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We have measured the heat capacity of an optically 
trapped, strongly interacting Fermi gas of atoms. A 
precise input of energy to the gas is followed by single-
parameter thermometry, which determines the empirical 
temperature parameter T~  of the gas cloud. Our 
measurements reveal a clear transition in the heat 
capacity. The energy and the spatial profile of the gas are 
computed using a theory of the crossover from Fermi to 
Bose superfluids at finite temperature. The theory 
calibrates T~ , yields excellent agreement with the data, 
and predicts the onset of superfluidity at the observed 
transition point. 

Strongly interacting, degenerate atomic Fermi gases (1) 
provide a paradigm for strong interactions in nature (2). In all 
strongly interacting Fermi systems, the zero-energy scattering 
length is large compared to the interparticle spacing, 
producing universal behavior (3, 4). Predictions of universal 
interactions and effective field theories in nuclear matter (3, 
5–7) are tested by measurements of the interaction energy (1, 
8–10). Anisotropic expansion of strongly interacting Fermi 
gases (1) is analogous to the “elliptic flow” of a quark-gluon 
plasma (2). High temperature superfluidity has been predicted 
(11–16) in strongly interacting Fermi gases, which can be 
used to test theories of high temperature superconductivity 
(17). Microscopic evidence for superfluidity has been 
obtained by observing the pairing of fermionic atoms (18–
20). Macroscopic evidence arises in anisotropic expansion (1) 
and in collective excitations (21–23). 
 In superconductivity and superfluidity, measurements of 
the heat capacity have played an exceptionally important role 
in determining phase transitions (24) and in characterizing the 
nature of bosonic and fermionic excitations. We report on the 
measurement of the heat capacity for a strongly interacting 
Fermi gas of 6Li atoms, confined in an optical trap. Our 
experiments (25) examine the fundamental thermodynamics 
of the gas. 
 Thermodynamic properties of the BCS-BEC crossover 
system are computed (26) using a consistent many-body 
theory (27, 28) based on the conventional mean field state 
(29). BCS-BEC crossover refers to the smooth change from 

the Bardeen-Cooper-Schrieffer superfluidity of fermions to 
the Bose-Einstein condensation of dimers, by varying the 
strength of the pairing interaction (for example, by tuning a 
magnetic field). The formalism of Ref. (16, 17, 28) was 
applied recently (30) to explain radio frequency 
measurements of the gap (20). The theory contains two 
contributions to the entropy and energy arising from 
fermionic and bosonic excitations. The latter are associated 
principally with excited pairs of fermions (Cooper pairs at 
finite momentum). In this model, there is no direct boson-
boson coupling, and fermion-boson interactions are 
responsible for the vanishing of the pair chemical potential 
µpair in the superfluid regions. The vanishing of µpair implies 
that, within a trap, the associated low temperature power laws 
in the entropy and energy are the same as those of the 
homogeneous system (31). This is to be contrasted with 
models which involve noninteracting bosons and fermions 
(32). Clearly, our BCS-like ground state ansatz will be 
inapplicable at some point when the fermionic degrees of 
freedom have completely disappeared, and the gas is deep in 
the BEC regime, where the power laws associated with true, 
interacting bosons are expected (31). In that case, direct inter-
boson interactions must be accounted for and they will alter 
the collective mode behavior (33). However, on the basis of 
collective mode experiments (21–23) and their theoretical 
interpretation (34, 35), one can argue that the BCS-like 
ground state appears appropriate in the near resonance, 
unitary regime. The thermodynamic quantities within the trap 
are computed using previously calculated profiles (36) of the 
various energy gaps and the particle density as a function of 
the radius. 
 Unlike the weak coupling BCS limit, the pairing gap in the 
unitary regime is very large. Well below the superfluid 
transition temperature Tc, fermions are paired over much of 
the trap, and unpaired fermions are present only at the edges 
of the trap. These unpaired fermions tend to dominate the 
thermodynamics associated with the fermionic degrees of 
freedom, and lead to a higher (than linear) power law in the 
temperature (T) dependence of entropy. The contribution 
from finite momentum Cooper pairs leads to a T3/2 
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dependence of the entropy on temperature. Both bosonic and 
fermionic contributions are important at low T. 
 An important feature of these fermionic superfluids is that 
pair formation occurs at a higher temperature T* than the 
temperature Tc where pairs condense. At temperatures T > 
T*, the entropy approaches that of the noninteracting gas. For 
Tc < T < T*, the attraction is strong enough to form quasi-
bound (or preformed) pairs which are reflected in the 
thermodynamics. At these temperatures, a finite energy, i.e., 
the pseudogap, is needed to create single fermion excitations 
(16, 17, 28). Interestingly, in the unitary regime, both T* and 
Tc are large fractions of the Fermi temperature TF , signifying 
high temperature pair formation and very high temperature 
superfluidity. 
 We prepare a degenerate, unitary Fermi gas comprising a 
50-50 mixture of the two lowest spin states of 6Li atoms near 
a Feshbach resonance. To cool the gas, we use forced 
evaporation at a bias magnetic field of 840 G in an ultrastable 
CO2 laser trap (1, 2, 26). After cooling well into the 
degenerate regime, energy is precisely added to the trapped 
gas at fixed atom number, as described below. The gas is then 
allowed to thermalize for 0.1 s before being released from the 
trap and imaged at 840 G after 1 ms of expansion to 
determine the number of atoms and the temperature 
parameter T~ . For our trap the total number of atoms is N = 
2.2 (0.3) × 105. The corresponding noninteracting gas Fermi 
temperature is ( ) KkNT BF µω 5.2/3 3/1 ≈= h , small 
compared to the final trap depth of U0/kB = 35 µK. 
 Energy is precisely added to the trapped gas at fixed atom 
number by releasing the cloud from the trap and permitting it 
to expand for a short time 0 ≤ theat ≤ 460 µs after which the 
gas is recaptured. Even for the strongly interacting gas, the 
energy input is well-defined for very low initial temperatures, 
where both the equation of state and the expansion dynamics 
are known. During the times theat used in the experiments, the 
axial size of the gas changes negligibly, while transverse 
dimensions expand by a factor b⊥(theat). Hence, the mean 
harmonic trapping potential energy 〈UHO〉 in each of the two 
transverse directions increases by a factor )t( heat

2
⊥b . 

 The initial potential energy is readily determined at zero 
temperature from the equation of state of the gas, (1 + β) εF 
(x) + UHO = µ0 (1, 8), where εF (x) is the local Fermi energy, 
β is the unitary gas parameter (1, 3, 6–8), and µ0 is the global 
chemical potential. This equation of state is supported by low 
temperature studies of the breathing mode (21, 23, 33, 35) 
and the spatial profiles (1, 6, 36). It is equivalent to that of a 
harmonically trapped noninteracting gas of particles with an 
effective mass (5), which in our notation is m* = m/(1 + β), 
where m is the bare fermion mass. The mean potential energy 
is half of the total energy, because the gas behaves as a 
harmonic oscillator. As β < 0 (6, 7), m* > m, so that the 

effective oscillation frequencies and the chemical potential 
are simply scaled down, i.e., βµ += 10 FBTk  (1, 8). The 

total energy at zero temperature, which determines the energy 
scale, is therefore 

    βµ +== 1
4
3

4
3

00 FBTkNNE    (1) 

For each direction, the initial potential energy at zero 
temperature is E0/6. Then, the total energy of the gas after 
heating is given by, 

    ( ) ⎥⎦
⎤

⎢⎣
⎡ += ⊥ )(

3
1

3
2 2

0 heatheat tbEtE η     (2) 

neglecting trap anharmonicity (26). Here, η is a correction 
factor arising from the finite temperature of the gas prior to 
the energy input. For the strongly interacting gas, the initial 
reduced temperature is very low. We assume that it is 

04.0~ =≈ T , where T~  is measured and calibrated as 
described below. Assuming a Sommerfeld correction then 
yields 01.13/~21 22

int ≈+≈ Tπη , which hardly affects 

the energy scale. 
 A zero temperature strongly interacting gas expands by a 
hydrodynamic scale factor )t( heat

Hb⊥ , when released from a 

harmonic trap (1, 37). Heating arises after recapture and 
subsequent equilibration, but not during expansion. This 
follows from the lowest 04.0~ =T , obtained by imaging the 
gas 1 ms after release from the trap. Hence, the temperature 
change during theat ≤ 460 µs < 1 ms must be very small. 
 Thermometry of strongly interacting Fermi gases is not 
well understood. By contrast, thermometry of noninteracting 
Fermi gases can be simply accomplished by fitting the spatial 
distribution of the cloud (after release and ballistic expansion) 
with a Thomas-Fermi (T-F) profile, which is a function of 
two parameters. We choose them to be the Fermi radius σx 
and the reduced temperature T/TF. However, this method is 
only precise at temperatures well below 0.5 TF , where σx and 
T/TF are determined independently. At higher temperatures, 
where the Maxwell-Boltzmann limit is approached, such a fit 
determines only the product σx

2 T/TF. We circumvent this 
problem by determining σx from a low temperature fit, and 
then hold it constant in the fits at all higher temperatures, 
enabling a one-parameter determination of the reduced 
temperature. 
 Spatial profiles of strongly interacting Fermi gases closely 
resemble T-F distributions, as observed experimentally (1, 
10) and as predicted (36). The profiles of the trapped and 
released gas are related by hydrodynamic scaling to a good 
approximation. Over a wide temperature range, this scaling is 
consistent with the observed cloud size to %2± and is 
further supported by measurements of the breathing 
frequency, which are within %1± of the unitary 
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hydrodynamic value (21). Analogous to the noninteracting 
case, we define an experimental dimensionless temperature 
parameter T~ , which is determined by fitting the cloud 
profiles with a T-F distribution (38), holding constant the 
Fermi radius of the interacting gas, xσ ′ . We find 

experimentally that T~  increases monotonically from the 
highly degenerate regime to the Maxwell-Boltzmann limit. 
This fitting procedure also leads us to define a natural 
reduced temperature scale in terms of the zero temperature 
parameters β and TF , 

     
βµ +

=≡
1

~

0
nat

F

B

T
TTkT      (3) 

Eq. 3 is consistent with our choice of fixed Fermi radius xσ ′ , 

i.e., 0
22 2/ µσω =′xxm . At high temperatures, we must 

interpret nat
~~ TT = , to obtain the correct Maxwell-Boltzmann 

limit. At low temperatures, nat
~~ TT ≈  yields an estimate of 

T/TF which can be further calibrated to the theoretical 
reduced temperature T/TF by performing the experimental 
fitting procedure on the theoretically generated density 
profiles (26, 27). 
 Preliminary data processing yields normalized, one-
dimensional spatial profiles of the atomic cloud (26). To 
determine T~  over the full temperature range of interest, we 
employ a fixed expansion time of 1 ms. We first measure xσ ′  

from our lowest temperature data. Then, T~  is determined 
using the one parameter T-F fit method. This yields 

15.204.0~ −=T  for the strongly interacting gas. 
 The experimental energy scale Eq. 1 and the natural 
temperature scale Eq. 3 are determined by measuring the 
value of β. This is accomplished by comparing the measured 
radius of the strongly interacting gas xσ ′  to the radius for a 

noninteracting gas (26). We find that β = - 0.49 (0.04) 
(statistical error only) in reasonable agreement with the best 
current predictions, where β = - 0.56 (6), and β = - 0.545 (7). 
 We now apply our energy input and thermometry methods 
to measure the heat capacity of our optically trapped Fermi 
gas, i.e., for different values of theat , we measure the 
temperature parameter T~  and calculate the total energy 
E(theat)/E0 from Eq. 2. The time theat determines the energy 
accurately, as the trap intensity switches in less than 1 µs. We 
believe that shot-to-shot fluctuations in the energy are 
negligible, based on the small fractional fluctuations in T~  at 
low temperatures, where the heat capacity is expected to be 
very small. To obtain high resolution data, 30-40 different 
heating times theat are chosen. The data for each of these 
heating times are acquired in a random order to minimize 

systematic error. Ten complete runs are taken through the 
entire random sequence. 
 We first measure the heat capacity for a noninteracting 
Fermi gas (21, 26), where the scattering length a  is zero. 
This occurs near 526 G. Fig. 1 shows the data (green dots) 
which represent the calculated E(theat)/E0 versus the measured 
value of T~ , for each theat. For comparison, predictions for a 
noninteracting, trapped Fermi gas, Eideal(T)/Eideal(0) are shown 
as the black curve, where FTTT /~ =  in this case. Here, the 
chemical potential and energy are calculated using a finite 
temperature Fermi distribution and the density of states for 
the trapped gas. Throughout, we use the density of states for a 
realistic Gaussian potential well, 

)]2/exp(1[)( 0
22

0 UrmUrU ω−−=  with 

FBTkU 6.140 = , rather than the harmonic oscillator 

approximation. This model is in very good agreement with 
the noninteracting gas data at all temperatures. 
 For the strongly interacting gas at 840 G, Fig. 1 (blue 
diamonds), the gas is cooled to 04.0~ =T and then heated. 

Note that the temperature parameter T~  varies by a factor of 
50 and the total energy by a factor of 10. For comparison, we 
show the theoretical results for the unitary case as the red 
curve. Here the horizontal axis for the theory is obtained 
using the approximation nat

~~ TT ≈ via Eq. 3. On a large scale 

plot, the data for the strongly interacting and noninteracting 
gases appear quite similar, although there are important 
differences at low temperature. 
 A striking result is observed by plotting the low 
temperature data of Fig. 1 on an expanded scale (25, 26). This 
reveals a transition in the heat capacity which is made evident 
by plotting the data for the strongly interacting gas on a log-
log scale as in Fig. 2. The transition is apparent in the raw 
temperature data (25, 26), and is strongly suggestive of the 
onset of superfluidity. Note that the observed spatial profiles 
of the gas vary smoothly and are closely approximated by T-F 
shapes in the transition region. Fig. 2 shows the transition 
after converting the empirical temperature T~  to theoretical 
T/TF units. 
 The empirical temperature is calibrated to enable precise 
comparison between the theory and the experimental data. 
For the calibration, we subject the theoretically derived 
density profiles (27, 36) to the same one-dimensional T-F 
fitting procedure as used in the experiments. One dimensional 
density distributions are obtained by integrating over two of 
the three dimensions of the predicted spatial profiles, which 
are determined for a spherically symmetric trap. Our results 
for this temperature calibration are shown in the inset to Fig. 
2. This calibration provides a mapping between the 
experimental reduced temperature T~1 β+ and the 
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theoretical temperature T/TF. We find that nat
~~ TT = is a very 

good approximation above Tc. Such scaling may be a 
manifestation of universal thermodynamics (4). The 
difference between T~  and nat

~T is significant only below the 

superfluid transition Tc and is therefore negligible in the large 
scale plot of Fig. 1 over a broad temperature range. However, 
below Tc the fits to the theoretical profiles yield a value of 

T~1 β+ which is lower than the theoretical value of T/TF. 

This is a consequence of condensate effects (26). 
 Fig. 2 shows that above a certain temperature Tc, the 
strongly interacting data nearly overlap that of the 
noninteracting gas, and exhibit a power law fit E/E0-1 = 4.98 
(T/TF)1.43. Below Tc, the data deviate significantly from 
noninteracting Fermi gas behavior, and are well fit by E/E0-1 
= 97.3 (T/TF)3.73 (dashed curve). From the intersection point 
of these power law fits, we estimate Tc/TF = 0.27 (0.02) 
(statistical error only). This is very close to our theoretical 
value Tc/TF = 0.29. 
 The fractional change in the heat capacity C is estimated 
from the slope change in the fits to the calibrated data. In that 
case, the relative specific heat jump (C< – C>)/C> ≈ 1.51 
(0.05) (statistical error only), where > (<) denotes above 
(below) Tc. This is close to the value (1.43) for an s-wave 
BCS superconductor in a homogeneous case, although one 
expects pre-formed pairs, i.e., pseudogap effects, to modify 
the discontinuity somewhat (28). 
 In Fig. 2 and Fig. 3, the theory is compared to the 
calibrated data after very slightly detuning the magnetic field 
in the model away from resonance, so that the predicted 
unitary gas parameter β has the same value as measured. This 
small detuning, 11.0)( 1 =−akF , where 

2/2 hFBF Tmkk = , is reasonable given the broad 

Feshbach resonance (39) in 6Li. 
 Finally, Fig. 3 presents an expanded view of the low 
temperature region. Here, the experimental unitary data is 
calibrated and replotted in the more conventional theoretical 
units, EF = kBTF and TF . The agreement between theory and 
experiment is very good. In the presence of a pseudogap, a 
more elaborate treatment (28) of the pseudogap self-energy, 
which takes into account spectral broadening, will be needed 
in order to calculate accurately the specific heat jump. 
 If one extends the temperature range in Fig. 3 to high T we 
find that both the unitary and noninteracting cases coincide 
above a characteristic temperature, T*, although below Tc 
they start out with different power laws (as shown in Fig. 2). 
In general, we find that agreement between theory and 
experiment is very good over the full temperature range for 
which the data are taken. The observation that the interacting 
and noninteracting curves do not precisely coincide until 
temperatures significantly above Tc is consistent with 

(although it does not prove) the existence of a pseudogap and 
with onset temperature from the figure T ≈ 2 Tc. Related 
signatures of pseudogap effects are also seen in the 
thermodynamics of high temperature superconductors (17). 
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Fig. 1. Total energy versus temperature. For each heating 
time theat, the temperature parameter T~  is measured from the 
cloud profile, and the total energy E(theat) is calculated from 
Eq. (2) in units of the ground state energy E0. Green circles: 
noninteracting Fermi gas data; Blue diamonds: strongly 
interacting Fermi gas data. Black curve: predicted energy 
versus reduced temperature for a noninteracting, trapped 
Fermi gas, Eideal(T~ ) = Eideal(0); Red curve: predicted energy 
versus T~  for the unitary case. No temperature calibration is 
applied since natTT ~~ ≈  over the broad temperature range 

shown. Note that the lowest temperature point (blue square) is 
constrained to lie on the black curve. 

Fig. 2. Energy input versus temperature from Fig. 1 after 
temperature calibration on a log-log scale. The strongly 
interacting Fermi gas shows a transition in behavior near T/TF 
= 0.27. Green circles: noninteracting Fermi gas data; Blue 
diamonds: strongly interacting Fermi gas data; Red (Black) 
curve: prediction for a unitary (noninteracting) Fermi gas in a 
Gaussian trap as in experiment; Black dashed line: best fit 
power law 97.3 (T/TF)3.73 to the unitary data for T/TF ≤ 0.27. 
The inset shows the calibration curve, which has been applied 
to the unitary data (blue diamonds). The red dashed line in the 
inset represents the diagonal, TTT F

~1/ β+= . Here E0 ≡ 

E(T = 0). 

Fig. 3. Low temperature comparison of present theory (red, 
black curves) and experiments (symbols) in terms of E/EF (EF 
= kBTF) per atom as a function of T/TF , for both unitary and 
noninteracting gases in a Gaussian trap. The fact that the two 
experimental (and the two theoretical) curves do not merge 
until higher T* > Tc is consistent with the presence of a 
pseudogap. 
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