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Abstract. We study the properties of an optically-trapped, Fermi gas of 6Li atoms, near the center of a broad Feshbach 
resonance, where strong interactions are observed. Strongly interacting Fermi gases exhibit universal behavior, and are of 
interest as models of exotic systems ranging from high temperature superconductors to neutron stars and quark-gluon plasmas. 
We measure the frequency and damping rate of the radial breathing mode of the trapped gas and consider quantum viscosity as 
a damping mechanism. We also demonstrate that the virial theorem holds and measure the heat capacity. In the experiments, 
energy is precisely added to the gas and an empirical temperature is determined from the spatial profiles of the cloud. 
Transitions are observed in both the damping rate and the heat capacity, measured as functions of the empirical temperature. 
Recent theory, using a pseudogap formalism, enables the first temperature calibration, and shows that the observed transition 
temperatures are close to that predicted for the onset of superfluidity in a strongly attractive Fermi gas. 
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1. INTRODUCTION 

Since the first observation of a degenerate, strongly in­
teracting Fermi gas [1], the field of interacting Fermi 
gases has made spectacular progress. Strongly interact­
ing Fermi gases are produced in an optical trap [2], by 
using a magnetic field to tune a mixture of spin-up and 
spin-down atoms to a Feshbach resonance, where the 
zero energy scattering length is large compared to the 
interparticle spacing [1-4]. Strongly interacting Fermi 
gases can exhibit universal behavior and scale invariance, 
where the only natural length scale is the interparticle 
spacing. Under these conditions, the ratio of the interac­
tion energy to the local kinetic energy is a universal para­
meter, denoted /3 [1,5]. This parameter was originally ex­
plored theoretically in the context of nuclear matter [5,6], 
and has now been measured by several groups [1,7-10], 
and found to be in reasonable agreement with recent pre­
dictions [11,12]. In the close proximity of a broad Fes­
hbach resonance, the local thermodynamic properties of 
the trapped gas are believed to obey the universal hypoth­
esis [13], i.e., they are independent of the details of the 
interparticle interactions, and are functions only of the 
density and temperature. 

In the vicinity of a Feshbach resonance, pairing of 
spin-up and spin-down atoms occurs in the so-called 
crossover regime, part way between a Bose-Einstein 
condensate (BEC) and a Fermi superfluid comprising 
Cooper pairs. By tuning below resonance, Bose-Einstein 
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condensates (BECs) of molecular dimers have been pro­
duced from a two-component strongly interacting Fermi 
gas [14-17]. 

In contrast to studies of stable molecular BECs , 
which are produced below resonance, the study and 
proof of superfluidity just above resonance, in the strong 
Cooper pairing or strongly attractive regime, has been 
less straightforward. Over the past two years, however, 
substantial evidence for superfluidity has been obtained 
in a variety of experiments. 

Macroscopic measurements provide evidence for su­
perfluidity in a strongly attractive Fermi gas, and pro­
vide important information on the equation of state of 
this universal quantum system. Evidence for superfluid 
hydrodynamics has been obtained in observations of 
anisotropic expansion after release of the cloud [1,17] 
and in studies of the temperature and magnetic field 
dependence of the frequency and damping of collec­
tive modes [18-21]. Measurements of the heat capac­
ity [10] and collective mode damping [21] as a function 
of empirical temperature reveal transitions in behavior, 
close to the predicted superfluid transition temperature 
[10,12,22,23]. Recently, the observation of vortices [24] 
in a strongly attractive Fermi gas has provided what ap­
pears to be a definitive proof of superfluidity. 

Microscopic studies of strongly attractive Fermi gases 
have concentrated on the detection and probing of fermi-
onic atom pairs. Pairs were first observed by projection 
onto a molecular BEC [25,26]. The pair binding en­
ergy has been probed in measurements of the pairing 
gap, by radiofrequency spectroscopy [27] and by mod­
ulating the interaction strength [28]. In the region of a 
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Feshbach resonance, the pair wavefunction can contain 
both a dominant triplet contribution in the open collision 
channel, and a much smaller singlet contribution from 
the closed molecular channel [29,30]. Recently, molec­
ular spectroscopy in the singlet manifold has been used 
to probe the molecular amplitude of the fermionic atom 
pairs and the superfluid order parameter throughout the 
Feshbach resonance region [30]. 

2. EXPERIMENTAL SYSTEM 

We prepare a highly degenerate, strongly interacting 
Fermi gas of 6Li. This is accomplished using evapo­
ration of an optically-trapped, 50-50 mixture of spin-
up/down states at 840 G, just above the center of a broad 
Feshbach resonance [1,10,18,20,21]. To reduce the tem­
perature, we do not employ a magnetic sweep from a 
BEC of molecules, in contrast to several other groups 
[9,17,19,24,26,27]. Instead, we evaporate directly in the 
strongly attractive, unitary regime: We simply exploit the 
large collision cross section and the rapid vanishing of 
the heat capacity with decreasing temperature, which is 
especially effective in the superfluid regime. These prop­
erties make the gas easier to cool. 

In the forced evaporation, the depth of the CO2 laser 
optical trap is reduced to 1/580 of its maximum value, 
and then recompressed to 4.6% of the maximum trap 
depth for most of the experiments. From the trap fre­
quencies measured under these conditions and corrected 
for anharmonicity, we obtain: co± = y/(Ox(Oy = 2n x 
1696(10) Hz, cox/o)y = 1.107(0.004), and A = coz/co± = 
0.045. Then, cb = (cox(Oy(Oz)^

3 = 2% x 589(5) Hz is 
the mean oscillation frequency. For most of the data re­
ported, the total number of atoms is N = 2.0(0.2) x 105. 
The corresponding Fermi temperature at the trap center 
for a noninteracting gas is 7> = (3N)ll3h(b/kB — 2.4/iK, 
small compared to the final trap depth of UO/UB = 35 /iK 
(at 4.6% of the maximum trap depth). The coupling pa­
rameter of the strongly interacting gas at B = 840 G 
is kpa ~ —30.0, where hkp = ^2mkBTp is the Fermi 
momentum, and a = a(B) is the zero-energy scattering 
length estimated from the measurements of Bartenstein 
etal. [31] 

3. UNIVERSAL THERMODYNAMICS 

As noted above, at a Feshbach resonance, a strongly in­
teracting gas obeys the universal hypothesis, where the 
interparticle spacing, and hence the density n, determines 
the natural length scale. The local thermodynamic prop­
erties are then functions only of the density and temper­
ature, the same variables that describe a noninteracting 

Fermi gas. The universal hypothesis has directly mea­
surable consequences, some of which we will describe 
briefly. 

3.1. Spatial Distribution and Fermi 
Temperature 

At zero temperature, the local energy per particle for 
a resonantly interacting gas is just (3/5)(1 + j3)£f(n) 
where ep{n) = fi2(3%2n)2'3/(2m) is the local Fermi en­
ergy of a noninteracting Fermi gas and /3 is a universal 
constant [1,5,7]. 

For such a zero temperature gas, the net effect of the 
interactions is then equivalent to changing the bare mass 
m to an effective mass [6,10], m* = m/(l +j8). The 
equation of state then yields precisely a zero tempera­
ture Thomas-Fermi profile, no(x), for which the Fermi 
radii are altered from those of a noninteracting gas by a 
factor of (1 +/3)1/4 [7]. Hence, the spatial distribution 
of the trapped gas is determined quite generally for a 
very low temperature cloud. We find that the measured 
spatial profiles of the cloud assume nearly the shape of 
a zero-temperature Thomas-Fermi profile [1,7,32]. Mea­
surements of the cloud radii can then be used to deter­
mine/3 [7,9,10]. 

The Fermi temperature for a harmonically trapped, 
noninteracting gas, is given by 7> = (3N)ll3h(b/kB. 
Since the effective mass for the strongly interacting gas 
is given by m* = m/(l + j8), the effective oscillation fre­
quency is altered by a factor of ^/l + /3, and the Fermi 
temperature for the strongly interacting gas is given by 

Tjr = TFy/l+p. (1) 

3.2. Universal Hydrodynamics 

At zero temperature, the local pressure of the trapped 
gas differs from the Fermi pressure of a noninteracting 
gas by a factor of 1 + /3 and the pressure then scales as 
/15 /3 . In this case, upon release from a harmonic trap, the 
expansion dynamics are governed precisely by a scale 
transformation, where the density evolves according to 
n(x,t) = fto(x)/r, where x = x/bx(t), F = bxbybz, and 
bt(t) is a hydrodynamic expansion factor [1,33]. The 
predicted hydrodynamic expansion for release from a 
cigar-shaped trap is highly anisotropic, and independent 
of/3, i.e., the gas expands rapidly in the originally narrow 
direction while remaining nearly stationary in the long 
direction as observed in experiments [1]. 

The breathing mode frequencies take on universal val­
ues when the local pressure scales as /15 /3 , and are in­
dependent of p. For a cylindrically-symmetric trap, the 
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radial breathing mode frequency for a zero temperature 
gas is given by 

[To 
COhydro = W y G)j_ = 1.83 0)j_. (2) 

For the conditions of our trap, which deviate slightly 
from cylindrical symmetry, exact diagonalization of 
the linearized hydrodynamic equations yields (Ohydm = 
1.84 co±. This result is in very good agreement with our 
measurements [18,20,21], as shown in § 6. 

One can generalize these arguments to show that they 
hold at all temperatures where the gas expands hydrody-
namically under isentropic conditions [34]. 

3.3. Virial Theorem 

According to the universal hypothesis, the local pres­
sure P must be a function of the local density and tem­
perature [13]. In this case, a strongly interacting Fermi 
gas must obey the virial theorem for a noninteracting 
gas at all temperatures, as we now show. One can read­
ily show by elementary thermodynamic arguments that 
ifP = P(n,r),then 

^ = | e ( x ) , (3) 

where e(x) is the local energy density, i.e., the sum of the 
local kinetic and interaction energies [13,34]. 

Balance of the pressure and trapping forces in a har­
monic potential requires that N(U) = (3/2) J d3xP(x), 
where (U) is the average potential energy per particle. 
Using fd3xe(x) = E-N(U), one obtains [34] 

N(U) = | . (4) 

This result is remarkable: Analogous to an ideal nonin­
teracting gas, a trapped, strongly interacting, unitary gas, 
comprising condensed superfluid pairs, noncondensed 
pairs, and unpaired atoms, should obey the virial theo­
rem. Since (U) oc (x2), the mean square transverse radius 
(x2) of the trapped cloud should scale linearly with the 
total energy, as verified in our experiments, see § 4.2. 

4. TOOLS FOR THERMODYNAMIC 
MEASUREMENTS 

Equilibrium thermodynamic properties of the trapped 
gas, as well as dynamical properties, can be measured as 
functions of the temperature or of the total energy. The 
temperature is changed by adding energy to the gas at 
fixed total atom number and fixed magnetic field, starting 

from the lowest temperature samples. In the following, 
we describe first a method for precisely adding a known 
energy to the gas. Then we describe a method for asso­
ciating an empirical temperature with the spatial profile 
of the gas, and a temperature calibration method using 
theoretically predicted spatial profiles [35]. 

4.1. Precision Energy Input 

Energy is added to the gas by abruptly releasing the 
cloud and then recapturing it after a short expansion time 
theat- During the expansion time, the total kinetic and 
interaction energy is conserved. When the trapping po­
tential U(x) is reinstated, the potential energy of the ex­
panded gas is larger than that of the initially trapped gas, 
increasing the total energy. After waiting for the cloud 
to reach equilibrium, the sample is ready for subsequent 
measurements. 

After recapture, the increase in the total energy, AE, is 
given by 

AE = J d3x[n(x,theat)-n0(x)} U(x), (5) 

where no is the initial spatial distribution, and n is the 
spatial distribution after expansion during the time theat* 
as described in § 3.2. 

For a harmonically trapped cloud which is initially at 
nearly zero temperature, the total energy is close to that 
of the ground state, which is 3/4 of the Fermi energy per 
particle, i.e., Eo = (3/4)&g7> ^/l + /3. The energy after 
expansion and recapture is given by 

r r [2 bl(theat)+bj(theat)] 

Equation 6 has a simple physical interpretation. After 
release from a harmonic trap, and subsequent recapture 
after a time theat * the potential energy in each transverse 
direction is increased as the square of the expansion 
factors, bx and by, where bz(theat) — 1, for the conditions 
of our experiments. The total potential energy is half of 
the total energy, since the unitary gas obeys the virial 
theorem for an ideal gas at all temperatures, as shown in 
§ 4.2. Hence, the initial potential energy in each direction 
is 1/6 of the total energy. Note that, by using Eq. 5, 
the corrections to the energy change arising from trap 
anharmonicity are readily determined [10]. 

4.2. Test of the Virial Theorem 

To test the virial theorem prediction, the gas is evap-
oratively cooled to the lowest temperature and then the 

71 

Downloaded 11 Feb 2008 to 152.3.183.180. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



energy is increased as described above. For each value 
of theat* E is calculated according to Eq. 6. For each fi­
nal energy, the gas is released and the transverse radius 
of the cloud is measured after a fixed expansion time of 
1 ms. The observed linear scaling of (x2) with the cal­
culated E, Fig. 1 verifies the virial theorem prediction. 
The linear scaling of (x2) with E also confirms that the 
expansion dynamics is closely hydrodynamic at all tem­
peratures, since (x2) is measured after a fixed expansion 
time for all energies, which implies that the expansion 
factor must be nearly the same over the range of temper­
atures studied. 
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FIGURE 1. {x2)/{x2(0)) versus E/E0 for a unitary gas of 
6Li, showing linear scaling, and verifying the virial theorem 
prediction. Here {x2) is the measured transverse mean square 
size. E is the total energy, calculated using Eq. 6. EQ and 
(x2(0)) denote the ground state values. 

4.3. Empirical Temperature Measurement 

Measurement of temperature in a noninteracting or 
weakly interacting Fermi gas is readily accomplished by 
fitting a Thomas-Fermi (T-F) distribution to the spatial 
profile of the cloud either in the trap, or after ballis­
tic expansion, which alters the profile by a scale fac­
tor [1,33]. We normally integrate the measured column 
density of the expanded cloud over the axial dimension, 
and obtain the spatial profile in one transverse dimen­
sion, JITF(X\ 9*> T/Tp). The spatial profile is taken to be a 
function of two parameters, the Fermi radius cx, i.e., the 
cloud radius at zero temperature, and the reduced temper­
ature T/Tp, i.e., the ratio of the Boltzmann temperature 
T to the trap Fermi temperature for a noninteracting gas, 
TF. 

One can consider ox = ^IksTp /(m(02) to 
set the length scale of the spatial profile and 
T/Tp as a shape parameter. At low T/Tp, the 
shape approaches a zero temperature T-F pro­
file, oc (1 - x2/<72)5/2, while at high T/TF, the 
profile approaches a Maxwell-Boltzmann shape 
- exp[-ma)2x2/(2^r)] = exp[-(x2 /a2)(7>/r)] . 

In the latter case, only the product of T/Tp and a2 

appears. Hence, for determination of the reduced tem­
perature, it is convenient to determine the Fermi radius 
from the lowest temperature data, and then to hold this 
radius constant, i.e., to take ax = cxN

ll6 in subsequent 
measurements at higher temperature, where cx is held 
constant. In this way, the reduced temperature T/Tp is 
uniquely correlated with (and can be used to parametrize) 
the shape of the spatial profile. 

For a unitary gas, the spatial profile is not precisely 
known, and there are no simple analytical formulae ex­
cept at T = 0, where the equation of state assures that the 
shape of the cloud must take the zero temperature T-F 
form, with ax —• a'x, where ox = ax(\ +/3)1/4, as dis­
cussed above [7]. We obtain /3 by comparing the trans­
verse radius of the trapped cloud for the interacting gas 
with that of the noninteracting gas [7]. For the nonin­
teracting gas, we use either the calculated ox or the ra­
dius measured after ballistic expansion. For the interact­
ing gas, we obtain ax after hydrodynamic expansion for 1 
ms. We find that /3 = -0.49(0.04) (statistical error only). 
Similar results are obtained by measurements on the ax­
ial dimension of the trapped cloud without expansion [9] 
and by direct measurements of the interaction energy [8]. 
The discrepancy between the measurements may arise 
from the sensitivity of /3 to the precise location of the 
Feshbach resonance [9], which in 6Li has been most re­
cently measured by radiofrequency methods [31]. 

Although the spatial profile of a unitary gas is not pre­
cisely known, we observe experimentally that the binned, 
one-dimensional shape is closely approximated by a T-F 
profile for a noninteracting gas. Further, recent theoret­
ical predictions of the spatial profile [35] show that the 
shape is nearly of the T-F form at all temperatures, as a 
consequence of the existence of preformed pairs. Hence, 
to provide a parametrization of the spatial profiles, we 
define an empirical reduced temperature T = (T /Tp)fu, 
and take the one dimensional spatial profile of the cloud 
to be of the form npp (x; <JX1T). 

In general, the empirical reduced temperature does 
not directly determine the reduced temperature T/Tp. 
However, at T = 0, the T-F shape is exact, so that T = 
0 coincides with T/Tp = 0. Hence, the procedure for 
determining o'x from the data at very low temperature, 
where T ~ 0, is consistent, i.e., we take ax = c'xN

ll6, 
where cx is a constant. 

Further, at sufficiently high temperature, the 
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cloud profile must have a Maxwell-Boltzmann form 
oc exp[-mCQ%x2/(2kBT)] = e x p [ - ( x 2 / o f )(l/f)]. This 
determines the natural reduced temperature scale, tnaU 

T 

which follows from the interacting gas Fermi radius, 
a'x = ax (1 + /3)1/4 , and the definition of the noninteract-
ing gas Fermi radius ox. 

The empirical temperature scale is therefore exact at 
T = 0 and at high temperature, for a fixed interacting 
gas Fermi radius (which determines /3). To calibrate t 
more generally, we fit profiles of the form HTF(X; &X> T) 
to the spatial profiles predicted as a function of T/Tp 
using a pseudogap formalism [10,35]. The value of o'x 

is determined from the lowest temperature theoretical 
profile, and T is determined for all of the predicted 
profiles. 

If the natural temperature were the correct scale at all 
T9 then one would expect T/Tp = ty/\ + /3 = 0.71 T. 
Remarkably, above the predicted superfluid transition 
temperature, where Tc/Tp = 0.29, i.e., for T > 0.45, the 
natural temperature scale is in close agreement with pre­
dictions [10], even though noncondensed pairs are be­
lieved to exist up to at least T/Tp ~ 0.6, and are present 
in the predicted profiles. However, below the transition, 
for 0 < T < 0.29, i.e., for 0 < T < 0.45, we find that there 
is a systematic deviation: Here, T/Tp = 0.54 T2 /3 , and 
the natural temperature scale underestimates the reduced 
temperature [10]. This is reasonable, since the energy of 
the unitary gas, and hence the mean square cloud size, 
increases as a higher power of T/Tp than quadratic. The 
full empirical temperature calibration is shown in the in­
set in Fig. 3. 

5. HEAT CAPACITY 

The techniques of precision energy input and empirical 
temperature measurement provide a method for explor­
ing the heat capacity [10,32] of a strongly interacting 
Fermi gas. In the experiments, the 6Li gas is cooled to 
very low temperature, T ~ 0.04, by forced evaporation at 
840 G, just above the center of the Feshbach resonance, 
as described above. Then, the gas is heated by adding a 
known energy. Finally, the gas is released from the trap 
and allowed to expand for 1 ms. As observed above, the 
gas expands hydrodynamically by a scale factor, so that 
the shape of the expanded cloud closely approximates 
that of the trapped cloud, enabling a determination of T. 

Figure 2 shows that the reduced energy of the gas, 
E/Eo, scales with empirical temperature T = (T/Tp)fit 
in much the same way as that of an ideal, noninteracting, 
Fermi gas. However, closer examination reveals that the 

& 4] ^ ^ 

o \ 1 1 1 1 
0 0.5 1 1.5 2 

f 
FIGURE 2. Total energy versus temperature. For each heat­
ing time theat, the temperature parameter f is measured from 
the cloud profile, and the total energy E(theat) is calculated 
from Eq. 6 in units of the ground state energy EQ. Circles: 
noninteracting Fermi gas data; Diamonds: strongly interacting 
Fermi gas data. Upper solid curve: predicted energy versus 
reduced temperature for a noninteracting, trapped Fermi gas, 
Eideal(T) JEi(}eai(0); Lower solid curve: predicted energy ver­
sus t for the unitary case. No temperature calibration is applied 
since t PS fnat over the broad temperature range shown. Note 
that the lowest temperature point (solid square) is constrained 
to lie on the upper noninteracting gas curve. 

low temperature data is better fit by a power law in t than 
by the ideal gas scaling. The same data on a log — log plot 
shows a transition in behavior [10,32]. 

By using the temperature calibration, and replotting 
the raw data as in Fig. 3, we find that the transition occurs 
at T/Tp = 0.27, in very good agreement with the predic­
tion for the superfluid transition, Tc/Tp = 0.29 [10]. We 
also find that the behavior of the energy with temperature 
is in very good agreement with the predictions [10]. 

By fitting a power law in T/Tp to the data above 
and below the transition temperature, we obtain ana­
lytic approximations to the energy E(T/Tp), from which 
the heat capacity is calculated using C = (dE/dT)^^, 
where the number N and trap depth U are constant in the 
experiments. For T/Tp < 0.27, we obtain E/Eo — 1 = 
97.3 ( r / 7 » 3 - 7 3 , while for T/Tp > 0.27, E/E0 - 1 = 
4.98 (T/Tp)lA3. By differentiating the energy in each re­
gion with respect to T, we find that the heat capacity ex­
hibits a jump at the transition temperature, comparable in 
size to that expected for a transition between a superfluid 
and a normal fluid [10]. 

The appearance of a transition in the behavior in the 
heat capacity, i.e., in the behavior of the energy versus 
temperature, is model-independent, as it appears in the 
empirical temperature data, E(T)/EQ, without calibra­
tion [32]. However, the estimate of the transition tem­
perature Tc/Tp and the magnitude of the jump in heat 
capacity are model-dependent, since the temperature es­
timates are obtained by calibration using the theoretical 
spatial profiles. 
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FIGURE 3. Energy input versus temperature from Fig. 2 af­
ter temperature calibration, on a log — log scale. The strongly 
interacting Fermi gas shows a transition in behavior near 
T/Tf = 0.27. Circles: noninteracting Fermi gas data; Dia­
monds: strongly interacting Fermi gas data; Lower (upper) 
solid curves: prediction for a unitary (noninteracting), trapped 
Fermi gas, calculated at trap depth Uo/Ef = 14.6 as in the 
experiments; Dashed line: best fit power law 97.3 (r/7>)3-73 

to the calibrated unitary data for T/TF < 0.27. The inset shows 
the calibration curve, which has been applied to the unitary data 
(diamonds). The diagonal dashed line in the inset represents 
T/TF = ^l+pf. Here E0 = E{T = 0), and EF = kBTF is the 
noninteracting gas Fermi energy. 

6. COLLECTIVE OSCILLATIONS 

As the determination of the transition temperature in the 
crossover regime is of great interest, we look for cor­
responding transitions in the mechanical properties of 
the gas. In this section, we describe our comprehensive 
measurements of the temperature dependence of the fre­
quency and damping of the radial breathing mode [21]. 
The temperature is increased by adding energy to the gas. 
Then, the empirical temperature is measured from the 
spatial profiles of the released cloud as described above. 

The radial breathing mode is excited by releasing the 
gas from the trap for a short time and then recapturing the 
cloud. In contrast to the method used to add energy, the 
gas is not allowed to thermalize, and the expansion time, 
25/is, is so short that the energy increase is negligible. 
After recapture, the cloud is allowed to oscillate in the 
trap for a variable time, thoid a ^er which it is released 
and imaged as described above. 

The width of the cloud, Fig. 4, oscillates at a frequency 
CO. The oscillation amplitude decays at a rate 1 /T. TO 
determine CO and T, we fit a damped sinusoid to the mean 
square width as a function of thoid-

From the measured values of the trap oscillation fre­
quencies, we predict the radial breathing frequency for a 

noninteracting gas COnonint = 2cox = 2.10 co± and the hy-
drodynamic frequency for a strongly interacting (unitary) 
gas, (Dhydw = 1.84 0)j_, as given in § 3.2. 

Figure 5 shows the measured frequency CO in units 
of 0)i, as a function of temperature. Remarkably, after 
correction for anharmonicity, the frequency is very close 
to the hydrodynamic value, and far from the collisionless 
(ballistic) value over the entire range of temperatures 
explored. This behavior suggests that the gas oscillates 
under conditions which are close to locally isentropic 
[34]. 

In contrast to the frequency, the damping rate, Fig. 6, 
shows a transition in behavior at T ~ 0.5. For empirical 
temperatures in the range 0 < T < 0.5, the data is well fit 
by a line (0.998 correlation coefficient), while above 0.5, 
the damping rate behaves quite differently, exhibiting 
non-monotonic behavior. The value of T = 0.5 lies just 
above the predicted superfluid transition temperature, 
where T ~ Tnat is a good approximation. Using Eq. 7, 
we find that f = 0.5 corresponds to T/Tp = 0.35. This 
is quite close to the value measured for the transition in 
the heat capacity, T/Tp = 0.27, and is consistent with 
recent predictions, TC/TF = 0.29 [22,32], TC/TF = 0.31 
[36], and T c / r F = 0.30 [23], 

The damping rate also appears to have a plateau and a 
further increase near T = 1.0, i.e., T/Tp = 0 . 7 1 , close 
to the region where the pairing gap is comparable to 
the collective mode quantum, fico. This behavior may 
arise from the breaking of weakly bound pairs in this 
temperature region. 

6.1. Quantum Viscosity 

In a unitary Fermi gas, there is a natural unit of viscos­
ity, 7] which is determined by the interparticle spacing, 
L. Viscosity has dimensions of momentum/area. Hence, 
r/ ~ h/L3 ocfin, where n is the local density. Since r/ <* ft, 
we consider this scale as the natural unit of quantum vis­
cosity. Following Gelman et al. [37], we take 

ri = ahn, (8) 

where a is a dimensionless constant. 
It is instructive to determine a from the lowest damp­

ing rates observed in measurements of the breathing 
mode. For the axial mode measured by the Innsbruck 
group [19], the axial damping ratio is found to be very 
small, l/(cozTz) = 1.5 x 10~3. This corresponds to ob­
served axial damping times of several seconds, since 
coz = 2n x 22.5 Hz. For the radial breathing mode mea­
sured by the Duke group [20,21], the damping ratio 
is 1/(O)_LTJ_) = 1.3 x 10~2, corresponding to damping 
times of up to seven milliseconds. Similar results are ob­
tained by the Innsbruck group [19]. 
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FIGURE 4. Radial breathing mode amplitude versus hold time. 

FIGURE 5. Frequency co versus empirical reduced tem­
perature t. Open circles-measured frequencies; Black dots-
after correction for anharmonicity using a finite-temperature 
Thomas-Fermi profile. The dot-dashed line is the unitary hy-
drodynamic frequency ft)// = 1.84 ft>^, for our trap parame­
ters. The dashed line at the top of the scale is the frequency 
2 cox = 2.10 co± observed for a noninteracting gas at the lowest 
temperatures. 

To determine a , we introduce a pressure term which 
arises from the shear viscosity [38], into the hydrody-
namic equations for a compressible fluid. For low damp­
ing, the gas can be assumed to oscillate under nearly 
isentropic conditions at all temperatures [34]. In this 
case, the local stream velocity components are of the 
form ut = Xibi/bi, where bt(t) is a scale factor [33,39]. 
The spatial derivatives of the stream velocity, which de­
termine the shear pressure, are therefore spatially inde­
pendent, and the gradient of the viscosity determines the 
spatial dependence of the shear pressure. The equations 
of motion for the b\ are readily solved and yield for the 
radial mode, 

1 a 
CO±T± 3(3Aa)1/3vT:PF 

and for the axial mode, 

1 16 aX 

(9) 

(10) 

3 H 

e o.io 
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£Po.05 

<3 

Q 
0.00 

I / \ 
1 / 

1 7 A 

J / T 

l-i If M 
I 

J / i 

I * 
1 / 

v I 0.0 0.5 7p 1.0 1.5 

Equation 10 predicts that the axial damping ratio is 
smaller than that of the radial mode by a factor of A = 

FIGURE 6. Temperature dependence of the damping rate 
for the radial breathing mode of a trapped 6Li gas at 840 G, 
showing a transition in behavior. The dashed line shows fit to a 
line which extrapolates close to zero at zero temperature. 

&>z/&>j_ < < 1- Assuming /3 ^ - 0 . 5 [32], and using the 
measurements for the damping ratio of axial mode by 
the Innsbruck group, where N = 4x 105, and A = 0.03, 
we obtain from Eq. 10, a = 0.4. Using the parameters 
for our radial mode experiments, where N = 2 x 105, 
we obtain a = 0.2. From these results, we conclude that 
the measured damping ratios are comparable to those ex­
pected for the quantum viscosity scale. 

Eqs. 9 and 10 also predict that the damping ratios 
should decrease as N~ll3 with increasing total atom 
number N. However, we find experimentally that the data 
are nearly independent of N for fixed nonzero T: De­
creasing the number of atoms N by a factor of 3 produces 
damping ratios which lie on the linear extrapolation for 
N atoms [21]. Hence, the observed damping ratios are 
consistent with the quantum viscosity scale, but viscos­
ity may not be the cause of the damping. 

7. CONCLUSIONS 

We have studied a highly-degenerate, strongly interact­
ing Fermi gas, which is prepared by direct evaporation 
at a Feshbach resonance in an optical trap. By precisely 
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adding energy to the gas, we have verified that the vir-
ial theorem holds, despite strong interactions. Using an 
empirical temperature parameter linked to the cloud pro­
files, we observe transitions in both the heat capacity and 
in the damping rate of the radial breathing mode. The 
observation of these transitions is model independent, 
but the method used to calibrate the temperature scale is 
model dependent. Nevertheless, the two measured transi­
tion temperatures are consistent, and in good agreement 
with predictions of the superfluid transition temperature 
in the unitary regime. 
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