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ABSTRACT

Optical traps provide tight confinement and very long storage times for atomic gases. Using a single focused
beam from a CO2 laser, we confine a mixture of spin-up and spin-down fermionic 6Li atoms, achieving storage
times of ten minutes, and evaporative cooling to quantum degeneracy in seconds. A bias magnetic field tunes
the gas to a collisional (Feshbach) resonance, producing extremely strong spin-pairing. This system now tests
current many-body predictions for high-temperature superconductors, universal interactions in neutron stars,
and hydrodynamic flow of quark-gluon plasmas, a state of matter that existed microseconds after the Big Bang.
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1. INTRODUCTION

Optical traps are nearly ideal containers for confining ultracold atomic and molecular gases. Direct evaporative
cooling of atomic and molecular gases in optical traps also simplifies production of these cold quantum gases.
All-optical techniques are now being used to create and study Bose-Einstein condensates (BEC’s) of atoms1,2

and molecules,3 weakly interacting Fermi gases4 and strongly-interacting Fermi gases.5,6 The simplest optical
trap is a focused laser beam, tuned well below the nearest optical resonance. In that case, atoms or molecules
are attracted to the focus. When the trap is tuned far below resonance,7 the confining potential is nearly state
independent, and proportional to the trapping laser intensity.

Nearly ideal, conservative optical traps are constructed by reducing residual heating sources. Heating arises
from Larmor scattering of the trapping laser light,8 from intensity and position noise in the trapping laser
beams,9,10 and from small-angle background gas collisions.11,12

CO2 lasers, with a 10.6 µm wavelength, are particularly well suited for optical traps. CO2 lasers produce
very high power � 100 W or more, and correspondingly deep traps. The heating rate due to Larmor scattering
is reduced to a minimum, since the scattering rate8 scales 1/λ3 and the heating rate as 1/λ5. For our CO2

laser trap, the intensity at the focus is 2 MW/cm2, yet the optical scattering rate is only 2 photons/hour with
a corresponding heating rate of only 18 pK/s!

CO2 lasers, especially those from the laser radar industry, are especially quiet. Intensity noise can cause
exponential heating,9,10 but for our current trap, the estimated time constant, based on the measured laser
intensity noise power spectrum, is found to be 7 hours! By using a very high vacuum, < 10−11 Torr, heating
arising from background gas collisions is reduced to negligible levels. Then the time that an atom or molecule
can remain in the trap is determined by the time required for a background gas atom to scatter an atom out of
the trap, which is about 400 seconds at < 10−11 Torr.

Since atoms are stored in a nearly conservative potential, stable optical traps are very well suited to producing
ultracold quantum gases by evaporative cooling. Optical traps can be directly loaded from a standard magneto-
optical trap (MOT) which serves as a cold atom source. Collisions between atoms in the optical trap result
in evaporative cooling. By lowering the intensity of the trapping laser beam, efficient evaporative cooling is
achieved, with relatively small reduction in the number of atoms.13 All-optical production of a quantum gas by
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this method was first demonstrated for a BEC of 87 Rb, and shortly thereafter, for a degenerate Fermi gas of
6Li.4

As noted earlier, for large detuning of the trapping laser beam from the atomic resonance, the confining
potential is independent of applied magnetic fields. Hence, optical traps are well suited for applications requiring
strong magnetic fields, as needed for the study of Feshbach resonances.5,14

Optical traps provide a state-independent confining potential which is essential for the study of interacting
ultracold Fermi gases: In Fermi gases at low temperature, where s-wave scattering dominates, the Pauli exclusion
principle suppresses collisions in a single component gas. Hence, more than one spin state must be simultaneously
trapped.

Currently, experiments with optically-trapped, strongly-interacting Fermi gases5,15 provide tests of nonper-
turbative many-body theories in a variety of fields, from neutron stars and nuclear matter16–18 to quark-gluon
plasmas19 and high temperature superconductors.20 In contrast to other Fermi systems, interactions in the ultra
cold atomic gases are tunable at will using the Feshbach resonance phenomenon .5,21,22 Near the resonance, the
s-wave scattering length and the cross section of cold s-wave collisions between spin-up and spin-down atoms
changes smoothly from 0 to large values (providing strong interactions) in response to an external magnetic field.

The strongly-interacting regime of an interacting Fermi gas is also referred to as the BEC-to-BCS crossover
regime. In this regime, evidence of new, high-temperature superfluidity has been found in the studies of col-
lective dynamics.5,23–25 Microscopic properties of the superfluid have been probed by detecting pairs of Fermi
atoms in projection,26,27 in rf spectroscopy experiments,28,29 and in optical spectroscopy measurements of the
order parameter.30 Recent measurements of the heat capacity31 and collective damping32 near resonance reveal
transitions close to the temperature predicted for the onset of Fermi superfluidity. Superfluidity is confirmed by
the observation of quantized vortex lattices.33

Theoretical predictions spanning nearly thirty years and several disciplines have been made for the many-
body ground state of a strongly-interacting two-component Fermi system, characterized by two-body scattering
via a short range potential with a very large scattering length.16,17,34,35 Far from resonance, the system is
weakly interacting and well understood, establishing a reference for experiments and theories: At magnetic fields
well above the resonance, weakly attractive atoms form Cooper pairs in agreement with the Bardeen–Cooper–
Schrieffer (BCS) theory of superconductivity/superfluidity; and below the resonance, spin-up and spin-down
atoms are joined into dimer molecules, which form a Bose–Einstein condensate (BEC).3,36–38

Near a broad Feshbach resonance, Fermi gases also exhibit universal interactions5,16,39 and universal ther-
modynamics,40 i. e., the properties of the gas are independent of microscopic details of interaction and are
the identical to those of other resonantly-interacting Fermi systems. In that case, the interaction energy is a
universal fraction, denoted β, of the local kinetic energy.5,39 The universal interaction energy was originally
explored theoretically in the context of nuclear matter,16,17 and has been the subject of new calculations18,41–44

and recent measurements by several groups based on the release energy,5 cloud size31,39,45,46 and momentum
distribution.47,48 Currently, there is still controversy regarding the correct value of β. On-resonance speed of
sound measurements provide a new method for measurement of this universal quantity.

The zero-temperature equation of state has been quantitatively tested by two different methods – expansion of
the gas5,38,39 and oscillations of a trapped cloud.23–25 These measurements probe the dependence of the pressure
on the density, but they are not sensitive to the absolute pressure. In contrast, sound propagation49–51 provides
a new direct probe of the equation of state, a central result of predictions.52 Moreover, sound propagation is
sensitive to the absolute pressure, which makes it ideal for distinguishing which theories have the correct ground
state.

2. EXPERIMENTAL SYSTEM

We prepare a highly degenerate, strongly-interacting Fermi gas of 6Li. This is accomplished using evaporation of
an optically-trapped, 50-50 mixture of spin-up/down states at 840 G, just above the center of a broad Feshbach
resonance.5,23,25,31,32 To reduce the temperature, we do not employ a magnetic sweep from a BEC of molecules,
in contrast to several other groups.24,27,28,33,38,45 Instead, we evaporate directly in the strongly attractive,
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unitary regime: We simply exploit the large collision cross section and the rapid vanishing of the heat capacity
with decreasing temperature, which is especially effective in the superfluid regime. These properties make the
gas easier to cool.

In the forced evaporation, the depth of CO2 laser optical trap is reduced to 1/580 of its maximum value, and
then recompressed to 4.6% of the maximum trap depth for most of the experiments. From the trap frequencies
measured under these conditions and corrected for anharmonicity, we obtain: ω⊥ = √

ωxωy = 2π× 1696(10) Hz,
ωx/ωy = 1.107(0.004), and λ = ωz/ω⊥ = 0.045. Then, ω̄ = (ωxωyωz)1/3 = 2π×589(5) Hz is the mean oscillation
frequency. For most of the data reported, the total number of atoms is N = 2.0(0.2) × 105. The corresponding
Fermi temperature at the trap center for a noninteracting gas is TF = (3N)1/3h̄ω̄/kB � 2.4 µK, small compared
to the final trap depth of U0/kB = 35 µK (at 4.6% of the maximum trap depth). The coupling parameter of the
strongly-interacting gas at B = 840 G is kF a � −30.0, where h̄kF =

√
2mkBTF is the Fermi momentum, and

a = a(B) is the zero-energy scattering length estimated from the measurements of Bartenstein et al.53

3. UNIVERSAL THERMODYNAMICS

As noted above, near a broad Feshbach resonance, a strongly-interacting gas obeys the universal hypothesis,
where the interparticle spacing, 1/kF ∝ n−1/3, and hence the density n, determines the natural length scale. In
this regime, where kF a >> 1, the local thermodynamic properties are then functions only of the density and
temperature, the same variables that describe a noninteracting Fermi gas. The universal hypothesis has directly
measurable consequences, some of which we will describe briefly.

3.1. Virial Theorem

According to the universal hypothesis, the local pressure P must be a function of the local density and tem-
perature.40 In this case, a strongly-interacting Fermi gas must obey the virial theorem for a noninteracting gas
at all temperatures, as we now show. One can readily show by elementary thermodynamic arguments that if
P = P (n, T ), then

P =
2
3

ε(x), (1)

where ε(x) is the local energy density, i.e., the sum of the local kinetic and interaction energies.40,54

Balance of the pressure and trapping forces in a harmonic potential requires that N〈U〉 = (3/2)
∫

d3xP (x),
where 〈U〉 is the average potential energy per particle. Using

∫
d3x ε(x) = E − N〈U〉, one obtains54

N〈U〉 =
E

2
. (2)

This result is remarkable: Analogous to an ideal noninteracting gas, a trapped, strongly-interacting, unitary gas,
comprising condensed superfluid pairs, noncondensed pairs, and unpaired atoms, should obey the virial theorem.
Since 〈U〉 ∝ 〈x2〉, the mean square transverse radius 〈x2〉 of the trapped cloud should scale linearly with the
total energy, as verified in our experiments, see § 4.2. Using Eq. 2, we see that the energy of a harmonically
trapped ideal gas or a unitary gas can be determined from the mean square cloud size

E/N = 3mω2
x〈x2〉. (3)

3.2. Spatial Distribution and Measurement of the Interaction Energy

At zero temperature, the local energy per particle for a unitary gas is just (3/5)(1 + β) εF (n) where εF (n) =
h̄2(3π2n)2/3/(2m) is the local Fermi energy of a noninteracting Fermi gas and β is a measurable universal con-
stant5,16,39 which denotes the ratio of the local interaction energy to the local kinetic energy at zero temperature.
For an ideal gas, βideal = 0, while for a unitary gas, β < 0, denoting an effectively attractive interaction.

For a zero temperature unitary gas, the net effect of the interactions is then equivalent to changing the
bare mass m to an effective mass,17,31 m∗ = m/(1 + β). The Fermi temperature for a harmonically trapped,
noninteracting gas, is given by TF = (3N)1/3h̄ω̄/kB . Since the effective mass for the strongly-interacting gas
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is given by m∗ = m/(1 + β), the effective oscillation frequency is altered by a factor of
√

1 + β, and the Fermi
temperature for the strongly-interacting gas is given by

T ′
F = TF

√
1 + β. (4)

The equation of state at T = 0 yields precisely a zero temperature, Thomas-Fermi profile, n0(x), for which
the Fermi radius is σ′

x =
√

2kBT ′
F /mω2

x = (1 + β)1/4σx,39 where σx is the Fermi radius for a noninteracting gas.
The y − z integrated one-dimensional profile takes the form,

n(σx, T = 0) =
16 N

5πσ′
x

(
1 − x2

σ′2
x

)5/2

(5)

We find that the measured spatial profiles of our coldest clouds assume nearly the shape of a zero-temperature
Thomas-Fermi profile.5,39,55 Measurements of the cloud radii can then be used to determine β.31,39,45

We obtain β by comparing the transverse radius of the trapped cloud for the interacting gas with that of the
noninteracting gas.39 For the noninteracting gas, we use either the calculated σx or the radius measured after
ballistic expansion scaled to the in-trap dimension. For the interacting gas, we obtain σ′

x after hydrodynamic
expansion for 1 ms. We find that at 840 G, β[840] = −0.49(0.04) (statistical error only). Similar results are
obtained by measurements on the axial dimension of the trapped cloud without expansion45 and by direct
measurements of the interaction energy.47 There is some discrepancy between the measurements that may arise
from the sensitivity of β to the precise location of the Feshbach resonance,45 which in 6Li has been most recently
measured by radiofrequency methods.53

Using the results of a recent mean field model of the BEC-BCS crossover regime,56 we can use our measure-
ments at 840 G to estimate the value of β at resonance, where B = 834 G, and 1/(kF a) = 0. Near resonance,
one obtains56

β[1/(kF a)] = β − 0.64
kF a

. (6)

For our trap conditions, kF a = −30 @ 840 G and β[1/(kF a)] = −0.49 from our measurements. Hence, we find
β = −0.51(0.04). This is in good agreement with recent measurements based on the axial cloud size,46 where
β = −0.54(0.02). These results are in good agreement with recent calculations, β = −0.56,18 β = −0.545,41 and
with the simple mean field model, β = −0.564.56

3.3. Universal Hydrodynamics and Evidence for Superfluidity

At zero temperature, the local pressure of the trapped gas differs from the Fermi pressure of a noninteracting
gas by a factor of 1 + β and the pressure then scales as n5/3. In this case, upon release from a harmonic trap,
the expansion dynamics are governed precisely by a scale transformation, where the density evolves according
to n(x, t) = n0(x̃)/Γ, where x̃ = x/bx(t), Γ = bxbybz, and bi(t) is a hydrodynamic expansion factor.5,57 The
predicted hydrodynamic expansion for release from a cigar-shaped trap is highly anisotropic, and independent of
β, i.e., the gas expands rapidly in the originally narrow direction while remaining nearly stationary in the long
direction as observed in experiments.5

The breathing mode frequencies take on universal values when the local pressure scales as n5/3, and are
independent of β. For a cylindrically-symmetric trap, the radial breathing mode frequency for a zero temperature
hydrodynamic gas is given by

ωhydro =

√
10
3

ω⊥ = 1.83 ω⊥. (7)

For the conditions of our trap, which deviate slightly from cylindrical symmetry, exact diagonalization of the
linearized hydrodynamic equations yields ωhydro = 1.84 ω⊥. One can generalize these arguments to show that
they hold at all temperatures where the gas expands hydrodynamically under isentropic conditions.54

We excite the radial breathing mode by releasing the gas for 25µs, and recapturing the cloud. The width is
measured as a function of hold time prior to release and imaging. Fig. 1 shows the data at the lowest temperature.
By fitting a damped sinusoid to the data, we find that ω/ω⊥ = 1.832(0.012),23,25,32 in very good agreement with
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Figure 1. Radial breathing mode amplitude versus hold time.

the predicted value, 1.84.

These collective mode measurements also provide strong evidence for superfluid hydrodynamics in a strongly-
interacting Fermi gas. We find that the damping rate of the breathing mode decreases as the temperature is
decreased, although the frequency is hydrodynamic. This behavior is inconsistent with collisional hydrodynamics,
since the collision rate γ is expected to be suppressed at low temperature, and the hydrodynamic damping rate
for a collisional system would scale as ω2/γ. Hence, the observed behavior of the damping rate and hydrodynamic
frequency signal superfluid hydrodynamics.23,32

4. TOOLS FOR THERMODYNAMIC MEASUREMENTS

Equilibrium thermodynamic properties of the trapped gas, as well as dynamical properties, can be measured
as functions of the temperature or of the total energy. The temperature is changed by adding energy to the
gas at fixed total atom number and fixed magnetic field, starting from the lowest temperature samples. In the
following, we describe first a method for precisely adding a known energy to the gas. Then we describe a method
for associating an empirical temperature with the spatial profile of the gas, and a temperature calibration method
using theoretically predicted spatial profiles.58

4.1. Precision Energy Input

Energy is added to the gas by abruptly releasing the cloud and then recapturing it after a short expansion time
theat. During the expansion time, the total kinetic and interaction energy is conserved. When the trapping
potential U(x) is reinstated, the potential energy of the expanded gas is larger than that of the initially trapped
gas, increasing the total energy. After waiting for the cloud to reach equilibrium, the sample is ready for
subsequent measurements.

After recapture, the increase in the total energy, ∆E, is given by

∆E =
∫

d3x [n(x, theat) − n0(x)] U(x), (8)

where n0 is the initial spatial distribution, and n is the spatial distribution after expansion during the time theat.

For a harmonically trapped cloud which is initially at nearly zero temperature, the total energy is close to
that of the ground state, which is 3/4 of the Fermi energy per particle, i.e., E0 = (3/4)kBTF

√
1 + β. The energy

after expansion and recapture is given by

E = E0

[
2
3

+
b2
x(theat) + b2

y(theat)
6

]
. (9)

Eq. 9 has a simple physical interpretation. After release from a harmonic trap, and subsequent recapture
after a time theat, the potential energy in each transverse direction is increased as the square of the expansion
factors, bx and by, where bz(theat) � 1, for the conditions of our experiments. The total potential energy is half
of the total energy, since the unitary gas obeys the virial theorem for an ideal gas at all temperatures, as shown
in § 4.2. Hence, the initial potential energy in each direction is 1/6 of the total energy. Note that using Eq. 8,
the corrections to the energy change arising from trap anharmonicity are readily determined.31
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4.2. Test of the Virial Theorem

To test the virial theorem prediction, the gas is evaporatively cooled to the lowest temperature and then the
energy is increased as described above. For each value of theat, E is calculated according to Eq. 9. For each final
energy, the gas is released and the transverse radius of the cloud is measured after a fixed expansion time of 1
ms. The observed linear scaling of 〈x2〉 with the calculated E, Fig. 2 verifies the virial theorem prediction.
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Figure 2. 〈x2〉/〈x2(0)〉 versus E/E0 for a unitary gas of 6Li, showing linear scaling, and verifying the virial theorem
prediction. Here 〈x2〉 is the measured transverse mean square size. E is the total energy, calculated using Eq. 9. E0 and
〈x2(0)〉 denote the ground state values.

4.3. Empirical Temperature Measurement

Measurement of temperature in a noninteracting or weakly interacting Fermi gas is readily accomplished by
fitting a Thomas-Fermi (T-F) distribution to the spatial profile of the cloud either in the trap, or after ballistic
expansion, which alters the profile by a scale factor.5,57 We normally integrate the measured column density
of the expanded cloud over the axial dimension, and obtain the spatial profile in one transverse dimension,
nTF [x;σx, T/TF ]. The spatial profile is taken to be a function of two parameters, the Fermi radius σx, i.e.,
the cloud radius at zero temperature, and the reduced temperature T/TF , i.e., the ratio of the Boltzmann
temperature T to the trap Fermi temperature for a noninteracting gas, TF .

One can consider σx =
√

2kBTF /(mω2
x) to set the length scale of the spatial profile and T/TF as a shape

parameter. At low T/TF , the shape approaches a zero temperature T-F profile, ∝ (1− x2/σ2
x)5/2, while at high

T/TF , the profile approaches a Maxwell-Boltzmann shape ∝ exp[−mω2
xx2/(2kBT )] = exp[−(x2/σ2

x)(TF /T )].

In the latter case, only the product of T/TF and σ2
x appears. Hence, for determination of the reduced

temperature, it is convenient to determine the Fermi radius from the lowest temperature data, and then to hold
this radius constant, i.e., to take σx = cx N1/6 in subsequent measurements at higher temperature, where cx

is held constant. In this way, the reduced temperature T/TF is uniquely correlated with (and can be used to
parametrize) the shape of the spatial profile.

For a unitary gas, the spatial profile is not precisely known in general, and there are no simple analytical
formulae except at T = 0, as discussed above. Although the spatial profile of a unitary gas is not precisely known,
we observe experimentally that the binned, one-dimensional shape is closely approximated by a T-F profile for a
noninteracting gas. Further, recent theoretical predictions of the spatial profile58 show that the one-dimensional
shape is nearly of the T-F form at all temperatures, as a consequence of the existence of preformed pairs. Hence,
to provide a parametrization of the spatial profiles, we take the one dimensional spatial profile of the cloud to be
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of the form nTF (x; σ′
x, T̃ ), and thereby define an empirical reduced temperature T̃ ≡ (T/TF )fit which is obtained

from the fit.

In general, the empirical reduced temperature does not directly determine the reduced temperature T/TF .
However, at T = 0, the T-F shape is exact, so that T̃ = 0 coincides with T/TF = 0. Hence, the procedure for
determining σ′

x from the data at very low temperature, where T̃ � 0, is consistent, i.e., we take σ′
x = c′x N1/6,

where c′x is held constant after obtaining it from the lowest temperature data.

Further, at sufficiently high temperature, the cloud profile must have a Maxwell-Boltzmann form
∝ exp[−mω2

xx2/(2kBT )] = exp[−(x2/σ′2
x )(1/T̃ )]. This determines the natural reduced temperature scale, T̃nat,

T̃nat =
T

TF

√
1 + β

, (10)

which follows from the interacting gas Fermi radius, σ′
x = σx (1 + β)1/4, and the definition of the noninteracting

gas Fermi radius σx.

The natural reduced temperature scale is therefore exact at T = 0 and at high temperature, for a fixed
interacting gas Fermi radius (which determines β). To calibrate T̃ more generally, we fit profiles of the form
nTF (x; σ′

x, T̃ ) to the spatial profiles predicted as a function of T/TF using the formalism of pseudogap theory.31,58

The value of σ′
x is determined from the lowest temperature theoretical profile, and T̃ is determined for all of the

predicted profiles.

If the natural temperature were the correct scale at all T , then one would expect T/TF = T̃
√

1 + β = 0.71 T̃ .
Remarkably, above the predicted superfluid transition temperature, where Tc/TF = 0.29, i.e., for T̃ ≥ 0.45, the
natural temperature scale is in close agreement with predictions,31 even though noncondensed pairs are believed
to exist up to at least T/TF � 0.6, and are present in the predicted profiles. However, below the transition, for
0 < T ≤ 0.29, i.e., for 0 ≤ T̃ ≤ 0.45, we find that there is a systematic deviation: Here, T/TF = 0.54 T̃ 2/3, and
the natural temperature scale underestimates the reduced temperature.31 This is reasonable, since the energy
of the unitary gas, and hence the mean square cloud size, increases as a higher power of T/TF than quadratic.
The full empirical temperature calibration is shown in the inset in Fig. 4.

5. HEAT CAPACITY

The techniques of precision energy input and empirical temperature measurement provide a method for exploring
the heat capacity31,55 of a Fermi gas. In the experiments, the 6Li gas is cooled to very low temperature. For the
noninteracting gas, evaporative cooling is performed at 300 G for 15 seconds. The cloud is measured at 528 G,
where the scattering length is zero, and the gas is noninteracting. Energy is added as described above, except
that the gas expands ballistically. Then T/TF is measured by fitting the cloud profile with a T-F shape. Fig. 3
shows the data. The lowest temperature obtained is T/TF = 0.24. For that point, E is determined from the
ratio of the measured mean square cloud size according to Eq. 3, and E0 = 3kBTF /4 is estimated from the trap
frequencies and the measured number of atoms. For all other points, the energy is calculated according to Eq. 9
using ballistic scale factors.

For the unitary gas, rapid evaporative cooling for a few seconds yields T̃ � 0.04 at 840 G, just above the
center of the Feshbach resonance. Then, the gas is heated by adding a known energy. Finally, the gas is released
from the trap and allowed to expand for 1 ms. As observed above, the gas expands hydrodynamically by a
scale factor, so that the shape of the expanded cloud closely approximates that of the trapped cloud, enabling a
determination of T̃ .

Using the temperature calibration, and replotting the raw data, we obtain the results shown in Fig. 4, which is
given on a log scale. We find that a transition occurs at T/TF = 0.27, in very good agreement with the predictions
for the superfluid transition in a trapped, strongly-interacting Fermi gas, Tc/TF = 0.29,31 Tc/TF = 0.31,59 and
Tc/TF = 0.30.60 We also find that the behavior of the energy with temperature is in very good agreement with
the predictions.31

We fit a power law in T/TF to the data above and below the transition temperature, yielding analytic
approximations to the energy E(T/TF ), from which the heat capacity is calculated using C = (∂E/∂T )N,U ,
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interacting Fermi gas data; Lower (upper) solid curves: prediction for a unitary (noninteracting), trapped Fermi gas,
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(diamonds). The diagonal dashed line in the inset represents T/TF =

√
1 + β T̃ . Here E0 ≡ E(T = 0), and EF = kBTF

is the noninteracting gas Fermi energy.

where the number N and trap depth U are constant in the experiments. For T/TF ≤ 0.27, we obtain E/E0−1 =
97.3 (T/TF )3.73, while for T/TF ≥ 0.27, E/E0−1 = 4.98 (T/TF )1.43. By differentiating the energy in each region
with respect to T , we find that the heat capacity exhibits a jump at the transition temperature, comparable in
size to that expected for a transition between a BCS superfluid and a normal fluid.31

The appearance of a transition in the behavior in the heat capacity, i.e., in the behavior of the energy
versus temperature, is model-independent, as it appears in the empirical temperature data, E(T̃ )/E0, without
calibration.55 However, the estimate of the transition temperature Tc/TF and the magnitude of the jump in heat
capacity are model-dependent, since the temperature estimates are obtained by calibration using the theoretical
spatial profiles.
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6. SOUND VELOCITY IN BOSE AND FERMI SUPERFLUIDS

Measurement of the sound propagation from the deep molecular BEC regime to the Fermi superfluid regime
allows quantitative tests of modern crossover theories. In contrast to the heat capacity experiments, during the
evaporation for the sound propagation experiments, the trap U0 is reduced by a factor of 1000. Then the field
is slowly tuned to the value of interest between 710 and 1000 G. For most experiments on the Bose side of the
resonance, after tuning B, the forced evaporation is continued further to trap depths as low as � 1/2000 of the
initial value. Most of the experiments with molecular BECs are done at that lowest trap depth to minimize
molecular decay and subsequent heating. No thermal component is observed in the molecular BEC clouds used
for the sound propagation experiment. The thermal wings appear if the cooling efficiency is reduced significantly.
For experiments at the resonant magnetic field and above, on the Fermi side, the gas preparation is finished by
raising the trap to a higher depth (reducing trap anharmonicity effects), after which the gas thermalizes for 0.1 s.
For the low trap depth measurements, neither the measured sound speed nor the trap oscillation frequencies are
corrected for anharmonicity.

The sound excitation method is similar to the one used for a BEC of atoms.61 A thin slice of green light
traverses the trapped cloud near one end. The green light at 532 nm is blue detuned from the 671 nm transition
in 6Li, creating a knife which locally repels the atoms. The 1/e width of the knife is � 30 µm, and the height
of the potential is chosen between 1 and 4 µK, depending on the trap depth. This beam is pulsed on for 280
µs, by cutting the beam with a magnetically actuated pinhole at the focus of a telescope, and produces two dips
propagating in the opposite directions along the cloud. We let the perturbation propagate for a variable amount
of time and then release the cloud, let it expand for a fixed time, and image destructively. Propagation of the
density perturbation is shown in Figure 5.
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Figure 5. Sound propagation: Integrated axial profiles of the cloud for different in-trap propagation times of 0, 1, 2, 3
and 4 ms (top to bottom). Note forward and backward propagating dips.

Positions of propagating features versus the in-trap propagation time are shown in Fig. 6. Dots starting at
z = 0 represent the coordinates of the two dips travelling in opposite directions. The upper dots are the positions

Proc. of SPIE Vol. 6326  632602-9



of the bulge travelling in front of the right-going dip. For the speed of sound we take the slope of the line fitting
coordinates of the right-going dip.
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Figure 6. Axial positions of the propagating features vs time. Dots are position versus time for left- and right-propagating
dips (origin at z = 0) as well as the right-going bulge (topmost line with dots).

The magnetic field was varied from 710 G (weakly-interacting molecular BEC regime) to 1000 G (Fermi
weak pairing regime). In Figure 7, the speed of sound is plotted versus the dimensionless parameter 1/(kF a),
as defined above. At T = 0 this is the only parameter determining the physics of the system. Sound speeds are
given in units of the Fermi velocity for a noninteracting gas, vF =

√
2kBTF /m.

We observe sound propagation at all 1/(kF a) > −1. On the far Fermi side of the Feshbach resonance, at
1/(kF a) < −1, the hole created by the blue-detuned beam pulse simply fills, and the sound wave does not
propagate, in contrast to the predictions which assume superfluid hydrodynamic behavior at all 1/(kF a). In
this region of weak pairing, sound propagation is likely to be suppressed by breaking of atomic Cooper pairs, as
suggested for collective mode experiments.24,25 Alternatively, the excitation may be too weak to observe.

Extension of the sound data deep into the molecular BEC regime lets us test the data against a simple
Thomas–Fermi mean-field theory. We assume that at 1/(kF a) > 1, all atoms are associated into molecular
dimers, and that the molecular scattering length is amol = 0.6 a.64,65 By averaging over the Thomas–Fermi
density distribution of harmonically trapped BEC,66 we obtain the average speed of sound c̄,

c̄/vF = 0.28 (kF a)1/5, (11)

which is shown as the asymptote in Fig. 7 by a dotted line. In the molecular BEC regime, this result is in good
agreement with the measurements, confirming the predicted molecular scattering length in the near resonance
regime. By contrast, using the naive result amol = 2 a(B), we obtain a much larger sound speed than measured,
and poor agreement.

The sound velocity c at resonance is readily estimated by using arguments based on universal thermodynamics
which yield the pressure at zero temperature.40,54 Averaging the sound speed over the density of the trapped
gas, we obtain,

c̄/vF = 0.45 (1 + β)1/4. (12)

Measurement of the sound speed therefore provides a new measurement of the universal interaction parameter
β.

We find that the sound speed at resonance scales as the trap depth U0.26, very close to that expected for a
harmonic trap, where c ∝ vF ∝ U0.25. Using Eq. 12, we find β = −0.60 ± 0.03 @ 834 G. The errors denote the
statistical variation obtained by averaging over all trap depths from 0.5% to 5% of full trap depth. This result
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Figure 7. Speed of sound in the BEC–BCS crossover vs the interaction parameter, 1/(kF a). The corresponding magnetic
field B is shown on the top axis. Dots represent data taken at different trap depth U0: open circles, U0 = 12 µK; and
solid dots, U0 = 200 − 440 nK. Upper solid curve – mean-field theory using Leggett ground state.62 Lower solid curve
– quantum Monte Carlo calculation.63 Dotted black line – simple Thomas–Fermi theory for the molecular BEC, using
amol = 0.6 a.

is somewhat larger in magnitude than the value β = −0.51 ± 0.04 which we have obtained from the cloud size
as described above.

In Fig. 7 the upper black curve represents the theory based on using the Leggett ground state62 in all regimes.
The lower solid curve is based on the equation of state obtained from quantum Monte Carlo calculations.49,63

We can see that the Leggett state theory does not reproduce the data in the unitary and BEC regime. The
Monte Carlo calculation agrees with the data quite well.

7. CONCLUSIONS

Optical traps are ideally suited for producing and manipulating ultracold quantum gases. Using all-optical
techniques, we have studied a highly-degenerate, strongly-interacting Fermi gas, which is prepared by direct
evaporation at a Feshbach resonance in an optical trap. By precisely adding energy to the gas, we have verified
that the virial theorem holds, despite strong interactions, demonstrating universal behavior. We also observe
universal behavior in the collective mode frequency, and find evidence for superfluid hydrodynamics. Sound
velocity measurements enable new tests of the equation of state of the gas.
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