection to the atomic

slower and the atomic source region beyond (described in Section 6.4.2 and Sec-

tion 6.4.3, respectively).

Ports S1, M1–M6, C1, C2, P1, and P2 are capped with standard 2.75 in. cf

windows that have been ar-coated for 671 nm light. They provide optical access to

the trapping region for the slower beam, mot beam, and the imaging and resonance-

fluorescence probe beams. Ports F1 and F2 are used to inject the CO2 laser into

the trapping region and are capped with custom-built windows from Insulator Seal

Corporation. These windows contain crystalline Zinc-Selenide (ZnSe) windows.

Unlike glass, ZnSe transmits light at CO2-laser wavelengths. A seal between the

ZnSe and the metal is made on each side of the crystal, and the space between the

two seals is pumped to approximately 1×10−9 Torr by a 10 liter/s ion pump. This is

necessary because the technology for making a ZnSe-metal seal is not yet capable of

maintaining the 1×10−11 Torr pressure differential required for our chamber. With

two seals on each window, the required pressure differential can be maintained.

6.4.2 Atomic Slower

As stated previously, the main vacuum chamber is connected to the atomic slower

via the small cf port S2. The atomic slower consists of a thin tubular vacuum

chamber running down the axis of 10 independently-controllable magnetic coils. A

near-resonant laser beam is injected into the main vacuum system at port S1. This

beam leaves the chamber and enters the atomic slower at port S1. The beam slows

the atoms coming from the atomic source with a physical process identical to that
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used in optical molasses (see Section 2.2.2). Initially, the atoms have velocities con-

sistent with the liquid-metal temperatures present in the atomic source ('2 km/s).

However, the interaction with the slowing beam produces accelerations on the order

of 2×105 g’s, rapidly slowing the atoms.

If we did nothing, the Doppler shift would quickly tune the atoms out of reso-

nance with the slowing beam. The magnetic coils of the atomic slower provide a

precisely tailored magnetic field that Zeeman tunes the atomic levels of the atoms,

keeping them in resonance with the laser light as they are slowed. After traversing

the length of the slower, the atoms have a velocity on the order of 30m/s, which is

within the capture velocity of the mot. A detailed description of the physics and

construction of the atomic slower can be found in [29].

The atomic slower provides an additional benefit beyond compressing the ve-

locity distribution of the atoms. The slowing region acts as a differential-pumping

region between the main vacuum chamber and the lower vacuum present in the

atomic source. A pressure differential can only be maintained between two regions

if the connection between them has a conductance that is low enough (analogous

to how two regions in an electric circuit can be at different voltages only if their

connection has a low enough conductivity). The long, narrow tube of the atomic

slower has a very low conductance. This allows us to have a relatively high pressure

in the atomic source region, without affecting the quality of the vacuum in the main

experimental chamber.

6.4.3 Atomic Source Region

The atomic source region of the experiment is a stainless-steel vacuum chamber

approximately in the form of a vertical tube (see Figure 6.5). Port S provides a
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connection to the atomic slower ( Section 6.4.2). The interior of the chamber is

maintained at approximately 1×10−9 Torr by the presence of a 300 liter/s ion pump

at port V1 and a Ti-sub pump at port V2. Port V3 is normally sealed with a cf

blank. However, if the system has been up to atmosphere, a turbopump can be

attached to port V3 and used to pump both the atomic source region and the main

vacuum chamber down to a pressure where the ion pumps can be started. Once

this has been accomplished, the gate valve can be closed, the turbopump removed,

and the cf blank attached. The pressure in the atomic source region is monitored

by an ionization pressure gauge attached at port G.

Also at the top of the chamber are connections to the 6Li oven, an observation

window (port O) and a solenoid-activated shutter for blocking the atomic beam.

The oven consists of a home-built stainless steel reservoir and collimating tube.

The inside of the oven and collimating tube are lined with a fine stainless-steel

mesh. As the oven is used, 6Li atoms that do not successfully transverse the colli-

mating tube are deposited on the mesh. When a suitable number have accumulated,

the liquid 6Li is wicked by the mesh back to the reservoir. In this way, the oven

recirculates the unused 6Li, dramatically lengthening the lifetime of the oven.

The oven and collimating tube are wrapped with 5 independent heating coils.

The exit-velocity of the atoms is determined by the temperature of the oven at

the point where the reservoir joins with the collimating tube (this point acts as a

nozzle). This point is maintained at approximately 700K (see Section A.2 for a

discussion of the temperature dependence of the vapor pressure).
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Figure 6.5: Atomic source region (not to scale). The port labels will be used
throughout the text to describe the experimental setup.
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6.4.4 Ring Dye Laser

The experiment relies on a large number of optical beams of approximately 671 nm

wavelength. In our experiment, this light is generated by a Coherent 699-21 ring

dye laser. The dye laser uses LD-688 dye in a 2-Phenoxyethanol solvent. The dye

laser is pumped by a Coherent Innova 300 Argon-Ion laser (see Section 6.4.5). With

fresh dye, the laser is capable of producing approximately 900 mW of 671 nm light

in a tem00 mode. The laser is locked to an internal reference cavity, which is in

turn locked to a 6Li fluorescence signal (see Section 6.4.6). The frequency stability

of the dye laser has been measured to be approximately 2 MHz peak-to-peak.

6.4.5 Argon-Ion Laser

The pump laser in our experiment is a Coherent Innova 300 Argon-Ion laser. The

Innova is capable of producing up to 12W of power, but we typically pump the dye

laser with 6-7W (we start with 6 W on fresh dye and increase the pump power as

the dye ages).

6.4.6 Locking System

The dye laser is locked to its internal reference cavity. However, to further stabilize

the laser, we lock the reference cavity to an external fluorescence signal derived from

the 6Li D2 line. A small portion of the laser output is deflected to the locking system.

The locking beam is double-passed through an ao before being expanded and routed

into a vacuum chamber containing a supersonic beam of 6Li. The ao provides a

dc upshift to the light frequency of approximately 200MHz. In addition, there is

a small modulation of the frequency about this point at a frequency of 11 kHz.

The locking beam strikes a supersonic atomic beam perpendicularly to minimize
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any Doppler effect. The fluorescence of the atoms is collected by a fiber optic

bundle and routed to a pmt. The pmt signal is then monitored by a Stanford

Research Systems SR510 Lock-In Amplifier. The lock-in looks for fluctuations in

the fluorescence occurring at the frequency of and in phase with the modulation

introduced by the ao. The output of the lock-in is a linear error signal which is used

as the feedback in a home-built servo system that drives the overall laser frequency.

The result is that the laser constantly adjusts itself to maintain a fluorescence

maximum in the locking region. Because of the +200MHz dc shift applied by

the ao, this means that the laser produces light approximately 200MHz below the

atomic resonance.

6.4.7 Beam Routing

The dye laser does not produce enough power to provide all of the optical beams

needed by the experiment at all times. Since there is never an occasion where

we simultaneously need the mot beams and the probe/camera beams (the mot

fluorescence dominates), this provides a natural dividing point. When the mot

arm ao is energized, the system produces the mot beams. However, when the mot

beams are not needed, the mot ao is de-energized and the zeroth-order beam of

the ao is caught by a small pick-off mirror and directed to the probe and camera

section of the experiment. This is shown in Figure 6.6.

The details of this figure will be discussed in sections corresponding to the various

portions of the apparatus.
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Figure 6.6: Beam routing between mot beams and probe/camera beams. In A)
the mot ao is energized and the system is producing mot beams. In B) the mot
ao is de-energized and the system sending power to the probe/camera system. In
both cases, unused components are greyed out. In both, the frequency shifts given
are those achieved after a double-pass of the ao.
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6.4.8 Slower Beam

As shown in Figure 6.6, a portion of the laser power is deflected by a variable

waveplate/beamsplitter combination to act as the slower beam. After leaving the

portion of the system depicted in Figure 6.6, the slower passes through two lenses

and a quarter-waveplate before entering the main experiment chamber through port

S1 (see Figure 6.4). The beam exits the chamber through port S2, passes through

the slower, and enters the atomic source region through port S (see Figure 6.5),

before terminating at the back wall of the oven.

The two lenses mentioned above are set to provide a gently-focusing beam with

a beam waist at the back of the oven. The quarter-wave plate converts the linearly-

polarized beam into the required circular polarization (see Section 2.2.2). The power

of the slower beam prior to entering the main chamber is approximately 100 mW.

6.4.9 MOT Beams

When the mot beams are needed, the laser power that is not directed into the slower

beam is used to create the bichromatic mot beams (see Section 2.2.2). The light is

first directed into the mot arm (see Figure 6.6), where the light is double-passed

through an ao to upshift the frequency by approximately 106 MHz. This produces

a frequency that is roughly 6 linewidths to the red of the D2 transition from the

upper hyperfine groundstate (see Section A.4). A portion of the output of the mot

arm is then deflected by a variable waveplate/beamsplitter combination into the

repumper arm. In the repumper arm, the light double-passed through another ao

to upshift the frequency by another 228MHz. This frequency component is then

approximately 6 linewidths to the red of the D2 transition from the lower hyperfine

groundstate.
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The two beams are combined on the same beamsplitter used to send power

into the repumper arm. The now bichromatic beam is then split by another vari-

able waveplate/beamsplitter combination to create the horizontal and vertical mot

beams (see Figure 6.6). Both beams then pass through beam expanders before

being directed into the main experimental chamber. The vertical beam enters the

chamber through port M1 and exits through port M2 (see Figure 6.4). The beam

then encounters a quarter waveplate before striking a retroreflecting mirror. The

horizontal beam enters the chamber through port M3, exits through port M4, re-

enters through port M5, and exits again at port M6. It then passes through a

quarter waveplate and strikes a retroreflecting mirror.

Creating both horizontal beam pairs from a single beam in this manner allows

us to provide 50% of the total mot power in each beam rather than the 33% which

we would have available if each beam pair were independent. This increase in power

results in a higher capture velocity for the mot and a correspondingly larger number

of atoms in the mot. One drawback to the approach is that the long beampath

for the horizontal beam results in significant attenuation of the beam power along

the beam and a resulting imbalance between the forward and backward beams. If

uncorrected, this imbalance produces a non-negligible shift in the location of the

mot center. To counteract this effect, the expanding telescope for the horizontal

beam is adjusted to make the beam slowly focus. The decrease in size counteracts

the decrease in power and serves to keep the intensity of the beam constant along

its length.
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6.4.10 Probe Beam / Camera Beam

The probe/camera beam section of the experiment also involves power sharing be-

tween the probe and camera beams. In this case, switching between the two setups

requires manual intervention, and hence no experiment can use both the probe and

camera beam as currently designed. The layout of this portion of the system is

shown in Figure 6.7. The initial portion of the setup is identical regardless of the

probe/camera choice.

The beam from the mot arm passes into a double-passed ao arrangement that

upshifts the frequency by approximately 200MHz. This makes the frequency reso-

nant with the D2 transition from the F = 3/2 upper hyperfine groundstate (for this

reason, we refer to this ao as the “3/2 arm”). A portion of the power is then de-

flected by a variable waveplate/beamsplitter combination into the “1/2 arm”, where

a further upshift of 228MHz occurs. This generates a frequency that is resonant

with the D2 transition from the F = 1/2 hyperfine groundstate. The two beams

are combined on another beamsplitter and coupled into a polarization-preserving

optical fiber. This produces perfect overlap of the two beams.

At the exit of the fiber is a small, flip-up mirror which determines if the system

produces a probe beam or a camera beam. The mirror is designed such that it can be

flipped in and out of the beam without affecting its alignment. When the mirror is

up, the beam coming out of the fiber strikes the mirror and is deflected. This beam,

which is a probe beam, is then expanded and inserted into the main experimental

chamber through port P1 (see Figure 6.4). The beam strikes the atomic cloud in the

center of the trapping region, exits the vacuum chamber through port P2, where

it is retroreflected back into the chamber. The retroreflection balances the light

pressure on the atoms and allows for longer interrogation times than are possible
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Figure 6.7: Beam routing between probe beam and camera beam. In A) the flip-
up mirror after the fiber is up and the system is producing a probe beam. In B) the
flip-up mirror after the fiber is down and the system is producing a camera beam.
In both cases, unused components are greyed out.
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with a single beam.

If the flip-up mirror is down, the beam strikes a polarizing beam splitter that

extracts the frequency that is resonant with the D2 transition of the F = 3/2

groundstate to create the camera repumper beam that is injected into the main

vacuum chamber along the path used by the probe beam. The remaining polariza-

tion enters another double-pass ao which upshifts the light frequency. After exiting

this ao arm, the beam enters another double-passed ao where the frequency is

downshifted. The upshift and downshift applied to the beam are chosen so that

their difference produces the desired detuning of the camera beam. This two-ao

setup allows for easy detuning of the frequency above or below resonance—a feat

which is impossible with a singe-ao setup. After exiting this ao arm the camera

beam is expanded and inserted into the main chamber through port C1 (see Fig-

ure 6.4). The beam passes through the atomic cloud in the center of the trapping

region and exits the system through port C2.

Another manual change is required in the detection apparatus depending on

whether the system is configured for a probe beam or a camera beam. If we are

using the probe beam, the fluorescence is collected by a lens placed just outside

port C2. The fluorescence then strikes a small, removable mirror that directs the

light into a fiber optic bundle which routes the light to a pmt. If we are using the

camera beam, the small mirror is removed, and the lens on port C2 is part of the

imaging system for the camera. The camera beam then propagates through the

remainder of the imaging system and into the ccd camera. A schematic of these

two situations is shown in Figure 6.8.
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A) B)

Figure 6.8: Detection of probe signal or camera image. In A) the removable
mirror is out and the system passes the camera beam to the ccd camera. In B)
the removable mirror is in place and the system directs the fluorescence signal into
a fiber bundle for routing to a pmt. In both cases, unused components are greyed
out.

6.4.11 MOT Gradient Coils

The magnetic field gradient required for the mot is produced by a pair of home-

built coils mounted around ports M1 and M2 of the main experimental chamber

(see Figure 6.4). The coils are in an anti-Helmholtz configuration and are energized

with a current of approximately 28A. This current produces a magnetic field gradi-

ent of 30G/cm at the center of the trapping region. The coilforms are water-cooled

to dissipate the heat. Additionally, a radial slit has been cut in the coilforms prior

to winding. This helps reduce the production of eddy currents when the coils are

shut off and allows for a more rapid turn-off of the magnetic field.

6.4.12 Multiplexer

At certain times during the experiment, we will need to change the tuning or in-

tensity of some of the optical beams. This can be accomplished by adjusting dc

voltage levels applied to the input ports of the aos. However, our timing system
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produces ttl edges, not arbitrary dc voltages. To allow the timing system to con-

trol these devices, we constructed an electronic device we call the “multiplexer.”

The multiplexer consists of a number of analog switches and voltage supplies. The

analog switches either have 2 or 4 inputs. The 2-input version has a single ttl-

logic input and a single analog output. By setting two of the voltage sources to the

desired levels and connecting them to the two analog inputs, we can switch between

the two voltages on the output by switching the logic input between ttl-low and

ttl-high. The 4-input version takes two ttl logic inputs, but otherwise works in

a similar fashion. Thus, switching between multiple states of the optical system is

simply a matter of having the timing system apply the appropriate ttl logic to the

logic inputs of the multiplexer.

6.4.13 Chiller

Both the Coherent/DEOS CO2 laser and the IntraAction ao require water cooling.

We have installed a NesLab Merlin M75 chiller. The chiller operates a closed-loop

cooling system that provides 15 ◦C coolant to both the laser and the ao. The

coolant is primarily distilled water, with a slight amount of DowFrost additive to

prevent freezing (should we run the chiller at below 0 ◦C) and to suppress algae

growth.

6.4.14 CO2 Beam Conditioning

The beam that emerges from the CO2 laser interacts with a number of optics on

the way to the main experimental chamber. A schematic is shown in Figure 6.9.

The beam leaves the CO2 laser and enters an IntraAction Corp AGM-4010BG1

ao driven by a modified IntraAction GE-4050 driver. Even when the ao is fully
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Figure 6.9: CO2 laser beam conditioning optics.
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energized, the zeroth-order beam contains significant power. When we lower the

trap depth by lowering the laser power with the ao, the zeroth-order beam reaches

power levels in excess of 100W. For this reason, we are careful to deflect the zeroth-

order beam into a water-cooled beam dump.

As the CO2 laser beam passes through the germanium crystal in the ao, it de-

posits a non-negligible amount of power. The interaction between this heat source

and the water cooling of the crystal creates a temperature gradient in the germa-

nium. This thermal gradient produces a gradient in the index of refraction, making

the germanium act as a lens, through a process known as thermal lensing. Because

the gradient exists primarily in the vertical direction (the cooling for the crystal oc-

curs at the top and bottom surfaces), the beam emerges from the ao with different

wavefront radii-of-curvature in the horizontal and vertical directions. If we were to

allow the beam to propagate in this condition to the vacuum chamber, the result

would be that the final focusing lens would create horizontal and vertical foci that

do not overlap. The result would be a non-harmonic potential in the axial direction,

and a relative loosening of the atomic confinement. To counteract this effect, the

beam strikes a telescope made from cylindrical lenses acting in the vertical direc-

tion immediately after the ao. We adjust the telescope so that the horizontal and

vertical wavefront radii-of-curvatures are equal.

The CO2 laser beam next strikes a diffractive beam sampler. This optic has a

microscopic pattern etched on it that creates two beams that diffract away from

the main beam and each contain approximately 1% of the total beam power. We

deflect one of these into a water-cooled beam dump, and route the other to a Boston

Electronics diode-detector. We use the detector to make quantitative measurements

of the relative CO2 laser power being provided to the trapping region.
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The main CO2 laser beam then passes through a thin-film polarizer (oriented

to pass the beam in its current polarization). When the retroreflected loader is in

use (see Section 6.3.3, the retroreflected beam returns with a polarization that has

been rotated by 90◦. This beam is reflected off of the thin-film polarizer and into a

water-cooled beam dump.

After the thin-film polarizer, the beam enters the expanding telescope. This

telescope consists of two ZnSe aspherical lenses with focal lengths of 1.25 in. and

11.5 in., respectively. The beam is expanded by a factor of 11.5/1.25 = 9.2. We

perform this expansion because the focal size created by the final focusing lens is

inversely proportional to the size of the beam entering the focusing lens [38]. By

expanding the beam to this size, we can achieve beam sizes in the trapping region

on the order of 50 µm (1/e2 intensity radius).

After being expanded by the telescope, the beam is routed by two mirrors (in-

cluded to give us control over the beam position and orientation) to the final focusing

lens for insertion into the main experimental chamber.

6.4.15 CO2 Focusing Optics

Both the final focusing lens and the recollimating/refocusing lens for the retrore-

flected loader (see Section 6.3.3) are ZnSe aspheres with 19 cm focal lengths. The

input lens is mounted on two translation stages that have been combined to create

an xy-stage. The stages are controlled by standard micrometers (since the goal is

simply to hit the center of the mot). The recollimating/refocusing lens is mounted

on an ultra-high resolution xyz-stage with micron resolution (here we have to place

the retroreflected focus on top of the first focus—an object approximately 50 µm

across). The xyz-stage is mounted on an axially-oriented conventional translation
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Figure 6.10: Electromechanical relay for flipping coil orientation.

stage since the axial-length scale of the trap exceeds the full travel of the xyz-stage.

6.4.16 Uniform Magnetic Field

The uniform magnetic field needed for evaporative cooling is provided by the same

coils that produce the mot magnetic field gradient (see Section 6.4.11). We placed

an electromechanical relay in the current path for the top coil. A ttl logic signal

from the timing system can switch the relay, changing the electrical orientation

of the coil, and hence whether the coils are in the anti-Helmholtz or Helmholtz

configuration. A schematic of this is shown in Figure 6.10.

During evaporation, 23 A are supplied to each coil, producing a field strength

at the trap of approximately 130G. This results in an s-wave scattering length

(see Section A.7.3) of approximately -100 a0.



CHAPTER 6. EXPERIMENTAL SETUP AND PROCEDURE 150

6.5 Experimental Procedure

This section provides a detailed description of the experimental procedure first

outlined in Section 6.2. The subsections below address the individual phases of the

experiment.

6.5.1 MOT Loading

The mot loading phase lasts 10 s and is initiated by turning on the mot beams

(tuned approximately six linewidths below the D2 resonance), the slower beam

(tuned approximately 200 MHz below the D2 resonance), and the mot gradient

magnets. After approximately 5 s, the mot population saturates at '1 − 3×108

atoms.

6.5.2 FORT Loading and Optical Pumping

The fort potential is essentially conservative (see Section 2.3.2). As a result, it

is capable of capturing only those atoms that lie in its (relatively small) capture

volume in phase space. By taking advantage of the dissipative effect of optical

molasses (see Section 2.2.2), we can modify the atomic phase-space trajectories so

that a significant number of atoms overlap the fort capture volume. This is the

purpose of the fort loading phase.

The detunings used in the mot loading phase are chosen to optimize the mot

capture volume, and hence to maximize the number of atoms in the mot. The

dissipative effect of Doppler cooling, however, is not maximized at our chosen de-

tunings. From Figure 2.1, we see that the greatest dissipation occurs at detunings

of one half-linewidth below resonance.
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Immediately after the 10 s of mot loading, we signal the multiplexer to suddenly

switch the detuning of the mot and repumper frequencies from six linewidths below

resonance to one half-linewidth below resonance. Simultaneously, the intensity of

the beams is lowered. This creates a highly dissipative optical molasses and transfers

many atoms into the fort potential. This phase lasts 20ms.

At this point, the atoms in the fort are in a mixture of the upper and lower

hyperfine groundstates. For the remainder of the experiment, we wish to work solely

with the lower hyperfine groundstates. We use an optical pumping phase to convert

the upper hyperfine groundstate atoms to the lower hyperfine groundstates. For

100µs, the mot frequency is placed precisely on resonance, and its intensity low-

ered even further. Meanwhile the repumper frequency is extinguished completely

(remember, its purpose was to keep the lower hyperfine groundstates empty). Any

atoms that decay from the excited state to the lower hyperfine groundstates are no

longer effected by the light, while those that return to the upper hyperfine ground-

states are continually cycled until they do decay to the lower hyperfine groundstates.

At this point the fort contains 6Li atoms in the lower hyperfine groundstates

at a temperature of approximately 140 µK. Since all further work will involve the

CO2 laser, we extinguish all optical beams and turn off the mot gradient magnets.

6.5.3 Free Evaporation and Elimination of the Retroreflected

Beam

We next reverse the electrical orientation of the top mot gradient magnet using the

relay described in Section 6.4.16. Energizing the coils with 23A produces a -100 a0

scattering length, which begins the evaporation process (see Section 2.4.2).

The phase we call “free evaporation” lasts 6 s. For the first 4 s, we allow the
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atoms to evaporate from the doubled well (the retroreflected beam is present). Af-

ter this time, we send a ttl signal to the chopper (see Section 6.3.3), turning off the

pneumatic supply and causing the deflecting mirror to begin occluding the retrore-

flector. The transition from a doubled well to the single well take approximately

one second, during which time the well depth is smoothly lowered, maintaining the

evaporation process. After the mechanical motion is complete, there is approxi-

mately one second of further free evaporation to fully stagnate the system in the

single well.

6.5.4 Forced Evaporation

After free evaporation, the atoms are at approximately 50 µK, or ' 1/14 of the well

depth. Evaporation is highly suppressed. We then initiate the lowering of the CO2

laser intensity using the lowering system described in Section 6.3.2 and the lowering

curve derived in Section 2.4.2:

U(t) = U0

(
1

1 + t/3

)1.446

. (6.1)

Here we use a time constant τ = 3 s that is larger than the time constant τ = 0.9 s

that we would calculate based on the ideas of Section 2.4.2. We chose to slow the

lowering slightly because we observe a variation in the beam profile as we lower the

CO2 laser intensity (this problem has been resolved in experiments performed after

the experiment described in this thesis). Because the change in profile was likely

to lower the collision rate, we felt it judicious to be conservative with the lowering

curve.

Since we wish to understand how the evaporation process drives the system
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towards degeneracy, we repeat the experiment many times using values for t in (6.1)

in the range t = 0− 60 s.

6.5.5 Adiabatic Recompression

Once the forced evaporation has been performed, we turn off the uniform magnetic

field and adiabatically recompress the trap by raising the CO2 laser intensity. We

use a raising profile where the intensity grows exponentially to full value over 5 s.

6.5.6 Ballistic Expansion and Imaging

At this point in the procedure, we have produced the sample we wish to study.

We suddenly extinguish the CO2 laser and allow that atoms to ballistically expand

for 400µs. After this expansion time, we illuminate the cloud with a 10 µs pulse

from the camera beam. The absorption profile of the cloud is captured by the

ccd (the concepts and physics of imaging the atoms are discussed in Chapter 7).

This absorption profile is the data that results from a single run of the experiment.

In Chapter 8, we will discuss the analysis of these images to determine the number,

temperature, and degeneracy state of the atomic cloud.

6.5.7 Apparatus Reset

The timing system then automatically begins another trial. The CO2 laser, mot,

repumper, and slower beams are all turned back on in their “mot loading” states;

the orientation of the top coil is flipped and the mot gradient magnets are energized;

and the chopper is raised to reveal the rooftop mirror.



Chapter 7

Imaging of Trapped Atomic
Clouds

. . . for behold whenever
The sun’s light and the rays, let in, pour down
Across dark halls of houses: thou wilt see
The many mites in many a manner mixed
Amid a void in the very light of the rays,
And battling on, as in eternal strife,
And in battalions contending without halt,
In meetings, partings, harried up and down.
From this thou mayest conjecture of what sort
The ceaseless tossing of primordial seeds
Amid the mightier void. . . .

—Lucretius (c. 50 bce)

7.1 Overview

In atomic cooling and trapping experiments, creating and manipulating the sample

is only part of the required effort. Some means must be used to extract information

from the cloud. In many experiments it has become commonplace to use a form of

optical imaging.

In an imaging approach, a laser field (resonant or off-resonant) is passed through

the cloud and the incident beam and the scattered radiation field are combined on

an ultra-sensitive charge-coupled-device (ccd) [46]. The ccd converts the photon

154
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distribution into an electron distribution which is read out by computer-controlled

electronics. The resulting computer file can then be processed to yield information

about the atomic cloud.

The physics involved in imaging separates quite naturally into two topics: first,

the effect that the atomic cloud has on the incident beam (spatially-dependent at-

tenuation and phase-shift of the incident electric field); and second, the propagation

of the post-cloud electric field through the imaging system to the ccd where the

intensity of the laser field is measured. This chapter address these two topics in

detail.

Additionally, once we have expressions for the intensity at the ccd for the dif-

ferent techniques, we can apply a simple signal-to-noise-ratio analysis to determine

the situations where the use of a particular technique is advantageous.

7.2 Introduction to the Imaging Techniques

There are three main imaging techniques in use today [46]: absorption imaging,

dark-spot (or dark-ground) imaging, and phase-contrast imaging. All three are

variations on the general theme outlined above.

In absorption imaging, the probe beam strikes the cloud and the incident beam

and the scattered field propagate through the imaging system to the ccd. A

schematic of this process is shown in Figure 7.1. A phase-shift between the scat-

tered and incident fields leads to destructive interference at the ccd, where the

cloud appears as a dim spot in an otherwise bright background.

In dark-spot imaging, the scattered field propagates to the ccd as in absorption

imaging. The incident field however, is intercepted by a small absorber placed in

the Fourier plane of the imaging lens. Since the incident field is spatially broad
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Figure 7.1: Experimental setup for absorption imaging. The beam in white rep-
resents the non-scattered field, while the grey beam represents the scattered field.

and collimated, it focuses tightly in the Fourier plane. The scattered field, being

uncollimated, is large in the Fourier plane, and is not materially affected by the

absorber. A schematic of this technique is shown in Figure 7.2. As a result, only

the scattered field reaches the ccd, where the cloud appears as a bright spot on an

otherwise zero background.

Phase-contrast imaging has much in common with dark-spot imaging. In place

of the small absorber in the Fourier plane, phase-contrast imaging uses a small

phase-plate which advances or retards the incident field by λ/4. A schematic of

phase-contrast imaging is shown in Figure 7.3. The result is either constructive or

destructive interference (depending on whether the plate advances or retards the

phase) between the incident and scattered fields. At the ccd, the cloud appears as

either a bright or dim spot on an overall bright background.
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Figure 7.2: Experimental setup for dark-spot imaging. The beam in white repre-
sents the non-scattered field, while the grey beam represents the scattered field.
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Figure 7.3: Experimental setup for phase-contrast imaging. The beam in white
represents the non-scattered field, while the grey beam represents the scattered field.
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7.3 Effect of the Cloud on the Electric Field

As the incident probe beam passes through the atomic cloud, the electric field is

modified by the atoms, imprinting information about the cloud on the field. In

order to extract this information later, we must understand this process.

Let the incident field-strength be given by Eincident(x, y). We wish to compute

the electric field in the object plane of the imaging system, Eobject(x, y). This plane

is located immediately past the atomic cloud, at a distance negligible compared to

the distance to the imaging lens.

For a field passing through a medium with susceptibility X , we can write the

following differential equation [59]:

∂E(x, y, z)

∂z
= 2πik X (x, y, z, δ) E(x, y, z). (7.1)

In the above, k is the propagation wavenumber, z is the direction of propagation,

and δ is the detuning of the probe field from the atomic transition frequency, given

in units of half-linewidths.

The susceptibility can be expressed as:

X (x, y, z, δ) =

(
i µ2 n(x, y, z)

~(Γ/2)

)(
1 + iδ

1 + δ2

)
, (7.2)

where µ is the transition matrix element for the atomic transition we are exciting,

n is the atomic number density, and Γ is the linewidth (fwhm) of the atomic

transition. We can substitute this result into (7.1) to obtain

∂E(x, y, z)

∂z
= −2πk

(
i µ2 n(x, y, z)

~(Γ/2)

)(
1 + iδ

1 + δ2

)
E(x, y, z). (7.3)
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We also make use of the expression for an optical cross-section [60]:

σ =
4πkµ2

~(Γ/2)
. (7.4)

Inserting (7.4) into (7.3) yields the simplified differential equation

∂E(x, y, z)

∂z
= −

(
n(x, y, z) σ

2

)(
1 + iδ

1 + δ2

)
E(x, y, z). (7.5)

The solution to (7.5) is

E(x, y, z) = E(x, y, z = 0) exp

[
−

(σ

2

) (
1 + iδ

1 + δ2

) ∫ z

−∞
dz1 n(x, y, z1)

]
. (7.6)

The integral in (7.6) is so important it has a name, the column density [46]. We

define a new symbol for the column density

ñ(x, y) =

∫ ∞

−∞
dz1 n(x, y, z1), (7.7)

where we have formally extended the upper limit to ∞ by considering only values

of z that lie outside the cloud. In this manner we maintain the value of the integral

despite the change in limit. Using this symbol in (7.6) and taking the initial electric

field to be Eincident and the resulting field to be Eobject gives the final result

Eobject(x, y) = Eincident(x, y) exp

[(−ñ(x, y)σ

2

)(
1 + iδ

1 + δ2

)]
. (7.8)

Note that the column density is the only cloud-specific parameter in our final

result. This is what we will eventually extract after processing the ccd images.

Not surprisingly, as a result of the projective nature of our measurement technique,
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we lose all z-information about the cloud.

7.4 Computing the Intensity at the CCD

We now know the electric field strength in the object plane immediately after the

atomic cloud. This section describes how this field is propagated through an imaging

system of unity magnification to the image plane at the ccd. For this analysis we

will use scalar diffraction theory as described by paraxial Fourier optics.

In performing this analysis, it will be useful to independently treat the scattered

field and the incident field. Two of the techniques (dark-spot and phase-contrast)

place small optical elements in the Fourier plane of the imaging lens, as described

above. Because the incident light is highly collimated, it focuses tightly in the

Fourier plane and can be intercepted by an extremely small optical element. The

scattered field, however, is highly uncollimated, and as such has a very large spatial

extent where the incident beam has a focus. As a result, the scattered field is not

appreciably affected by the small optical element. Treating the two fields separately

allows us to include the effect of the optical element on the incident field, while

neglecting it for the scattered field. Further, a general description of this element

can be used during the analysis, and then specialized to absorption, dark-spot, or

phase-contrast imaging in the final answer.

Previously, (7.8) we had an expression for the electric field strength in the object

plane of the imaging system. We can define a new field, Escattered, such that Eobject =

Escattered + Eincident,

Escattered(x, y) = Eincident(x, y)

(
exp

[(−ñ(x, y)σ

2

)(
1 + iδ

1 + δ2

)]
− 1

)
(7.9)



CHAPTER 7. IMAGING OF TRAPPED ATOMIC CLOUDS 161

7.4.1 Propagating the Scattered Field

We begin with the paraxial propagator in scalar diffraction theory [61],

g(x, x′; y, y′; d) =

(−ik

2πd

)
exp

[(
ik

2d

) (
(x− x′)2 + (y − y′)2

)]
. (7.10)

The above equation propagates an electric field distribution in one plane to another

plane a distance d away. The parameter k is the propagation wavenumber. The

propagator is used as follows:

E(x, y, z = ∆z) =

∫∫

P
′

dP
′
g(x, x′; y, y′; ∆z) E(x′, y′, z = 0), (7.11)

where P
′
is the x

′
y
′
-plane, and dP

′ ≡ dx
′
dy

′
.

Additionally, we treat lenses as thin, and as such they add a quadratic phase

profile to the electric field distribution [61]:

Eafter lens(x, y) = Ebefore lens(x, y) exp

[(−ik

2f

)
(x2 + y2)

]
, (7.12)

where f is the focal length of the lens.

A schematic of the system we are trying to analyze is shown in Figure 7.4. In the

figure, the plane at the left is the object plane of the system, where the electric field

distribution is designated E0. A distance, 2f away a plane containing the electric

field distribution EL1 is just in front of the lens. On the other side of the lens we

have the distribution EL2 . These two planes are separated by zero distance, since

we are making the thin lens approximation. Finally, a distance 2f further, we have

the image plane, where we label the distribution Ei.

We then simply propagate E0 a distance 2f to the lens, add the effect of the lens,



CHAPTER 7. IMAGING OF TRAPPED ATOMIC CLOUDS 162

f

E
0

E
i

E
L1

E
L2

2f 2f

Figure 7.4: Propagating the scattered field.

then propagate a distance 2f to get the result we seek, Ei. The equations describing

these three steps are:

EL1(x
′
2, y

′
2) =

∫∫

P
′
1

dP
′
1 g(x′2, x

′
1; y

′
2, y

′
1; 2f) E0(x

′
1, y

′
1), (7.13)

EL2(x
′
2, y

′
2) = EL1(x

′
2, y

′
2) exp

[−iq

2f

(
x′22 + y′22

)]
, (7.14)

and

Ei(x, y) =

∫∫

P
′
2

dP
′
2 g(x, x′2; y, y′2; 2f) EL2(x

′
2, y

′
2). (7.15)

We can combine these equations to get a single equation for Ei:

Ei(x, y) =

∫∫∫∫

P
′
1 ,P

′
2

dP
′
1 dP

′
2 g(x, x′2; y, y′2; 2f) exp

[−iq

2f

(
x′22 + y′22

)] ×

g(x′2, x
′
1; y

′
2, y

′
1; 2f) E0(x

′
1, y

′
1).

(7.16)
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If we expand the propagators, we can collect terms so that the exponentials con-

taining the x′2- and y′2-dependence are a simple as possible. When this is done, we

get

Ei(x, y) = −
(

q

4πf

)2 ∫∫∫∫

P
′
1 ,P

′
2

dP
′
1 dP

′
2 E0(x

′
1, y

′
1) exp

[
iq

4f

(
x2 + y2 + x′21 + y′21

)] ×

exp

[−iq

2f
(x′2(x + x′1))

]
exp

[−iq

2f
(y′2(y + y′1))

]
.

(7.17)

The simplified exponentials, however, are of the exact form to produce Dirac delta

functions when the P
′
2 integrals are done,

Ei(x, y) = −
∫∫

P
′
1

dP
′
1 E0(x

′
1, y

′
1) exp

[
iq

4f
(x2 + y2 + x′21 + y′21 )

]
×

δ(x + x′1)δ(y + y′1).

(7.18)

The presence of the delta functions collapses the final integrals, giving us our final

result

Ei(x, y) = −E0(−x,−y) exp

[
iq

2f

(
x2 + y2

)]
. (7.19)

From the final result in (7.19), we see that the effects of the propagation of

the scattered field through the imaging system are an overall phase-shift of π, an

inversion of the coordinate axes (which is expected in a single-lens imaging system),

and an overall quadratic wavefront curvature.

7.4.2 Propagating the Incident Field

We take a similar approach to propagating the incident field. However, the potential

presence of an optical element in the back focal plane of the imaging lens requires
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Figure 7.5: Propagating the incident field.

a slightly different approach. A schematic of the system is shown in Figure 7.5. In

the second half of the system, we now propagate a distance f , then allow for the

effect of the optical element, and then propagate another f to the image plane. We

define the electric field distributions in the planes just before and after the optical

element as Ef1 and Ef2 , respectively.

Following the treatment in [46], we can treat the optical element in a completely

general way. If we define τ 2 as the fraction of the light transmitted by the element,

and φ as the phase-shift induced by the element, then we can define all three imaging

techniques by the following parameters:

(τ, φ) =





(1, 0) : absorption

(0, N/A) : dark-spot

(1,± π/2) : phase-contrast

(7.20)
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The effect of the generalized optical element is then

Eafter element = Ebefore element τ eiφ (7.21)

The relationships between the electric field distributions in the various planes

are given by:

EL1(x
′
2, y

′
2) =

∫∫

P
′
1

dP
′
1 g(x′2, x

′
1; y

′
2, y

′
1; 2f) E0(x

′
1, y

′
1), (7.22)

EL2(x
′
2, y

′
2) = EL1(x

′
2, y

′
2) exp

[−iq

2f

(
x′22 + y′22

)]
, (7.23)

Ef1(x
′
3, y

′
3) =

∫∫

P
′
2

dP
′
2 g(x′3, x

′
2; y

′
3, y

′
2; f) EL2(x

′
2, y

′
2), (7.24)

Ef2(x
′
3, y

′
3) = Ef1(x

′
3, y

′
3) τ eiφ, (7.25)

and

Ei(x, y) =

∫∫

P
′
3

dP
′
3 g(x, x′3; y, y′3; f) Ef2(x

′
3, y

′
3). (7.26)

Combining, we get the somewhat unwieldy expression

Ei(x, y) =

∫
· · ·

∫

P
′
1 ,P

′
2 ,P

′
3

dP
′
1 dP

′
2 dP

′
3 g(x, x′3; y, y′3; 2f) τ eiφ g(x′3, x

′
2; y

′
3, y

′
2; f) ×

exp

[(−ik

2f

)
(x′22 + y′22 )

]
g(x′2, x

′
1; y

′
2, y

′
1; f) E0(x

′
1, y

′
1).

(7.27)
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Doing the P
′
3 integrals combines two of the propagators,

Ei(x, y) = τ eiφ

∫∫∫∫

P
′
1 ,P

′
2

dP
′
1 dP

′
2 g(x, x′2; y, y′2; 2f) exp

[(−ik

2f

)
(x′22 + y′22 )

]
×

g(x′2, x
′
1; y

′
2, y

′
1; f) E0(x

′
1, y

′
1).

(7.28)

But the integrals are now just the case considered previously in (7.16). We can use

that result, without loss of generality, to write

Ei(x, y) = −τ eiφ E0(−x,−y) exp

[
iq

2f

(
x2 + y2

)]
. (7.29)

7.4.3 Determining the Intensity

Having calculated how the scattered and incident fields propagate, we now add the

two fields to find the total field in the image plane,

Etotal(x, y) = −Escattered(−x,−y)− τ eiφ Eincident(−x,−y)

= −Eincident(−x,−y) ×
(

exp

[(−ñ(−x,−y) σ

2

)(
1 + iδ

1 + δ2

)]
− 1 + τ eiφ

) (7.30)

The intensity, I(x, y), is proportional to the square of the electric field,

I(x, y) = k |Etotal(x, y)|2. (7.31)

Here, k depends on our choice of units (cgs, mks, etc.). If we then define the baseline

intensity, I0(x, y) as

I0(x, y) = k |Eincident(x, y)|2, (7.32)
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and insert the appropriate values of τ and φ to find the intensity at the ccd for the

three techniques we find,

I(x, y) =





I0(−x,−y) e−β : absorption

I0(−x,−y)
[
1 + e−β − 2e−β/2 cos (−δβ/2)

]
: dark-spot

I0(−x,−y)
[
2 + e−β − 2

√
2 cos (−δβ/2± π/4)

]
: phase-contrast

(7.33)

where the symbol

β =
ñ(−x,−y) σ

1 + δ2
(7.34)

has been used for brevity.

7.5 Treating Several Important Cases

The relationship between the intensity profile at the ccd and the column density

of the cloud is now completely fixed. The only parameter that we have not dis-

cussed in detail is the optical cross-section, σ, and how to calculate it for various

situations. This section addresses this issue. I will consider two cases. The first

case, that of imaging in the absence of a magnetic field, is quite general, and is

the style of imaging used throughout this thesis. The second case, imaging using

the photon-burst transition in the presence of a large magnetic field, complicates

matters significantly. This technique, however, has much to offer and is currently

an important technique in use by our research group.
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7.5.1 Zero Magnetic Field

We will use the techniques of Appendix A to compute the optical cross-section,

σ, when the atoms are in a region of zero-magnetic field. The atom cloud begins

in an equal mixture of all the magnetic sublevels of the initial F -level. We excite

the atoms with light that is resonant (or near-resonant) to the D2-transition. The

excited state F -levels are degenerate to within the linewidth of the transition, so

we consider all possible values of F . We further consider the incoming light to be

an arbitrary mixture of all three polarizations:

ê =
∑

q

a(q) êq. (7.35)

Where
∑

q

|a(q)|2 = 1. (7.36)

We will see that the final result does not depend on the specific polarization

mixture. Since we potentially have multiple polarization components, we also con-

sider all possible excited state magnetic sublevels. With all these considerations,

the expression for the square of the electric-dipole (µ · ê) transition matrix element

(see Section A.6.1) becomes:

µ2 =
1

2F1 + 1

∑
q

|a(q)|2
∑

F2,mF2
,mF1

| 〈(J2I)F2mF2 µ̂(1, q) (J1I)F1mF1〉 |2. (7.37)

In the case of the D2-transition in 6Li, F1 = 1/2 , J1 = 1/2 , and J2 = 3/2. The

possible values of F2 are 1/2 , 3/2, and 5/2 (see Figure A.3).

Using the Wigner-Eckart Theorem (see Section A.6.1), we can rewrite the above
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equation as:

µ2 =
1

2F1 + 1

∑
q

|a(q)|2
∑
F2

∑
mF2

,mF1

(−1)2(F2−mF2
) ×

(
F2 1 F1

−mF2 q mF1

)2

| 〈(J2I)F2 µ̂(1) (J1I)F1〉 |2.
(7.38)

Then, using the closure relation for 3-J symbols [62], this becomes

µ2 =
1

3(2F1 + 1)

∑
F2

| 〈(J2, I)F2 µ̂(1) (J1I)F1〉 |2. (7.39)

In terms of the sum rules we defined in Section A.6.2, this is

µ2 =
1

3

∑
F2

SF1,F2 . (7.40)

Which, by equation (A.28), is expressible as

µ2 =
1

3(2J1 + 1)
| 〈(L2S)J2 µ̂(1) (L1S)J1〉 |2. (7.41)

Remembering that J1 = 1/2 , J2 = 3/2, and consulting Table A.9, we find that

the effective value of the square of the transition matrix element is:

µ2 =
2µ2

0

3
, (7.42)

where µ0 is the transition matrix element of the cycling transition. Hence the

corresponding optical cross-section is

σ =
2

3
σ0, (7.43)
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where σ0 = 3 λ2/(2 π) is the optical cross-section of the cycling transition [58].

7.5.2 Large B-Field

The presence of a strong magnetic field complicates our previous analysis. We

are now forced to use the magnetic field direction as the quantization axis of the

problem. As a result, in general, the probe beam does not propagate along the

quantization axis. This means we must consider issues such as the orientation of

the polarization of the probe light with respect to the atomic quantization axis, and

the dipole pattern of the atomic polarization as viewed from the ccd. This also

requires us to treat the full vector nature of the slowly-varying field amplitude, E ,

rather than its magnitude, E , as we did in Section 7.3.

The specific case we are interested in involves imaging a cloud of 6Li atoms in a

strong z-oriented magnetic field. We will probe the cloud with an x-polarized beam

of light, propagating in the yz-plane at an angle of α with respect to the z-axis.

This is shown in Figure 7.6. We introduce another coordinate system that is rotated

about the lab x-axis by an angle α so that the z
′
-axis lies along the probe beam

propagation axis.

The large field removes the degeneracy of the excited state and makes individ-

ual transitions resolvable. The probe frequency is tuned to be near resonant with

the |(L = 0, S = 1/2 ) J = 1/2 , mJ = −1/2 〉 to |(L = 1, S = 1/2 ) J = 3/2, mJ = −3/2〉
transition. This transition is chosen because it tunes the least over the range of

magnetic field strengths (0G-1200 G), and hence requires the smallest change in

the probe frequency. This transition is a σ̂�-transition with respect to the quanti-

zation axis.

We will be working in the primed coordinate system for the calculation, so we
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Figure 7.6: The coordinate systems used in the high-field case. The magnetic
field is applied along the lab z-axis, making that the quantization axis. The probe
propagates in the lab yz-plane and an angle α to the lab y. The incident polar-
ization, ε̂ lies in the lab x-direction. A second coordinate system is defined with
respect to the propagating light. The direction of propagation is the z

′
-axis. The

two transverse directions are labelled x
′
and y

′
respectively. The x

′
-axis is parallel

to the lab x-axis and the y
′
-axis lies in the lab yz-plane.
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must first convert several vectors from the lab system into the primed system. In

the lab frame, the polarization of the atomic transition is σ̂� = 1/
√

2 (x̂ − iŷ). In

the primed system, this is σ̂� = 1/
√

2 (x̂
′ − i cos(α) ŷ

′ − i sin(α) ẑ
′
). The incident

polarization is ε̂inc = x̂ in the lab frame. In the primed system this is simply

ε̂inc = x̂
′
.

We begin by modifying (7.5). We write:

∂E(x
′
, y

′
, z

′
)

∂z′
= −

(
n(x

′
, y

′
, z

′
) σ

2(1 + δ2)

)
(1 + iδ)(I− ẑ

′
ẑ
′
) · σ̂�σ̂�� · E(x

′
, y

′
, z

′
) (7.44)

Here, I is the identity matrix, and σ̂� is the is the left-circular unit vector. The

physical implications of this equation are relatively straightforward. The incoming

field can excite the atom, but only the projection of the field onto the excitation

vector contributes to the excitation (σ̂�� · E). This excitation can result in electro-

magnetic radiation of polarization σ̂�, but the dipole pattern must be taken into

account. Only the portion of the excitation that is transverse to the direction of

propagation can appear as a radiation field ((I− ẑ
′
ẑ
′
) · σ̂�).

There are eigenvector solutions to (7.44) for which the incident polarization is

preserved. We begin by making the Ansatz

E(x
′
, y

′
, z

′
) = E0 exp

[( −ñ ξ σ

2(1 + δ2)

)
(1 + iδ)

]
ε̂. (7.45)

Here ñ is defined in analogy to (7.7) with the integration performed in the ẑ
′
-

direction. The term in the exponential has been modified to include an arbitrary

(for now) factor, ξ, that describes how the optical cross-section deviates from the

maximum cross-section of the σ̂� transition. ε̂ is the polarization unit-vector for

the field.
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Inserting this Ansatz into (7.44) yields an eigenvalue equation for the parameter

ξ and the polarization direction ε̂.

ξε̂ = (I− ẑ
′
ẑ
′
) · σ̂�σ̂�� · ε̂. (7.46)

One solution can be extracted rapidly by noting that on the right hand side

of (7.46), we clearly have a vector ((I− ẑ
′
ẑ
′
) · σ̂�), and a scalar (σ̂�� · ε̂).

One polarization eigensolution must therefore be of the form:

ε̂1 = γ(I− ẑ
′
ẑ
′
) · σ̂� ξ1 =

(
1

γ

)
σ̂�� · ε̂1. (7.47)

The value of γ is set by the normalization of ε̂1. When normalized, the solution is

ε̂1 =

(
1√

1 + cos2 α

)
(x̂

′ − i cos α ŷ
′
) ξ1 =

1 + cos2 α

2
. (7.48)

The second polarization eigensolution can then be derived by realizing that it

must be perpendicular to both the direction of propagation (ẑ
′ · ε̂2 = 0) and the

known eigensolution (ε̂�2 · ε̂1 = 0). The easiest way to generate the solution is to

compute the cross-product ε̂�2 = ẑ
′ × ε̂1, which is a unit vector that meets these

orthogonality requirements by construction.

We then need only compute the eigenvalue to have the second solution

ε̂2 =

(
1√

1 + cos2 α

)
(−i cos α x̂

′
+ ŷ

′
) ξ2 = 0. (7.49)

From the eigenvalues, we see that any incident polarization can be decomposed

into two eigenpolarizations, one of which interacts with the atoms (ε̂1), and one

which does not (ε̂2). The orthogonal nature of the two eigenvectors is obvious.
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If the incident field is taken to be

E inc = E0 ε̂inc, (7.50)

we can expand it in terms of the two eigenpolarizations and apply our Ansatz to

each term to get the field in the object plane of the imaging system

Eobj = E0(ε̂inc · ε̂�1) exp

[( −ñ ξ1 σ

2(1 + δ2)

)
(1 + iδ)

]
ε̂1 + E0(ε̂inc · ε̂�2) ε̂2. (7.51)

For our case, we wish to specialize to an incident x-polarization, ε̂inc = x̂ = x̂
′
.

With this choice, we find

Eobj =
E0√

1 + cos2 α
exp

[(−ñ(1 + cos2 α) σ

4(1 + δ2)

)
(1 + iδ)

]
ε̂1+

iE0 cos α√
1 + cos2 α

ε̂2. (7.52)

We now subtract off the incident field, in analogy with the earlier scalar deriva-

tion, to find the scattered field.

Escat =
E0√

1 + cos2 α

(
exp

[(−ñ(1 + cos2 α) σ

4(1 + δ2)

)
(1 + iδ)

]
− 1

)
ε̂1. (7.53)

We can now directly apply the results of the Fourier optics calculations of Sec-

tion 7.4.1 and Section 7.4.2. In the image plane, the scattered field is

Escat(x
′
, y

′
) =

−E0√
1 + cos2 α

(
exp

[(−ñ(−x
′
,−y

′
)(1 + cos2 α) σ

4(1 + δ2)

)
(1 + iδ)

]
− 1

)
×

exp

[
iq

2f

(
x′2 + y′2

)]
ε̂1,

(7.54)
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while the incident field is

E inc(x
′, y′) = −τeiφE0 exp

[
iq

2f

(
x′2 + y′2

)]
ε̂inc, (7.55)

In this, τ and φ are the generalized imaging parameters as before. Their values for

the three imaging techniques are given in (7.20).

Writing the total field (E tot = E inc+Escat) in terms of x′-, y′-, and z′-coordinates

we find:

E tot = −E0

(
1

2ξ

(
exp

[−βξ

2
(1 + iδ)

]
− 1

)
+ τeiφ

)
exp

[
iq

2f
(x′2 + y′2)

]
x̂′

− E0

(
i cos α

2ξ

(
exp

[−βξ

2
(1 + iδ)

]
− 1

))
exp

[
iq

2f
(x′2 + y′2)

]
ŷ′

(7.56)

where β is defined as in (7.34) and ξ = ξ1 = (1 + cos2 α)/2. We again define I and

I0 as in (7.31) and (7.32) and find:

I = I0

[
1

2ξ

(
e−βξ + 1 + 2e

−βξ/2 [τ cos(βξδ/2− φ)− cos(βξδ/2)]− 2τ cos φ
)

+ τ 2

]
.

(7.57)

We can specialize to the three imaging techniques to find:

I =





I0

[
1
2ξ

(
e−βξ − 1

)
) + 1

]
: absorption

I0

[
1
2ξ

(
e−βξ − 2e−βξ/2 cos (βξδ/2) + 1

)]
: dark-spot

I0

[
1
2ξ

(
e−βξ − 2e−βξ/2 (cos (βξδ/2)∓ sin (βξδ/2)) + 1

)
+ 1

]
: phase-contrast.

(7.58)
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Figure 7.7: Representative intensity profile at the ccd.

7.6 Signal to Noise Analysis

It is not difficult to develop a simple model of ccd imaging that incorporates signal-

to-noise ratio, fluence, number of scattered photons per atom per image, detuning

of the probe field, and several ccd parameters. In this section, we derive the results

for imaging in zero magnetic field. The results for high-field imaging can be derived

in a similar manner.

In Figure 7.7 we see a representation of a one-dimensional slice through the

intensity profile at the ccd. There is an overall background level, IBG (which may

be zero), and a signal that deviates from the background, S (which may deviate

either upwards or downwards, depending on the imaging technique used).

We can get expressions for the background intensity in the three techniques by
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evaluating their intensity distributions (7.33) with ñ = 0. We find

IBG =





I0 : absorption

0 : dark-spot

I0 : phase-contrast.

(7.59)

The signal is then the overall intensity profile (7.33) minus the background (7.59)

(for the remainder of this analysis, we will work solely with peak values and suppress

the spatial-dependence).

S =





I0

[
e−β − 1

]
: absorption

I0

[
1 + e−β − 2e−β/2 cos (−δβ/2)

]
: dark-spot

I0

[
1 + e−β − 2

√
2 cos (−δβ/2± π/4)

]
: phase-contrast.

(7.60)

Clearly both the signal and the background are proportional to I0. It will

prove convenient to define these constants of proportionality and continue with

a generalized treatment:

S = εS I0 (7.61)

IBG = εBG I0. (7.62)

In this new notation, the three techniques can be summarized as

(εBG, εS) =





(1, e−β − 1) : absorption

(0, 1 + e−β − 2e−β/2 cos (−δβ/2)) : dark-spot

(1, 1 + e−β − 2
√

2 cos (−δβ/2± π/4)) : phase-contrast

(7.63)
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If the ccd is exposed to the background intensity for a duration, t, the number

of electrons deposited per pixel is

NBG =
IBGt

hν
L2η

=
I0t

hν
L2η εBG. (7.64)

where L is the pixel size and η is the quantum efficiency—a measure of how effective

the ccd is in turning photons into electrons. Likewise, we can compute the number

of electrons represented by the signal:

NS =
St

hν
L2η

=
I0t

hν
L2η εS. (7.65)

We can then define the signal-to-noise ratio, Λ, as

Λ =
|NS|√

NBG + NS + N2
e−

, (7.66)

where
√

NBG + NS is the total shot-noise of the light and Ne− is the rms electron

noise specification for the ccd (It is a combination of discretization noise, readout

noise, and dark-current). The absolute value in the numerator is necessary as the

signal can be negative, and we desire a positive value for Λ. Using our definitions

in (7.64) and (7.65), we can rewrite the signal-to-noise ratio as

Λ =
|εS|

(
I0tL2η

hν

)
√

(εBG + εS)
(

I0tL2η
hν

)
+ N2

e−

. (7.67)
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If we then have a desired value of Λ, for a given imaging technique and ccd, we

find that we require a fluence of

I0t =

(
hν

L2η

) (
Λ2(εBG + εS) +

√
Λ4(εBG + εS)2 + 4ε2

SΛ2N2
e−

2ε2
S

)
(7.68)

incident on the ccd (the alternative solution is ignored as it is always negative).

This has two important limits: the shot-noise limit (NS + NBG À N2
e−),

I0t =

(
hν

L2η

)(
Λ2(εBG + εS)

ε2
S

)
, (7.69)

and the large-background limit (NBG À NS, N2
e−),

I0t =

(
hν

L2η

)(
Λ2εBG

ε2
S

)
. (7.70)

We now turn to calculating the number of photons scattered per atom. This is

an important experimental parameter, for in a variety of experiments (e.g. collective

oscillations of the cloud) it is useful to image a single cloud several times without

significantly affecting it. As we saw in Section A.3, scattering a single photon off of

an atom in a degenerate or near-degenerate cloud is sufficient to heat it dramatically,

perhaps even ejecting it from a shallow trap. An imaging setup that allows the

experimenter to take multiple images of the sample is said to be non-destructive.

We also now consider the possibility that the imaging system has non-unity

magnification. This generalization does not effect any of our earlier results (other

than applying a trivial spatial scaling of M , the magnification, in each transverse

direction).

In Figure 7.8, we define two new intensities, I0L
, the intensity of light striking
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Figure 7.8: Definition of intensities.

the imaging lens, and I0A
, the intensity of light striking the atoms. With an imaging

magnification of M , a fluence of I0t at the ccd implies a fluence prior to the lens

of

I0Lt = M2I0t. (7.71)

Further, I0A
= I0L

, since we are considering the incident beam—whose magnitude

is not affected by the atoms. So the fluence incident on the atoms is represented

by

I0A
t = I0L

t = M2I0t. (7.72)

Now, in the low-intensity limit, the number of photons scattered by an atom in

fluence I0A
t is

Nphot =

(
σ

1 + δ2

)(
I0A

t

hν

)
, (7.73)

where σ is the resonant optical cross-section, and δ is the detuning in half-linewidths,
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as before. Combining this result with (7.72) and (7.68), we get

Nphot =

(
σ

1 + δ2

)(
M2

L2η

) (
Λ2(εBG + εS) +

√
Λ4(εBG + ε2

S) + 4ε2
SΛ2N2

e−

2ε2
S

)
.

(7.74)

This result also has the two limits discussed before, the shot-noise limit,

Nphot =

(
σ

1 + δ2

)(
M2

L2η

)(
Λ2(εBG + εS)

ε2
S

)
, (7.75)

and the large-background limit,

Nphot =

(
σ

1 + δ2

)(
M2

L2η

)(
Λ2εBG

ε2
S

)
. (7.76)

To specialize these results to absorption and phase-contrast imaging, we only

need the appropriate values of εBG and εS from (7.63). The reader is advised to note

that the large-background limit is nonsensical for the case of dark-spot imaging.

The results that we have derived are very useful. They were used in the progress

of this experiment to evaluate the suitability of a number of commercial ccds for

use in destructive and non-destructive imaging techniques. The next section gives

an overview of some of the results.

7.7 Choice of Technique

The formulas derived above were used to calculate the required incident probe

intensity (I0A
) to achieve a constant signal-to-noise-ratio as the detuning was varied

and the resulting number of photons scattered per atom per image for conditions

resembling our experiment and for ccd parameters representative of our scientific
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Parameter Value

Number of Atoms 1×105

Temperature to Well-Depth Ratio 1/10

Desired Signal-to-Noise Ratio 5

Magnification of Imaging System 4

ccd Pixel Size 13µm

ccd Quantum Efficiency 0.95

ccd rms Electron Noise 2

Exposure Time 1µs

Table 7.1: Experimental parameters used in the imaging model.

camera. The values of the parameters are given in Table 7.1.

The required intensity for the three techniques is plotted as a function of detun-

ing in Figure 7.9. The general structure is as expected—as the probe field is detuned,

absorption imaging quickly becomes prohibitive, while phase-contrast imaging out-

performs dark-spot. The resonant structure in the phase-contrast technique occurs

where the detuning is such that εS = 0. At this point, the technique fails. Because

the waveplate adds a retardation of a specific sign, the feature only occurs to one

side of zero, making it easy to avoid.

In the figure it is difficult to discern the performance of absorption and dark-spot

imaging in the region near the origin. A zoomed view can be seen in Figure 7.10.

Here we clearly see that absorption imaging is the most efficient technique for res-

onant and near resonant-imaging.

But how destructive are the techniques to the atomic sample? In Figure 7.11,

the number of photons scattered per atom per image is plotted as a function of

detuning. Again, the general behavior is as expected. Off-resonance, absorption

imaging is a completely destructive technique, while phase-contrast and dark-spot
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Figure 7.9: Required intensity as a function of detuning for the experimental
parameters given in Table 7.1.
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Figure 7.11: Number of photons scattered per atom per image as a function of
detuning for the experimental parameters given in Table 7.1.

imaging are relatively benign at large detuning and dense samples (for a sample at

T/U = 1/100, a Λ = 5 signal-to-noise-ratio can be achieved in phase contrast imaging

with fewer than 0.01 photons scattered per atom for detunings δ ' 6.5!).

In order to determine the number of photons scattered near resonance, an en-

largement of this region is shown in Figure 7.12. In this figure we see that although

the number of photons scattered in absorption imaging near resonance is small ('
0.35), this is still too large to allow for non-destructive imaging (roughly a third of

the sample is destroyed with every shot).

Based on the overall strengths and weaknesses discussed earlier, and on the

specific results addressed immediately above, our group has settled on resonant

or near-resonant absorption imaging for all experiments that do not require non-

destructive techniques. This covers all experiments performed in this thesis, but

most likely excludes future experiments on collective oscillations. For experiments
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requiring non-destructive techniques, we will use phase-contrast imaging, and have

the required waveplate on hand.



Chapter 8

Detection of Degeneracy

I often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it; but when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfac-
tory kind.

—William Thomson (Lord Kelvin)

8.1 Overview

The experimental procedure of Chapter 6 ends with the generation of ccd images

of the expanding atomic cloud generated via the low-field absorption imaging tech-

nique of Chapter 7. Earlier in the thesis, in Chapter 3, we derived expressions for an

expanding cloud of atomic fermions in both the classical and quantum degenerate

regimes. These expressions gave the density of the cloud as a function of the atom

number, the temperature, the trap frequencies, and the expansion time.

Analysis of the experimental data is then a matter of fitting the the observed

data to the expected profiles to extract the unknown parameters (the atom number

and the temperature). This chapter begins by discussing the processing of the

ccd images to convert the absorption images into density profiles which can be fit

to the expected functional forms. A subsequent section shows how the theoretical

functions of Chapter 3 need to be modified to include imaging parameters like pixel-

186
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size and magnification. This section also addresses small procedures we performed

to measure the exact values of the parameters where they were not known. The

final portion of the chapter presents the analysis of the experimental data, showing

conclusively that we succeeded in producing a degenerate gas of 6Li using purely

optical means.

A more detailed discussion of the analysis techniques discussed in this chapter

can be found in a concurrent thesis by Stephen Granade [20], where the character-

ization of degeneracy is the central topic of the thesis.

8.2 Processing the CCD Images

As noted in the Chapter 6, the absorption images saved by the ccd camera and

the computer have already undergone rudimentary processing. At the start of an

experimental run, we take a background [46] or dark-field image. This is a camera

image, taken without the illuminating laser or the presence of atoms. The result

measures the typical electronic noise of the camera readout system. All subsequent

images have this background image subtracted from them.

Further, although the illuminating laser is stable, it still drifts in power over the

course of the experiment. As part of each experimental run, we take a reference [46]

or light-field image with the illuminating laser on but without atoms. This reference

image is taken immediately after each experimental shot.

If we represent the experimental signal as S(i, j), the background as B(i, j), and

the reference as R(i, j), the absorption signal A(i, j) which we save for each shot is

given by [46]

A(i, j) = 1− S(i, j)−B(i, j)

R(i, j)−B(i, j)
, (8.1)
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where i and j are pixel indices corresponding to the spatial directions x and y

respectively.

The absorption image A(i, j), then, is the starting point for processing described

in this chapter. All further processing is done by manipulating the image with the

software package igor-pro (hereafter igor). igor is a data analysis program

available for the Windows and Macintosh computer platforms.

8.2.1 Eliminating Residual Background

Despite our best efforts, there remains a residual (small) background on the image.

This background is primarily the result of fluctuations in the imaging laser power

and shape that occur in the finite time between taking the signal and reference

images. To eliminate this background, we use a built-in feature of igor.

On each image, we designate a region-of-interest (roi). The roi is chosen to

fully encompass the atomic cloud. The pixels outside the roi are then least squares

fit to a plane and that plane is then subtracted from the entire image (including

the roi). This removes any residual background from the image.

8.2.2 Converting to Column Density

As previously discussed in Chapter 7, the absorption images captured by the ccd

have pixel values that reflect how much the incident beam was absorbed by the

atomic cloud at the spatial location corresponding to that pixel. In (7.33), we gave

the relationship between the intensity striking the atomic cloud and the intensity

reaching the ccd. By dividing by the incident intensity, I0, we can put (7.33) in
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terms of the fraction of light transmitted by the atoms:

T (i, j) = e−β = exp

[−ñ(i, j)σ

1 + δ2

]
. (8.2)

Here, β is the optical density. As before ñ is the column density, σ is the effective

cross section, and δ is the optical detuning in half-linewidths. The spatial coordi-

nates x and y have been replaced with pixel locations i and j (we will make similar

adjustments to the theoretical distributions of Chapter 3 later).

As stated above, the camera images are in terms of the fraction of light absorbed

by the atoms. Since the absorption and the transmission necessarily sum to 1

(A + T = 1), we can write the absorption profile as

A(i, j) = 1− T (i, j) = 1− exp

[−ñ(i, j)σ

1 + δ2

]
. (8.3)

We must then invert this equation to get an expression for the column density

ñ(i, j) as a function of the measured absorption profile A(i, j).

ñ(i, j) = −
(

1 + δ2

σ

)
ln [1− A(i, j)] . (8.4)

We showed previously in Section 7.5.1, that for the imaging technique used in

this thesis, the effective cross section, σ is

σ =
2

3
σ0 =

λ2

π
. (8.5)

Inserting this in (8.4), we find the final expression for the column density, ñ(i, j), in

terms of the measured absorption profile, the wavelength of the probe laser λ, and
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the detuning δ of the laser from the atomic transition

ñ(i, j) = −
(

π(1 + δ2)

λ2

)
ln [1− A(i, j)] . (8.6)

Note that the value of ñ(i, j) is local. That is, it relies only on the value of A

at the pixel location (i, j). Hence, we can process the absorption image A(i, j) on

a pixel-by-pixel basis to determine the column density ñ(i, j).

8.2.3 Creating the 1-D Integrated Density Profile

While we now have a representation of the column density ñ(i, j) that we could

fit to the theoretical expressions (3.49) and (3.52) (with suitable modifications to

convert from x, y coordinates to i, j pixel values), we have found that fitting the

two-dimensional distributions is exceedingly slow and insensitive, in addition to

being overly complicated. We instead numerically integrate the column density

ñ(i, j) to get the one-dimensional density ň(i). This is then compared to the one-

dimensional theoretical expectations (3.50) and (3.53) (again, after modification to

pixel coordinates). Note that numerical integration is not just a sum. It requires

an overall multiplication by the effective bin size. The bin size is given by the

effective pixel size in the y-direction—that is, the camera’s physical pixel size in the

y-direction divided by the imaging magnification M .

The numerical integration is performed along the axial direction of the optical

trap. To avoid introducing unnecessary noise, the integration is performed over a

limited range of pixels that excludes rows that are clearly outside the cloud.

In addition to simplifying the fitting process, this integration also eliminates any

effects arising from the fact that the ccd observes the cloud from an angle. The
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numerical integration we perform here, coupled with the integration that takes place

physically along the direction of observation eliminate the two dimensions that are

coupled as a result of the oblique observation angle. The resulting one-dimensional

distribution ň(i) is completely free of any associated complications.

A schematic of the image processing procedure is shown in Figure 8.1

8.3 Pixel-Based Theoretical Distributions

The theoretical distributions derived in Chapter 3 were expressed in terms of spatial

coordinates x, y, and z. In order to fit the expressions to the pixel-based images

produced by the ccd, we must convert the distributions to use pixel values instead

of spatial coordinates. We will specifically address only the expressions for the one-

dimensional density ň, but a similar approach can be used to convert the column

density ñ as well.

The conversion to pixels from spatial coordinates is primarily a scale transfor-

mation to dimensionless variables. All length scales in the expression we wish to

convert must be divided by the effective pixel size. For the one-dimensional density

ň, the relevant mappings are

i ↔ x

∆xeff

, ci ↔ cx

∆xeff

. (8.7)

Here ∆xeff is the effective pixel size in the imaging plane and cx is the length scale

defined in Chapter 3

cx = ax

√(
kBT

U0

)
(1 + ω2

xτ
2). (8.8)

In the above ax is the 1/e size of the trapping potential in the x direction, T is
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Figure 8.1: Image processing procedure.
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the temperature of the gas, U0 is the depth of the potential well, ωx is the trap

oscillation frequency in the x-direction, and τ is the duration of ballistic expansion.

There is one more conversion we must make. The effective pixel size ∆xeff is not

directly measureable. However, it can be expressed in terms of the actual pixel size

of the camera ∆xcam and the magnification of the imaging system M

∆xeff = ∆xcam/M. (8.9)

Inserting this relation into (8.7) yields the final mapping to pixel values

i ↔ Mx

∆xcam

, ci ↔ Mcx

∆xcam

. (8.10)

Applying this mapping to the theoretical expectation for a Maxwell-Boltzmann

gas (3.50) provides the theoretical distribution in pixel units

ňclass(i, τ) =
NM

ci ∆xcam

√
π

e
− i2

c2
i . (8.11)

8.4 Determining the System Parameters

From the result of (8.11), we see that to analyze the experimental data, we must

know the magnification M of the imaging system as well as the trap well depth

U0 and the trap oscillation frequencies ωx, ωy, and ωz (contained in the definition

of ci). The following sections detail the methods we used to measure these system

parameters.
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8.4.1 Trap Parameters

The trap depth and oscillation frequencies are interrelated according to the ex-

pressions given in (2.21) (the cylindrical symmetry of the trap allows us to take

ωx = ωy = ωr), while the trap depth is related to the peak laser intensity via (2.17).

We can use a combination of methods to determine these parameters.

Beam Properties

Using a pinhole, we can measure the size of the focal spot created by the final focus-

ing lens. We find that the laser produces a 1/e2-intensity radius of rfocus = 47 µm.

A measurement of the laser power just before the final focusing lens, combined with

an estimate of the transmission characteristics of the focusing lens and the vacuum

window allow us to estimate the power at the trap as Pfocus = 65 W.

The peak intensity is then given by [38]

I0 =
2Pfocus

πr2
focus

. (8.12)

Inserting the result in (2.17), we find a trap depth of U0 = 690 µK.

From rfocus we can compute the expected Rayleigh range [38]

z0 =
πr2

focus

λ
' 650 µm. (8.13)

With rfocus, z0, and U0, we can use (2.21) to predict the trap frequencies. We find

ωz ' 2100 s−1 → νz ' 340 Hz (8.14)

ωr ' 41500 s−1 → νr ' 6600 Hz. (8.15)
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Transverse Shaking of the Trap

Of course we would like to confirm these predicted trap frequencies via direct mea-

surement. One method we use is to shake the trap transversely by applying a

frequency modulation (fm) perturbation to the ao driving frequency. This modu-

lates the direction of the laser beam coming out of the ao. The final focusing lens

then turns this angular modulation into a transverse modulation of the trap. As we

previously discussed in Section 5.2.1, fluctuations of this type in the trapping po-

tential can heat the atoms when the modulation occurs at the radial trap frequency.

(Note: recently we have come to realize that this procedure is also likely to excite

the “scissors mode”—a shape-preserving oscillation that is nonetheless degenerate

in frequency with the transverse oscillation we had been assuming).

The experimental procedure is as follows. We begin by preparing a cold atom

sample in the trap by evaporatively cooling the atoms and recompressing the well

to full well depth. We then switch the Agilent rf generator from providing a steady

40MHz frequency to the ao to a sinusoidal fm signal with a center frequency of

40MHz, a deviation of ±6 kHz, and a duration of 1 s:

ν = 40 MHz + 6 kHz sin(2πνmod). (8.16)

The modulation frequency νmod is linearly swept downward across a 10 Hz band-

width during the 1 s excitation (this is done so that anharmonicity in the well does

not tune the atoms out of resonance as they heat). After the modulation is com-

plete, the trapping laser is extinguished for 500 µs, and then reinstated. The number

of atoms recaptured in the trap is then probed via resonance fluorescence.

If the atoms were heated by the excitation, we would expect a significant fraction
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Figure 8.2: Atom loss as a function of shaking frequency. The plot clearly shows
that there is a trap frequency in the vicinity of 6.5 kHz.

to gain sufficient energy that they are not recaptured when the trapping laser is

reapplied. A plot of the fluorescence as a function of νmod is shown in Figure 8.2.

From the graph we see that there is indeed a radial trap frequency near 6.6 kHz,

as predicted. The slight hint of two resonance peaks is likely an indication of a

slight ellipticity in the beam, breaking the symmetry between νx and νy. Studies of

this type of excitation with the Monte-Carlo code of Chapter 4 show that the real

resonance lies slightly above the peak frequency indicated in the experiment and in

good agreement with the predicted value of 6.6 kHz.

Parametric Resonance

Shaking the trap is highly effective for measuring the radial oscillation frequency,

but the nature of an optical trap makes it difficult to provide a modulation in the

axial direction at the necessary frequencies. To measure the axial frequency we use

the other heating mechanism of Chapter 5: intensity fluctuations. Here we apply
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an amplitude modulation (am) to the ao to modulate the depth of the trap and

hence the trapping frequencies. As we showed earlier, modulation at twice a trap

frequency heats the atoms via parametric resonance.

Experimentally, we again produce a cold atomic sample via evaporative cooling

and then recompress the well. However, rather than recompressing to full well

depth, we recompress to Unew = 0.85U0. We work at this offset so that even when

the modulation is applied, the commanded well depth is never greater than U0

(and cannot be supplied by the system). am corresponding to ±0.05U0 is applied

for 1 s at a modulation frequency νmod which is linearly swept downward across a

bandwidth (again this keeps atoms from tuning out of resonance as they heat).

The large difference between the axial and radial frequencies further compli-

cates detection. A release and recapture method, as used in the transverse shaking

experiment will not work. The low axial frequency ensures that the atoms move

many radial length scales before they have moved appreciably in the axial direction.

Thus loss from the trap during release and recapture is dominated by normal radial

motion, regardless of any axial heating.

To determine if we have heated the atoms, we instead suddenly truncate the well

depth to 0.1U0, wait for any newly unbound atoms to clear, and then record the

trap population with resonance fluorescence. By truncating the well, we become

sensitive to atoms that were initially in the bottom of the well (where the trap

is approximately harmonic) but were then heated above this threshold. A plot of

fluorescence as a function of modulation frequency is shown in Figure 8.3

In the figure, we see that there is a clear peak at νmod = 450 Hz, meaning that the

trap frequency is at νz = νmod/2 = 225 Hz. However, we must apply a correction of

1/
√

0.85 to correct for the fact that we were working at a reduced trap depth. When
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Figure 8.3: Atom loss as a function of parametric modulation frequency. The plot
clearly shows a parametric resonance near 450Hz.

this factor is included, we find νz = 245 Hz. This value is in significant disagreement

with the predicted value of 340 Hz. In Monte-Carlo studies of parametric resonance

( Section 4.5.1), we found that the observed frequency was typically reduced by 10%

from the true value. An analytical treatment of this system [51], shows a similar

shift. After correcting for this shift, our measurement is then νz ' 275 Hz, a value

that is still in some disagreement with our prediction.

We believe that the discrepancy likely lies in variations in the beam parameters

as we lower the well, making the conversion from 85% well depth to full well depth

not as simple as we assumed above. Because the axial frequency will only enter

into our analysis in the parameter ω̄ = (ω2
rωz)

1/3, the discrepancy will have little

effect on our results. We will use the (corrected) measured value of 275 Hz in the

remainder of the analysis.



CHAPTER 8. DETECTION OF DEGENERACY 199

8.4.2 Measuring the Imaging Magnification

The imaging system of the experiment was designed to provide an overall magnifica-

tion factor of 4. However, given that the imaging system is constructed of free-space

optical elements, slight variations in spacing and alignment can be expected to pro-

duce a variation of the magnification from the design specification. To determine

the actual magnification of our imaging system, we take advantage of a particular

feature of optical traps.

In general, magnifications are measured in atomic trapping experiments by caus-

ing a known displacement of the atoms and then comparing that to the observed

displacement. In previous experiments with magnetic traps, the only possibility for

controlled motion of the atoms was to release the cloud and watch the motion of

its center of mass under the influence of gravity. The downside to this approach is

that at long times after release, when the displacement is maximized, the cloud has

expanded reducing the signal-to-noise ratio and making precise observations more

difficult.

In our optical trap, the longitudinal location of the trap occurs a fixed dis-

tance from the final focusing lens. By translating that lens (it is mounted on a

translation stage), we can translate the longitudinal location of the trap precisely.

Meanwhile, the atoms remain confined in the trapping potential, providing images

with extremely high signal-to-noise ratios.

Images of the cloud at several positions are shown in Figure 8.4. In each image,

the trap has been shifted by 0.025 in compared to the previous image.

To determine the magnification, the images are processed according to the pro-

cedure depicted in Figure 8.1, with the exception that since we are interested in the

longitudinal position of the cloud, we compute the one-dimensional density by sum-
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Figure 8.4: Observed shift of the atomic cloud resulting from an applied translation
to the final focusing lens. In each image, the cloud has been translated by 0.025 in
from the previous one. From this observed shift it is possible to determine the
magnification of the imaging system.
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ming columns of the column-density image rather than rows. The one-dimensional

distributions are then fit to simple Gaussian functions to locate their centers. The

resulting positions of the cloud centers are then plotted against the known cloud

translations and are fit to a linear function to extract the slope of the line. This is

shown in Figure 8.5.

To extract the value of M from the slope, we use the following formula

M =
bZL

γ
. (8.17)

Here, b is the slope of the fit in Figure 8.5, Z is the number of pixels being binned

by the ccd, γ is the projective cosine resulting from the oblique observation angle

(its presence accounts for an observed foreshortening of the translation), and L is

the pixel size of the ccd.

For the images used here, Z = 2 (the ccd is reporting images made up of 2× 2
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superpixels. The camera observes at an angle of 35 ◦ from the long axis of the trap,

meaning that γ = cos(55 ◦) = 0.5736. Finally, the camera pixels are physically

13µm in size, making L = 13/25.4 = 0.5118 thousandths of an inch. Inserting

these numbers into (8.17), we find M = 3.9.

8.5 Analysis

Once we have values of the system parameters, we can begin analyzing the absorp-

tion images to determine the atom number, temperature, and degeneracy state of

the atoms.

8.5.1 Atom Number

From the classical distribution in (8.11), we see that we should be able to fit the

one-dimensional density distributions ň(i, τ), to a one-dimensional Gaussian of am-

plitude A and width w. From (8.11), we can then relate these fit parameters to

physical parameters as follows:

A =
NM

ci∆xcam

√
π

, w = ci. (8.18)

Hence, the atom number is given by the expression

N =
Aw∆xcam

√
π

M
. (8.19)

Of course, we could have simply taken ň(i) and numerically integrated in the

i-direction to get N , but for the signal-to-noise ratios in this experiment, we found

that the atom numbers generated by integration were not as consistent as those
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generated from the fit. In experiments performed after those reported in this thesis,

where improvements to the imaging system and trapping system have dramatically

enhanced the signal-to-noise ratios, we find that numerical integration does indeed

provide reliable determination of atom number. This is now the preferred approach

in our lab.

8.5.2 Temperature

We first compute the temperature of the cloud using the relationships we devel-

oped for the classical gas. Surprisingly, the estimates produced by this method

remain accurate even when the gas is slightly degenerate. Only when the gas is

clearly degenerate do we add quantum statistical corrections to our temperature

measurement. The following sections address these two techniques.

Classical Fits

In determining the atom number, we fit the one-dimensional density ň(i) to a Gaus-

sian function and related the width w of the Gaussian to the theoretical parameter

ci. It is through this relationship that we will extract the temperature of the cloud.

When we modified our theoretical distribution to a pixel-based description we

wrote

ci ↔ Mcx

∆xcam

. (8.20)

In Chapter 3, we defined cx as

cx = bx

√
1 + ω2

xτ
2, (8.21)
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and bx as

bx = ax

√
kBT

U0

, (8.22)

while in Chapter 2 we related ax to the well-depth and trap frequencies by

ωx =

√
4 U0

max

. (8.23)

Combining all these expressions, we find that

ci =
2M

∆xcam

√(
kBT

m

)(
1

ω2
x

+ τ 2

)
. (8.24)

Since we have previously related the fit parameter w with ci, we get the following

expression for the temperature of the gas:

T =
mw2∆x2

cam

4 kBM2

ω2
x

1 + ω2
xτ

2
. (8.25)

Every quantity on the rhs of (8.25) is a known physical, system, experimental, or

fit parameter.

Quantum Statistical Corrections

As stated above, the classical result produce reasonable temperature values for all

but clearly-degenerate gases. In the degenerate regime, however, we must make

some corrections to our treatment. It is worth noting, however, the direction in

which the classical results fail. As the gas becomes degenerate and the Pauli ex-

clusion principle forces atoms to occupy higher and higher quantum states, upon

release the gas necessarily expands faster than a classical gas at the same tem-

perature (since it consists of more high-momentum atoms than the corresponding
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classical gas). Thus an analysis based on classical thought will see this excess en-

ergy and attribute it (falsely) to a higher temperature. Hence, analysis based on

classical ideas always results in overestimating the temperature of the gas.

Unfortunately, simply fitting to the full Fermi-Dirac distribution (3.53) (suitably

adjusted for pixels), is not practical. The “surface” explored by the fitting routines

has many local minima, and the result is highly sensitive to the initial values of

the parameters. In the months since this experiment we have dramatically lowered

the temperature of our gas and have since had some success with a Sommerfeld

expansion [43] of the density. Further, we are now able to perform full fd-fits on

extremely low temperature clouds. However, in the temperature regimes explored

in this thesis, we still have no completely suitable approach.

As a first attempt at applying quantum concepts to our temperature measure-

ment, we begin by computing the chemical potential of the gas based on our mea-

surements using the classical formulas. To calculate the chemical potential [10], we

make use of an approximation from [63],

µ(T, N) = kBTF

[
1− π2

3

(
T

TF

)2
]

. (8.26)

This approximation is quite good in the degenerate regime (which is the only case

where we attempt to apply this approach). In the above we take T as the temper-

ature determined from the classical fit, and compute TF , the Fermi temperature,

from the number using [63]

TF =
~ω̄
kB

(6N)1/3 , (8.27)

where ω̄ = (ωxωyωz)
1/3. Note that this takes N to be the number of atoms in a

given spin state, while the N measured by the experiment is the total number of
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atoms.

Once we have a value of the chemical potential, we refit the data to a form of

the Fermi-Dirac distribution (3.53). We use an unnormalized version

f(i) = A

Li5/2

[
−λ e

U0
kBT e

− i2

c2
i

]

Li5/2

[
−λ e

U0
kBT

] . (8.28)

Here A is a fit parameter included to allow the fit routine to adjust the overall

scale, and the denominator is included so that the overall scale is set by the pa-

rameter A. As before, λ = exp [µ/(kBT )]. Of course igor does not have a built-in

polylogarithm function, so we use a series expansion. In Chapter 3 we provided the

series expansion for when the argument has magnitude less than one (3.21), but here

we must also work outside this region. The appropriate expansion for arguments

with magnitude greater than one is [45]

Lin [x] = Γ(1− n)

[
ln

(
1

x

)]n−1

+
∞∑

k=0

ζ(n− k) lnk(x)

k!
; |x| > 1, (8.29)

where Γ(n) is the gamma function and ζ(n) is the Riemann zeta function. We take

5 terms in each series.

The fitting is performed holding all parameters except ci and A constant. This

new value for ci is then converted into a temperature using (8.25).

8.5.3 Degeneracy Parameter

An important question now arises: How should we characterize the degeneracy of

a gas that obeys Fermi-Dirac statistics? The answer to this question is not so clear

cut.
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In the case of Bose-Einstein statistics, it makes sense to compute the semiclas-

sical phase-space density ρ. For N atoms in a given spin state, the semiclassical

phase-space density is given by

ρ = N

(
~ω̄
kBT

)3

. (8.30)

This result assumes a classical gas, so it clearly breaks down as we approach

degeneracy. However, for Bose-Einstein statistics, a reasonable definition of degen-

eracy is when ρ > 1. This is arguably the start of the macroscopic occupation of

the ground state that is the hallmark of bec. Of course, the situation is clarified

by the existence of a phase-transition in a Bose-Einstein system—when the system

reaches degeneracy, dramatic changes occur in the gas.

For a Fermi-Dirac system, (8.30) makes sense only until we approach degen-

eracy. Then, the real quantum occupation asymptotically approaches unity [10],

while (8.30) predicts ever increasing occupations. Further, the lack of a phase

transition makes it difficult to pick any particular point as the “onset of degen-

eracy”. The groups working in the field have chosen ρ = 1 as the dividing line.

Because (8.30) has no physical relevance to a Fermi-Dirac system in this regime,

we would prefer to work with a different parameter. A more relevant factor is the

degeneracy parameter T/TF , the ratio of the temperature to the Fermi temperature.

From the expression for the Fermi temperature (8.27), we see that we can write the

phase-space density in terms of the Fermi temperature

ρ =
1

6

(
TF

T

)3

. (8.31)

Thus, our definition of degeneracy (ρ < 1), becomes T/TF < 0.55, and the determi-
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nation of the degeneracy state becomes simply an exercise in computing this ratio

from the number and temperature data extracted from the atomic distributions. A

schematic of the analysis procedure is shown in Figure 8.6

8.6 Results

As described in Chapter 6, we prepared atomic samples using forced evaporation

durations of 10, 15, 20, 40, and 60 s. After forced evaporation, the trap is adiabati-

cally recompressed (maintaining the degeneracy state), and the gas is released and

imaged after ballistic expansion. The data were analyzed according to the tech-

niques presented above. The values of N , T , and T/TF from the analysis are shown

in Figure 8.7, Figure 8.8, and Figure 8.9, respectively.

At approximately τ ' 40 s, T/TF = 0.55, and we have entered the degener-

ate regime. To provide a more visual representation of this fact, we can convert

the one-dimensional density distributions ň(i) from spatial distributions to velocity

distributions by dividing by the expansion time τ (This neglects the finite initial

size of the cloud. However, given the extremely small transverse dimension of the

trapped optical cloud, this is negligible for all but the shortest of expansion times).

Similarly, we can convert the Fermi temperature TF into a Fermi velocity vF :

vF =

√
2 kBTF

m
. (8.32)

We can then plot the velocity distributions and examine the fraction of the dis-

tribution that lies above vF . At zero-temperature, of course, the cloud lies entirely

within vF , while in the classical limit, large portions of the cloud lie above vF .

These types of plots are presented in Figure 8.10, Figure 8.11, Figure 8.12,
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Figure 8.6: Analysis procedure.
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Figure 8.9: Degeneracy state (T/TF ) as a function of forced evaporation time.
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Figure 8.10: Velocity distribution of trapped atoms with 0 s of forced evaporative
cooling.

and Figure 8.13 for data taken after 0, 10, 40, and 60 s of forced evaporative cooling.

Each plot shows the atomic distribution (filled, solid curve), the fit to the data (thin,

dashed curve), and the Fermi velocity vF (broad, dashed, vertical lines). The cloud

with no forced evaporative cooling is quite broad, with a majority of the atoms above

the Fermi velocity. As expected, for the data taken after 10 s of forced evaporative

cooling, the cloud has shrunk, but still has significant tails above vF . The data

at 40 s, however, has narrowed dramatically. Finally the data from 60 s of forced

evaporative cooling has only the slightest wings above vF .

These data support the claim that we have successfully created a degenerate

Fermi gas of 6Li (in actuality, it is two degenerate Fermi gases, as both spin states

are degenerate). This represents the fourth experimental realization of a degenerate

Fermi gas, and the first time a degenerate Fermi gas was created by all-optical

techniques.
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Figure 8.11: Velocity distribution of trapped atoms with 10 s of forced evaporative
cooling.
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Figure 8.12: Velocity distribution of trapped atoms with 40 s of forced evaporative
cooling.
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Figure 8.13: Velocity distribution of trapped atoms with 60 s of forced evaporative
cooling.

8.6.1 Error Discussion

How certain can we be that the system has indeed prepared a degenerate sample?

This section addresses that concern by presenting a discussion of the likely error

magnitudes.

Number

The uncertainty in the number is dominated by uncertainty in the physical process

of absorption (the system is not truly a simple two-level atom). The analysis we

performed at the time we wrote [64], showed that our measured atom number was

accurate to 10%.
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Temperature

The temperature determination in the experiment derives from the relationship

given in (8.25). We rewrite the result, organizing the terms differently to get

T =
m

4kB

w2

(
∆xcam

M

)2
ω2

x

1 + ω2
xτ

2
. (8.33)

We now consider each of these terms to determine which require an uncertainty

estimate. The first term, m/(4kB), contains only the mass of 6Li and the Boltzmann

constant, both of which have been determined to levels of precision far beyond

this experiment. Uncertainty in this term can be neglected. The second term,

w, is the measurement that we make in the experiment. For the purposes of this

analysis, it also has no uncertainty contribution. The third term, (∆xcam/M)2

contains the physical size of the camera pixels and the overall magnification of

our imaging system. Current semiconductor lithographic techniques are capable

of producing features many orders of magnitude smaller than the 13 µm size of the

camera pixels. The uncertainty in ∆xcam, is therefore also negligible. M , the camera

magnification, was determined by an experiment reported earlier in this chapter, and

does contribute in a significant way to the overall uncertainty in the temperature.

The final term, ω2
x/(1+ω2

xτ
2) can be simplified somewhat. For the parameters used

in our experiment, ω2
xτ

2 ' 300. Therefore, the 1 in the denominator can be safely

neglected, and the final term is very closely approximated by 1/τ 2. The expansion

time is controlled in our experiment by a pulse generator with 50 ps error, which is

completely negligible on the timescales used in this experiment. However, there is

some timing uncertainty because of the finite imaging pulse duration.

We must now attempt to estimate the magnitude of the uncertainty in the error-
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contributing term 1/(M2τ 2). From Section 8.4.2, we see that the uncertainty in the

magnification arises from uncertainty in the slope of the line relating the several

measurements made in that section. From the analysis done at that time, the

uncertainty in the magnification is approximately 2%, implying that the uncertainty

in M2 is 4%. The uncertainty in τ arises, as mentioned previously, through the

fact that the imaging pulse has a finite duration. The imaging pulse used in the

experiment is 10 µs, compared to an expansion time of 400 µs, for an uncertainty of

2.5%. Thus, the uncertainty in τ 2 is 5%. Adding these values quadratically, we get

an overall uncertainty in the temperature of 6.4%.

Degeneracy Parameter, T/TF

From (8.27), we see that the uncertainty in the Fermi temperature TF arises from

uncertainty in (ωN)1/3. The uncertainty in our trap frequencies is, at worst, 5%,

while our number measurement is accurate to 10%, as mentioned above. Combining

these results quadratically and accounting for the cube-root dependence, we see that

the uncertainty in TF is 4%. We then combine this with the 6.4% uncertainty in

the temperature to find the overall uncertainty in our determination of T/TF to be

7.5%. Thus, we can indeed claim to have produced degenerate samples of 6Li.



Chapter 9

Conclusions

9.1 Overview

The primary experimental result of this thesis is the experimental production of a

degenerate Fermi gas of 6Li [20]. This represents the fourth degenerate Fermi gas

of neutral atoms, and the first ever produced via all-optical means. In addition, the

thesis focuses on the conceptual models, theoretical treatments, and experimental

procedures we had to develop over the years as we first learned how to trap neutral

atoms, then how to manipulate and measure them, and finally how to cool them

to degeneracy. The next section of this chapter provides a detailed summary of

the individual chapters. Subsequent sections discuss possible improvements to the

experiment and the future outlook for this type of research.

9.2 Chapter Summaries

The Introduction describes how research on degenerate Fermi gases arose as a nat-

ural offshoot of the earlier work on Bose-Einstein condensates and discusses how

the current thinking on degnerate Fermi gases has evolved greatly from those early

days. It presents the broad outlines of this thesis and illuminates the connections to

216
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prior theses by this group (most notably [21] by Ken O’Hara) and to a concurrent

thesis on the same experiment ( [20] by Stephen Granade).

Chapter 2, “Basic Cooling and Trapping Techniques,” describes the underlying

techniques used in the experiment presented in this thesis. It presents the basic

physics of the mot, the fort, and evaporative cooling. Real world complications

to the techniques are discussed, particularly in the context of 6Li. The chapter

concludes with a discussion of the scaling laws exhibited in evaporative cooling and

the derivation of the appropriate lowering curve for the CO2 laser intensity [40].

Chapter 3, “Trapped Atomic Clouds: Equilibrium Distributions and Ballistic

Expansion,” derives expressions for the spatial and momentum distributions of

trapped Maxwell-Boltzmann and Fermi-Dirac gases. In addition, the chapter treats

the case where the trapped gases are allowed to expand ballistically and derives the

appropriate time-dependent spatial distributions. These results play a large role in

the analysis of the experimental data in Chapter 8.

Chapter 4, “The Monte-Carlo Model,” presents the first entirely new result

of this thesis. Monte-Carlo techniques are applied to the problem of numerically

simulating a trapped Maxwell-Boltzmann gas in a Gaussian potential well. The

relevant probability distributions for generating a random atomic ensemble under

these conditions are derived and the output of a computer program using these

distributions is validated. The remainder of the chapter addresses applications of

the model, ranging from early temperature measurement techniques to discoveries

of deviations from harmonic behavior for even atoms quite low in the Gaussian well.

Chapter 5, “Dynamics of Noise-Induced Heating,” addresses the problem of heat-

ing in atom traps as a result of fluctuations in the trapping potential. The chapter

presents the basic physics of the phenomenon as well as a Fokker-Planck treatment
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of the evolution of an atomic distribution subject to these heating mechanisms (as

previously published in [26] and [27]). The chapter goes far beyond these results,

however, and develops a full, analytic eigenmode analysis of the Fokker-Planck

equation, as well as a complete stability analysis of the corresponding difference

equations. An important observation of the chapter is that the predicted long-time

evolution is consistent with the observed behavior of early optical traps [28]. This

lends credence to the argument that it was noise-induced heating that was the

fundamental obstacle to the creation of a working optical trap (an argument that

gains further credence by our success in creating a working trap with an ultrastable

optical source [39]).

Chapter 6, “Experimental Setup and Procedure,” is a detailed discussion of

the experiment to produce a degenerate Fermi gas of 6Li via all-optical means. It

provides a description of all the major portions of the experimental apparatus as

well as a step-by-step presentation of the procedure.

Chapter 7, “Imaging of Trapped Atomic Clouds,” presents the physics of the

basic imaging techniques used in atomic cooling and trapping experiments. For each

technique, the intensity distribution of the imaging beam is given as a function of

the column density of the atomic cloud that the beam passes through. An important

parameter in these expressions is the optical scattering cross-section. The value of

the optical cross-section is derived for the specific case used in this experiment,

and for a more general case that may become useful in the future. The chapter

concludes with an development of a simple model relating the signal-to-noise ratio

of images to the physical parameters of the imaging system. The model is useful in

analyzing prospective imaging systems to see if they will produce data of sufficient

quality.
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Chapter 8, “Detection of Degeneracy,” discusses the analysis of the images that

were the end result of the experiment described in Chapter 6. The chapter builds

upon the theoretical distributions derived in Chapter 3 and the basics of imaging

presented in Chapter 7 to develop an analysis procedure for the experimental

data. The chapter further discusses experimental techniques for determining system

parameters needed for the analysis. The analysis procedure clearly shows that the

experiment succeeded in generating a degenerate Fermi gas of 6Li.

This chapter, “Conclusions,” provides a short overview of the broad accom-

plishments of this thesis. In addition, it includes detailed chapter summaries, a

discussion of future improvements to the apparatus, and a discussion of the future

outlook for research on degenerate Fermi gases.

Appendix A, “Properties of 6Li,” is a detailed look at the fundamental physical

and optical properties of atomic 6Li. The atomic structure of the groundstate and

first excited state are presented, along with a discussion of how the atomic levels

tune in the presence of applied magnetic and electric fields. Complete tables of

transition matrix elements are provided for the D1 and D2 lines. The appendix

concludes with a simple presentation of basic scattering theory for ultracold gases,

and the specific details for a mixture of the two lowest hyperfine groundstates of

6Li—the particular mixture we use in our experiments.

Appendix B, “Techniques for Generating Nonuniform Probability Density Func-

tions,” discusses the general approaches for producing random numbers distributed

according to nonuniform probability distributions. Such techniques are applied in

the Monte-Carlo code of Chapter 4 to generate the proper atomic ensembles. An

important part of the techniques is the use of a probability distribution that approx-

imates the desired distribution while always equalling or exceeding it in magnitude.
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The final portion of the appendix describes the specific approximations used in the

Monte-Carlo code.

Appendix C, “Computer Code Listings,” presents computer codes used in through-

out the thesis. The Mathematica codes that generated the 6Li transition matrix

elements, as well as the Zeeman and Stark effect tunings presented in Appendix A

are included. The C-programs for the Monte-Carlo code of Chapter 4 and the

numerical solution to the Fokker-Planck equation of Chapter 5 are included as well.

9.3 Improvements to the Experiment

There are a number of obvious improvements that can be made to the apparatus

described in this thesis. Many of these have been implemented by Ken O’Hara

and Staci Hemmer during the time it took to write this thesis. The next section

describes the improvements that have already been made to the apparatus, while

the subsequent section describes further improvements that can be made.

9.3.1 Implemented Improvements

High-Field Magnets

The apparatus presented in this experiment was capable of providing a uniform

magnetic field for evaporative cooling of approximately 100G, which translated to

an s-wave scattering length on the order of -100 a0. While this was sufficient for pro-

ducing a degenerate gas, the evaporation rate this produced required experimental

durations of many tens of seconds. Additionally, this field magnitude is far from

the fields that are necessary to reach the broad Feshbach resonance in this system

(see Section A.7.3). Producing the large scattering lengths possible in a Feshbach
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resonance [15] is central to many of the most exciting possibilities in this system.

Even while the experiment of this thesis were underway, work was in progress

to design a new set of magnetic coils. The decision was to build a pair of coils

where the windings of each were encased inside a waterproof coilform. By placing

the winding directly in contact with the coolant, it is possible to greatly increase

the current driven through the coils. At full current, each coil receives 240A and

dissipates approximately 5 kW of power. When fully energized, the coils are capable

of producing fields in excess of 1100G and scattering lengths in excess of 1×104 a0.

In addition to allowing us to explore the new physical effects that appear at large

scattering length, these fields also greatly enhance the efficiency and rate of evapo-

rative cooling. We can now produce degenerate samples superior to those produced

in this thesis in a fraction of a second [19] rather than the 40-60 s necessary in the

experiment described here.

AO Thermal Stabilization

A major problem with the apparatus in this thesis was the deformation of the CO2

laser beam profile as the laser intensity was lowered. We eventually discovered

that this was the result of thermal effects in the germanium crystal of the ao. As

discussed in Section 6.4.14, thermal lensing effects in the crystal cause a variation

in the beam curvature that we correct with cylindrical lenses. As we lower the

CO2 intensity by lowering the power of the injected rf, the crystal cools somewhat,

changing its lensing properties. As a result, the cylindrical lenses no longer properly

correct the beam profile. The result is a change in the parameters of the trapping

potential.

To combat this problem, we have added a method of thermal stabilization.
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Rather than injecting the ao with only 40MHz rf, we add a 35MHz component

as well. The power in the 35MHz component is raised in counterpoint to the

lowering of the 40 MHz rf component. In this way, the rf power to the crystal

is constant. This maintains the temperature of the crystal and keeps the thermal

lensing constant over the duration of the experiment. The presence of two frequency

components in the ao generates two first-order beams. We use a pick-off mirror to

deflect the beam corresponding to the 35MHz component into a water-cooled beam

dump.

RF Equalization of State Populations

In the experiment of this thesis, we optically-pump the atoms from the upper hyper-

fine groundstates into the lower hyperfine groundstates as part of the fort loading

process. We took no particular precautions to ensure that the populations of the

two lower hyperfine groundstates were exactly equal at the end of this process. The

symmetry of the system ensures that the two populations will be close to equal, but

as the system is cooled, mismatches between the Fermi surfaces (the only place the

two species interact) can cause slowing of the evaporative cooling process.

To ensure that the populations of the two states are equal, we installed an rf

coil inside the vacuum chamber. We now apply a magnetic field of 8 G and simulta-

neously use the rf coil to generate a broadband rf field centered at 7.4MHz [19].

This frequency matches the splitting of the two hyperfine states at the applied

magnetic field and quickly mixes the populations, producing a very precise balance

between the two states.
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9.3.2 Possible Further Improvements

Increased Software Abstraction

Of all the improvements that were clearly necessary at the time of this experiment,

only one remains undone—increasing the level of software abstraction in the timing

system. The new timing system was a great improvement over the previous system

largely because in introduced abstraction into the timing design. The details of the

wiring were no longer important to the user. Creating a timing file is merely a

matter of describing how you want the individual channels to behave.

However, there remain several places where increased abstraction could provide

great benefit. The current form of a timing file is quite sufficient for describing the

states of the individual channels. However, the channels in the file are essentially

identified by their order. Swap the positions of two lines in the file, even if they

remain labelled with the proper channel name, and the system sends the channel

commands to the wrong pieces of equipment. We should insert an additional layer of

abstraction that relates channel names with physical channel numbers. There is no

reason the creator of a timing file should have to know that the “camera shutter” is

line 28, but merely that they wish to control the camera shutter. Implementing such

a layer would be quite trivial, but would eliminate a number of hard-to-troubleshoot

errors.

Further, the current timing structure allows for the sending of General Purpose

Instrument Bus (gpib) commands to those pieces of equipment that accept them.

However, the current formulation allows these commands to be sent only once.

In the case where we wish to run the same general form of the experiment, but

with varying parameters (such as when we step through modulation frequencies

looking for a parametric resonance peak), the user must design a single-use LabView
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program that repeatedly sends the new gpib commands and runs the same timing

file at each new setting. We should design a higher-level abstraction to the timing

file—the experiment file. This file should describe what timing files to run, in what

sequence, and what gpib commands to send throughout the sequence. This would

greatly speed the creation of new large-scale experimental procedures and allow a

single, general-purpose LabView program to serve our many needs.

9.4 Future Outlook

The outlook for continued research in degenerate Fermi gases is quite good. In

the time since we completed the experiment in this thesis, our group has used the

new high-field magnets to observe the zero-crossing in the s-wave scattering length

near 530 G [65]. Similar measurements and experiments have been performed by

other groups [66, 67]. These measurements provide important constraints on the

molecular potentials that determine the precise location of the Feshbach resonance.

Our group has gone further and performed the first experiment on a strongly-

interacting degenerate Fermi gas [19]. This experiment provided the first mea-

surement of a universal fermion parameter [11, 12] as well as strong evidence for

the formation of a resonance superfluid [16–18]. We currently have experiments

underway to directly observe superfluid properties and pairing interactions in the

degenerate gas. Other groups no doubt have similar efforts in progress. It seems

quite likely that the next year will see success on these fronts and the first experi-

ments on collective oscillations and vortices in a fermionic superfluid.



Appendix A

Properties of 6Li

. . . in order to understand the nature of things, we must
begin by asking, not whether a thing is good or bad, . . . but
of what kind it is? And how much is there of it?

—James Clerk Maxwell

A.1 Overview

This chapter attempts to provide many of the important physical properties of bulk

and atomic 6Li that are relevant to atomic cooling and trapping experiments. Pa-

rameters that result from experimental measurement are referenced to their source

(either primary or secondary), while the calculations behind derived quantities are

explained and references to detailed treatments are provided where possible. The

content and presentation style of the beginning portions of this chapter are heavily

inspired by Steck’s excellent unpublished resources on 133Cs and 23Na [68,69], while

the later half draws on the exposition of scattering presented in a previous thesis

by O’Hara [21].

The reader will notice this chapter is written at an elementary level, and includes

atomic properties not directly related to the work in the remainder of this thesis.

This approach is intentional, and is taken in the hope that, in the future, this

chapter can be excerpted for use as a reference to 6Li within our research group.

225



APPENDIX A. PROPERTIES OF 6LI 226

Property Symbol Value Ref.

Density (300K) ρ 0.534 g · cm−3 [70]

Melting Point TM 453.69K [70]

Heat of Fusion QF 2.99 kJ · mol−1 [70]

Boiling Point TB 1615K [70]

Heat of Vaporization QV 134.7 kJ · mol−1 [70]

Table A.1: Fundamental physical properties of bulk lithium.

A.2 Fundamental Physical Properties

Lithium, in solid form, is the lightest of the metals and presents a silvery-grey

appearance. Like all alkalis, it reacts with water, but not as violently as sodium [70].

The fundamental physical properties of bulk lithium are listed in Table A.1. The

concentration on thermodynamic properties is indicative of the fact that in atomic

cooling and trapping experiments, the bulk element is only used as a consumable for

the atomic source. In addition to the numerical data in the table, there is one more

important bulk property—vapor pressure. The atomic number density is directly

related to the vapor pressure and is the primary adjustable parameter for a given

atomic-beam or vapor-cell atom source. The vapor pressure of lithium in the solid

and liquid phases is given by [71]

log10 PVsol
= −54.87864− 6450.944

T
− 0.01487480 T + 24.82251 log10 T ,

log10 PVliq
= 10.34540− 8345.574

T
− 0.00008840 T − 0.68106 log10 T .

Above, pressure is in Torr (mm Hg) and temperature is in Kelvin. A plot of the

vapor pressure over temperature ranges relevant to our experiment is shown in Fig-

ure A.1.
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Figure A.1: Vapor pressure of 6Li. The melting point of 6Li occurs at the left
axis. The circle marks the approximate operating point of our atomic source.

Lithium appears naturally in two stable isotopes. 7Li with four neutrons, and 6Li

with three. Since the two isotopes differ by a single spin-1/2 particle, they exhibit

different quantum statistics. 7Li is a composite boson, while 6Li is a composite

fermion. This thesis is solely concerned with the fermionic isotope. The fundamental

physical properties of 6Li in its atomic form are shown in Table A.2

A.3 Optical Properties

Like all alkalis, the optical spectrum of lithium contains a prominent spectroscopic

feature, called the D-line for historical reasons. It is fairly easy to discern that this

line consists of two narrowly separated features, logically named the D1 (redmost)

and D2 lines. The physical principles underlying the two components and their,

as yet unmentioned, internal structure will be briefly discussed in the next section.

Some basic properties of the D1 and D2 transitions in 6Li are listed in Table A.3
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Property Symbol Value Ref.

Atomic Number Z 3

Nucleons Z + N 6

Natural Abundance η 7.6% [70]

Nuclear Lifetime τn stable [70]

Atomic Mass m 6.015 121 4 u [72]
9.988 341 4×10−27 kg

Total Electronic Spin S 1/2

Total Nuclear Spin I 1

Table A.2: Fundamental physical properties of atomic 6Li.

and Table A.4, respectively.

The wavenumber, k, wavelength, λ, and the frequency, ν, in the tables are

related by the expressions

k =
2π

λ
and λν = c, (A.1)

with c the speed of light in vacuum. It is interesting to note that the excited-state

lifetimes for both the D1 and D2 lines are identical. This is not typical in the alkalis,

however, for 6Li the difference in the two lifetimes is within the uncertainty of the

most precise measurement to date [73]. The natural linewidth of the the optical

transitions is inversely related to the excited state lifetime,

Γ =
1

τ
. (A.2)

The recoil velocity is the velocity associated with the momentum of a single resonant
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Property Symbol Value Ref.

Wavelength (vacuum) λ 670.992 421 nm

Wavenumber (vacuum) k/2π 14 903.298 cm−1 [74]

Frequency ν 446.789 634THz

Lifetime τ 27.102 ns [73]

Natural Linewidth Γ 36.898×106 s−1

5.872 4MHz

Atomic Recoil Velocity vrec 9.886 554 cm · sec−1

Recoil Temperature Trec 3.535 652 56µK

Table A.3: Optical properties of the D1 line of 6Li.

photon absorption or emission. It is easily calculated from

mvrec = prec = ~k. (A.3)

For atomic cooling and trapping experiments, it is customary to convert many

parameters to temperature units (noting that the resulting values, since they do not

represent equilibrium energy distributions, are not, strictly speaking, temperatures).

The recoil velocity is converted to a recoil temperature by relating the kinetic and

thermal energies:

1

2
mv2

rec = kb Trec. (A.4)

This shows that, were it possible for a 6Li atom to be perfectly at rest, the absorption

or emission of a single resonant photon will give the atom a speed comparable to

atomic speeds in a gas of 6Li at ' 3.5 µK. Clearly, for an ultracold gas of 6Li at

Tgas ≤ 1 µk (not unusual for a degenerate or near-degenerate sample), heating of

this magnitude is to be avoided!
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Property Symbol Value Ref.

Wavelength (vacuum) λ 670.977 338 nm

Wavenumber (vacuum) k/2π 14 903.633 cm−1 [74]

Frequency ν 446.799 677THz

Lifetime τ 27.102 ns [73]

Natural Linewidth Γ 36.898×106 s−1

5.872 4MHz

Atomic Recoil Velocity vrec 9.886 776 cm · sec−1

Recoil Temperature Trec 3.535 811 52µK

Table A.4: Optical properties of the D2 line of 6Li.

A.4 Fine and Hyperfine Structure

6Li has a single, unparied valence electron. The ground state configuration is 1s2 2s1;

while the excited state configuration is 1s2 2p1. The simplest view of the energy

levels of 6Li, the central-field approximation, takes only this fact into account, and

computes the energy of the atom assuming that the valence electron is independent,

and that the nucleus and closed electron shell produce a spherically-symmetric

electric field. The resulting ground and excited states are schematically indicated

in the leftmost column of Figure A.2. The transition between these two states is

responsible for the broad structure of the spectroscopic D-line. The ground and

excited levels are given the spectroscopic notation 2 2S and 2 2P , respectively.

The two sub-features of the D-line, the D1- and D2-lines, result from the inter-

action between the intrinsic angular momentum (spin) of the valence electron and

the angular momentum of its orbit. This interaction is known, naturally enough,

as the spin-orbit coupling, and the splitting of the D-line into the D1- and D2-lines

is the fine structure. Physically, the fact that there is an energy contribution from

the interaction of the two angular momenta can be understood by considering the
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Figure A.2: Ground (lower) and first excited (upper) states of 6Li in the L, J , and
F bases. The states are also labelled with spectroscopic notation where appropriate.
Energy splittings are not to scale.

gyromagnetic ratios (g-factors). The g-factors describe the fact that a charged par-

ticle with angular momentum naturally gives rise to a magnetic dipole moment—the

g-factor is the constant of proportionality between the the two quantities. So the or-

bital angular momentum produces a magnetic dipole moment, as does the electron

spin. There is an interaction energy between two dipole moments, however, and

hence a contribution to the Hamiltonian. The interaction can be written as [75]:

Ĥ
′
SO =

e

2m2c2~2

[
1

r

dΦ

dr

]
L̂ · Ŝ ≡ f(r) L̂ · Ŝ, (A.5)

where L̂ and Ŝ are the orbital angular momentum and spin operators, respectively.

φ is the electric potential produced by the nucleus and the inner electrons, and r

is the radial coordinate. In computing the value of this perturbation Hamiltonian,

it is convenient to work in the total electronic angular momentum, Ĵ, basis. We
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define a new operator

Ĵ = L̂ + Ŝ. (A.6)

The quantum-number J can then take on values in integral steps in the range

|L− S| ≤ J ≤ (L + S). (A.7)

We can then make use of the identity

Ĵ2 = L̂2 + Ŝ2 + 2 L̂ · Ŝ, (A.8)

to write the interaction in (A.5) in terms of the operators Ĵ2, L̂2, and Ŝ2 which,

along with Ĵz form a complete set of commuting operators.

Let us now apply this knowledge to the ground and excited states of 6Li. The

ground state has S = 1/2 and L = 0. This implies a single value for J , namely

J = 1/2 . The excited state, however, has S = 1/2 and L = 1. There are two

possible values for J , J = 1/2 , 3/2. Thus, the spin-orbit interaction splits the excited

state into two. The state with J = 1/2 is given the spectroscopic name 2 2P1/2 and

the state with J = 3/2 is named 2 2P3/2. The effect of the spin-orbit interaction is

schematically indicated in the middle column of Figure A.2. We see now that the

D1-line is the spectroscopic feature that results from 2 2S1/2 ↔ 2 2P1/2 transitions

and the D2-line results from 2 2S1/2 ↔ 2 2P3/2 transitions. The g-factors for electron

spin and L = 1 electron orbit, along with an experimental measurement of the

fine-structure splitting, is given in Table A.5.

In the previous section, allusions were made to substructure within the D1- and

D2-lines. This is known as the hyperfine structure, and results from the fact that

the atomic nucleus is not truly spherically symmetric as we have assumed up to
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Property Symbol Value Ref.

Electron Spin g-factor gS 2.002 319 304 373 7 [76]

Electron L = 1 Orbital g-factor gL 0.999 995 87

2P Fine Structure Splitting ∆EFS 10.053 044GHz [77]

Table A.5: Electron g-factors and fine-structure splitting for 6Li.

this point. Rather than consider the interaction energy of the valence electron in

an asymmetric field from the nucleus, we consider the equivalent interaction energy

of an asymmetric nucleus in the field of the valence electron. In such a framework,

the interaction Hamiltonian is given by [78]:

Ĥ
′
HF = −µ̂ · B̂(0) +

1

6
e
∑

αβ

Q̂αβ
∂ 2φ(0)

∂xα∂xβ

, (A.9)

where µ̂ and Q̂ are the nuclear magnetic dipole moment and nuclear electric quadrupole

moment operators respectively. B̂ is the magnetic field operator at the location of

the nucleus, and φ is the electric potential at the nucleus. The first term is a

magnetic dipole interaction, and as such, is analogous to the spin-orbit interaction

discussed previously. The second term is an electric quadrupole interaction and

only contributes when the valence electron is in a state that has a non-spherically-

symmetric electric field. Of the states we have considered, the 2 2S1/2 state arises

from an orbital state with L = 0. As such, its angular wavefunction is given by

a spherical harmonic Y 0
0 , which is spherically symmetric. Additionally, the 2 2P1/2

state transitions to the ground state with only zero or one unit of transferred an-

gular momentum, and as such can not support a quadrupole interaction with two

units of angular momentum. Only the 2 2P3/2 can support such a interaction, and

as a result, only it has a non-zero electric quadrupole contribution.
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Property Symbol Value Ref.

2 2S1/2 Magnetic Dipole Constant A2 2S1/2
152.136 840 7MHz [79]

2 2P1/2 Magnetic Dipole Constant A2 2P1/2
17.386MHz [77]

2 2P3/2 Magnetic Dipole Constant A2 2P3/2
-1.155MHz [79]

2 2P3/2 Electric Quadrupole Constant B2 2P3/2
-0.10MHz [79]

Table A.6: Hyperfine constants for the 2S and 2P levels of lithium.

To incorporate this interaction, it becomes convenient to work in the total atomic

angular momentum, F̂, basis. We define

F̂ = Ĵ + Î, (A.10)

where Î is the total nuclear angular momentum operator, analogous to Ĵ for elec-

trons. The quantum number F can take on values in integral steps in the range

|J − I| ≤ F ≤ (J + I). (A.11)

We can then make use of an identity analogous to (A.8) to express the interaction

in terms of F̂ 2, Ĵ2, and Î2, which, along with F̂z, again form a complete set of

commuting operators. In this new basis, the interaction is given by [78]

∆EHF =
1

2
A C +

3

8
B

C(C + 1)

I (2I − 1) J (2J − 1)
, (A.12)

where C = F (F + 1)− J(J + 1)− I(I + 1), and A and B are the magnetic dipole

hyperfine constant and electric quadrupole hyperfine constant, respectively for the

F state of interest. Experimental measurements of the hyperfine constants of 6Li

are listed in Table A.6.
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Applying these concepts to the fine-structure levels, we see that the 2 2S1/2 level

with J = 1/2 and I = 1 (see Table A.2) has two possible values of F : F =

1/2 , 3/2. The 2 2P1/2 state also has possible F -values of F = 1/2 , 3/2. The 2 2P3/2

state, however, has the possible values F = 1/2 , 3/2, 5/2. This splitting is indicated

schematically in the rightmost column of Figure A.2.

At this point, we have essentially described the structure of the ground and 2P

excited states of 6Li in a region free of external fields. The results are summarized

in a level diagram in Figure A.3. In the next section, we address the application of

external fields.

A.5 Interaction With DC Fields

A.5.1 Magnetic Fields

The tuning of atomic levels in static magnetic field is known as the Zeeman effect. As

we have previously noted, a charged particle with angular momentum is a magnetic

dipole. Any such dipole will have an interaction energy in an applied magnetic field.

The interaction Hamiltonian is quite simple, and is given by

ĤB = −µB

~
∑

x

gx X̂z · B̂ (A.13)

where the sum is over good angular momentum quantum numbers, and gx and X̂z

are the g-factor and angular momentum projection operator corresponding to those

numbers.

As the B-field increases from zero, the Zeeman interaction is initially small

compared to the hyperfine interaction. Thus, we may treat it as a perturbation to
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Property Symbol Value Ref.

Total Nuclear g-factor gI -0.000 447 654 0 [79]

gJ (2 2S1/2 ) 2.002 301 0 [79]

Total Electronic g-factor gJ (2 2P1/2 ) 0.666 8 [79]

gJ (2 2P3/2) 1.335 [79]

Table A.7: Total nuclear and total electronic g-factors for 6Li.

the hyperfine levels we derived earlier. In this case, F precesses around B, hence F

is still a good quantum number, and (A.13) reduces to

∆Ez =
µB

~
gF mF B. (A.14)

The g-factor, gF , is given by a Landé g-factor expression that combines gJ and gI

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
.

(A.15)

Values of gJ and gI are given in Table A.7. In this regime, the energies tune linearly

with B. In alkalis, this region is known as the anomalous Zeeman effect. “Anoma-

lous” because the spectral lines split into doublets, quadruplets, and sextuplets,

rather than triplets as predicted by a semiclassical theory of Lorenz (his theory was

developed prior to knowledge of spin—as such, only atoms with total spin S = 0

exhibit the normal Zeeman effect at low field).

Eventually, the magnetic energy becomes significant compared to the hyperfine

energy. When this happens, the Zeeman effect can no longer be treated as a per-

turbation. At this point, F ceases to be a good description of the system, and F

is no longer a good quantum number. We are now forced to find eigenstates of the
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combined interaction Hamiltonian

Ĥint = ĤB + ĤHF =
µB

~
∑

x

gx X̂ · B̂− µ̂ · B̂(0) +
1

6
e
∑

αβ

Q̂αβ
∂ 2φ(0)

∂xα∂xβ

. (A.16)

This region occurs at very low fields for 6Li. The ground and excited states have

extremely small hyperfine splittings compared to other alkalis. As a result, the

combined interaction Hamiltonian must be used for fields as small as a few Gauss.

Finding the eigenstates is, of course, a matter of diagonalizing the Hamiltonian.

While this is generally done numerically, it has been done analytically for the hy-

perfine ground states of 6Li [42]. Expressed in the |mS mI〉 basis, the authors find

the eigenstates to be

|1〉 = sin θ+ |1/2 0〉 − cos θ+ |−1/2 1〉 (A.17)

|2〉 = sin θ− |1/2 − 1〉 − cos θ− |−1/2 0〉

|3〉 = |−1/2 − 1〉

|4〉 = cos θ− |1/2 − 1〉+ sin θ− |−1/2 0〉

|5〉 = cos θ+ |1/2 0〉+ sin θ+ |−1/2 1〉

|6〉 = |1/2 1〉

where the states are numbered in order of increasing energy. In the above, sin θ± =

1/
√

1 + (Z± + R±)2/2, cos θ± =
√

1− sin θ±, Z± = (µn +2µe)B/A2 2S1/2
± 1/2 , and

R± =
√

(Z±)2 + 2. Also note that mJ has been replaced with mS since L = 0 for

the ground state.

Numerical results for the 2 2S1/2 , 2 2P1/2 , and 2 2P3/2 states are shown in Figures

A.4, A.5 and A.6, respectively. The numerical results for the 2 2S1/2 state are
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Figure A.4: Magnetic-field dependence of the 2 2S1/2 ground state of 6Li.

identical to those obtained from the analytical results above. The computer code

that generated these results is given in Section C.2.

As the field strength continues to grow, eventually the hyperfine energy can be

neglected and the eigenstates are those of the Zeeman Hamiltonian. At this point,

we can treat the atoms in a pure product state basis |JmJ〉 |ImI〉. Each ket is

treated independently with respect to the Zeeman effect—in other words (A.13)

becomes:

∆Ez =
µB

~
(gJmJ + gImI)B. (A.18)

At this point, the states are arranged into spectroscopic triplets (the normal Zeeman

effect). Further, since gJ À gI , for sufficiently large fields, the nuclear contribution
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Figure A.5: Magnetic-field dependence of the 2 2P1/2 excited state of 6Li.
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can be neglected, and the energies are well approximated by

∆Ez ' µB

~
gJmJB. (A.19)

Of course, the numerical treatment of the complete Hamiltonian captures this be-

havior as well—note the organization of the levels into triplets in the high-field

regions of Figures A.4, A.5 and A.6.

Eventually, the magnetic interaction will become significant with respect to the

spin-orbit interaction. The two energies become comparable at fields on the order

of 1T=10 000 G. As a result, precision calculations must cease using the J-basis for

field-strengths in excess of about 500-1000G. Future experiments in our laboratory

will place the atoms in field-strengths as large as 1200G. To treat this problem, the

atoms are described in the |S mS〉 |L mL〉 |I mI〉 product basis, and the combined

spin-orbit and Zeeman Hamiltonian is diagonalized (the excited state hyperfine

interaction is neglected because of its relatively small contribution). The results of

this calculation for the L=1 excited state are shown in Figure A.7.

A.5.2 Electric Fields

The interaction between an atom and a DC electric field is known as the Stark effect

and is substantially simpler than the Zeeman effect. The interaction is described in

the Ĵ-basis, and the interaction energy is given by [80]:

∆Em = −1/2 α(m) E2 (A.20)

where α(m) is the static polarizability of the atom in a magnetic sublevel m, and E
is the electric field strength. By using irreducible tensor operators, it can be shown
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The hyperfine contribution has been neglected in this calculation. The size of the
nuclear contribution is negligible on this scale; as a result, each line is three-fold
degenerate.
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Property Symbol Value Ref.

2 2S1/2 Scalar Polarizability α0 (2 2S1/2 ) 0.040 8 Hz/(V/cm)2 [82]

2 2P1/2 Scalar Polarizability α0 (2 2P1/2 ) 0.031 56Hz/(V/cm)2 [83]

2 2P3/2 Scalar Polarizability α0 (2 2P3/2) 0.031 63Hz/(V/cm)2 [83]

2 2P3/2 Tensor Polarizability α2 (2 2P3/2) 0.000 406Hz/(V/cm)2 [83]

Table A.8: D-line polarizabilities of 6Li.

that the static polarizability can always be written in terms of a scalar polarizability

α0 and a tensor polarizability α2 [81]:

α(m) = α0 + α2
3m2 − J (J + 1)

J (2J − 1)
. (A.21)

Table A.8 list the static and tensor polarizabilities for the 2 2S1/2 , 2 2P1/2 , and

2 2P3/2 levels of 6Li. The tensor polarizability is rank 2, and as we saw before, only

the 2 2P3/2 level can support such an operator. Hence, only that state has a tensor

polarizability.

If we consider the atom in the F̂-basis, for small enough electric fields, the Stark

interaction can be treated as a perturbation on the the hyperfine eigenstates. What

is small enough? Well, if we consider an effect of ' 5% of the hyperfine energy

as where a perturbation stops being small, then we can write the corresponding

electric field strength as:

E2
max ' 2 (0.05)

AJ

α0J

(A.22)

where AJ is the magnetic dipole hyperfine constant for the appropriate fine structure

state (found in Table A.6). From this, we see that in the ground state, a perturbation

treatment is acceptable up to a field strength of approximately 19.5 kV/cm! For the

states in the 2 2P1/2 and 2 2P3/2 manifolds, we get values of 7.4 kV/cm and 1.9 kV/cm,
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respectively.

In this regime, the eigenstates remain eigenstates of the F̂-basis, and we shift

the energies of the levels according to (A.20) and (A.21). If we are interested in field

strengths outside this range, then we must include both the Stark effect (A.20) and

the hyperfine interaction (A.12) in our Hamiltonian, and diagonalize the resulting

matrix. Eventually, of course, the Stark effect dominates the hyperfine interaction,

and we can work solely with the Stark Hamiltonian.

For realistic experiments, we never have to consider a Hamiltonian that con-

tains the Stark effect and the spin-orbit interaction. Using an equation analogous

to (A.22) to calculate the range over which the Stark effect is a perturbation on

the fine structure, we find that it takes fields greater than 170 kV/cm before this

becomes an issue.

It is important to note that the predominant result of the Stark effect is an

overall energy shift that is quadratic in the electric field. Only the 2 2P3/2 state,

with a nonzero tensor polarizability, has a change in the relative splitting of its

hyperfine constituents. A plot of this splitting, with the overall quadratic shift

suppressed, is shown in Figure A.8. The computer code that produced these results

is listed in Section C.3.

A.6 Interaction With Near-Resonant Light

A.6.1 Optical Transition Matrix Elements

The interaction between the internal states of the atom and an external, near-

resonant optical field is quantified through the electric-dipole transition matrix ele-

ments. These matrix elements describe how the internal states of the atom couple
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Figure A.8: Stark-effect shifts of the 2 2P3/2 level of 6Li. An overall shift propor-
tional to E2 has been suppressed.

to one another via an electric-dipole (−µ · E) interaction with the near-resonant

field [58] (magnetic transitions and transitions of higher multipolar order exist, but

are substantially weaker than the electric-dipole transition). If we start in a hyper-

fine state represented by |(JI)FmF 〉 and couple to a state
∣∣(J ′

I
′
)F

′
mF

′
〉
, then the

matrix element for this transition is given by
〈
(J

′
I
′
)F

′
mF

′ µ̂ (JI)FmF

〉
, where

µ̂ is the electric-dipole operator. We can use the Wigner-Eckart Theorem [62]

to represent this matrix element in terms of a reduced matrix element that is m-

independent. Recognizing that we can write the electric-dipole operator, µ̂ as an

irreducible spherical tensor operator, µ̂(k, q), with k = 1 and q = −1, 0, 1 for electric-

dipole radiation with σ−, π, and σ+ polarization respectively, we can directly use
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the Wigner-Eckart theorem to write [84]:

〈
(J

′
I
′
)F

′
mF

′ µ̂(1, q) (JI)FmF

〉
= (−1)F

′−m
F
′

(
J
′

1 J

−mF
′ q mF

)
×

〈
(J

′
I
′
)F

′
µ̂(1) (JI)F

〉
. (A.23)

The reduced matrix element is written with double vertical bars for easy identifica-

tion. The factor in parenthesis is known as a Wigner 3-J Symbol [62], and describes

the magnetic-quantum-number-dependence of the matrix element. Most notably, it

is identically zero unless mF ′ = mF + q and F
′
= F ± 1. Thus, it automatically

enforces the appropriate selection rules.

We can further reduce the expression through the use of angular momentum

recoupling [62]. Although a transition between two F -states changes F , it does so

by changing J and leaving I unchanged. We can rewrite our reduced matrix element

in a manner that makes the J-changing nature of the transition more apparent [84]:

〈
(J

′
I
′
)F

′
µ̂(1) (JI)F

〉
= δI′I (−1)J

′
+I+F+1

√
(2F ′ + 1)(2F + 1)×

{
J
′

I F
′

F 1 J

} 〈
J
′

µ̂(1) J
〉

. (A.24)

The term in the large braces is a Wigner 6-J Symbol [62]. We can combine (A.23)

and (A.24) to achieve the final result:

〈
(J

′
I
′
)F

′
mF ′ µ̂(1, q) (JI)FmF

〉
= δI′I (−1)F

′
+F+J

′
+I−m

F
′+1

√
(2F ′ + 1)(2F + 1)×

(
J
′

1 J

−mF ′ q mF

){
J
′

I F
′

F 1 J

}
×

〈
J
′

µ̂(1) J
〉

. (A.25)
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It is hard to over-emphasize the importance of (A.25). A moment of reflection

will show that for the states we have been considering, there are only two possible

values of
〈
J
′

µ̂(1) J
〉
—one for the D1-line and one for the D2-line! To calculate

the transition strength between two F -levels, one merely has to determine whether

the transition belongs to the D1- or D2-line and multiply the appropriate reduced

matrix element by the prefactors of (A.25).

But what are the values of the reduced matrix elements? We can make a step

towards answering this question by once again employing angular momentum re-

coupling. The total electronic angular momentum J is comprised of the orbital

angular momentum L and the spin S. The electric dipole transition only changes

L, so we can explicitly extract this L-changing nature of the transition. In analogy

with (A.24):

〈
(L

′
S
′
)J

′
µ̂(1) (LS)J

〉
= δS′S (−1)L

′
+S+J+1

√
(2J ′ + 1)(2J + 1)×

{
J
′

I F
′

F 1 J

} 〈
L
′

µ̂(1) L
〉

. (A.26)

Now we have a single reduced matrix element that corresponds to the entire D-line.

The value of this matrix element and of the D1 and D2 matrix elements are given

in Table A.9. The prefactors in (A.25) have been tabulated for all all transitions in

the D1- and D2-lines. The results are shown in Tables A.10, A.11 and A.12. The

computer code that generated these values is listed in Section C.1.

A.6.2 Transition Matrix Element Sum Rules

The tables of transition matrix elements exhibit several interesting sum rules as a

result of the symmetrical nature of the electric dipole operator. These rules can be
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Property Symbol Value Ref.

1.148×10−29 C·m
D-Line Reduced 3.443×10−18 esu·cm
Matrix Element

〈
L
′
= 1 µ̂(1) L = 0

〉
3.443Debye√

3µ0

−2.812×10−29 C·m
D1-Line Reduced −8.433×10−18 esu·cm
Matrix Element

〈
J
′
= 1/2 µ̂(1) J = 1/2

〉
-8.433Debye

−√2µ0

3.977×10−29 C·m
D2-Line Reduced 11.925×10−18 esu·cm
Matrix Element

〈
J
′
= 3/2 µ̂(1) J = 1/2

〉
11.925Debye

2µ0

Table A.9: Reduced matrix elements for 6Li.

simply derived from the mathematical properties of the 3- and 6-J symbols [62].

We begin by considering the sum of the squares of the matrix elements for

transitions from a single magnetic sublevel, mF , in a single level, F , to all magnetic

sublevels in a single level, F
′
, via all possible polarizations:

SF, F ′ =
∑

q

∣∣∣
〈
(J

′
I
′
)F

′
(mF + q) µ̂(1, q) (JI)F mF

〉∣∣∣
2

= (2F
′
+ 1)

{
J
′

I F
′

F 1 J

}2 ∣∣∣
〈
J
′

µ̂(1) J
〉∣∣∣

2

. (A.27)

Note the result does not depend on mF . Therefore the result is independent of what

magnetic sublevel we start in. The values of SF, F ′ reflect the relative strength of

transitions between different F -levels. These values are tabulated in Table A.13.

If we then sum over final F -levels, we derive the rule of primary physical impor-
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Table A.10: D1-line electric-dipole-transition matrix elements. Results are given
in units of µD1 =

〈
J = 1/2 µ̂(1) J

′
= 1/2

〉
= −√2µ0. The parenthetical terms

indicate the polarization of light required to drive the transition.



APPENDIX A. PROPERTIES OF 6LI 250

2
2 P

3 /
2

F
=

5 /
2

D
2

-5
/2

-3
/2

-1
/2

1 /
2

3 /
2

1 /
2

-3
/2

1 /
2

(σ
−
)

√
1 1
0

(π
)

√
1 4
0

(σ
+
)

-1
/2

√
3 2
0

(σ
−
)

√
3 2
0

(π
)

√
3 4
0

(σ
+
)

F=3/2

1 /
2

√
3 4
0

(σ
−
)

√
3 2
0

(π
)

√
3 2
0

(σ
+
)

22S1/2

3 /
2

√
1 4
0

(σ
−
)

√
1 1
0

(π
)

1 /
2

(σ
+
)

-1
/2

F=1/2

1 /
2

Table A.11: D2-line electric-dipole-transition matrix elements (part1). Results are
given in units of µD2 =

〈
J = 1/2 µ̂(1) J

′
= 3/2

〉
= 2µ0. The parenthetical terms

indicate the polarization of light required to drive the transition.
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Table A.12: D2-line electric-dipole-transition matrix elements (part 2). Results
are given in units of µD2 =

〈
J = 1/2 µ̂(1) J

′
= 3/2

〉
= 2µ0. The parenthetical

terms indicate the polarization of light required to drive the transition.
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Transition Type SF F ′ Value

S1/2 , 1/2
1/18

S1/2 , 3/2
4/9

D1 Absorption (2 2S1/2 → 2 2P1/2 )
S3/2, 1/2

2/9

S3/2, 3/2
5/18

S1/2 , 1/2
1/18

S1/2 , 3/2
4/9

D1 Emission (2 2P1/2 → 2 2S1/2 )
S3/2, 1/2

2/9

S3/2, 3/2
5/18

S1/2 , 1/2
2/9

S1/2 , 3/2
5/18

S1/2 , 5/2 0
D2 Absorption (2 2S1/2 → 2 2P3/2)

S3/2, 1/2
1/72

S3/2, 3/2
1/9

S3/2, 5/2
3/8

S1/2 , 1/2
2/9

S1/2 , 3/2
1/36

S3/2, 1/2
5/36

D2 Emission (2 2P3/2 → 2 2S1/2 )
S3/2, 3/2

1/9

S5/2, 1/2 0

S5/2, 3/2
1/4

Table A.13: Relative Transition Strengths, SF, F
′ , for 6Li. Results are given in

units of
∣∣〈J ′

µ̂(1) J
〉∣∣2.
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tance:

∑

F ′
SF, F ′ =

∑

F ′ , q

∣∣∣
〈
F
′
(mF + q) µ̂(1, q) F mF

〉∣∣∣
2

=
1

2J + 1

∣∣∣
〈
J
′

µ̂(1) J
〉∣∣∣

2

. (A.28)

While this rule holds for both absorption and emission, the physical implication is

most important for emission: all excited states in a given line (D1 or D2) have the

same transition strength, and hence decay at the same rate. In fact, we can relate

this result to the decay rate via the Einstein A-Coefficient [60]:

1

τ
= AJ, J ′

=
ω3

3πε0~c3

1

(2J + 1)

∣∣∣
〈
J
′

µ̂(1) J
〉∣∣∣

2

. (A.29)

In the above, ε0 is the electric permittivity of free space. With this result, we can

take experimentally determined decay rates and transition frequencies and compute

the fundamental reduced matrix elements. This is how the values in Table A.9 were

computed.

A.6.3 The Photon-Burst Transitions

When we examine the transition matrix elements given in Tables A.10, A.11 and A.12,

we discover an interesting fact: the excited states
∣∣F ′

= 5/2 mF ′ = ±5/2
〉

each cou-

ple to a single ground state, namely |F = 3/2 mF = ±3/2〉. When driven by light of

the proper polarization (σ+ for the (+)-terms and σ− for the (−)-terms) the atom

must shuttle back and forth between these two states. No other internal states

are possible. These transitions are known as the photon-burst, cycling, or closed



APPENDIX A. PROPERTIES OF 6LI 254

transitions [58].

This behavior has a number of important implications. An atom interacting with

near-resonant light on a photon-burst transition acts as a perfect two-level system—

dramatically simplifying the theoretical treatment of the light-matter interaction.

Further, the fact that the atom continually interacts with the light field significantly

increases the magnitude of any interaction effect. There are two important instances

of this behavior. First, the atomic cooling technique known as optical molasses uses

repeated absorption-emission cycles to rapidly decelerate (and hence cool) atoms.

For this reason, the photon-burst transition is also sometimes known as the cooling

transition. Second, the photon-burst transition is maximally efficient at converting

an incident probe beam into fluorescence—making this transition optimal for optical

detection.

Because of the importance of the photon-burst transition, it is sometimes used

as the unit of transition strength. To allow easy conversion to this viewpoint, the

fundamental reduced matrix elements in Table A.9 are also given in units of µ0, the

transition strength of the photon-burst transition.

A.6.4 Optical Rabi Frequency and Saturation Intensity

For a two-level atom coupled to a near-resonant optical field, we can compute the

frequency at which the interaction coherently drives the atom between the two

states. This frequency, known as the optical Rabi frequency, is given by [58]

Ω =
〈b µ̂ ·E a〉

h
(A.30)

=
µbaE0

h
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where µba is the electric-dipole transition matrix element for states a and b, and E0

is the electric field strength of the incident optical field. We can write this in terms

of laboratory units as

Ω = 4.37 µba

√
I (A.31)

with Ω in MHz, µ in Debye, and I, the light intensity, in mW/mm2.

When the Rabi frequency is less than the spontaneous decay rate Γ, ( Tables A.3

and A.4), the atom is likely to spontaneously decay out of the excited state, rather

than being driven coherently by the applied field. As the intensity of the applied

field (and hence the electric field strength) increases, the Rabi frequency begins

to dominate the spontaneous decay rate, and the atom-light interaction becomes

stronger and more coherent. In the limit where the Ω À Γ, the atom is being

driven completely coherently, the atomic population is evenly split between the

ground and excited levels, and increasing the light intensity ceases to affect the

state populations. At this point, the transition is said to be saturated.

If we take the intensity of a light field to be I = (1/2 )cε0E
2, we can define a

saturation intensity, Isat, given by

Isat =
cε0Γ

2~2

4 |µ · e|2 . (A.32)

In the above, e is the unit polarization vector of the light field such that E = E0e.

With this definition we find

I

Isat

= 2

(
Ω

Γ

)2

. (A.33)

Hence, we can say a transition is saturated if I À Isat. The factor of two is con-

ventional, and being of order unity, does not materially affect whether a transition

is saturated or not.
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Property Symbol Value Ref.

Representative D1 Saturation Intensity Isat (D1) 7.59mW/cm2

Representative D2 Saturation Intensity Isat (D2) 2.54mW/cm2

Table A.14: Representative values of Isat for the D1 and D2 lines of 6Li.

Note that the saturation intensity in (A.32) is transition-dependent. In a given

line (D1 or D2) it is customary to report the smallest saturation intensity as a

representative value. These values are tabulated in Table A.14. The value for the

D2 line is particularly relevant, as it corresponds to the photon-burst transition.

A.7 Collisional Properties

The collisional properties of atoms play an important role in many cooling and

trapping experiments. Sometimes this role is a negative one—for example, inelastic

collisions between atoms change the internal state of the atoms, releasing large

amounts of energy and perhaps ejecting one or more atoms from the trap. Other

times collisions are harnessed and used by experimenters, such as in evaporative

cooling, where elastic collisions eject hot atoms from the trap and rethermalize the

remaining gas at a lower temperature.

The following sections are intended to provide an overview of the collisional

properties of atoms in general and of 6Li in particular. A much more thorough

discussion of atomic collisions in general can be found in a number of standard texts

such as [85–87]. A very detailed discussion of the collisional properties of ultracold

6Li in particular can found in an earlier thesis from this research group [21].
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A.7.1 The Scattering Problem

In an ultracold atomic gas, each atom is localized to a volume on the order of the

cube of the deBroglie wavelength

λdB =

√
2π~2

mkbT
, (A.34)

where m is the atomic mass, kb is the Boltzmann constant, and T is the temperature

of the gas. For 6Li at a temperature of 1 µK we compute a deBroglie wavelength of

0.712µm, which yields a localization volume of 3.61×10−1 µm3.

We can estimate the number of atoms in a given λ3 volume by computing N =

nλ3, where n is the atomic number density for the gas. For most cooling and

trapping experiments, this ranges from 1×108 cm−3 to 1×1014 cm−3 at the most.

For the localization volume given above, and using a moderate number density

(1×1011 cm−3) we calculate that, on average, there is only one atom per ' 3000

localization volumes. This value is not atypical.

For experiments in this regime, clearly an approach based on binary collisions

(involving only two atoms) is reasonable. In such an approach, we treat the two-

atom collision as the scattering of a single particle (of reduced mass, µ) off of

an interaction potential. For 6Li-6Li collisions, the interaction potential will be

some linear combination of the molecular singlet and triplet interaction potentials

(determining the proper linear combination will be addressed in a future section).

In the singlet potential, the two atoms approach with their unpaired electronic

spins antiparallel (S = S1+S2 = 0). Considering the symmetry of this state, we see

that the spin wavefunction of the electrons is antisymmetric, requiring the spatial

wavefunction to be symmetric. In such a case, the electrons are not excluded from
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Figure A.9: Singlet and Triplet Molecular Potentials of 6Li.

the region between the nuclei, and the electrostatic attraction between electrons and

nuclei leads to a deep potential well. In the triplet case, the two spins approach in the

parallel configuration (S = 1). Here the spin wavefunction is symmetric, requiring

an antisymmetric spatial wavefunction. As a result, the electrons spend very little

time in the region between nuclei, and the interaction potential is correspondingly

weak.

The singlet and triplet molecular potentials were recreated in [21] from the

results of several experiments that measured the potential in different regions. The

potentials are plotted in Figure A.9. The vertical axis is in units of cm−1, while the

radial coordinate is given in Bohr. Note that the singlet potential is significantly

deeper than the triplet, as expected.

While the binary collision approach is a useful starting point, it is of course

incomplete. In experiments with degenerate or near degenerate gases, the number
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of atoms per localization region necessarily approaches or exceeds one (indeed, this

is the very definition of degeneracy). In such cases, and in other extreme situations

where the the atomic interactions are resonantly enhanced, three-body collisions do

play an increasingly important role—often becoming the a limiting process. Such

effects are beyond the scope of this chapter, but the reader is advised to keep their

existence in mind.

Strictly speaking, once the interaction potential is known, we have only to solve

the full Schrödinger equation

(∇2 + k2)Ψk =
2µ

~3
V Ψk (A.35)

for solutions of the form

Ψk = eik·r + Ψscat, (A.36)

where the first term on the right is a plane wave representing the incoming particle,

and the second term represents the outgoing scattered wavefunction. In fact, such

an approach, while correct, misses an important simplification that we can make

for the case ultracold gases.

A.7.2 Partial Wave Treatment—The Benefit of Ultracold

Gases

When the interaction potential is a central potential (as it is in this case), there is no

φ-dependence in our solution (taking the z-axis of the spherical coordinate system

along the direction of propagation of the incoming particle). In this case, we can

expand both the incoming and scattered wavefunctions in an angular momentum

basis—the coefficients of this expansion are known as the partial-wave amplitudes.
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Since a central potential cannot change angular momentum, the single Schrödinger

equation above becomes an infinite sum of Schródinger equations, one for each

angular momentum component, which are solved separately. At first glance, this

hardly seems an improvement, as we have apparently increased the complexity of

the problem enormously. However, it is the case that at low temperatures, only a

few of the the partial wave amplitudes are distinguishable from zero. A heuristic

explanation of this is provided in [85], as well as almost any other scattering text.

In the case of an ultracold atomic gas, we can go even further. In general, only

the lowest-order term, the s-wave term provides a contribution. This is the power

of the partial wave approach as applied to ultracold gases—we again have a single

Schrödinger equation, but in that we are working with a single angular momentum

component, the analysis is greatly simplified. (At this point, the reader is cautioned

that the “only s-wave” approach, much like the “binary collision” approach above, is

only an approximation. It appears that in the case of ultracold gases with resonantly

enhanced interactions, p-wave and higher interactions may play an important role

in the interesting physics that arise.)

The primary physical parameter that we hope to compute with scattering theory

is the total cross section, σ. The total cross section is dimensionally an area (length2)

and physically represents how large of a “target” the atom presents to other atoms.

The rates at which collisions occur in the gas are determined by the atomic number

density, n, the gas temperature, T , and the collision cross-sections, σ.

In the partial wave expansion, the total cross section is a sum of partial cross

sections, σL. For indistinguishable particles, the partial wave cross-section for a
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symmetric spatial state (even L) is given by

σL =
8π

k2
(2L + 1) sin2 δL. (A.37)

In the above, k is the wavenumber for the incoming particle, and δL is the partial

wave phase shift—the phase imposed on the partial wave by the existence of the

potential. Note that since sin is bounded by 0 and 1, σL is necessarily positive, and

has a maximum value of

σmax
L =

8π

k2
(2L + 1). (A.38)

This limit is known as the unitarity limit and occurs when δL is an odd multiple of

π/2.

In the case where we have only s-wave scattering, the total cross section is the

s-wave partial cross section

σ = σL=0 =
8π

k2
sin2 δL=0. (A.39)

At this point, the problem of finding the total cross section has been reduced to

finding the s-wave phase shift. While it is possible to compute the wavefunction

both with and without the interaction potential, and compare the two to extract

the phase shift, the next section delineates an approach that is both simpler and

more elegant.

A.7.3 The S-Wave Scattering Length

In the low-energy limit (k → 0), it is possible to show that for a large class of

potentials, we can write tan δ0 ∝ k, and hence also sin δ0 ∝ k [86]. We can then
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define the proportionality constant

a ≡ − lim
k→0

sin δ0(k)

k
. (A.40)

This constant is known as the s-wave scattering length. When this result is inserted

into (A.39), we get the low energy result

σ = 8πa2. (A.41)

It is important to note that by taking the low-energy limit, the scattering length

depends only on the interaction potential and not on the incoming wavenumber

(which we treat as zero). Thus we must only compute the scattering lengths for

interactions of different pairs of internal 6Li states, and then we have completely

characterized the problem.

The scattering length has a simple geometric interpretation. The radial wave-

functions, in the asymptotic limit, have the low energy form sin(kr+δ0) ' sin(kr)+

δ0 cos(kr) → k(r−a) as k → 0. This limiting form is a straight line with x-intercept

a. The scattering length can thus be computed by calculating the asymptotic wave-

function, and projecting backwards to find the x-intercept. The sign of the scatter-

ing length indicates the overall effect of the potential. A negative scattering length

indicates a potential which is overall attractive, which a positive scattering length

represents an overall repulsive potential. A schematic of the geometrical meaning

of the scattering length is shown in Figure A.10.
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Figure A.10: Determination of Scattering Length.

Singlet and Triplet Scattering Length

In Section A.7.1, it was mentioned that all 6Li-6Li interaction potentials could be

described by a linear combination of the molecular singlet and triplet potentials.

As we have seen in the preceding sections, for ultracold gases, the effect of an inter-

action potential can be characterized by a single parameter, the s-wave scattering

length, a. The combination of these two facts means all ultracold 6Li-6Li inter-

actions can be characterized by a linear combination of singlet and triplet s-wave

scattering lengths. In [21], the values of these scattering lengths are computed from

the most recent measurements of the molecular potentials, and the results are in

good agreement with experiment [52, 88]. The values of the scattering lengths are

given in Table A.15.

It is worth noting the enormously large and negative triplet scattering length.

An admixture of states that admits even a small amount of the triplet state will have



APPENDIX A. PROPERTIES OF 6LI 264

Property Symbol Value Ref.

Singlet S-Wave Scattering Length as 38.75Bohr [21,52,88]

Triplet S-Wave Scattering Length at -2240Bohr [21,52,88]

Table A.15: Singlet and triplet s-wave scattering lengths of 6Li.

a scattering length with is both large and negative. As mentioned in Chapter 1,

these properties are very desirable for studies of ultracold fermions. This scattering

length is the largest in any alkali system, and is why 6Li is so appealing to researchers

in the field.

The large triplet scattering length arises from a zero energy resonance in the

triplet molecular potential. As we have seen, for ultracold gases, the incoming

kinetic energy is zero to a good approximation. It turns out that the molecular

triplet potential has a quasi-bound state lying just above zero. That is, if the triplet

potential were even 0.03% deeper, it would be able to support another bound state.

On a heuristic level, this quasi-bound state is able to “capture” an incoming particle

for a short period of time prior to allowing it to scatter outward. This dramatically

increases the effect of the potential, and hence the size of the scattering length.

This state of affairs is depicted in Figure A.11.

Mathematically, we can see how this arises by considering (A.37). It can be

shown that when a potential is at a depth such that a state is transferring from

bound to unbound, the partial wave phase shift is exactly π/2. Hence the partial

wave cross section in (A.37) becomes

σL =
8π

k2
, (A.42)

which diverges in the low-energy (k → 0) limit.
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Figure A.11: Phenomenology of a zero-energy resonance.

Wavefunction Symmetry and the |1〉-|2〉 Mixture

We begin by considering the symmetry of the wavefunction for an ultracold 6Li-6Li

collision. The two-particle wavefunction is a product of three terms: the center-

of-mass wavefunction (describing where in the trap the collision takes place), the

spatial wavefunction (describing the relative position of the atoms), and the spin

wavefunction (describing the intrinsic angular momenta of the atoms). Since 6Li is

a composite fermion, the overall wavefunction must be antisymmetric. The center-

of-mass wavefunction is clearly symmetric, as switching the two indistinguishable

particles has no effect on that term. As a result, the product of the spatial and spin

wavefunctions must be antisymmetric.

Now as we have seen before, ultracold collisions are dominated by s-wave in-

teractions. However, s-wave interactions require symmetric spatial wavefunctions.

Hence, they also imply antisymmetric spin wavefunctions. This fact underlies one

of the most important features of ultracold fermionic gases: spin-polarized mixtures
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Figure A.12: Ground state hyperfine structure of 6Li. The states are numbered
|1〉-|6〉 in order of increasing energy in a magnetic field. The vertical axis is plotted
in units of the magnetic-dipole hyperfine constant for the ground state.

are non-interacting. A single spin state cannot exist in an antisymmetric spin state.

Hence, the spatial wavefunction must be antisymmetric. But antisymmetric spatial

wavefunctions can only interact via p-wave (and higher odd) interactions—which

are highly suppressed at ultracold temperatures.

Thus, groups wishing to study an interacting fermi gas of 6Li must work with

a mixture of two or more spin states. But which ones? Consider the states shown

in Figure A.12, which shows the magnetic-field dependence of the hyperfine ground

states. The states are numbered with what has become standard nomenclature in

6Li; |1〉-|6〉, in order of increasing energy in a magnetic field. Further, each state

is listed with its z-component of angular momentum. This is useful, as s-wave

collisions conserve the total magnetic quantum number.

For the current and future experiments, our group has chosen to work with a

mixture of states |1〉 and |2〉. This mixture has a number of important properties.
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First, it has the lowest internal energy of any interacting mixture (a sample purely

in the |1〉 state would not be interacting for reasons stated above). The low-energy

nature of the mixture is important because many higher-energy mixtures have open

inelastic collision channels whereby an atom can change internal state and release

enough energy to eject one or more atoms from the trap. Mixtures with open

inelastic channels tend to destroy themselves. Second, at zero-field, the |1〉-|2〉
mixture consists of states that are in some sense mirror images of one another—

they differ only in the sign of their magnetic quantum number. This makes the

mixture particularly well-suited for future studies of superfluidity. Third, the states

in the mixture are high-field seeking—that is, when placed in a magnetic gradient,

they are drawn to regions of high field. Such states cannot be trapped in a magnetic

trap (magnetic traps can produce local minima in the magnetic field strength, but

local maxima are forbidden). Since we trap and directly cool in an optical trap,

this has no effect on us. Other groups wishing to study this mixture, however, must

magnetically trap and cool another 6Li mixture, then transfer that mixture to an

optical trap, and then finally convert the atoms to a |1〉-|2〉 mixture in some manner.

We believe the relative complexity of these steps gives us a competitive advantage.

There are two, additional, serendipitous features of the |1〉-|2〉 mixture that will be

discussed below.

Having decided on the |1〉-|2〉 mixture, we must determine its collisional proper-

ties. In fact, this has been done in [42], via a complete coupled-channel calculation.

The result of their calculation, a plot of the s-wave scattering length as a function of

applied magnetic field is shown in Figure A.13. There are three items of particular

importance in this graph. First, the scattering length appears to be exactly zero

at zero applied field. This is not an artifact of the scale of the plot. The authors
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Figure A.13: S-wave scattering length For |1〉-|2〉 collisions. The vertical axis is
in units of Bohr.

claim the value was always zero to within the precision of their calculation. There

is no obvious symmetry argument for why this value should be zero. We, and the

authors, believe it to be an accidental feature of the |1〉-|2〉 mixture. The other two

notable items are the resonances at '850G and '1.3T. These resonances, known as

Feshbach resonances [15], result when the incoming particle has the same energy as

a bound state in an energetically closed collision channel. For example, the |1〉-|2〉
mixture, on solely angular momentum grounds, can convert to |3〉-|6〉 or |4〉-|5〉 (all

have total m=0). However, the internal energy of the |1〉-|2〉 mixture is such that,

for temperatures less than '10mK, these channels are not energetically allowed.

But molecular bound states in these channels exist, and for certain magnetic fields,

the bound states are resonant with the incoming particles. A schematic of this

process is shown in Figure A.14. The practical result is to allow magnetic tuning

of the scattering length in both magnitude and sign.
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Figure A.14: Phenomenology of a Feshbach Resonance.

These three points of note in the scattering length are the serendipitous fea-

tures of the |1〉-|2〉 mixture mentioned above. The fact that the scattering length

is zero at zero applied field means that the |1〉-|2〉 mixture can be switched from

interacting to noninteracting by simply turning off the applied field. Further, the

existence of a Feshbach resonance means that not only can we explore strongly- and

weakly-interacting mixtures (by magnetically-tuning the magnitude of the scatter-

ing length), but that we can also change the sign of of the interactions, switching

from attractive to repulsive, or vice-versa. Thus we have complete control of not

only whether the mixture is interacting or noninteracting, but also over the type

and strength of the interaction. Much of the exciting physics of fermionic gases

depends on the details of the interatomic interaction—working with this mixture

means we have the capability to easily explore all the possible regimes.
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Techniques for Generating
Nonuniform Probability Density
Functions

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

—John Von Neumann

B.1 Overview

There are a variety of algorithmic techniques for generating pseudorandom variates

that are uniformly distributed over a given domain. The term “pseudorandom” is

used because these techniques, being deterministic, cannot possibly generate truly

random numbers. However, within certain constraints, there are a number of ap-

proaches that will generate numbers that are “random enough” for a given task.

To generate random numbers according to an nonuniform probability density

function (pdf), we must turn to an algorithmic approach that takes one or more

uniformly distributed variates as inputs. This appendix presents the two simplest

approaches towards generating arbitrary distributions, and discusses the specific

implementations used in the Monte-Carlo code of Chapter 4.

270



APPENDIX B. TECHNIQUES FOR GENERATING NONUNIFORM. . . 271

B.2 Inverse CDF Method

The simplest technique for generating random numbers according to an arbitrary

pdf is known as the inverse cumulative-distribution-function (cdf) method [48].

This technique is useful for generating random numbers from relatively simple

nonuniform distributions. Further, it is an important component in the more com-

plicated technique discussed in the next section.

Given a unit-normalized pdf, p(X), defined on a domain [a, b], from which we

wish to generate random variates, X, we begin by considering the cdf, P (X),

defined as

P (X) =

∫ X

a

dX ′p(X ′). (B.1)

By construction, P (X) is a monotonically-increasing function where P (a) = 0 and

P (b) = 1. We then find the inverse, X(P ). Note that these steps place two con-

straints on p(X) and P (X):

1. The pdf, p(X), must be piecewise-integrable.

2. The cdf, P (X), must have an inverse, X(P ).

If either of these conditions cannot be met, then the inverse cdf method cannot be

used.

Once we have X(P ), then the actual random number generation is simple. We

generate a uniformly distributed random variate, Y , on the interval [0, 1], and take

it as the input to our function X(P ). That is:

X = X(Y ). (B.2)

The result is a random variate, X, which is distributed according to the pdf,
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Figure B.1: Example of the inverse cdf method. The desired pdf, p(X) =
sin(X)/2, is shown by the solid, filled curve. The corresponding cdf, P (X) =
(1− cos(X))/2, is shown by the dashed curve. The arrows indicate the application
of the inverse cdf method. A random variate, Y , (here 0.7) is selected from a
uniform distribution on the range [0, 1]. The horizontal arrow shows this value
being matched to a single point in the cdf. The vertical arrow shows this point
being matched with a value on the horizontal axis (here X(0.7) '1.98). This value
is the desired random variate. Variates generated in this way will be distributed
according to the desired pdf.
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p(X). A schematic representation of this process is shown in Figure B.1.

B.3 Acceptance-Rejection Method

If the desired pdf or its associated cdf do not meet the constraints listed above,

then the inverse-cdf method cannot be used. Even if the constraints are met,

however, it is not always desirable to use the inverse-cdf method. Sometimes

implementing the inverse function, X(Y ), requires mathematical functions that are

not built in to the computer language being used. Alternatively, the computational

cost for evaluating X(Y ) may be extremely high. In either case, or when the inverse-

cdf method fails altogether, the acceptance-rejection method [48] is often a good

second choice.

In the acceptance-rejection method, we begin by selecting an approximate func-

tion, a(X), over the domain [a, b], such that a(X) ≥ p(X) over the entire domain.

We choose a(X) to have a simple cdf, A(X), and inverse X(A). We then generate

a random variate using the inverse-cdf method and our simple inverse X(A). This

portion of the procedure is shown in Figure B.2.

Of course, if we stopped here, we would generate random variates distributed

according to the function a(X). A further algorithmic step is needed to modify the

distribution to the desired p(X). We have seen in Section 4.4.2 that an algorithmic

step where random variates are accepted or rejected based on some criterion has the

effect of modifying the underlying pdf. There, we generated atoms whose spatial

location and speed were appropriate for all atoms, bound and unbound. By accepting

only the atoms whose total energy was small enough to be trapped by the fort

potential, the distributions of position and velocity were modified in such a way

that the atomic ensemble had the appropriate distribution for bound atoms. The
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Figure B.2: Step 1 of the acceptance-rejection method. We consider again the
pdf shown in Figure B.1, p(X) = sin(X)/2 (shown here by the thin, solid curve).
We now consider an approximation to this curve, a(X), which is everywhere greater
than the desired pdf (shown here by the thick, solid, filled curve). We then create the
cdf of the approximation, A(X) (shown here by the dashed curve). We proceed as
in the inverse-cdf method. A uniformly-distributed random variate, Y , is generated
over the domain [0,A(b)] (shown Y = 0.9). This variate is mapped to a point on
the horizontal axis (here X ' 1.99) through the use of the inverse XA(Y ).
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Figure B.3: Step 2 of the acceptance-rejection method. Figure B.2 has been
modified to show the second part of the algorithm. Once XA has been found, a new
uniform variate, Z, is generated on the domain [0, a(XA)]. If Z ≤ p(XA) (lightly
shaded region), then the XA is accepted. If Z ≥ p(XA) (darkly shaded region), then
XA is rejected. In this example, Z = 0.3 and Z ≤ p(XA), so we accept XA ' 1.99
as a random variate.

acceptance-rejection method makes use of this type of effect to filter the random

variates generated in accordance with a(X) to produce random variates which are

distributed according to p(X).

Adding this step is trivial. Once we have a random variate XA, we then gen-

erate a uniformly distributed random variate, Z on the domain [0, a(XA)]. If

Z > p(XA), then we reject XA and begin again, by generating a new XA. If,

however, Z ≤ p(XA), then we accept XA as a random variate. Variates generated

in this manner are distributed according to p(X). This portion of the algorithm is

shown in Figure B.3.
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B.4 Monte-Carlo Implementations

This section will address the specific implementations used in the Monte-Carlo

code described in Chapter 4. While the previous section described the basics of

the acceptance-rejection method, our usage of this technique in the Monte-Carlo

code adds one additional complication. In running the Monte-Carlo code, the user

can change the parameters of the problem (e.g. the temperature of the trapped

atoms). However, it is clear from (4.3) and (4.4), that changing these parameters

can significantly modify the distributions we are attempting to reproduce. The

approximations to the pdfs that we use in the acceptance-rejection method must

therefore also depend on these parameters. In the sections that follow, we will use

the convention developed in the Monte-Carlo code and ignore all leading normal-

ization constants.

B.4.1 The Velocity Distribution

The pdf we are attempting to reproduce is

p(v) = v2 exp

[
− mv2

2kBT

]
. (B.3)

We must now develop an approximation, a(v) to this distribution that roughly

tracks it as parameters in the pdf vary, while always maintaining a(v) ≥ p(v).

Since we will eventually reject any unbound atoms, it makes little sense to

generate velocities that cannot possibly be bound. The minimum potential energy

that an atom can have occurs at the trap center and is given by the negative of the

well-depth, −kBU , where kB is the Boltzmann constant, and U is in temperature
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units. We can therefore ignore all velocities such that

1

2
mv2 > kBU. (B.4)

Velocities satisfying this inequality cannot be bound. We can define a maximum

possible velocity for a bound atom

vmax =

√
2kbU

m
. (B.5)

We will not consider velocities greater than vmax.

We can make three observations about the shape of p(v) which we can use to

construct our approximation, a(v).

1. In the low-v limit, p(v) scales as v2. As v increases from zero, the exponential

in p(v) ensures that v2 ≥ p(v).

2. There will always be a peak in p(v). The peak occurs at

vpeak =

√
2kBT

m
. (B.6)

The value at the peak is

p(vpeak) =
2kBT

m
exp(−1). (B.7)

3. Past the peak, the distribution decays exponentially to zero.

We can combine these three facts with our previous definition of vmax to deter-

mine a reasonable approximation function, a(v). The approximation will consist of,
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at most, three distinct pieces. The number of pieces depends on the where vmax lies

with respect to the peak of p(v). There are three possible cases:

1. vmax < 1
2

vpeak. In this case, we simply use the low-v scaling of p(v),

a(v) = v2 (B.8)

2. 1
2

vpeak ≤ vmax ≤ 3
2

vpeak. In this case, we use the low-v scaling for values of v

up to one-half of vpeak, then switch to a constant value equal to p(vpeak),

a(v) =





v2 : v ∈ [0, 1
2

vpeak)

2kBT
m

exp(−1) : v ∈ [1
2

vpeak, vmax]

(B.9)

3. 3
2

vpeak < vmax. In this case, we use the constant value for v ≤ 3
2
vpeak, then

use a straight line between the points (3
2
vpeak, p(vpeak)) and (vmax, p(vmax)).

a(v) =





v2 : v ∈ [0, 1
2

vpeak)

p(vpeak) : v ∈ [1
2

vpeak,
3
2

vpeak]

p(vpeak) +
(p(vmax)−p(vpeak))
(vmax− 3

2
vpeak)

(
v − 3

2
vpeak

)
: v ∈ (3

2
vpeak, vmax]

(B.10)

A schematic of case 3 is shown in Figure B.4.

B.4.2 The Radial Distribution

Here we are trying to generate random numbers according to the pdf,

p(r) = r2 exp

[
U exp [−r2]

T

]
. (B.11)
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Figure B.4: Approximating the velocity distribution. Shown is a schematic of a
case where vmax > 3

2
vpeak. The solid, filled curve is the desired pdf, p(v). The

dashed curve shows the approximation, a(v), generated by the technique described
in this section. By using the acceptance-rejection technique with this approxima-
tion, random numbers distributed according to p(v) are efficiently generated by the
Monte-Carlo program of Chapter 4.
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As before, we must generate an approximation, a(r), that varies as the parameters

in p(r) are varied, while maintaining a(r) ≥ p(r).

Unlike the velocity distribution, there is not a maximum radius beyond which

the atoms are unbound. However, by examining the form of (B.11), we see that

in the large-r limit, p(r) scales as r2. This is the distribution we would expect if

the trap potential were not present. We can then choose a radius, rmax such that

p(rmax) = κr2. Here κ is an accuracy parameter that is specified in the algorithm

(the Monte-Carlo code uses κ = 1.001). For κ sufficiently close to 1, we can ig-

nore the distribution beyond rmax, as the distribution is indistinguishable from an

unbound distribution to within our specified accuracy parameter. By inserting our

definition of κ into (B.11), we find

rmax =

√
− ln

[
T

U
ln [κ]

]
. (B.12)

Similar to our approach with the velocity distribution, we can make three ob-

servations about p(r) which we can use in constructing our approximation, a(r):

1. In the low-r limit, p(r) scales as r2 exp [U/T ]. As r increases from zero, the

exponential in p(r) ensures that r2 exp [U/T ] ≥ p(r).

2. p(r) does not have a local maximum if U/T < exp [1]. The location and

value of the local maximum that exists when U/T ≥ exp [1] are not analyt-

ically determinable. Experimentation with Mathematica shows that rpeak '
(3/4)

√
T/U is a reasonable approximation.

3. In the large-r limit, p(r) scales as r2.

We can combine these three observations with our previous definition of rmax

(which is based on the third observation, itself), to generate the approximation a(r).
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The approximation will consist of at most two pieces. The number of pieces in the

approximation depends on the location of rmax with respect to a reference point

that is related to the location of the local maximum of p(r).

If there is no local maximum (U/T < exp [1]), then we set the reference point to

rref = 3/4. If there is a local maximum, we set the reference point to the approximate

location of the maximum, rref = (3/4)
√

T/U . There are then two possible cases:

1. rmax ≤ rref. In this case we use the low-r scaling of p(r).

a(r) = r2 exp

[
U

T

]
. (B.13)

2. rmax > rref. In this case we use the low-r scaling for values of r up to rref, then

use a straight line between the points (rref, a(rref)) and (rmax, r
2
max).

a(r) =





r2 exp
[

U
T

]
: r ∈ [0, vref]

r2
ref exp

[
U
T

]
+

(r2
max−r2

ref exp[U
T ])

(rmax−rref)
(r − rref) : r ∈ (rref, rmax]

(B.14)

A schematic of case 2 is shown in Figure B.5.



APPENDIX B. TECHNIQUES FOR GENERATING NONUNIFORM. . . 282

p
(
r
)
,
 
a
(
r
)
 
 
(
a
r
b
.
 
u
n
it
s
)

43210

r (arb. units)

r
ref

r
max

Figure B.5: Approximating the radial distribution. Shown is a schematic of a case
where rmax > rref. The solid, filled curve is the desired pdf, p(r). The dashed curve
shows the approximation, a(r), generated by the technique described in this sec-
tion. By using the acceptance-rejection technique with this approximation, random
numbers distributed according to p(r) are efficiently generated by the Monte-Carlo
program of Chapter 4.



Appendix C

Computer Code Listings

C.1 Transition Matrix Element Calculator

PROGRAM DESCRIPTION: This program calculates transition matrix
elements between atomic hyperfine states.

LANGUAGE: Mathematica 4.1

AUTHOR: Michael E. Gehm

USAGE: There are two modes. Coeff[A,ma,B,mb] prints the transition
matrix element between state |A, ma〉 and state |B, mb〉. MakeTable[A,B]

prints a nicely formatted table of all transition matrix elements between
magnetic sublevels of states |A〉 and |B〉. All results are given in units of the
reduced matrix element 〈J ′ ||µ̂(1)||J〉.

(* Defines the {S,L,J,I,F} values for the states in the D1 and D2

lines of 6Li. Modify the following lines as appropriate for other

atoms and levels. *)

StateA={1/2,0,1/2,1,1/2};

StateB={1/2,0,1/2,1,3/2};

StateC={1/2,1,1/2,1,1/2};

StateD={1/2,1,1/2,1,3/2};

StateE={1/2,1,3/2,1,1/2};

StateF={1/2,1,3/2,1,3/2};

StateG={1/2,1,3/2,1,5/2};

283
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(* The remainder of the code requries no modification *)

(* Define functions for extracting quantum numbers from the state

definitions *)

Sval[state_ ]:=state[[1]];

Lval[state_ ]:=state[[2]];

Jval[state_ ]:=state[[3]];

Ival[state_ ]:=state[[4]];

Fval[state_ ]:=state[[5]];

(* Define a function that returns the matrix element. Then define a

function which runs over all magnetic sublevels in both levels to

produce a pretty table. *)

Coeff[A_,ma_,B_,mb_] := (-1)^(Fval[B] - mb)*

ThreeJSymbol[

{Fval[B], -mb},

{1, (mb - ma)},

{Fval[A], ma}

]*

(-1)^(Jval[B] + Ival[A] + Fval[A] + 1)*

Sqrt[

(2 * Fval[B] + 1)*

(2 * Fval[A] + 1)

]*

SixJSymbol[

{Jval[B], Ival[A], Fval[B]},

{Fval[A], 1, Jval[A]}

];

MakeTable[A_,B_] := Table[

Table[

Coeff[A, ma, B, mb],

{mb, -Fval[B], Fval[B], 1}

],
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{ma, -Fval[A], Fval[A], 1}

]//TableForm
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C.2 Zeeman Effect Calculator

PROGRAM DESCRIPTION: This program calculates the hyperfine levels
of an arbitrary atom in a magnetic field. The hyperfine interaction and the
Zeeman effect are treated as perturbations on the atomic fine structure. The
resulting perturbation Hamiltonian is numerically diagonalized to get the
eigenvalues for the states. The program outputs a text file containing the
eigenvalues as a function of the magnetic field.

LANGUAGE: Mathematica 4.1

AUTHOR: Michael E. Gehm

USAGE: Evaluation of the notebook produces the output file. The be-
ginning of the file is edited to set: a) which states to track, b) what atomic
parameters to use, and c) what magnetic field strengths to use

(* BEGIN USER MODIFIED PORTION *)

(* Set the j- and i-quantum numbers for the fine-structure state to

track *)

JJ = 1/2;

II = 1;

(* Set the gyromagnetic ratios and the hyperfine constants for the

fine-structure state you are interested in. *)

gj = 2.0023010;

gi = -0.0004476540;

A = 152.1368407;

B = 0;

(* Set the magnetic-field range over which the results should be

calculated, and give the field increment to use. *)

BFieldStart = 0;

BFieldEnd = 160;

BFieldIncr = 0.5;
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(* Give the name for the output filename. *)

filename="2S12 Level Data.dat";

(* END USER MODIFIED PORTION *)

(* Define the Bohr Magneton in MHz/G. *)

MuB = 1.4;

(* Compute the number of states we’ll be dealing with and ennumerate

them in the |j mj> |i mi> basis. *)

mj = Table[-JJ + i, {i, 0, 2 * JJ}];

mi = Table[-II + i, {i, 0, 2 * II}];

JStates = Length[mj];

IStates = Length[mi];

NumStates = JStates * IStates;

statelist =

Flatten[

Table[

{mj, mi},

{mi, mi[[1]], mi[[IStates]]},

{mj, mj[[1]], mj[[JStates]]}

],

1];

(* For the Clebsch-Gordan work, we’ll also need the states listed

in the |f> basis. *)

FVals = Table[i, {i, Abs[JJ-II], (JJ+II)}];

FStates = Length[FVals];

MFList[F_] := Table[i, {i, -F, F}];

ExpandedFVals =

Module[

{temp = {}, temp2 = {}},

For[i = 1, i <= FStates,

For[j = 1, j <= (2 * FVals[[i]] + 1),

temp2 = Flatten[List[temp, FVals[[i]]]];
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temp = temp2;

j++

];

i++

];

temp

];

ExpandedMFVals =

Module[

{temp = {},temp2 = {}},

For[i = 1, i <= FStates,

temp2 = Flatten[List[temp, MFList[FVals[[i]]]]];

temp=temp2;

i++

];

temp

];

(* Compute the C-G Coefficients between the two representations. *)

ClebschMatrix =

Table[

ClebschGordan[

{JJ, statelist[[i]][[1]]},

{II, statelist[[i]][[2]]},

{ExpandedFVals[[j]], ExpandedMFVals[[j]]}

],

{i, 1, NumStates},

{j, 1, NumStates}

];

(* Computing the hyperfine contribution is easiest in the coupled

basis. Compute the value of the dot-product of I and J for different

J states. *)

IdotJList=

Table[

(ExpandedFVals[[i]] * (ExpandedFVals[[i]] + 1) - JJ *

(JJ + 1) - II * (II + 1)) / 2,
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{i, 1, NumStates}

];

(* Now use the C-G values computed earlier to get I dot J for an

arbitrary product state. *)

IdotJElement[i_,j_] :=

Thread[

Times[

ClebschMatrix[[i]],

ClebschMatrix[[j]]

]

] . IdotJList

(* Now we compute the three interaction matrices: hyperfine, Zeeman,

and total. *)

HFMatrix =

Table[

A * IdotJElement[i,j] +

If[B == 0,

0,

B * (3 * IdotJElement[i,j] *

(IdotJElement[i,j] + 1)) /

(2 * II * (2 * II - 1) * 2 * JJ * (2 * JJ - 1))

],

{i, 1 ,NumStates},

{j, 1, NumStates}

];

ZeemanMatrix =

Table[

KroneckerDelta[i,j] *

(gj * statelist[[i]][[1]] + gi * statelist[[j]][[2]])*

MuB * BField,

{i, 1, NumStates},

{j, 1, NumStates}
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];

HamiltonianMatrix = HFMatrix + ZeemanMatrix;

(* Calculate the eigenvalues for a given value of the B-Field. *)

DataPoint[BF_] :=

Prepend[

Eigenvalues[

HamiltonianMatrix /. BField -> BF

],

BF

]

(* And finally, generate a list of datapoints and export them in a

friendly format to the previously specified filename. *)

datalist =

Table[

DataPoint[BB],

{BB, BFieldStart, BFieldEnd, BFieldIncr}

];

Export[filename, datalist, "CSV"];
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C.3 Stark Effect Calculator

PROGRAM DESCRIPTION: This program calculates the hyperfine levels of
an arbitrary atom in a electric field. The hyperfine interaction and the Stark
effect are treated as perturbations on the atomic fine structure. The resulting
perturbation Hamiltonian is numerically diagonalized to get the eigenvalues
for the states. The program outputs a text file containing the eigenvalues as
a function of the electric field.

LANGUAGE: Mathematica 4.1

AUTHOR: Michael E. Gehm

USAGE: Evaluation of the notebook produces the output file. The be-
ginning of the file is edited to set: a) which states to track, b) what atomic
parameters to use, and c) what electric field strengths to use

(* BEGIN USER MODIFIED PORTION *)

(* Set the j- and i-quantum numbers for the fine-structure state to

track *)

JJ = 1/2;

II = 1;

(* Set the scalar and tensor polarizabilities and the hyperfine

constants for the fine-structure state you are interested in. *)

alpha0 = 0.03163;

alpha2 = 0.000406;

A = -1.155;

B = -0.10;

(* Set the electric-field range over which the results should be

calculated, and give the field increment to use. *)

EFieldStart = 0;

EFieldEnd = 50;

EFieldIncr = 0.1;
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(* Give the name for the output filename. *)

filename = "2P32 Level Data.dat";

(* END USER MODIFIED PORTION *)

(* Compute the number of states we’ll be dealing with and ennumerate

them in the |j mj> |i mi> basis. *)

mj = Table[-JJ + i, {i, 0, 2 * JJ}];

mi = Table[-II + i, {i, 0, 2 * II}];

JStates = Length[mj];

IStates = Length[mi];

NumStates = JStates * IStates;

statelist =

Flatten[

Table[

{mj, mi},

{mi, mi[[1]], mi[[IStates]]},

{mj, mj[[1]], mj[[JStates]]}

],

1];

(* For the Clebsch-Gordan work, we’ll also need the states listed

in the |f> basis. *)

FVals = Table[i, {i, Abs[JJ - II], (JJ + II)}];

FStates = Length[FVals];

MFList[F_] := Table[i, {i, -F, F}];

ExpandedFVals =

Module[

{temp = {}, temp2 = {}},

For[i = 1, i <= FStates,

For[j = 1, j <= (2 * FVals[[i]] + 1),

temp2 = Flatten[List[temp, FVals[[i]]]];

temp = temp2;

j++

];

i++
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];

temp

];

ExpandedMFVals =

Module[

{temp = {},temp2 = {}},

For[i = 1, i <= FStates,

temp2 = Flatten[List[temp, MFList[FVals[[i]]]]];

temp=temp2;

i++

];

temp

];

(* Compute the C-G Coefficients between the two representations. *)

ClebschMatrix =

Table[

ClebschGordan[

{JJ, statelist[[i]][[1]]},

{II, statelist[[i]][[2]]},

{ExpandedFVals[[j]], ExpandedMFVals[[j]]}

],

{i, 1, NumStates},

{j, 1, NumStates}

];

(* Computing the hyperfine contribution is easiest in the coupled

basis. Compute the value of the dot-product of I and J for different

J states. *)

IdotJList=

Table[

(ExpandedFVals[[i]] * (ExpandedFVals[[i]] + 1) - JJ *

(JJ + 1) - II * (II + 1)) / 2,

{i, 1, NumStates}

];
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(* Now use the C-G values computed earlier to get I dot J for an

arbitrary product state. *)

IdotJElement[i_,j_] :=

Thread[

Times[

ClebschMatrix[[i]],

ClebschMatrix[[j]]

]

] . IdotJList

(* Now we compute the three interaction matrices: hyperfine, Zeeman,

and total. *)

HFMatrix =

Table[

A * IdotJElement[i,j] +

If[B == 0,

0,

B * (3 * IdotJElement[i,j] *

(IdotJElement[i,j] + 1)) /

(2 * II * (2 * II - 1) * 2 * JJ * (2 * JJ - 1))

],

{i, 1 ,NumStates},

{j, 1, NumStates}

];

StarkMatrix =

Table[

KroneckerDelta[

statelist[[i]][[2]],

statelist[[j]][[2]]

] *

If[statelist[[i]][[1]] == statelist[[j]][[1]],

If[alpha2 == 0,

-alpha0 / 2 * EField^2,
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(-alpha0 / 2 - (alpha2 / 2) *

(3 * statelist[[i]][[1]]^2 - JJ * (JJ + 1)) /

(JJ * (2 * JJ - 1))) *

EField^2

],

0

],

{i, 1, NumStates},

{j, 1, NumStates}

];

HamiltonianMatrix = HFMatrix + StarkMatrix;

(* Calculate the eigenvalues for a given value of the E-Field. *)

DataPoint[EF_] :=

Prepend[

Eigenvalues[

HamiltonianMatrix /. EField -> EF

],

EF

]

(* And finally, generate a list of datapoints and export them in a

friendly format to the previously specified filename. *)

datalist =

Table[

DataPoint[EE],

{EE, EFieldStart, EFieldEnd, EFieldIncr}

];

Export[filename, datalist, "CSV"];
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C.4 Monte-Carlo Code

PROGRAM DESCRIPTION: This program computes the evolution of a
classical gas trapped in a (possibly time-dependent) 3-D Gaussian well.
The code presented here is a template on which specific simulations can be
constructed by adding small amounts of simulation-specific code. The code
creates a random ensemble of atoms and evolves them numerically according
to Newton’s laws (the general form of the approach is known as “Bird’s
Method.”) This code is the topic of Chapter 4

LANGUAGE: ANSI C

AUTHOR: Michael E. Gehm

USAGE: When run, the code generates a random trapped ensemble ac-
cording to the parameters in “definitions.h”. The program evolves the atoms
forward in time. This template contains no reporting features. Simulation-
specific code should be added to write to the file “output.txt” according to
the specific needs of the simulation.

/*******************************************************************

* BEGIN FILE "definitions.h"

*******************************************************************/

/*******************************************************************

* Mathematical and physical constants *

*******************************************************************/

#define Pi 3.14159265359

#define EConst 2.71828182846

#define BoltzmannK 1.381E-23

#define LiMass 1E-26

/*******************************************************************

* Simulation-specific definitions *

*******************************************************************/

#define NumAtoms 10000

#define WellDepth 0.000700

#define StartTemp 0.000015



APPENDIX C. COMPUTER CODE LISTINGS 297

#define ax 0.000221 /*x,y,z size of potential*/

#define ay 0.000221

#define az 0.000221

/*******************************************************************

* Implementation definitions *

*******************************************************************/

#define RadialSigmaLimit 10

#define RFudgeFactor 0.75

#define RAccuracy 1.001

#define Cells_x 2 /*Cell and subcell divisions*/

#define Cells_y 2

#define Cells_z 2

#define Subcells_x 2

#define Subcells_y 2

#define Subcells_z 2

/*******************************************************************

* Inline functions for speed *

*******************************************************************/

#define min(a,b) ((a<b)?a:b)

#define max(a,b) ((a>b)?a:b)

#define sign(a) ((a<0)?-1:((a>0)?1:0))

#define RandFloat() ((float)rand()/(float)RAND_MAX)

#define RandSign() ((RandFloat()<0.5)?-1:1)

#define RandTheta() (acos(1-2*RandFloat()))

/*******************************************************************

* The main data structure *

*******************************************************************/

struct atom{float x,y,z,v_x,v_y,v_z;

int cell,subcell,inrange;} atomlist[NumAtoms];

/*******************************************************************

* Global variable declarations *

*******************************************************************/
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float Cellscale_x,Cellscale_y,Cellscale_z,Subcellscale_x,

Subcellscale_y,Subcellscale_z,OscFreq,OscFrac,thetime;

int OscFlag, GravFlag;

/*******************************************************************

* END FILE "definitions.s"

*******************************************************************/

/*******************************************************************

* BEGIN FILE "main.c"

*******************************************************************/

/*******************************************************************

* Monte Carlo code for studying collisional effects in a potential *

* (Based on the DSMC method of Bird) *

* *

* Mike Gehm *

* 9/18/99 *

* *

* Version 1.0 *

* *

* This code does nothing but evolve a random ensemble forward in *

* time. It serves as a template on which to construct a specific *

* simulation. Simulation-specific code should be added to the *

* function "main". If data reporting during the evolution is *

* desired, reporting code should be added to the function "evolve,"*

* otherwise, post-evolution reporting code should be added to *

* "main". *

*******************************************************************/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <nr.h>

#include <nrutil.h>

#include "definitions.h" /*#defs and some global variables*/
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#include "prototypes.h" /*function prototypes*/

/*******************************************************************

* This function generates random velocity magnitudes according to *

* a M-B distribution. U is the well depth and determines the *

* maximum possible velocity. The technique is an acceptance/ *

* rejection method modified to use a piecewise trial function. The*

* first piece is parabolic and runs from 0 to point1. The second *

* runs from point 1 to point 3 and is flat and equal to the max *

* value of the M-B (occurs at point 2). The third is a downward *

* slope from point 3 to vmax (assuming vmax is past point 3) and *

* runs from the constant value in region 2 down to the value of *

* the M-B at vmax. *

*******************************************************************/

float RandV(float U, float T) /*U is well depth, T is temp*/

{

float kt2m,point1,point2,point3,ktme,vmax,pmax,limit,IRange,

IRange1,IRange2,IRange3,delv,val,initv,slope,test;

int goodpoint;

kt2m=BoltzmannK*T/(2*LiMass);

point1=sqrt(kt2m);

point2=2*point1;

point3=3*point1;

ktme=2*point1*point1/EConst;

/*max v that can be trapped*/

vmax=sqrt(2*BoltzmannK*U/LiMass);

/*value of M-B at vmax*/

pmax=vmax*vmax*exp(-LiMass*vmax*vmax/(2*BoltzmannK*T));

IRange1=4*point1*point1*point1/(3*EConst);

IRange2=2*ktme*(point3-point1);

IRange3=(ktme+pmax/2)*(vmax-point3);

delv=vmax-point3;

slope=(2*ktme-pmax)/delv;
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/*flag the point for rejection unless it passes a later test*/

goodpoint=0;

while(goodpoint==0)

{

if(vmax<=point1) /*is vmax in region 1?*/

{

limit=min(vmax,point1);

IRange=4*limit*limit*limit/(3*EConst);

}

else if(vmax<=point3) /*is vmax in region 2?*/

{

limit=min(vmax,point3);

IRange=IRange1+2*ktme*(limit-point1);

}

else /*vmax must be in region 3*/

{

IRange=IRange1+IRange2+IRange3;

}

/*pick from proper sized region*/

val=IRange*RandFloat();

if(val<=IRange1) /*is val in region 1?*/

{

/*map to v*/

initv=pow(3*EConst*val/4,0.3333333333);

/*set scale for test*/

IRange=4*initv*initv/EConst;

}

else if(val<=IRange1+IRange2) /*is val in region 2?*/

{

val=val-IRange1;

/*map to v*/

initv=point1+(EConst*val/(4*kt2m));

/*set scale for test*/

IRange=2*ktme;

}

else /*val must be in region 3*/

{

val=val-IRange1-IRange2;

/*map to v*/
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initv=point3+(2*ktme/slope-sqrt(4*ktme*

ktme/(slope*slope)-2*val/slope));

/*set scale for test*/

IRange=2*ktme-slope*(initv-point3);

}

/*pick accept/reject value*/

test=IRange*RandFloat();

/*less than desired pdf at val?*/

if(test<=initv*initv*exp(-LiMass*initv*

initv/(2*BoltzmannK*T)))

{

goodpoint=1; /*exit loop*/

}

}

return initv;

}

/*******************************************************************

* This function generates random radial coordinates according to *

* a M-B distribution. U is the well depth and T is the temperature*

* of the atoms. The technique is an acceptance/rejection method *

* modified to use a piecewise trial function. The first piece is *

* given by r^2 Exp[U/T] and extends from the origin to point 1. *

* The second piece is a line running from the end point of the *

* first piece to the value point2^2 at point2. After point2, the *

* desired distribution is nearly identical to the distribution of *

* unbound atoms, so we don’t generate any atoms in that range. *

*******************************************************************/

float RandR(float U, float T,float rmax)

{

float a,point1,point2,pmax,pmin,fitmax,fitmin,slope,constant,

IRange1,IRange,limit,val,initr,test;

int goodpoint;

/*precalculate an important factor*

a=U/T;

/*If there’s no maximum set to fudge factor*/
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if(1/a>=exp(-1))

{

point1=RFudgeFactor*1;

}

else

{

/*approximate location of local max*/

point1=RFudgeFactor*sqrt(1/a);

}

/*point where dist is approx r^2*/

point2=sqrt(-log((1/a)*log(RAccuracy)));

/***********************************************************

* don’t worry about anything past the point where the *

* distribution is approximately equal to the distribution *

* of unbound atoms. *

***********************************************************/

rmax=min(point2,rmax);

pmax=rmax*rmax*exp(a*exp(-rmax*rmax));

pmin=point1*point1*exp(a*exp(-point1*point1));

fitmax=rmax*rmax;

fitmin=point1*point1*exp(a);

slope=(fitmax-fitmin)/(rmax-point1);

constant=fitmin;

/* compute the integral of the approx. over the first region*/

IRange1=exp(a)*point1*point1*point1/3;

/* flag for rejection unless it passes a later test */

goodpoint=0;

/* keep going until we get a good point */

while(goodpoint==0)

{

/* if rmax is in region 1, recompute integral */

if(rmax<=point1)

{
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IRange=exp(a)*rmax*rmax*rmax/3;

}

else

{

limit=rmax-point1;

IRange=exp(a)*point1*point1*point1/3 +

slope*limit*limit/2 + constant*limit;

}

/* pick a random point in the range */

val=IRange*RandFloat();

/* if the point is in region 1 */

if(val<=IRange1)

{

/* find the point */

initr=pow(3*val/exp(a),0.3333333333);

/* set the value for accept/reject */

IRange=exp(a)*initr*initr;

}

else /* we must be outside region 1 */

{

val=val-IRange1;

/* find the point */

initr=point1+(-constant/slope +

sqrt(constant*constant/(slope*slope) +

2*val/slope));

if(slope<0)

{

initr=point1+(-constant/slope -

sqrt(constant*constant/

(slope*slope)+2*val/slope));

}

/* set the value for accept/reject */

IRange=constant+slope*(initr-point1);

}

/* generate random number for accept/reject */

test=IRange*RandFloat();
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/* if it’s less than the real distribution, keep it*/

if(test<=initr*initr*exp(a*exp(-initr*initr)))

{

goodpoint=1;

}

}

return initr;

}

/*******************************************************************

* This function generates random positions and velocities for the *

* atoms the cell and subcell numbers of the atoms are also set *

* based on the position of the atoms. *

*******************************************************************/

void InitAtoms(void)

{

int i,goodpoint;

float en1,en2,pe,ke,totale,r,xp,yp,zp,x,y,z,theta,phi,v,vx,

vy,vz;

/* Loop until we have the desired number of atoms */

for(i=0;i<NumAtoms;i++)

{

/* Flag for rejection unless it meets a later test*/

goodpoint=0;

while(goodpoint==0)

{

/* Generate a random r and v pair */

r=RandR(WellDepth,StartTemp,RadialSigmaLimit);

v=RandV(WellDepth,StartTemp);

/* Compute the energy of the atom */

pe=-BoltzmannK*WellDepth*exp(-r*r);

ke=LiMass*v*v/2;

totale=pe+ke;

/* If the atom is bound, keep it */

if(totale<0)

{
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goodpoint=1;

}

}

/* Generate random angles for the position vector*/

theta=RandTheta();

phi=2*Pi*RandFloat();

/* Convert from spherical to cartesian coords*/

xp=r*sin(theta)*cos(phi);

yp=r*sin(theta)*sin(phi);

zp=r*cos(theta);

/* Scale out to real coordinates */

x=xp*ax;

y=yp*ay;

z=zp*az;

/* Generate random angles for the velocity vector*/

theta=RandTheta();

phi=2*Pi*RandFloat();

/* Convert from spherical to cartesian coords*/

vx=v*sin(theta)*cos(phi);

vy=v*sin(theta)*sin(phi);

vz=v*cos(theta);

/* Place the coordinates into the data structure *

atomlist[i].x=x;

atomlist[i].y=y;

atomlist[i].z=z;

atomlist[i].v_x=vx;

atomlist[i].v_y=vy;

atomlist[i].v_z=vz;

/***************************************************

* This calls a routine that figures which cell the *

* atom is in. Since the only use for cells is in *

* modelling collisions, and the code doesn’t *

* currently model collisions, this function call *

* is commented out. *

***************************************************/
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/*UpdateCell(i);*/

/* Flag the atom as in range */

atomlist[i].inrange=1;

}

}

/*******************************************************************

* This function computes the cell and subcell number of an atom *

* based on its position. The function takes as its argument the *

* atom number of the atom to update. This function does not get *

* called in the current version, since cells are only useful in *

* modelling collisions---which aren’t currently implemented. *

*******************************************************************/

void UpdateCell(int i)

{

float shiftx,shifty,shiftz,xrel,yrel,zrel;

shiftx=atomlist[i].x+RadialSigmaLimit*ax;

shifty=atomlist[i].y+RadialSigmaLimit*ay;

shiftz=atomlist[i].z+RadialSigmaLimit*az;

atomlist[i].cell=(int)(shiftx/Cellscale_x)+(int)(Cells_x*

(int)(shifty/Cellscale_y))+((int)(Cells_x*Cells_y)*

(int)(shiftz/Cellscale_z));

xrel=((shiftx/(float)Cellscale_x)-(int)(shiftx/Cellscale_x))*

Cellscale_x;

yrel=((shifty/(float)Cellscale_y)-(int)(shifty/Cellscale_y))*

Cellscale_y;

zrel=((shiftz/(float)Cellscale_z)-(int)(shiftz/Cellscale_z))*

Cellscale_z;

atomlist[i].subcell=(int)(xrel/Subcellscale_x)+

(int)(Subcells_x*(int)(yrel/Subcellscale_y))+

((int)(Subcells_x*Subcells_y)*(int)(zrel/Subcellscale_z));

}

/*******************************************************************

* This function updates the posistion of an atom based on its *
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* velocity. The function takes as its argument the atom number of *

* the atom to update, the time step to propagate through, and *

* whether to treat the region as having walls. * *

*******************************************************************/

void UpdatePosition(int i, float delta_t)

{

float x,y,z,vx,vy,vz;

/*Compute new position assuming constant velocity*/

x=atomlist[i].x+atomlist[i].v_x*delta_t;

y=atomlist[i].y+atomlist[i].v_y*delta_t;

z=atomlist[i].z+atomlist[i].v_z*delta_t;

/***********************************************************

* If the atoms has travelled extremely far, it’s likely *

* no longer bound, forget about it. *

***********************************************************/

if(sqrt(x*x/(ax*ax)+ y*y/(ay*ay)+z*z/(az*az))>

RadialSigmaLimit)

{

/*set in range flag to 0*/

atomlist[i].inrange=0;

}

/*if in range*/

else

{

/*set the new values*/

atomlist[i].x=x;

atomlist[i].y=y;

atomlist[i].z=z;

}

}

/*******************************************************************

* This function updates the velocity of an atom based on the *

* acceleration it feels due to the potential at its position. The *

* function takes as its argument the atom number of the atom to *

* update and the time step to propagate through. * *

*******************************************************************/

void UpdateVelocity(int i,float delta_t)
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{

/* Update the velocity assuming constant acceleration */

atomlist[i].v_x=atomlist[i].v_x+delta_t*ForceX(i)/LiMass;

atomlist[i].v_y=atomlist[i].v_y+delta_t*ForceY(i)/LiMass;

atomlist[i].v_z=atomlist[i].v_z+delta_t*ForceZ(i)/LiMass;

}

/*******************************************************************

* This function runs the actual DSMC method. It controls the *

* loops over particles and over cells. It takes as arguments the *

* timestep, number of timesteps, and the boundary condition to *

* apply when updating particle position. * *

*******************************************************************/

void Evolve(float inittime, float finaltime, int numtimesteps,FILE *ofp)

{

int i,j,n,num,numcells;

float delta_t,temppe,tempke,tempx,tempen;

numcells=Cells_x*Cells_y*Cells_z;

/* Compute the timestep */

delta_t=(finaltime-inittime)/(numtimesteps);

/* Loop over timesteps */

for(n=0;n<numtimesteps;n++)

{

thetime=inittime+delta_t*n;

/* Loop over all atoms */

for(i=0;i<NumAtoms;i++)

{

/* If the atom is still in range ...*/

if(atomlist[i].inrange==1)

{

/* Get the new state of the atom */

UpdatePosition(i,delta_t);

UpdateVelocity(i,delta_t);

/***********************************

* If it’s still in range, compute *

* the new cell number. This *
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* function isn’t called because *

* cells aren’t currently used. *

***********************************/

/*

if(atomlist[i].inrange==1)

{

UpdateCell(i);

}

*/

}

}

/***********************************************

* Loop over the cells and call the collision *

* routine for each cell. This function isn’t *

* called because collisions aren’t implemented *

***********************************************/

/*

for(j=0;j<numcells;j++)

{

Collide(j,delta_t);

}

*/

/***********************************************

* Insert appropriate reporting code here *

* depending on the specific purpose of the *

* simulation. *

***********************************************/

}

}

/*******************************************************************

* This function calculates the number of atoms that would remain *

* trapped if the well were suddenly lowered to ’fraction’ of the *

* original well depth *

*******************************************************************/

int Measure(float fraction)

{

int i,count;

count=0;
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/* Loop over atoms */

for(i=0;i<NumAtoms;i++)

{

/* If it’s in range ...*/

if(atomlist[i].inrange==1)

{

/* Add one to the count for each bound atom*/

if(CalcEnergy(fraction,i)<0)

{

count=count+1;

}

}

}

return count;

}

/*******************************************************************

* This function calculates the energy of the atoms if the well *

* depth were suddenly lowered to ’fraction’ of the original well *

* depth *

*******************************************************************/

float CalcEnergy(float fraction, int i)

{

float en;

en=(fraction*PotEn(i))+KinEn(i);

return en;

}

/*******************************************************************

* This function calculates the potential energy of the atoms at *

* time ’t’. The time dependence comes from the amplitude *

*******************************************************************/

float PotEn(int i)

{

float pe;
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pe=-Amplitude(thetime)*BoltzmannK*

exp(-(atomlist[i].x*atomlist[i].x/(ax*ax)+

atomlist[i].y*atomlist[i].y/(ay*ay)+

atomlist[i].z*atomlist[i].z/(az*az)));

return pe;

}

/*******************************************************************

* This function calculates the potential energy the atoms would *

* have in the original well. This is useful for heating studies. *

*******************************************************************/

float NormPotEn(int i)

{

float pe;

pe=-WellDepth*BoltzmannK*

exp(-(atomlist[i].x*atomlist[i].x/(ax*ax)+

atomlist[i].y*atomlist[i].y/(ay*ay)+

atomlist[i].z*atomlist[i].z/(az*az)));

return pe;

}

/*******************************************************************

* This function calculates the kinetic energy of the atoms *

*******************************************************************/

float KinEn(int i)

{

float ke;

ke=LiMass*(atomlist[i].v_x*atomlist[i].v_x+

atomlist[i].v_y*atomlist[i].v_y+

atomlist[i].v_z*atomlist[i].v_z)/2;

return ke;

}

/*******************************************************************
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* These functions calculate the force on the atoms at time ’t’. *

* The time dependence comes from the amplitude in the potential *

* energy function *

*******************************************************************/

float ForceX(int i)

{

float force;

force=2*(atomlist[i].x/(ax*ax))*PotEn(i);

return force;

}

float ForceY(int i)

{

float force;

force=2*(atomlist[i].y/(ay*ay))*PotEn(i);

return force;

}

float ForceZ(int i)

{

float force;

force=2*(atomlist[i].z/(az*az))*PotEn(i);

return force;

}

/*******************************************************************

* This function changes the amplitude of the well as a function *

* of time. The time dependence can be turned off with a global *

* flag *

*******************************************************************/

float Amplitude(float t)

{

float amp;
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if(OscFlag==1)

{

amp=WellDepth*(1+OscFrac*sin(2*Pi*OscFreq*t));

}

else

{

amp=WellDepth;

}

return amp;

}

/*******************************************************************

* This function is currently not implemented. *

*******************************************************************/

void Collide(int j,float delta_t)

{

}

/*******************************************************************

* This is the main routine. *

*******************************************************************/

void main(void)

{

FILE *ofp;

int i,j,f,n,number;

float init_delta_t,sim_delta_t,DeltaFreq,FreqSteps,InitFreq,

ifrac,mfrac,temp;

ofp=fopen("output.dat","w");

/***********************************************************

* Insert simulation specific code here. Set global flags, *

* oscillation frequencies, etc. *

***********************************************************/

/*seed the random number generator with the computer clock*/

srand(clock());

/*generate random particle positions and velocities*/
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InitAtoms();

/* Run the simulation */

Evolve(0,1.0,1000000,ofp);

printf("Done.\n");

fclose(ofp);

}

/*******************************************************************

* END FILE "main.c"

*******************************************************************/
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C.5 Fokker-Planck Code

PROGRAM DESCRIPTION: This program computes the evolution of
a harmonically-trapped population distribution subject to noise-induced
heating. The evolution is based on numerically solving the Fokker-Planck
equation derived in Chapter 5

LANGUAGE: ANSI C

AUTHOR: Michael E. Gehm

USAGE: When run, the code reads in the file “input.dat”. The re-
quired structure of this input file is described in the internal comments of the
code below. The output is written to the file “output.dat”.

/************************************************************

* Finite Difference Code For Modelling 3-D Trap Population

* as a Function of Time

*

* Explicit Method

*

* Mike Gehm

* 06/09/97

*************************************************************/

#include "population.h"

/*************************************************************

* This function sums the population distribution at a given

* time step

*************************************************************/

double sum_pop(int elevels, double *the_pop)

{

int l;

double num;

num=0;
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for(l=0; l<=elevels+1; l++)

{

num = num + the_pop[l];

}

return(num);

}

/*************************************************************

* This function sums the energy at a given time step

*************************************************************/

double sum_en_pop(int elevels, double *ener, double *the_pop)

{

int l;

double en;

en=0;

for(l=0; l<=elevels+1; l++)

{

en = en + ener[l]*the_pop[l];

}

return(en);

}

/*************************************************************

* This function dynamically allocates 2-D arrays in a

* non-brain-damaged way

*************************************************************/

double **dmatrix(int nrl, int nrh, int ncl, int nch)

{

int i, nrow=nrh-nrl+1, ncol=nch-ncl+1;

double **m;

m=(double **) malloc((size_t)((nrow+1)*sizeof(double*)));

m += 1;

m -= nrl;

m[nrl]=(double *) malloc((size_t)((nrow*ncol+1)*
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sizeof(double)));

m[nrl] += 1;

m[nrl] -= ncl;

for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;

return m;

}

/*************************************************************

* This is the beginning of the main routine

*************************************************************/

void main(void)

{

/**********************************************************

* Variable Declaration:

*

* ifp,ofp input and output file pointers

* elevels number of energy levels to use in

* the mesh

* i iterator

* evtime length of evolution to simulate

* (in units of gamma t)

* chi dimensionless parameter

* (qdot/(gamma E0))

* ics pointer to array of initial conditions

**********************************************************/

FILE *ifp, *ofp;

int elevels, i, j, numsteps, numcalcs, approxhours,

approxminutes,approxseconds,num_reports,report_incr,

report_style,l,m,limit;

double *old_pop_dist,*pop_dist, *eps, tau, en, enzero, num,

numzero,del_eps, del_tau, evtime, chi,approxtime,

rho, rho2,a,b,c,d,**distmat;

/**********************************************************

* This section reads in the data file. The file format is

* as follows:

* 0) Discretization Limit. 0=Pure Gamma Okay,
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* 1=Pure Qdot okay (int)

* 1) Dimensionless parameter, chi, (qdot/(gamma E0))

* (in Gamma Limit) (gamma E0)/qdot

* (in qdot limit) (float)

* 2) Dimensionless time to simulate (units of gamma t)

* (float)

* 3) Requested report style (0=Fractional Population

* vs Time,1=Fractional Energy vs Time, 2=Mean

* Energy vs Time, 3=Combination of 0-2,

* 5=Population distributions)

* 4) Number of data points (or distributions) to place

* in the output

* 5) Number of energy mesh points

* 6 on) Initial conditions for those energy points,

* starting with lowest energy level (long doubles)

**********************************************************/

if (( ifp = fopen("input.dat", "r")) == NULL)

{

printf("Can’t find file.\n");

exit(1);

}

fscanf(ifp,"%d",&limit);

fscanf(ifp,"%Lf",&chi);

fscanf(ifp,"%Lf",&evtime);

fscanf(ifp,"%d",&report_style);

fscanf(ifp,"%d",&num_reports);

fscanf(ifp,"%d",&elevels);

pop_dist = (double *)malloc((elevels+2)*sizeof(double));

old_pop_dist = (double *)malloc((elevels+2)*sizeof(double));

for(i=1; i<=elevels; i++)

{

fscanf(ifp,"%Lf",&old_pop_dist[i]);

}

fclose(ifp);

/**********************************************************
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* A few required initializations

**********************************************************/

old_pop_dist[0]=0.0;

old_pop_dist[elevels+1]=0.0;

pop_dist[0]=0.0;

pop_dist[elevels+1]=0;

/**********************************************************

* This section calculates the time step necessary for

* stability and the number of required time steps.

**********************************************************/

del_eps = 1.0 / (elevels + 1);

if(limit==0)

{

del_tau = STAB_COEFF * pow(del_eps,2)*(2/(1+4*chi));

}

else

{

del_tau = STAB_COEFF * pow(del_eps,2)*(2/(chi+4));

}

numsteps = ceil(evtime/del_tau);

numcalcs = numsteps * elevels;

approxtime = numcalcs / MESH_POINTS_PER_SEC;

approxhours = floor(approxtime/3600);

approxtime = approxtime - approxhours*(3600);

approxminutes = floor(approxtime/60);

approxseconds = floor(approxtime - approxminutes*(60));

report_incr = numsteps / (num_reports - 1);

/**********************************************************

* This section sets up the array for the eps values of

* the mesh and sets up the variables which will hold the

* initial time, population, and energy

**********************************************************/
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eps = (double *)malloc((elevels+2)*sizeof(double));

for(i=0; i<=elevels+1; i++)

{

eps[i]=0 + i * del_eps;

}

/**********************************************************

* This accounts for the fact that the user inputs the

* initial conditions in terms of occupation number.

**********************************************************/

for(i=0; i<=elevels+1; i++)

{

old_pop_dist[i]=old_pop_dist[i] * pow(eps[i],2);

}

tau = 0.0;

numzero = sum_pop(elevels,old_pop_dist);

enzero = sum_en_pop(elevels,eps,old_pop_dist);

en = enzero;

num = numzero;

/**********************************************************

* This section calculates certain constants used in the

* difference method in order to maximize computational

* speed.

**********************************************************/

rho = del_tau / pow(del_eps,2);

rho2 = del_tau/del_eps;

if(limit==0)

{

a = 1.0/4.0;

b = chi;

c = chi/2.0;

d = 1.0/2.0;

}

else

{
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a = chi/4.0;

b = 1.0;

c = 1.0/2.0;

d = chi/2.0;

}

/**********************************************************

* This is the main loop for the finite difference method.

**********************************************************/

l = 1;

ofp = fopen("output.dat","w");

/**********************************************************

* Setup the column headings of the output file.

**********************************************************/

switch (report_style)

{

case (0) :

{

fprintf(ofp,"Tau\tFracPop\n");

fprintf(ofp,"%Lf\t%Lf\n",tau,num/numzero);

break;

}

case (1) :

{

fprintf(ofp,"Tau\tFracEn\n");

fprintf(ofp,"%Lf\t%Lf\n",tau,en/enzero);

break;

}

case (2) :

{

fprintf(ofp,"Tau\tMeanEn\n");

fprintf(ofp,"%Lf\t%Lf\n",tau,en/num);

break;

}

case (3) :

{

fprintf(ofp,"Tau\tFracPop\tFracEn\tMeanEn\n");

fprintf(ofp,"%Lf\t%Lf\t%Lf\t%Lf\n",tau,
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num/numzero,en/enzero,en/num);

break;

}

case (4) :

{

distmat = dmatrix(0,elevels+1,0,num_reports);

fprintf(ofp,"Epsilon\tT0.00000\t");

for(j=0; j<=elevels+1; j++)

{

distmat[j][0]=eps[j];

distmat[j][l]=old_pop_dist[j]/

pow(eps[j],2);

}

l++;

break;

}

case (5) :

{

distmat = dmatrix(0,elevels+1,0,num_reports);

fprintf(ofp,"Epsilon\tT0.00000\t");

for(j=0; j<=elevels+1; j++)

{

distmat[j][0]=eps[j];

distmat[j][l]=old_pop_dist[j];

}

l++;

break;

}

};

/**********************************************************

* Begin cycling through all the timesteps.

**********************************************************/

for(i=1; i<=numsteps; i++)

{

/***************************************************

* Loop over the energy grid computing the new

* values.

****************************************************/



APPENDIX C. COMPUTER CODE LISTINGS 323

for(j=1; j<=elevels; j++)

{

pop_dist[j] = ((a*pow(eps[j],2)+b*eps[j])*

rho-c*rho2)*old_pop_dist[j+1]+

((a*pow(eps[j],2)+b*eps[j])*rho+c*rho2)*

old_pop_dist[j-1]+(-2*(a*pow(eps[j],2)+

b*eps[j])*rho -d*del_tau + 1)*

old_pop_dist[j];

};

tau = tau + del_tau;

for(j=1; j<=elevels; j++)

{

old_pop_dist[j]=pop_dist[j];

}

/***************************************************

* Write to the output file if it’s a reporting

* increment.

***************************************************/

if(i%report_incr==0)

{

switch(report_style)

{

case(0) :

{

num = sum_pop(elevels,

pop_dist);

fprintf(ofp,"%Lf\t%Lf\n",

tau,num/numzero);

break;

}

case(1) :

{

en = sum_en_pop(elevels,eps,

pop_dist);

fprintf(ofp,"%Lf\t%Lf\n",

tau,en/enzero);

break;

}
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case(2) :

{

en = sum_en_pop(elevels,eps,

pop_dist);

num = sum_pop(elevels,

pop_dist);

fprintf(ofp,"%Lf\t%Lf\n",

tau,en/num);

break;

}

case(3) :

{

en = sum_en_pop(elevels,eps,

pop_dist);

num = sum_pop(elevels,

pop_dist);

fprintf(ofp,"%Lf\t%Lf\t%Lf\t

%Lf\n",tau,num/

numzero,en/enzero,

en/num);

break;

}

case(4) :

{

if(l==num_reports)

fprintf(ofp,"T%Lf\n",tau);

else

fprintf(ofp,"T%Lf\t",tau);

for(m=0; m<=elevels+1; m++)

{

distmat[m][l]=

old_pop_dist[m];

}

l++;

break;

}

case (5) :

{

if(l==num_reports)

fprintf(ofp,"T%Lf\n",tau);

else

fprintf(ofp,"T%Lf\t",tau);
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for(m=0; m<=elevels+1; m++)

{

distmat[m][l]=

old_pop_dist[m];

}

l++;

break;

}

};

}

}

if(report_style==4||report_style==5)

{

for(i=0;i<=elevels+1;i++)

{

for(j=0;j<=num_reports;j++)

{

if(j==num_reports)

fprintf(ofp,"%Lf\n",

distmat[i][j]);

else

fprintf(ofp,"%Lf\t",distmat[i][j]);

}

}

}

fclose(ofp);

printf("Program Execution Complete.");

}
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