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We measure inelastic three-body and two-body collisional decay rates for a two-component Fermi gas

of 6Li, which are highly suppressed by the Pauli exclusion principle. Our measurements are made in the

BEC-BCS crossover regime, near the two-body collisional (Feshbach) resonance. At high temperature

(energy) the data show a dominant three-body decay process, which is studied as a function of bias

magnetic field. At low energy, the data show a coexistence of two-body and three-body decay processes

near and below the Feshbach resonance. Below resonance, the observed two-body inelastic decay can

arise from molecule-atom and molecule-molecule collisions. We suggest that at and above resonance, an

effective two-body decay rate arises from collisions between atoms and correlated (Cooper) pairs that can

exist at sufficiently low temperature.

DOI: 10.1103/PhysRevLett.102.250402 PACS numbers: 03.75.Ss

Quantum statistics dramatically affects the inelastic col-
lision rates that determine the lifetime of cold atomic
gases. In an inelastic three-body collision, two of the
colliding atoms decay to a bound molecular state, releasing
energy. Interactions between atoms can be strongly en-
hanced by tuning a bias magnetic field near a collisional
(Feshbach) resonance [1,2]. In a Bose gas, this enhance-
ment is accompanied by an inelastic collision rate that
increases by two or 3 orders of magnitude compared to
that obtained away from resonance [3], and a correspond-
ingly short lifetime of just a few ms at typical atomic
densities. In contrast, for a Fermi gas in a mixture of one
or two different spin states, the probability of three atoms
colliding is highly suppressed by the Pauli exclusion prin-
ciple. The lifetime of the cloud is on the order of 0.1 s for
fermionic 40K [4,5] and 50 s for 6Li [6,7]. The long lifetime
of Fermi gases is essential to the study of strongly interact-
ing Fermi gases in the BEC-BCS crossover region near a
Feshbach resonance [8,9]. In this region, for bias magnetic
fields below resonance, where the s-wave scattering length
a > 0, stable diatomic molecules can form and condense
into a molecular BEC at sufficiently low temperatures.
Above resonance, where a < 0, the system exhibits
Cooper pairing, becoming a superfluid at sufficiently low
temperature. On resonance, the system contains tightly
bound pairs that share the properties of both Cooper pairs
and molecules. This unique system offers unprecedented
opportunities to test nonperturbative theoretical techniques
that apply to exotic systems ranging from high temperature
superconductors to nuclear matter. Determination of the
inelastic collision rate coefficients [10] provides new in-
formation on the microscopic structure and pair correla-
tions of a Fermi gas in the strongly interacting regime and
enables tests of few-body theories [11–19].

In this Letter we report on the precision measurement of
three-body inelastic collision rate constantsK3 for an ultra-
cold two-component 6Li Fermi gas in the BEC-BCS cross-

over regime near a Feshbach resonance at 834 G. We also
observe two-body inelastic decay below the Feshbach
resonance, which arises from molecules [7,17]. From the
data, we estimate the corresponding rate constants K2.
Finally, we observe two-body decay at and just above the
Feshbach resonance. We suggest that this process arises
from correlated pairs, which is a many-body effect. We
load a Fermi gas from a single beam CO2 laser trap into a
CO2 laser standing wave that is formed by the incoming
and retroreflected beam. The standing wave produces a
potential with a period of 5:3 �m that is 4 times deeper
than that of the single beam trap and tightly confining in the
axial direction (along the standing wave). The correspond-
ing atomic density is up to 1014=cm3, �20 times higher
than that obtained in the single beam optical trap. This
dramatically increases the inelastic collision rates, making
precise measurement of the rate constants feasible.
In the experiments, a sample of 6Li atoms in a 50-50

mixture of the two lowest hyperfine states is loaded into a
CO2 laser trap with a bias magnetic field of 840 G, where
the two states are strongly interacting. Evaporative cooling
is performed to lower the temperature of the sample [8].
The magnetic field is then changed in 0.8 seconds to a final
magnetic field where we perform the measurement.
Subsequently, the gas is adiabatically loaded into a CO2

laser standing wave by slowly turning on the retro-reflected
CO2 laser beam. A quasi-two-dimensional Fermi gas is
then formed and absorption images are taken at various
times after the formation of the 2D system to determine the
inelastic decay rate.
At a final optical trap depth of U0 ¼ 180 �K (20% of

the maximum attainable), the measured trap oscillation
frequencies in the standing wave are !? ¼ 2��
3250 Hz in the transverse directions and !z ¼
2�� 83:5 kHz in the axial direction. The corresponding
frequencies in the single beam trap are !? ¼ 2��
1650 Hz and !z ¼ 2�� 56 Hz, respectively. Our mea-
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surements indicate very good standing wave alignment, as
the transverse frequency is nearly twice that of the single
beam trap, as expected.

The total energy of the gas obeys the virial theorem [20]
when the bias magnetic field is tuned to a broad Feshbach
resonance, where the Fermi gas is unitary. Since the trap
depth is large compared to the energy of the cloud, the
confining potentialU is approximately harmonic. Then the
total energy is E ¼ 2hUi ¼ Ez þ E?, where Ez is the axial
energy and E? is the transverse energy, referred to the trap
minimum. We determine only the transverse energy E? ¼
2m!2

?hx2i, by measuring the mean square transverse cloud

size hx2i. For reference, the transverse energy for the
ground state of an ideal two dimensional Fermi gas is
EI? ¼ 2

3EF?, where EF? is the transverse Fermi energy,

EF? ¼ @!?N
1=2
s . Here m is atomic mass of 6Li and Ns is

the total atom number in one site. For our experiments in
the unitary gas, we measure E?=EF? � 1:8 with Ns ¼
2600 and E?=EF? � 0:7 with Ns ¼ 1600. If the 2D uni-
tary gas has the same effective mass as the 3D case, the 2D
ground state transverse energy would be 2EF?

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p

=3 ’
0:42EF?, using � ¼ �0:60 [21].

In general, for magnetic fields away from resonance
where the scattering length is finite, the total energy is
dependent on the scattering length [22]. In this case, we
measure the number-independent mean square transverse
cloud size hx2i=x2F?, where x2F? is defined by 2m!2

?x
2
F? �

EF?. For an ideal gas in the ground state, we note that
hx20i ¼ 2

3 x
2
F?.

We measure inelastic collision rates by measuring the
time dependence of the atom number and the radial cloud
size. We observe that a 50-50 mixture of both spin states is
maintained within 5%. In this case, the atom numberN as a
function of time can be written as [3]

dN

dt
¼ ��N �

Z

K2n
2d3x�

Z

K3n
3d3x; (1)

where n is the total atomic density. On the right side, the
first term arises from background collisions with a density-
independent rate � (1=� ¼ 64 s for our trap). The second
term arises from loss due to two-body inelastic collisions
with a rate coefficient K2, while the third term arises from
loss due to three-body collisions with a rate coefficient K3.

For the conditions of our experiments, where
EF?=@!z ’ 1:5, the ground axial state contains 90% of
the atoms for an ideal Fermi gas at zero temperature. For
simplicity, we assume that the 2D Fermi gas is primarily in
the ground axial state of a single site for our experiments at
the lowest energies. Then, the atomic density is

nð�; zÞ ¼ 2

�3=2

NðzÞ
�2

?�z

�

1� �2

�2
?

�

exp

�

� z2

�2
z

�

; (2)

for 0 � � � �?. Here, NðzÞ is the atom number in the site
at position z. �? is the transverse width for a fit of a
Thomas-Fermi distribution to the atomic density profile

in the transverse directions, �z ¼ ð @

m!z
Þ1=2 is axial width

for the ground state (along the standing wave), and !z is
the corresponding axial trap frequency. The transverse
width is determined by releasing the cloud and imaging,
using the measured trap frequencies and assuming hydro-
dynamic expansion to determine the scale factor [8].
In our experiments, NðzÞ varies as a Gaussian distribu-

tion function of zwith width Lz over the whole cloud in the
axial direction. Strictly speaking, �?, �z and !z also vary
with z since the depthUðzÞ of the potential for a site at z is a
Lorentzian function of z. However, we measure a restricted
part of the cloud from z ¼ �0:83Lz to z ¼ 0:83Lz over
which UðzÞ varies less than 10%. Since the central sites
with higher density lose atoms faster than the edge sites at
lower density, the densities and hence the loss rates for
different sites tend to approach similar values. For this
reason, we assume for simplicity that �?, �z, and !z are
spatially constant.
Integrating the atomic density over each well and

then over the restricted region of the cloud, we obtain
from Eq. (1)

dNc

dt
¼ ��Nc � �2K2

N2
c

�2
?ðtÞ�z

� �3K3

N3
c

�4
?ðtÞ�2

z

; (3)

where Nc is total number of atoms in the restricted region.
If we assume that all of the atoms are in the ground axial

vibrational state, we obtain �2 ¼ 2
ffiffi

2
p
3 ��3=2 and �3 ¼

2
ffiffi

3
p ��3. Note that �?ðtÞ is a function of time since heating

leads to an increase in temperature and hence the width of
the cloud during the atom loss process. Typically�2

?ðtÞ can
be fit well to exponential curves, / expð�tÞ, Fig. 1 inset.
Note that at the highest energies used in our experi-

ments, a significant fraction of atoms can occupy excited
axial states. For the higher energy experiments, where
E?=EF? ’ 2, if we assume a Maxwell-Boltzmann distri-
bution for an ideal gas, we find that 50% of the atoms are in

FIG. 1 (color online). Atom number versus time. Data were
taken at 823 G and E?=EF? ¼ 1:8. N is total atom number and
N0 is initial atom number in the observed region of the cloud.
Blue dots: Experimental data; red solid curve: Three-body decay
fit; green dashed line: Two-body decay fit. Inset shows the
increase in the mean square transverse width versus time, due
to heating.
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the ground state, and the increased axial width reduces �3

by a factor of 0.7 and�2 by a factor of 0.8. As the gas heats,
E?=EF? ’ 2 increases up to 2.5 (see Fig. 1 inset), these
correction factors change to 0.6 and 0.7, respectively. As
the estimated changes in these systematic corrections in-
troduce an error that is comparable to or smaller than the
statistical uncertainty in our data, we neglect them in our
initial analysis and assume that the axial width is time
independent and equal to the ground state value. The rate
constants determined from the fits can then be increased by
the appropriate factor.

In the first set of experiments, we have measured atom
number as a function of time in the unitary regime at
823 G, as shown in Fig. 1. The trap depth is set at 20%
of the maximum attainable by reducing the laser intensity.
The measured transverse energy of the cloud is E?=EF? ¼
1:8. We observe a significant (> 60%) loss of the atoms in
�20 sec. The data are fit with Eq. (3). We find that a three-
body decay curve fits the data very well while a two-body
decay curve increases �2 by a factor of 10. This indicates
that three-body inelastic collisions play a dominant role in
the atom loss.

Figure 2 shows the inelastic decay rate coefficient K3 as
a function of atomic density, at 823 G, for E?=EF? ¼ 1:8.
The atomic density is varied by varying the final trap depth.
Data are fit to three-body decay curves, from which we
determine K3. A constant value of K3 over a factor of 10 in
atomic density indicates the atom loss is indeed a three-
body decay process. By fitting all of the data with the same
K3, we obtain K3 ¼ ð8:4� 1:0Þ � 10�28 cm6=s.

Table I shows K3 as a function of magnetic field for
hx2i=x2F? � 1:8, which corresponds to the transverse en-

ergy E?=EF? ¼ 1:8 at unitarity. In the table, kF? ¼
ð2mEF?Þ1=2=@ is the two-dimensional Fermi wave vector
for an ideal gas at the trap center and a is the s-wave
scattering length. We fit our data on the BCS side of the
Feshbach resonance, a < 0, with the function K3 ¼ Cjajs
and find s ¼ 0:79� 0:14. As our experiments were not
done in the threshold regime ðkFaÞ2 � 1, it is not surpris-

ing that the exponent s differs from the theoretical predic-
tion s ¼ 2:455 of Ref. [14]. On the BEC side, K3 increases
as the magnetic field is tuned away from the Feshbach
resonance, instead of peaking on the resonance. This is
consistent with the experiments by other groups [5–7].
We have repeated the measurement of atom number

versus time at 823 G, but at a lower energy E?=EF? ¼
0:7, Fig. 3. Neither two-body decay alone nor three-body
decay alone fits the data. Instead, the combination of two-
body and three-body decay fits the data well, which in-
dicates two-body and three-body decays both contribute to
the atom loss. We find K3 ¼ ð3:3� 1:8Þ � 10�28 cm6=s
and K2 ¼ ð0:42� 0:16Þ � 10�14 cm3=s.
Surprisingly, the observed scaling of K3 with transverse

energy at 823 G is consistent with the threshold prediction
of Ref. [14] for the scaling with total energy, whereK3 / E
for the lowest order process. We note that the suppression
of K3 with decreasing energy cannot arise from Pauli
blocking, as the energetic final states are unoccupied. We
observe K3ðE?=EF?¼1:8Þ=K3ðE?=EF?¼0:7Þ¼2:5�
1:4, while the predicted ratio is 1:8=0:7 ¼ 2:6. Above

FIG. 2 (color online). Three-body inelastic collision rate coef-
ficient K3 versus atomic density for E?=EF? ¼ 1:8. Blue dots:
Experimental data. Error bars indicate statistical errors; Red
dashed line: Fit to the data with K3 ¼ ð8:4� 1:0Þ �
10�28 cm6=s. Bars denote statistical error.

TABLE I. Three-body decay coefficient K3. Here, K3 is de-
termined from Eq. (3) without the systematic correction for finite
temperature (see text). BðGÞ is the bias magnetic field in gauss.
Scattering length a is calculated using the formula in [23]. TF? is

the transverse Fermi temperature for an ideal gas. Error bars are
statistical.

B(G) að103a0Þ TF?ð�KÞ 1=kF?a hx2i=x2F? K3ð10�28 cm6=sÞ
780 6.4 8.7 0.20 2.1 17.3(3.2)

800 11 8.7 0.12 2.0 10.8(4.0)

823 36 9.9 0.03 1.8 8.4(1.0)

848 �32 9.0 �0:04 1.9 4.1(0.5)

877 �11 9.4 �0:11 1.9 3.5(0.9)

905 �7:4 8.7 �0:17 1.8 2.3(0.9)

934 �5:6 8.7 �0:23 1.8 1.9(0.7)

1174 �2:7 9.3 �0:46 1.8 0.45(0.23)

FIG. 3 (color online). Atom number versus time. Data were
taken at E?=EF? ¼ 0:7 in the unitary regime at 823 G. Blue
dots: Experimental data; red solid curve: Combination fit includ-
ing two-body and three-body decay; violet dotted line: Three-
body decay fit; green dashed line: Two-body decay fit. Bars
denote statistical error.
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resonance at B ¼ 877 G, we find K3 ¼ 3:5� 0:9�
10�28 cm6=s at hx2i=x2F? ¼ 1:9 and K3 ¼ 1:9� 0:3�
10�28 cm6=s at hx2i=x2F? ¼ 0:8. In this case, K3ðhx2i=
x2F? ¼ 1:9Þ=K3ðhx2i=x2F? ¼ 0:8Þ ¼ 1:8� 0:6, while the

ratio of the mean square widths is 1:9=0:8 ¼ 2:4. For
data taken below resonance at a magnetic field of 780 G
at hx2i=x2F? ¼ 2:1, we find K3 ¼ ð17:3� 3:2Þ �
10�28 cm6=s. At hx2i=x2F? ¼ 0:9, we obtain K3 ¼ ð9:4�
3:1Þ � 10�28 cm6=s. Then K3ðhx2i=x2F? ¼ 1:8Þ=
K3ðhx2i=x2F? ¼ 0:9Þ ¼ 1:8� 0:7, while the ratio of the

mean square widths is 2:1=0:9 ¼ 2:3, again consistent
with linear scaling with energy [14].

We observe two-body loss rates at low energy
hx2i=x2F? � 1, in addition to the three-body rate. In con-

trast, at high energy, hx2i=x2F? ’ 2, we find K2 ¼ 0. At
780 G we obtain K2 ¼ ð0:57� 0:22Þ � 10�14 cm3=s at
hx2i=x2F? ¼ 0:9. On the BEC side of the Feshbach reso-

nance, we expect that two-body inelastic collisions arise
from molecule-atom or molecule-molecule [17]. We also
observe a two-body rate in the unitary regime at B ¼
823 G for E?=EF? ¼ 0:7 as noted above, K2 ¼ ð0:42�
0:16Þ � 10�14 cm3=s. This is reasonable, since at low
energy, pair-atom or pair-pair inelastic collisions are pos-
sible. Therefore, both two-body decay and three-body
decay processes can play a role in the atom loss. Above
the Feshbach resonance, we do not observe a two-body
decay process for 1=ðkF?aÞ � �0:04, i.e., B> 848 G.
This suggests that no pairs are formed for B> 848 G at
the lowest energy E?=EF? ¼ 0:7 we achieve.

In conclusion, we have measured two- and three-body
inelastic collision rates for a Fermi gas near a Feshbach
resonance. The study of the two-body rate is quite interest-
ing. Below resonance, it is known that inelastic atom-
molecule or molecule-molecule collisions arise from decay
to lower molecular vibrational states. Since the crossover
regime involves tightly bound pairs, it is not farfetched to
suggest that inelastic processes near and just above reso-
nance arise from collisions involving correlated pairs. It is
now accepted that the unitary Fermi gas system has pre-
formed pairs [24], which exist at temperatures above the
superfluid transition. These pairs share properties of
Cooper pairs (they do not exist in free space) but they are
small enough to behave much like molecules. Hence, a
decay of a pair to a bound molecular state appears reason-
able conjecture. That fact that the two-body rate just below
resonance (molecular regime) is similar to the rate at
resonance (no bound molecules) supports this conjecture,
as does the vanishing of the two-body rate at high tem-
perature. In this case, a many-body theory of inelastic
collisions will be needed to replace the few-body theory
that is valid far from resonance. The investigation of the
energy (or temperature [21]) dependence of K3 and K2,
will be an important topic for future work.
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