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Abstract Strongly interacting Fermi gases provide a clean and controllable labora-
tory system for modeling strong interparticle interactions between fermions in nature,
from high temperature superconductors to neutron matter and quark-gluon plasmas.
Model-independent thermodynamic measurements, which do not require theoretical
models for calibrations, are very important for exploring this important system ex-
perimentally, as they enable direct tests of predictions based on the best current non-
perturbative many-body theories. At Duke University, we use all-optical methods to
produce a strongly interacting Fermi gas of spin-1/2-up and spin-1/2-down 6Li atoms
that is magnetically tuned near a collisional (Feshbach) resonance. We conduct a se-
ries of measurements on the thermodynamic properties of this unique quantum gas,
including the energy E, entropy S, and sound velocity c. Our model-independent
measurements of E and S enable a precision study of the finite temperature thermo-
dynamics. The E(S) data are directly compared to several recent predictions. The
temperature in both the superfluid and normal fluid regime is obtained from the fun-
damental thermodynamic relation T = ∂E/∂S by parameterizing the E(S) data us-
ing two different power laws that are joined with continuous E and T at a certain
entropy Sc, where the fit is optimized. We observe a significant change in the scaling
of E with S above and below Sc. Taking the fitted value of Sc as an estimate of the
critical entropy for a superfluid-normal fluid phase transition in the strongly inter-
acting Fermi gas, we estimate the critical parameters. Our E(S) data are also used
to experimentally calibrate the endpoint temperatures obtained for adiabatic sweeps
of the magnetic field between the ideal and strongly interacting regimes. This en-
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ables the first experimental calibration of the temperature scale used in experiments
on fermionic pair condensation, where the ideal Fermi gas temperature is measured
before sweeping the magnetic field to the strongly interacting regime. Our calibration
shows that the ideal gas temperature measured for the onset of pair condensation cor-
responds closely to the critical temperature Tc estimated in the strongly interacting
regime from the fits to our E(S) data. We also calibrate the empirical temperature em-
ployed in studies of the heat capacity and obtain nearly the same Tc. We determine the
ground state energy by three different methods, using sound velocity measurements,
by extrapolating E(S) to S = 0 and by measuring the ratio of the cloud sizes in the
strongly and weakly interacting regimes. The results are in very good agreement with
recent predictions. Finally, using universal thermodynamic relations, we estimate the
chemical potential and heat capacity of the trapped gas from the E(S) data.

Keywords Fermi gas · Strong interactions · Thermodynamics · Superfluidity ·
Phase transition · Critical parameters

PACS 03.75.Ss

1 Introduction

Interacting fermionic particles play a central role in the structure of matter and exist
over a very broad range of energies, from extremely low temperature trapped atomic
Fermi gases, where T < 10−7 K [1, 2], to very high temperature primordial matter,
like quark-gluon plasmas, where T > 1012 K [3]. For all of these systems, the most
intriguing physics is related to very strong interactions between fermionic particles,
such as the strong coupling between electrons in high-Tc superconductors and the
strong interactions between neutrons in neutron matter.

Current many-body quantum theories face great challenges in solving problems
for strongly interacting Fermi systems, due to the lack of a small coupling parame-
ter. For example, the critical temperature of a superfluid-normal fluid transition in
a strongly interacting Fermi gas has been controversial for many years. The criti-
cal temperature Tc/TF has been predicted to have values in the range between 0.15
and 0.35 by different theoretical methods [4–11]. A complete understanding of the
physics of strongly interacting systems can not yet be obtained from a theoretical
point of view. There is a pressing need to investigate strongly interacting fermions
experimentally.

In recent years, based on progress in optical cooling and trapping of fermionic
atoms, a clean and controllable strongly interacting Fermi system, comprising a de-
generate, strongly interacting Fermi gas [1, 2], is now of interest to the whole physics
community. Strongly interacting Fermi gases are produced near a broad Feshbach
resonance [1, 12, 13], where the zero energy s-wave scattering length aS is large
compared to the interparticle spacing, while the interparticle spacing is large com-
pared to the range of the two-body interaction. In this regime, the system is known as
a unitary Fermi gas, where the properties are universal and independent of the details
of the two-body scattering interaction [14, 15]. In contrast to other strongly inter-
acting Fermi systems, in atomic gases, the interactions, energy, and spin population
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can be precisely adjusted, enabling a variety of experiments for exploring this model
system.

Intense studies of strongly interacting Fermi gases have been implemented over
the past several years from a variety of perspectives. Some of the first experiments
observed the expansion hydrodynamics of the strongly interacting cloud [1, 16]. Ev-
idence for superfluid hydrodynamics was first observed in collective modes [17, 18].
Collective modes were later used to study the T = 0 equation of state throughout the
crossover regime [19–21]. Recently, measurements of sound velocity have also been
used to explore the T = 0 equation of state [22]. Below a Feshbach resonance, fermi-
onic atoms join to form stable molecules and molecular Bose-Einstein condensates
[23–27]. Fermionic pair condensation has been observed by projection experiments
using fast magnetic field sweeps [26, 27]. Above resonance, strongly bound pairs
have been probed by radio frequency and optical spectroscopy [28–31]. Phase sep-
aration has been observed in spin polarized samples [32, 33]. Rotating Fermi gases
have revealed vortex lattices in the superfluid regime [34, 35] as well as irrotational
flow in both the superfluid and normal fluid regimes [36]. Measurement of the ther-
modynamic properties of a strongly interacting Fermi gas was first accomplished by
adding a known energy to the gas, and then determining an empirical temperature that
was calibrated using a pseudogap theory [37]. Recent model-independent measure-
ments of the energy and entropy [38] provide a very important piece of the puzzle,
because they enable direct and precision tests that distinguish predictions from recent
many-body theories, without invoking any specific theoretical model [4, 5].

One of the major challenges for the experiments in strongly interacting Fermi
gases is the lack of a precise model-independent thermometry. Two widely-used ther-
mometry methods are model-dependent, in that they rely on theoretical models for
calibration. The first relies on adiabatic magnetic field sweeps between the molecular
BEC regime and the strongly interacting regime [28, 39]. Subsequently, the tempera-
ture of the strongly interacting gas is estimated from the measured temperature in the
BEC regime using a theoretical model of the entropy [8]. The second method, used
by our group [37], is based on determining an empirical temperature from the cloud
profiles that is calibrated by comparing the measured density distribution with a theo-
retical model for the density profiles. Currently two model-independent thermometry
methods have been reported for strongly-interacting gases. One is the technique em-
ployed by the MIT group [40], which is only applicable to imbalanced mixtures of
spin-up and spin-down atoms. That method is based on fitting the noninteracting edge
for the majority spin after phase separation. Another model-independent method is
demonstrated in Ref. [38], which is applicable to both balanced and imbalanced mix-
tures of spin-up and spin-down fermions. The energy E and entropy S are measured
and then parameterized to determine a smooth curve E(S). Then the temperature in
both the superfluid and normal fluid regime is obtained from the fundamental ther-
modynamic relation T = ∂E/∂S.

In this paper, we will describe our model-independent thermodynamic experi-
ments on a strongly interacting Fermi gas of 6Li, which we have conducted at Duke
University. First, we will describe our measurements of both the total energy E and
the total entropy S of a trapped strongly-interacting Fermi gas tuned near a Feshbach
resonance. Then, we determine the temperature T = ∂E/∂S after showing that the
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E(S) data are very well parameterized by using two different power laws that are
joined with continuous E and T at a certain entropy Sc that gives the best fit. To
examine the sensitivity of the temperature to the form of the fit function, we employ
two different fit functions that allow for a heat capacity jump or for a continuous
heat capacity at Sc. We find that the T values closely agree for both cases. We find a
significant change in the scaling of E with S above and below Sc, in contrast to the
behavior for an ideal Fermi gas, where a single power-law well parameterizes E(S)

over the same energy range. By interpreting Sc as the critical entropy for a superfluid-
normal fluid transition in the strongly interacting Fermi gas, we estimate the critical
energy Ec and critical temperature Tc. Both the model-independent E(S) data and the
estimated critical parameters are compared with several recent many-body theories
based on both analytic and quantum Monte Carlo methods.

We also show how parameterizing the E(S) data provides experimental tempera-
ture calibrations, which helps to unify, in a model-independent way, the results ob-
tained by several groups [26, 27, 31, 37, 38]. First we relate the endpoint temperatures
for adiabatic sweeps of the bias magnetic field between the strongly interacting and
ideal noninteracting regimes, as used in the JILA experiments to characterize the
condensed pair fraction [26, 31]. This enables the ideal gas temperature observed for
the onset of pair condensation [26, 31] to be related to the critical temperature of
the strongly interacting Fermi gas. The temperature obtained by parameterizing the
strongly interacting gas data also calibrates the empirical temperature based on the
cloud profiles, as used in our previous studies of the heat capacity [37]. These tem-
perature calibrations yield values of Tc close to that estimated from our E(S) data.

Next, we discuss three different methods for determining the universal many-body
parameter, β [1], where 1 + β is the energy per particle in a uniform strongly inter-
acting Fermi gas at T = 0 in units of the energy per particle of an ideal Fermi gas at
the same density. First, we describe the measurement of the sound velocity at reso-
nance and its relationship to β . Then, we determine β from the ground state energy
E0 of the trapped gas. Here, E0 is obtained by extrapolating the E(S) data to S = 0,
as suggested by Hu et al. [4]. This avoids a systematic error in the sound velocity
experiments arising from the unknown finite temperature. Finally, to explore the sys-
tematic error arising from the measurement of the number of atoms, β is determined
in a number-independent manner from the ratio of the cloud sizes in the strongly and
weakly interacting regimes. All three results are found to be in very good agreement
with each other and with recent predictions.

Finally, we obtain three universal thermodynamic functions from the parameter-
ized E(S) data, the energy E(T ), heat capacity C(T ), and global chemical poten-
tial μg(E).

2 Experimental Methods

Our experiments begin with an optically-trapped highly degenerate, strongly inter-
acting Fermi gas of 6Li [1]. A 50:50 mixture of the two lowest hyperfine states of
6Li atoms is confined in an ultrastable CO2 laser trap with a bias magnetic field of
840 G, just above a broad Feshbach resonance at B = 834 G [41]. At 840 G, the
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gas is cooled close to the ground state by lowering the trap depth U [1, 13]. Then U

is recompressed to a final trap depth of U0/kB = 10 µK, which is much larger than
the energy per particle of the gas, for the highest energies employed in the experi-
ments. This suppresses evaporation during the time scale of the measurements. The
shallow trap yields a low density that suppresses three body loss and heating. The
low density also yields a weakly interacting sample when the bias magnetic field is
swept to 1200 G, although the scattering length is −2900 bohr, as discussed in detail
in Sect. 2.2.

The shape of the trapping potential is that of a Gaussian laser beam, with a trans-
verse Gaussian profile determined by the spot size and an axial Lorentzian profile
determined by the Rayleigh length. To simplify the calculations of the ideal gas prop-
erties in subsequent sections, as well as the theoretical modelling, we take the trap
potential to be approximated by a three dimensional Gaussian profile,

U(x,y, z) = U0

(
1 − exp

(
−2x2

a2
x

− 2y2

a2
y

− 2z2

a2
z

))
, (1)

where ax,y,z is the 1/e2 width of trap for each direction. Here, we take the zero of
energy to be at r = 0. When the cold atoms stay in the deepest portion of the optical
trap, where x(y, z) � ax(ay, az), the Gaussian potential can be well approximated as
a harmonic trap with transverse frequencies ωx , ωy and axial frequency ωz, where

ωx,y,z =
√

4U0

ma2
x,y,z

. (2)

Here m is the 6Li mass. At our final trap depth U0, the measured transverse frequen-
cies are ωx = 2π × 665(2) Hz and ωy = 2π × 764(2) Hz. The axial frequency is
weakly magnetic field dependent since the total axial frequency has both an optical
potential contribution ω2

oz determined by (2) and a magnetic potential contribution
arising from magnetic field curvature, ω2

mz. The net axial frequency is then ωz =√
ω2

oz + ω2
mz. We find ωz = 2π ×30.1(0.1) Hz at 840 G and ωz = 2π ×33.2(0.1) Hz

at 1200 G. The total number of atoms is N � 1.3 × 105. The corresponding Fermi
energy EF and Fermi temperature TF at the trap center for an ideal noninteracting
harmonically trapped gas are EF = kBTF ≡ �ω̄(3N)1/3, where ω̄ = (ωxωyωz)

1/3.
For our trap conditions, we obtain TF � 1.0 µK.

Using ω̄, we can rewrite (1) as a symmetric effective potential,

U(r) = U0

(
1 − exp

(
−mω̄2r2

2U0

))
, (3)

where r is the scaled position vector. Here, r2 = x̃2 + ỹ2 + z̃2 with x̃ = ωxx/ω̄, ỹ =
ωyy/ω̄, z̃ = ωzz/ω̄. To obtain the anharmonic corrections for the Gaussian trap, we
expand (3) in a Taylor series up to second order in r2,

U(r) = mω̄2r2

2
− m2ω̄4r4

8U0
. (4)
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2.1 Energy Measurement

Model-independent energy measurement is based on a virial theorem, which for an
ideal gas in a harmonic confining potential Uho yields E = 2〈Uho〉. Since the har-
monic potential energy is proportional to the mean square cloud size, measurement
of the cloud profile determines the total energy. Remarkably, a trapped unitary Fermi
gas at a broad Feshbach resonance obeys the same virial theorem as an ideal gas,
although it contains superfluid pairs, noncondensed pairs, and unpaired atoms, all
strongly interacting. This has been demonstrated both theoretically and experimen-
tally [42]. The virial theorem shows that the total energy of the gas at all temperatures
can be measured from the cloud profile using

E =
〈
U + 1

2
x · ∇U

〉
, (5)

where U is the trapping potential and x is the position vector. Equation (5) can be
shown to be valid for any trapping potential U and for any spin mixture, without
assuming either the local density approximation or harmonic confinement [43–46].

Using (4) in (5) and keeping the lowest order anharmonic corrections, we obtain
the energy per atom in terms of the axial mean square size,

E = 3mω2
z 〈z2〉

[
1 − 5

8

mω2
z 〈z4〉

U0〈z2〉
]
. (6)

Here, we have used the local density approximation with a scalar pressure, which en-
sures that 〈x∂U/∂x〉 = 〈y∂U/∂y〉 = 〈z∂U/∂z〉. For the ground state, where the spa-
tial profile is a zero temperature Thomas-Fermi profile, we have 〈z4〉 = 12〈z2〉2/5.
For energies E/EF > 1, where the spatial profile is approximately Gaussian, we have
〈z4〉 = 3〈z2〉2. Since the anharmonic correction is small at low temperatures where the
cloud size is small, we use the Gaussian approximation over the whole range of en-
ergies explored in our experiments. For the conditions of our experiments, there is no
evidence that the local density approximation breaks down for a 50:50 spin mixture.
In this case, measurement of the mean square size in any one direction determines the
total energy. From (6), we see that by simply measuring the axial mean square size
〈z2〉840 at 840 G and measuring the axial trap frequency by parametric resonance, we
actually measure E840, the total energy per particle of the strongly interacting Fermi
gas at 840 G. This determines the total energy per particle in a model-independent
way [38].

2.2 Entropy Measurement

The entropy S of the strongly interacting gas at 840 G is determined by adiabatically
sweeping the bias magnetic field from 840 G to 1200 G, where the gas is weakly
interacting [38]. The entropy SW of the weakly interacting gas is essentially the en-
tropy of an ideal Fermi gas in a harmonic trap, which can be calculated in terms of
the mean square axial cloud size 〈z2〉1200 measured after the sweep. Since the sweep
is adiabatic, we have

S = SW . (7)
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The adiabaticity of the magnetic field sweep is verified by employing a round-trip-
sweep: The mean square size of the cloud at 840 G after a round-trip-sweep lasting
2 s is found to be within 3% of mean square size of a cloud that remains at 840 G for
a hold time of 2 s. The nearly unchanged atom number and mean square size proves
the sweep does not cause any significant atom loss or heating, which ensures entropy
conservation for the sweep. The background heating rate is the same with and without
the sweep and increases the mean square size by about 2% over 2 s. The mean square
size data are corrected by subtracting the increase arising from background heating
over the 1 s sweep time [38].

At 1200 G in our shallow trap, we have kFaS = −0.75, where the Fermi wavevec-
tor kF = (2mEF/�

2)1/2 and the s-wave scattering length aS = −2900 bohr [41]. We
find that the gas is weakly interacting: For the lowest temperatures attained in our ex-
periments, the gas at 1200 G is a normal fluid that we observe to expand ballistically.
We have calculated the ground state mean square size at 1200 G in our Gaussian trap,
based on a mean-field theory, 〈z2〉W0 = 0.69z2

F(1200 G) [38], which is close to that
of an ideal harmonically trapped gas, 〈z2〉I0 = 0.75z2

F(1200 G). Here, z2
F(B) is the

mean square size corresponding to the Fermi energy of an ideal noninteracting Fermi
gas at magnetic field B , which includes the magnetic field dependence of the axial
trapping frequency: EF(B) ≡ 3mω2

z (B)z2
F(B).

We expect that the entropy of the gas at 1200 G is close to that of an ideal gas,
except for a mean field shift of the energy. We therefore assume that a reasonable
approximation to the entropy is that of an ideal Fermi gas, SI(〈z2〉I − 〈z2〉I0), where
〈z2〉I0 is the ground state mean square size of an ideal Fermi gas in the Gaussian
trapping potential of (3). Here, we apply an elementary calculation based on in-
tegrating the density of states for the Gaussian trap with the entropy per orbital
s = −kB[f lnf + (1 − f ) ln(1 − f )], where f (ε) is the ideal Fermi gas occupation
number at temperature T for an orbital of energy ε. By calculating SI as a function
of the difference between the finite temperature and ground state mean square cloud
sizes, we reduce the error arising from the mean field shift at 1200 G, and ensure that
SI = 0 for the ground state.

The exact entropy of a weakly interacting gas SW at 1200 G, SW(〈z2〉W −〈z2〉W0),
has been calculated using many-body theories [4, 7] for the Gaussian potential of (3).
In the experiments, we determine the value of 〈z2〉W − 〈z2〉W0, where we take
〈z2〉W0 = 0.71z2

F(1200), the value measured at our lowest energy at 1200 G by ex-
trapolation to T = 0 using the Sommerfeld expansion for the spatial profile of an
ideal gas. This result is close to the theoretical value, 0.69z2

F(1200).
The entropy versus cloud size curve for an ideal noninteracting Fermi gas and

the exact value for a weakly interacting gas SW at 1200 G are plotted in Fig. 1. We
find that the entropies SW(Δ〈z2〉 = 〈z2〉W − 〈z2〉W0) and SI(Δ〈z2〉)), agree within a
few percent over most of the energy range we studied, except at the point of lowest
measured energy, where they differ by 10%. The results show clearly that the shape
of the entropy curve of a weakly interacting Fermi gas is nearly identical to that
of an ideal gas when the mean field shift of the ground state size is included by
referring the mean square cloud size to that of the ground state. So we have to a good
approximation,

S = SW(〈z2〉W − 〈z2〉W0) � SI(〈z2〉W − 〈z2〉W0). (8)
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Fig. 1 (Color online) Comparison of the entropy versus mean square size curves of a weakly interacting
Fermi gas with kFaS = −0.75 in a Gaussian trap with that of a noninteracting Fermi gas. Many-body
predictions are shown as the green dashed curve [4] and the blue dot-dashed curve [7]. The red solid curve
is our calculation for a noninteracting gas [47]. All of the calculations employ the Gaussian potential of
(3) with a trap depth U0/EF = 10. The points where S = 0 automatically coincide, since the entropy is
determined in all cases as a function of mean square size relative to that of the ground state. This corrects
approximately for the mean-field shift of the mean square size. Note that for a weakly interacting gas,
〈z2〉0 is the calculated ground cloud size for each theory that includes the mean field energy shift, while
for the noninteracting case 〈z2〉0 is 〈z2〉I0, the value for an ideal trapped Fermi gas. z2

F is the mean square
size for an energy E = EF

Since the corrections to ideal gas behavior are small, the determination of S1200 by
measuring the axial mean square size 〈z2〉1200 relative to the ground state provides an
essentially model-independent estimate of the entropy of the strongly interacting gas.

2.3 Sound Velocity Measurement

Sound velocity measurements have been implemented for Fermi gases that are nearly
in the ground state, from the molecular BEC regime to the weakly interacting Fermi
gas regime [22]. A sound wave is excited in the sample by using a thin slice of green
light that bisects the cigar-shaped cloud. The green light at 532 nm is blue detuned
from the 671 nm transition in lithium, creating a knife that locally repels the atoms.
The laser knife is pulsed on for 280 µs, much shorter than typical sound propagation
times ∼10 ms and excites a ripple in the density consisting of low density valleys
and high density peaks. After excitation, the density ripple propagates outward along
the axial direction z. After a variable amount of propagation time, we release the
cloud, let it expand, and image destructively. In the strongly interacting regime, we
use zero-temperature Thomas-Fermi profiles for a non-interacting Fermi gas to fit the
density profiles, and locate the positions of the density valley and peak. By recording
the position of the density ripple versus the propagation time, the sound velocity is
determined. A detailed discussion of potential sources of systematic error is given by
Joseph et al. [22].

For a strongly interacting Fermi gas in the unitary limit, the sound velocity c0 at
the trap center for the ground state is determined by the Fermi velocity of an ideal
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gas at the trap center, vF = (2EF/m)1/2 and the universal constant β ,

c0

vF
= (1 + β)1/4

√
5

. (9)

A precision measurement of the sound speed therefore enables a determination
of β [22]. As discussed below, the values of β determined from the E(S) data and
the sound velocity data are in very good agreement.

3 Comparison of Thermodynamic Data with Theory

In the experiments, the raw data consists of the measured mean square cloud sizes at
840 G and after an adiabatic sweep of the magnetic field to 1200 G. Using this data,
we determine both the energy and the entropy of the strongly interacting gas. The
data is then compared to several recent predictions.

3.1 Mean Square Cloud Sizes

We begin by determining the axial mean square cloud sizes at 840 G and after the
adiabatic sweep to 1200 G. Since the atom number can vary between different runs by
up to 20%, it is important to make the comparison independent of the atom number
and trap parameters. For this purpose, the mean square sizes are given in units of
z2

F(B), as defined above.
The measured mean square sizes are listed in Table 1. In the experiments, evap-

orative cooling is used to produce an atom cloud near the ground state. Energy is
controllably added by releasing the cloud and then recapturing it after a short time
theat as described previously [38]. For a series of different values of theat, the energy
at 840 G is directly measured from the axial cloud size according to (6). Then the
same sequence is repeated, but the cloud size is measured after an adiabatic sweep to
1200 G. In each case, the systematic increase in mean square size arising from back-
ground heating rate is determined and subtracted. The total data comprise about 900
individual measurements of the cloud size at 840 G and 900 similar measurements of
the cloud size after a sweep to 1200 G. To estimate the measurement error, we split
the energy scale at 840 G into bins with a width of ΔE = 0.04EF. Measured data
points within the width of the energy bin are used to calculate the average measured
values of the cloud sizes and the corresponding standard deviation at both 840 G and
1200 G.

The ratio of the mean square axial cloud size at 1200 G (measured after the sweep)
to that at 840 G (measured prior to the sweep) is plotted in Fig. 2 as a function of the
energy of a strongly interacting gas at 840 G. The ratio is ≥1, since for an adia-
batic sweep of the magnetic field from the strongly interacting regime to the weakly
interacting regime, the total entropy in the system is conserved but the energy in-
creases: The strongly interacting gas is more attractive than the weakly interacting
gas. A similar method was used to measure the potential energy change in a Fermi gas
of 40K, where the bias magnetic field was adiabatically swept between the strongly
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Table 1 Mean square axial cloud size, energy, and entropy measured in a trapped strongly interacting
Fermi gas. 〈z2〉840/z2

F(840) is the scaled axial mean square size at 840 G. 〈z2〉1200/z2
F(1200) is the scaled

axial mean square size at 1200 G. E840/EF is the energy per particle of a strongly interacting Fermi gas
at 840 G, calculated using (6). S1200/kB is the corresponding entropy per particle of the gas after an
adiabatic sweep of magnetic field from 840 G to 1200 G, where the noninteracting entropy curve (for the
Gaussian trap) is used to determine the entropy at 1200 G and the ground state mean square size is assumed
to be 〈z2〉0 = 0.71z2

F(1200). S∗∗
1200/kB is the ideal gas entropy result assuming 〈z2〉0 = 0.69z2

F(1200).
S∗

1200/kB is the entropy obtained using an exact many-body calculation for kFa = −0.75 [4]

〈z2〉840/z2
F(840) 〈z2〉1200/z2

F(1200) E840/EF S1200/kB S∗
1200/kB S∗∗

1200/kB

1 0.568(4) 0.743(6) 0.548(4) 0.63(8) 0.91(23) 0.97(5)

2 0.612(5) 0.776(13) 0.589(5) 0.99(11) 1.18(22) 1.24(9)

3 0.661(5) 0.803(11) 0.634(5) 1.22(8) 1.36(20) 1.42(7)

4 0.697(9) 0.814(15) 0.667(8) 1.30(10) 1.43(18) 1.49(8)

5 0.74(1) 0.87(4) 0.71(1) 1.6(2) 1.72(18) 1.8(2)

6 0.79(1) 0.89(2) 0.75(1) 1.7(1) 1.79(15) 1.9(1)

7 0.83(1) 0.94(2) 0.79(1) 2.0(1) 2.03(16) 2.1(1)

8 0.89(2) 1.02(2) 0.84(2) 2.3(1) 2.32(18) 2.4(1)

9 0.91(1) 1.02(3) 0.86(1) 2.3(1) 2.31(16) 2.4(1)

10 0.97(1) 1.10(1) 0.91(1) 2.55(4) 2.57(17) 2.64(4)

11 1.01(1) 1.17(2) 0.94(1) 2.74(7) 2.75(19) 2.82(7)

12 1.05(1) 1.18(1) 0.98(1) 2.78(4) 2.80(17) 2.87(4)

13 1.10(1) 1.22(1) 1.03(1) 2.89(2) 2.90(15) 2.97(2)

14 1.25(2) 1.35(5) 1.15(1) 3.21(12) 3.20(14) 3.27(12)

15 1.28(1) 1.39(3) 1.18(1) 3.28(6) 3.28(14) 3.35(6)

16 1.44(2) 1.49(2) 1.31(2) 3.49(4) 3.48(9) 3.55(4)

17 1.53(2) 1.62(6) 1.39(2) 3.74(10) 3.73(11) 3.80(10)

18 1.58(1) 1.63(1) 1.42(1) 3.76(2) 3.74(8) 3.81(2)

19 1.70(2) 1.73(6) 1.52(1) 3.94(9) 3.92(7) 3.99(9)

20 1.83(5) 1.79(2) 1.62(4) 4.03(3) 4.01(1) 4.08(3)

21 1.93(3) 1.96(3) 1.70(2) 4.28(4) 4.26(6) 4.32(4)

22 2.11(5) 2.17(3) 1.83(4) 4.55(3) 4.53(7) 4.59(3)

interacting regime at the Feshbach resonance and a noninteracting regime above res-
onance [48]. The resulting potential energy ratios are given as a function of the tem-
perature of the noninteracting gas [48]. In contrast, by exploiting the virial theorem
which holds for the unitary gas, we determine both the energy and entropy of the
strongly interacting gas, as described below.

3.2 Energy versus Entropy

Figure 3 shows the entropy which is obtained from the mean square size at 1200 G
〈z2〉1200/z

2
F(1200) as listed in Table 1. First, we find the mean square size relative

to that of the ground state, (〈z2〉1200 − 〈z2〉0)/z
2
F(1200). We use the measured value

〈z2〉0 = 0.71z2
F(1200) for the lowest energy state that we obtained at 1200 G, as de-
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Fig. 2 (Color online) The ratio
of the mean square cloud size at
1200 G, 〈z2〉1200, to that at
840 G, 〈z2〉840, for an isentropic
magnetic field sweep. E is the
total energy per particle of the
strongly interacting gas at 840 G
and EF is the ideal gas Fermi
energy at 840 G. The ratio
converges to unity at high
energy as expected (the dashed
line). Here, zWF is evaluated at
1200 G, while zF is evaluated at
840 G (see text)

Fig. 3 (Color online) The
conversion of the mean square
size at 1200 G to the entropy.
The dashed line is the calculated
entropy for a noninteracting
Fermi gas in the Gaussian trap
with U0/EF = 10.
〈z2〉0 = 0.71z2

F is the measured
ground state size for a weakly
interacting Fermi gas. The
calculated error bars of the
entropy are determined from the
measured error bars of the cloud
size at 1200 G. Here, zWF is
evaluated at 1200 G

termined by extrapolation to T = 0 using a Sommerfeld expansion for the spatial
profile of an ideal Fermi gas. Then we determine the entropy in the noninteracting
ideal Fermi gas approximation: SI[〈z2〉1200 − 〈z2〉0], where we have replaced 〈z2〉I0

by the ground state value at 1200 G. As discussed above, this method automatically
ensures that S = 0 corresponds to the measured ground state 〈z2〉0 at 1200 G, and
compensates for the mean field shift between the measured 〈z2〉0 for a weakly inter-
acting Fermi gas and that calculated 〈z2〉I0 = 0.77z2

F for an ideal Fermi gas in our
Gaussian trapping potential. As shown in Fig. 1, the entropy obtained from a more
precise many-body calculations is in close agreement with the ideal gas entropy cal-
culated in the ideal gas approximation. The energy is determined from the cloud
profiles at 840 G using (6).

Finally, we generate the energy-entropy curve for a strongly interacting Fermi gas,
as shown in Fig. 4. Here, the energy E measured from the mean square axial cloud
size at 840 G is plotted as a function of the entropy S measured at 1200 G after an
adiabatic sweep of the magnetic field. We note that above S = 4kB (E = 1.5EF) the
E(S) data (blue dots) for the strongly interacting gas appear to merge smoothly to
the ideal gas curve (dashed green).
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Fig. 4 (Color online) Measured
total energy per particle of a
strongly interacting Fermi gas at
840 G versus its entropy per
particle. For comparison, the
dot-dashed green curve shows
E(S) for an ideal Fermi gas. For
this figure, the ideal gas
approximation to the entropy is
used, S1200/kB of Table 1

In addition to the entropy calculated in the ideal gas approximation, Table 1
also provides a more precise entropy S∗(1200) versus the axial mean square cloud
size. These results are obtained by Hu et al. [4] using a many-body calculation for
kFa = −0.75 at 1200 G in the Gaussian trap of (3).

3.3 Testing Predictions from Many-Body Theories

Perhaps the most important application of the energy-entropy measurements is to test
strong coupling many-body theories and simulations. Since the energy and entropy
are obtained in absolute units without invoking any specific theoretical model, the
data can be used to distinguish recent predictions for a trapped strongly interacting
Fermi gas.

Figure 5 shows how four different predictions compare to the measured energy and
entropy data. These include a pseudogap theory [8, 49], a combined Luttinger-Ward-
De Dominicis-Martin (LW-DDM) variational formalism [6], a T-matrix calculation
using a modified Nozières and Schmitt-Rink (NSR) approximation [4, 5], and a quan-
tum Monte Carlo simulation [7, 50]. The most significant deviations appear to occur
near the ground state, where the precise determination of the energy seems most diffi-
cult. The pseudogap theory predicts a ground state energy that is above the measured
value while the prediction of Ref. [6] is somewhat low compared to the measurement.
All of the different theories appear to converge at the higher energies.
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Fig. 5 (Color online)
Comparison of the experimental
energy versus entropy data with
the calculations from strong
coupling many-body theories.
Top: The green dashed curve is
a pseudogap theory [8, 49]. The
black solid curve is a LW-DDM
variational calculation [6]. For
this figure, the entropy is given
by S∗

1200/kB in Table 1. Bottom:
The blue dashed curve is an
NSR calculation [4, 5]. The red
solid curve is a quantum Monte
Carlo simulation [7, 50]. For
this figure, the entropy is given
by S∗

1200/kB in Table 1

4 Determining the Temperature and Critical Parameters

The temperature T is determined from the measured E(S) data using the fundamental
relation, T = ∂E/∂S. To implement this method, we need to parameterize the data to
obtain a smooth differentiable curve.

At low temperatures, one expects the energy to increase from the ground state ac-
cording to a power law in T and a corresponding power law in S, i.e., E = E0 + aSb.
For a harmonically trapped ideal Fermi gas, we have in the Sommerfeld approx-
imation an energy per particle in units of EF given by E = 3/4 + π2(T /TF)2/2.
The corresponding entropy per particle in units of kB is S = π2(T /TF), so that
E = 3/4 + S2/(2π2) � 0.75 + 0.05S2.
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4.1 Power Law Fit and Temperature for an Ideal Fermi Gas

We attempt to use a single power law to fit the EI(S) curve for a noninteracting
Fermi gas in a Gaussian trapping potential, with U0/EF = 10, as in our experiments.
The energy and entropy are calculated in the energy range 0.75EF ≤ E ≤ 2EF and
displayed as dots in Fig. 6. We find that a single power law EI = (0.747 ± 0.001) +
(0.0419 ± 0.0004)S(2.197±0.006) fits the curve very well over this energy range. Note
that the power law exponent is b � 2, close to the low temperature value.

Using the fit function, we can extract the reduced temperature TI,fit/TF = ∂EI/∂SI
as a function of SI and compare it to the theoretical reduced temperature T/TF at
the same SI. The results are shown as the green dashed line in Fig. 6. We see that the
agreement is quite good except below T/TF = 0.1 and above 0.5, where the deviation
is �10%.

To improve the fit and to make a more precise determination of the temperature, we
employ a fit function comprising two power laws that are joined at a certain entropy
Sc, which gives the best fit. When used to fit the data for the strongly interacting Fermi
gas, we consider two types of fits that incorporate either a jump in heat capacity or a
continuous heat capacity at Sc. In this way, we are able determine the sensitivity of

Fig. 6 (Color online) The inset top left shows a single power-law fit to the calculated energy versus en-
tropy per particle of a noninteracting Fermi gas in a Gaussian trap. The exact result (blue dots) is well fit by
the single power law function (green solid curve) EI = (0.747±0.001)+(0.0419±0.0004)S(2.197±0.006) .
The inset bottom right shows a two-power law fit to the calculated energy versus entropy per particle of
a noninteracting Fermi gas in a Gaussian trap. The exact EI(S) (blue dots), is very well fit by the two
power law function (red solid curve) of (12) for e 
= 0 with a = 0.0480(2), b = 2.08(3), Sc = 2.16(3),
d = 2.483(7) and E0 = 0.7415(2). The temperature of a noninteracting Fermi gas obtained from the fits
to the calculated energy versus entropy is compared to the exact temperature. The blue dotted line corre-
sponds to exact agreement. The green dot-dashed curve is from the single power law fit showing deviation
only at the highest and lowest temperatures. The red curve is from two power law fit of (12) with e 
= 0
showing excellent agreement over the full range
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the temperature and critical parameters to the form of the fit function. The two types
of fits yield nearly identical temperatures, but different values of Sc and hence of the
critical parameters, as discussed below.

We take the energy per particle E in units of EF to be given in terms of the entropy
per particle in units of kB in the form

E<(S) = E0 + aSb; 0 ≤ S ≤ Sc,

E>(S) = E1 + cSd + e(S − Sc)
2; S ≥ Sc.

(10)

We constrain the values of E1 and c by demanding that energy and temperature
be continuous at the joining point Sc:

E<(Sc) = E>(Sc),(
∂E<

∂S

)
Sc

=
(

∂E>

∂S

)
Sc

.
(11)

By construction, the value of e does not affect these constraints and is chosen in one
of two ways. Fixing e = 0, the fit incorporates a heat capacity jump at Sc, which
arises from the change in the power law exponents at Sc. Alternatively, we choose
e so that the second derivative E′′(S) is continuous at Sc, making the heat capacity
continuous. The final fit function has 5 independent parameters E0, Sc, a, b, d , and
takes the form

E<(S) = E0 + aSb; 0 ≤ S ≤ Sc,

E>(S) = E0 + aSb
c

[
1 − b

d
+ b

d

(
S

Sc

)d]
+ e(S − Sc)

2; S ≥ Sc.
(12)

Here, when e is not constrained to be zero, it is given by

e = ab

2
(b − d)Sb−2

c . (13)

Figure 6 shows the improved fit to the calculated energy versus entropy of a nonin-
teracting Fermi gas in a Gaussian trap for U0/EF = 10, using (12) with e 
= 0, since
the ideal gas has no heat capacity jump. In this case, both power law exponents b and
d are close to 2 as for the single power law fit. The temperature determined from the
fit agrees very closely with the exact temperature, as shown in Fig. 6 (red solid line).

4.2 Power Law Fit and Temperature of a Strongly Interacting Fermi Gas

In contrast to the noninteracting case, we have found that the energy-entropy data of
a strongly interacting Fermi gas is not well fit by a single power law function [38].
However, the two power-law function fits quite well, with a factor of two smaller
value of χ2 than for the single power-law fit. Here, we use χ2 = ∑

i (
y−yi

σi
)2, where

y (yi) is the fitted (data) value for the ith point, and σi is corresponding to the standard
error.
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Fig. 7 (Color online) To
determine the temperature, the
energy-entropy data are
parameterized by joining two
power-law fit functions. The red
solid line shows the fit that
includes a heat capacity jump,
while the blue dashed curve
shows the fit for a continuous
heat capacity (see Sect. 4). For
comparison, the dot-dashed
green curve shows E(S) for an
ideal Fermi gas. For this figure,
the ideal gas approximation to
the entropy is used, S1200/kB of
Table 1

Motivated by the good fits of the two power-law function to the ideal gas energy
versus entropy curve and the good agreement between the fitted and exact tempera-
ture, we apply the two power-law fit function to the data for the strongly interacting
Fermi gas.

Figure 7 shows the fit (red solid curve) obtained with a heat capacity jump us-
ing (12) with e = 0 and a = 0.12(1), b = 1.35(11), d = 2.76(12), the ground
state energy E0 = 0.48(1), and the critical entropy Sc = 2.2(1). Also shown is
the fit (blue dashed curve) with continuous heat capacity (e 
= 0) and a = 0.12(2),
b = 1.31(17), d = 2.9(2), the ground state energy E0 = 0.48(2), and the critical en-
tropy Sc = 1.57(29).

4.3 Estimating the Critical Parameters

The fit functions for the E(S) data for the strongly interacting Fermi gas exhibit a sig-
nificant change in the scaling of E with S below and above Sc. The dramatic change
in the power law exponents for the strongly interacting gas suggests a transition in
the thermodynamic properties. The power law exponent is 2.9 above Sc, comparable
to that obtained for the ideal gas, where d = 2.5. The power law exponent below Sc

is 1.35, which corresponds to the low temperature dependence E −E0 ∝ T 3.86, close
to that obtained in measurements of the heat capacity, where the observed power law
was 3.73 after the model-dependent calibration of the empirical temperature [37], see
Sect. 5.3.

If we interpret Sc as the critical entropy for a superfluid-normal fluid transition in
the strongly interacting Fermi gas, then we can estimate the critical energy Ec and
the critical temperature Tc = (∂E<(S)/∂S)Sc . For the fits of (12) with a heat capacity
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Table 2 Critical parameters for
a strongly interacting Fermi gas.
The experimental results are
obtained from fits to the energy
versus entropy data using (12):
Fit1 uses e = 0, and has a jump
in heat capacity. Fit2 constrains
e so that there is no jump in heat
capacity. The theoretical results
are presented for comparison

aUsing the present experimental
calibration of the measured
empirical transition temperature,
see Sect. 5.3

Sc(kB) Ec(EF) Tc(TF)

Expt E(S) Fit1 2.2(1) 0.83(2) 0.21(1)

Expt E(S) Fit2 1.6(3) 0.70(5) 0.185(15)

Heat capacity experimenta 0.85 0.20

Theory Ref. [9] 0.30

Theory Ref. [11] 0.31

Theory Ref. [8] 0.27

Theory Ref. [4] 0.29

Theory Ref. [7] 2.15 0.82 0.27

Theory Ref. [6] 1.61(5) 0.667(10) 0.214(7)

jump (e = 0) or with continuous heat capacity (e 
= 0), we obtain

Ec = E0 + aSb
c , Tc = abSb−1

c . (14)

Using the fit parameters in (14) yields critical parameters of the strongly interacting
Fermi gas, which are summarized in Table 2. The statistical error estimates are from
the fit, and do not include systematic errors arising from the form of the fit function.

We note that the fit function for S(E) previously used in Ref. [38] to determine
the temperature was continuous in S and E, but intentionally ignored the continuous
temperature constraint in order to determine the entropy as a power of E − E0 both
above and below the joining energy Ec. As the continuous temperature constraint
is a physical requirement, we consider the present estimate of the temperature T

to be more useful for temperature calibrations and for characterizing the physical
properties of the gas than the estimate of Ref. [38].

In contrast to the temperature T , the estimate of Tc depends on the value of the
joining entropy Sc that optimizes the fit and is more sensitive to the form of fit func-
tion than the temperature that is determined from the E and S data. For the fit func-
tion S(E) used in Ref. [38], the temperatures determined by the fit function just
above Ec, Tc>, and below Ec, Tc<, were different. An average of the slopes 1/Tc>
and 1/Tc< was used to estimate the critical temperature. From those fits, the criti-
cal energy was found to be Ec/EF = 0.94 ± 0.05, the critical entropy per particle
was Sc = 2.7(±0.2)kB. The estimated critical temperature obtained from the average
was Tc/TF = 0.29(+0.03/ − 0.02), significantly higher than the value Tc/TF = 0.21
obtained using (12), which incorporates continuous temperature.

We are able to substantiate the critical temperature Tc/TF = 0.21 by using our
data to experimentally calibrate the temperature scales in two other experiments. In
Sect. 5.2, we find that this value is in very good agreement with the estimate we
obtain by calibrating the ideal gas temperature observed for the onset of pair conden-
sation. Nearly the same transition temperature is obtained in Sect. 5.3 by using the
E(S) data to calibrate the empirical transition temperature measured in heat capacity
experiments [37].

Table 2 compares the critical parameters estimated from the power-law fits to the
E(S) data with the predictions for a trapped unitary Fermi gas from several theoret-
ical groups. We note that calculations for a uniform strongly interacting Fermi gas
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Fig. 8 (Color online) The
temperature versus the entropy
of a strongly interacting Fermi
gas from the fits to the E(S)

measurement. The red solid
curve is given by (15) for e = 0
(heat capacity jump) and the
blue dotted curve is for e 
= 0
(continuous heat capacity)

at unitarity [51] yield a lower critical temperature, Tc/TF(n) = 0.152(7), than that of
the trapped gas, where TF(n) is the Fermi temperature corresponding to the uniform
density n. Extrapolation of the uniform gas critical temperature to that of the trapped
gas shows that the results are consistent [6].

Using the parameters from the fits and (12), the temperature of the strongly inter-
acting Fermi gas, in units of TF can be determined as a function of the entropy per
particle, in units of kB,

T<(S) = Tc

(
S

Sc

)b−1

; 0 ≤ S ≤ Sc,

T>(S) = Tc

(
S

Sc

)d−1

+ 2e(S − Sc); S ≥ Sc.

(15)

Here Sc is given in Table 2 from the fits to the E(S) data for the strongly interacting
gas, (14) gives Tc. Figure 8 shows the temperature as a function of entropy according
to (15) for fits with a heat capacity jump and for continuous heat capacity.

5 Temperature Calibrations

The estimates of the temperature of the strongly interacting Fermi gas as a function
of the entropy can be used to experimentally calibrate the temperatures measured in
other experiments, without invoking any specific theoretical models. The JILA group
measures the pair condensate fraction in a strongly interacting Fermi gas of 40K as
a function of the initial temperature TIc in the noninteracting regime above the Fes-
hbach resonance [26, 31]. In these experiments, a downward adiabatic sweep of the
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bias magnetic field to resonance produces a strongly interacting sample. Using our
E(S) data, we relate the endpoint temperatures for adiabatic sweeps of the bias mag-
netic field between the ideal and strongly interacting Fermi gas regimes. We there-
fore obtain the critical temperature for the onset of pair condensation in the strongly
interacting Fermi gas, and find very good agreement with our estimates based on
entropy-energy measurement.

In addition, we calibrate the empirical temperature based on the cloud profiles,
which was employed in our previous measurements of the heat capacity [37].

5.1 Endpoint Temperature Calibration for Adiabatic Sweeps

We relate the endpoint temperatures for an adiabatic sweep between the strongly
interacting and ideal Fermi gas regimes. Equation (15) gives the temperature of the
strongly interacting gas as a function of entropy, i.e., T (S).

Next, we calculate the entropy per particle SI(TI) for an ideal Fermi gas in our
Gaussian trap, in units of kB, with TI in units of TF, as used in Sect. 4.1 to determine
EI(SI). For an adiabatic sweep between the strongly interacting and ideal Fermi gas
regimes, where S = SI, the temperature of the strongly interacting gas is related to
that for the ideal Fermi gas by

T = T [SI(TI)], (16)

which is shown in Fig. 9.
For an adiabatic sweep from the ideal Fermi gas regime to the strongly interacting

Fermi gas regime at low temperature T < Tc, the reduced temperature of the strongly
interacting gas is greater than or equal to that of the ideal gas. This arises because the
entropy of the strongly interacting gas scales as a higher power of the temperature
than that of the ideal gas.

In our present experiments, we could not take data at high enough temperatures
to properly characterize the approach of the temperature to the ideal gas regime.
Above Tc, our E(S) data are obtained over a limited range of energies E ≤ 2EF
to avoid evaporation in our shallow trap. In this energy range, our data are reasonably
well fit by a single power law. However, such a power law fit cannot completely de-
scribe the higher temperature regime. We expect that the temperatures of the strongly
interacting gas and ideal gas must start to merge in the region S ∼= 4kB, where the
E(S) data for the strongly interacting gas nearly overlaps with the E(S) curve for an
ideal gas, as shown in Fig. 4.

From Fig. 8, S > 4kB corresponds to T/TF > 0.6, approximately the place where
the calibrations from the two different power law fits (for e = 0 and e 
= 0) begin to
differ in Fig. 9. We therefore expect that the single power law fit overestimates the
temperature T of the strongly interacting gas for T > 0.6TF, yielding a trend away
from ideal gas temperature, in contrast to the expected merging at high temperature.

5.2 Critical Temperature for the Onset of Pair Condensation

In Ref. [26], projection experiments measure the ideal Fermi gas temperature TIc
where pair condensation first appears. In those experiments, TIc is estimated to be
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Fig. 9 (Color online) Experimental temperature calibrations. Temperature of a strongly interacting Fermi
gas (T /TF) compared to the temperature of a noninteracting Fermi gas (TI/TF) for an adiabatic sweep
between and strongly interacting and ideal Fermi gas regimes (equal entropies). The solid red curve is
obtained from the fit to the E(S) data with a heat capacity jump and the dashed blue curve is obtained from
the fit with continuous heat capacity. The dashed green curve shows the value of the empirical temperature
Tfit, as obtained from the cloud profiles in Ref. [37], versus the corresponding reduced temperature of the
strongly interacting Fermi gas at the same energy. The dotted black line denotes equal temperatures

0.18(2), TF [31]. From the calibration, Fig. 9, we see that for TIc = 0.18TF, the cor-
responding temperature of the strongly interacting gas is Tc = 0.19(2)TF for both the
red solid and blue dashed curves, which is almost the same as the ideal gas value.
The critical temperature of the strongly interacting gas for the onset of pair conden-
sation is then 0.19(2)TF, in very good agreement with the values Tc = 0.21(1)TF and
Tc = 0.185(15)TF that we obtain from the two fits to the E(S) measurements. This
substantiates the conjecture that the change in the power law behavior observed at Tc
in our experiments corresponds to the superfluid transition.

5.3 Calibrating the Empirical Temperature Obtained from the Cloud Profiles

In our previous study of the heat capacity, we determined an empirical temperature
Tfit ≡ T̃ as a function of the total energy of the gas [19, 37]. The gas was initially
cooled close to the ground state and a known energy was added by a release and
recapture method. Then a Thomas-Fermi profile for an ideal Fermi gas was fit to
the low temperature cloud profiles to determine the Fermi radius. Holding the Fermi
radius constant, the best fit to the cloud profiles at higher temperatures determined the
effective reduced temperature, which is denoted T̃ . The E(T̃ ) data [37] was observed
to scale as E − E0 = 1.54EFT̃ 1.43 for T̃ ≥ 0.33, while below T̃ = 0.33, the energy
was found to scale as E − E0 = 4.9EFT̃ 2.53. The transition point occurs at an energy
Ec = 0.85EF, which is close to the value 0.83EF obtained from power-law fit to the
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E(S) data for the fit with a heat capacity jump. Assuming that T̃c = 0.33 corresponds
to the superfluid-normal fluid transition, we can determine the corresponding value
of Tc/TF for the strongly interacting gas.

To calibrate the empirical temperature we start with E(T̃ ). Then, as discussed
in Sect. 7.1, (12) determines E(T ) and hence T (E)from the fits to our E(S) data.
Hence T (T̃ ) = T [E(T̃ )], where T ≡ T/TF is the reduced temperature of the strongly
interacting gas and E ≡ E/EF is the reduced energy. For simplicity, we give the
analytic results obtained using the e = 0 fit to the E(S) data,

T

TF
= 0.42T̃ 0.66; 0 ≤ T̃ ≤ 0.33,

T

TF
= (0.80T̃ 1.43 − 0.09)0.64; T̃ ≥ 0.33.

(17)

Figure 9 shows the full calibration (green dashed curve). For comparison, the calibra-
tion obtained from the pseudogap theory of the cloud profiles gave T/TF = 0.54T̃ 0.67

for T̃ ≤ 0.33, and T/TF = 0.71T̃ above T̃ = 0.33. For T̃c = 0.33, we obtain from (17)
Tc/TF = 0.20 (see Fig. 9), in good agreement with the value obtained for the onset of
pair condensation and with the values Tc = 0.185(15) and Tc = 0.21(1) determined
from the fits to the E(S) data.

6 Measuring the Ground State Energy

Measurement of the ground state energy of a unitary Fermi gas provides a stringent
test of competing many-body theoretical predictions and is therefore of great interest.
For a unitary Fermi gas of uniform density in a 50:50 mixture of two spin states, the
ground state energy per particle can be written as

Eg = (1 + β)
3

5
εF(n), (18)

where εF(n) is the local Fermi energy corresponding to the density n. The ground
state energy of the unitary Fermi gas differs by a universal factor ξ ≡ 1 + β from
that of an ideal Fermi gas at the same density. The precise value of ξ has been of
particular interest in the context of neutron matter [52–55], and can be measured in
unitary Fermi gas experiments [1, 56].

The sound speed at temperatures near the ground state determines β according
to (9). We have made precision measurements of the sound speed in a trapped Fermi
gas at the Feshbach resonance [22]. At 834 G, we vary the density by a factor of 30 to
demonstrate universal scaling and obtain the value c0/vF = 0.362(6). Using (9) then
yields β = −0.565(15). Note that the reference Fermi velocity vF depends on the
Fermi energy of an ideal gas at the trap center and hence on both the trap frequencies
and atom number (as N1/6), which are carefully measured to minimize systematic
errors [22]. While the energy of the gas as measured from the mean square cloud
size was close to the ground state value, the precise temperature of the gas was not
determined.
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The universal parameter β also can be determined by measuring the ground state
energy E0 of a harmonically trapped unitary Fermi gas, which is given by

E0 = 3

4

√
1 + βEF. (19)

Our E(S) data enables a new determination of E0 by extrapolating the measured en-
ergy E(S) to S = 0. As pointed out by Hui et al. [4], this method avoids a systematic
error arising when the finite temperature is not determined in the measurements.

From both of our fit functions below Sc, we obtain E0/EF = 0.48(1). Equa-
tion (19) yields β = −0.59(2). This result is slightly more negative than that obtained
in the sound speed experiments, which is reasonable since the sound speed measure-
ments are done at finite temperature. Both results are in very good agreement.

One possible systematic error in these measurements arises from the determina-
tion of the atom number. The measurements of β from the sound speed and from the
energy-entropy measurements were done in different laboratories. The close agree-
ment is gratifying, considering that the imaging systems that determine the atom
number employed σ−-polarized light for the sound speed experiments, while the
entropy-energy measurements used x-polarized light, for which the resonant optical
cross section is a factor of two smaller than for σ− polarization. To examine the sys-
tematic error arising from the atom number determination, we employ a third method
to measure β based on the measured ratio of the cloud size at 840 G and at 1200 G,
which is number independent.

The ratio of the ground state mean square sizes for the weakly and strongly inter-
acting gases is predicted to be

r0 = 〈z2〉0,1200/z
2
F(1200)

〈z2〉0,840/z
2
F(840)

= 0.69

(3/4)
√

1 + β
. (20)

Note that we obtain 〈z2〉0,1200/z
2
F(1200) = 0.69 from a mean field calculation [47],

in agreement with that obtained using a many-body calculation [4, 7].
Our measurements for the ground state mean square size at 1200 G are accom-

plished by fitting a Sommerfeld expansion of the axial density for an ideal Fermi
gas to the cloud profile [38, 56]. The fit determines the Fermi radius σz and re-
duced temperature T/TF, yielding 〈z2〉0,1200 = σ 2

z /8 = 0.71z2
F(1200) for T = 0,

close to the predicted value of 0.69. The ground state energy E0 = 0.48EF(840)

at 840 G from the entropy-energy experiments determines the ground state mean
square size as 〈z2〉0,840 = 0.48z2

F(840). Hence, r0 = 0.71/0.48 = 1.48. The corre-
sponding β = −0.61(2) from (20). Since the mean square sizes are determined from
the images and the ratio z2

F(840)/z2
F(1200) is number independent, this result shows

that the systematic error arising from the number measurement is within the quoted
error estimate.

We also can determine β by directly extrapolating to zero entropy the ratio of
the axial mean square size of the weakly interacting Fermi gas at 1200 G to that
of strongly interacting gas at 840 G. When this is done, we obtain β = −0.58, in
very good agreement with the estimates based on the sound speed and ground state
energy.
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Table 3 Universal interaction
parameter β β

E(S) experiment −0.59(2)

Sound velocity experiment −0.565(15)

Cloud size ratio experiment −0.61(2)

Ref. [55, 58, 59] −0.58(1)

Ref. [50] −0.56(3)

Ref. [4] −0.599

Ref. [60] −0.60(1)

Ref. [6] −0.646(4)

Finally, we can estimate the correction to the ground state energy arising from
the finite scattering length at 840 G, aS = −73616a0. For the trap conditions in
the E(S) measurements, kFaS = −18, where kF is the wavevector for an ideal
Fermi gas at the trap center. To estimate the true unitary ground state energy at
aS = ∞, we first determine the leading order 1/(aSkF(n)) correction to the trapped
atom density, where kF(n) is the local Fermi wavevector corresponding to the den-
sity n. The local chemical potential is estimated from Ref. [57]. Using the nota-
tion of (3) and a harmonic approximation, the corrected density yields 〈r2/σ 2〉 =
(3/8)[1 − (128/105π)(0.64/kFaS)], where σ is the Fermi radius for the unitary
gas. According to the virial theorem (see (5)), the mean square size and energy of
the unitary gas are corrected by the same factor. The unitary ground state energy is
then

E0(∞) = E0(kFaS)

1 − (128/105π)(0.64/kFaS)
. (21)

For kFaS = −18, we obtain E0(∞) = 0.986E0(−18) and the value of β = −0.59(2)

obtained directly from E(S = 0) = E0 = 0.48(1) is shifted to β = −0.60(2). We
also obtain the corrected value of r0 = 0.71/(0.986 · 0.48) = 1.50 in (20) and
β = −0.62(2).

Table 3 compares the values of β obtained in our experiments to several recent
predictions. Note that the table does not include the finite kFa correction for the E(S)

measurement at 840 G described above.

7 Universal Thermodynamic Functions

Using the E(S) data for the strongly interacting Fermi gas and the temperature deter-
mined from the two power-law fits, we estimate several universal functions. First, we
determine the dependence of the energy on temperature E(T ) and the corresponding
heat capacity, C(T ). Then we find the global chemical potential of the trapped gas as
a function of the energy μg(E).
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7.1 Energy versus Temperature

The energy is readily determined as a function of temperature using (12) for the case
where there is a heat capacity jump and e = 0,

E<(T ) = Ec + ScTc
b

[(
T

Tc

) b
b−1 − 1

]
; 0 ≤ T ≤ Tc,

E>(T ) = Ec + ScTc
d

[(
T

Tc

) d
d−1 − 1

]
; T ≥ Tc,

(22)

where the energy (temperature) is given in units of EF (TF) and the critical energy Ec

is

Ec = E0 + ScTc/b, (23)

with E0 the ground state energy. For the case with e 
= 0, where the heat capacity
is continuous, we determine the ordered pairs [E(S),T (S)] as a function of S and
plot E(T ). Figure 10 shows the results using the best fits for both cases.

Of particular interest is the low temperature power law. For e = 0, we obtain b =
1.35 and b/(b−1) = 3.86. Since b is near 4/3, the energy relative to the ground state
scales approximately as T 4. This is consistent with sound modes dominating the low
energy excitations. However, one would expect instead that the free fermions on the
edges of the trapped cloud would make an important contribution to the low energy
excitations [8]. Over an extended range of T < Tc, the net entropy arising from the
Bose and Fermi excitations has been predicted to scale as T 2, yielding an energy
scaling [8] as E − E0 ∝ T 3. In this case, one would expect that E − E0 ∝ S3/2, i.e.,
b = 3/2 in (22), so that b/(b − 1) = 3. Hence, the low energy power law exponents
for the entropy should be between 4/3 and 3/2, which is barely distinguishable for
our data.

Fig. 10 (Color online) The
energy of a strongly interacting
Fermi gas versus temperature,
from the fits to the E(S) data.
The red curve shows E(T ) as
determined from the fit with a
heat capacity jump (e = 0)
in (12). The blue dashed curve
shows E(T ) as determined from
the fit with continuous heat
capacity (e 
= 0)
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Fig. 11 (Color online) Heat
capacity versus temperature
given by (24) for a strongly
interacting Fermi gas. The red
dot-dashed curve shows the heat
capacity when there is a jump at
Tc/TF = 0.21. The blue solid
curve shows the heat capacity
when the heat capacity is
continuous. For comparison, the
light-blue dashed curve shows
the heat capacity obtained for an
ideal Fermi gas (using the fit
function of Fig. 7)

7.2 Heat Capacity versus Temperature

The heat capacity at constant trap depth C = dE/dT is readily obtained from (22)
(where there is a heat capacity jump, since we have constrained e = 0 in (12)). For
this parameterization,

C<(T ) = Sc

b − 1

(
T

Tc

) 1
b−1 ; 0 ≤ T ≤ Tc,

C>(T ) = Sc

d − 1

(
T

Tc

) 1
d−1 ; T ≥ Tc,

(24)

where T and Tc are given in units of TF, and Sc is given in units of kB. For the fit with
a continuous heat capacity, we use T (S) to find C(S) = T (S)/(dT /dS), and plot
the ordered pairs [C(S),T (S)]. The heat capacity curves for both cases are shown in
Fig. 11.

According to (24), a jump in heat capacity occurs at Sc: C<(Tc) = Sc/(b − 1) and
C>(Tc) = Sc/(d −1) differ when the power law exponents b and d are different. This
is a consequence of the simple two power-law structure assumed for the fit function
E(S) given by (12) for e = 0, and cannot be taken as proof of a true heat capacity
jump. At present, the precise nature of the behavior near the critical temperature
cannot be determined from our data, and it remains an open question whether the
data exhibits a heat capacity jump or a continuous heat capacity.

7.3 Global Chemical Potential versus Energy

The global chemical potential μg is readily determined from the fits to the E(S) data
for a strongly interacting Fermi gas, which obeys universal thermodynamics. The
local energy density generally takes the form ε = T s + μn − P , where ε is the local
internal energy, which includes the kinetic energy and the interaction energy. Here, n

is the local density, μ is the local chemical potential, P is the pressure and s is the
total entropy per unit volume.
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The local chemical potential can be written as μ = μg − U , where U is the trap
potential. In the universal regime, where the local pressure depends only on the local
density and temperature, we have P = 2ε/3, as noted by Ho [15]. Hence, 5ε/3 =
T s + (μg − U)n. Integrating both sides over the trap volume and using

∫
d3xε =

NE −N〈U 〉, where E and 〈U 〉) are the total energy and average potential energy per
particle, respectively, we obtain

5

3
NE − 2

3
N〈U 〉 = NT S + μgN, (25)

where S is the entropy per particle. For simplicity, we assume harmonic confinement
and use the virial theorem result, 〈U 〉 = E/2, from (5), which holds in the universal
regime. Then, (25) yields the global chemical potential of a harmonically trapped
Fermi gas in the universal regime,

μg = 4

3
E − T S. (26)

By using the fit to the measured entropy-energy data to obtain the temperature
T = ∂E/∂S from (12), the global chemical potential of a trapped unitary Fermi gas
can be calculated from (26). For e = 0, where the heat capacity has a jump, the simple
power law fits above and below Ec each yield a different linear dependence of μg

on E,

μg(E) = 4

3
E0 +

(
4

3
− b

)
(E − E0); E0 ≤ E ≤ Ec,

μg(E) = μg(Ec) +
(

4

3
− d

)
(E − Ec); E ≥ Ec,

(27)

where μg(Ec) = 4E0/3 + (4/3 − b)(Ec − E0).
We plot the chemical potential in Fig. 12. The data points are obtained using (26)

with the measured energy E and entropy S and the temperature determined from the
fit to the E(S) data, using e = 0 in (12), i.e., with a heat capacity jump. The solid
red curve is given by (27). We note that the low temperature data points in E(S) are
best fit with the power law b = 1.35, which is close to 4/3. According to (27), this
produces a slope near zero for E0 ≤ E ≤ Ec. Since the power-law fit above Ec gives
d = 2.76, the slope according to (27) changes from nearly zero for E0 ≤ E ≤ Ec to
negative for E ≥ Ec.

Note that from (26), we obtain the slope

∂μg

∂E
= 1

3
− S

C
. (28)

Since the entropy S is continuous, we see that a jump in the heat capacity produces a
corresponding jump in the slope of μg versus E.

For comparison, Fig. 12 also shows the chemical potential obtained for e 
= 0
in (12), where the heat capacity is continuous (blue dashed curve).
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Fig. 12 (Color online) The global chemical potential versus the total energy of a strongly interacting
Fermi gas. The data points are calculated from the measured E − S data and the fitted T , where T is
determined by the fit parameters in (12) for e = 0. The standard deviation for each point of the chemical
potential is determined by the standard deviation of the measured E − S data. The solid red lines (heat
capacity jump) and blue dashed curve (heat capacity continuous) are determined by the fit parameters used
in (12) according to (27). The green dot-dashed curve shows the ideal Fermi gas result for the fit function
of Fig. 7

8 Conclusion

We have studied the thermodynamic properties of a strongly interacting Fermi gas
by measuring both the energy and the entropy. The model-independent data obtained
in both the superfluid and the normal fluid regimes do not employ any specific theo-
retical calibrations, and therefore can be used as a benchmark to test the predictions
from many-body theories and simulations. Parameterizing the energy-entropy data
determines the temperature of the strongly interacting Fermi gas and also yields esti-
mates of the critical parameters. We use the measured data to calibrate two different
temperature scales that were employed in observations of the onset of pair conden-
sation and in heat capacity studies. These calibrations yield critical temperatures in
good agreement with the results estimated from our energy-entropy data. Our data
does not determine whether the heat capacity exhibits a jump or is continuous at the
critical temperature. However, for a finite system with nonuniform density, the lat-
ter is most likely. Considering that there is huge interest in determining the detailed
behavior of the superfluid transition in a strongly interacting Fermi gas [61], more
precise determinations of the critical temperature, the heat capacity, and the chemi-
cal potential near the critical point, as well as the high temperature behavior and the
approach to the ideal gas limit, will be important topics for future research.
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