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Abstract. We measure the scaling laws for the number of atoms and the cloud
size as a function of trap depth for evaporative cooling of a unitary Fermi gas
in an optical trap. A unitary Fermi gas comprises a trapped mixture of atoms in
two hyperfine states which is tuned to a collisional (Feshbach) resonance using
a bias magnetic field. Near resonance, the zero energy s-wave scattering length
diverges, and the s-wave scattering cross-section is limited by unitarity to be
4π/k2, where k is the relative wavevector of the colliding particles. In this case,
the collision cross-section for evaporation scales inversely with the trap depth,
enabling runaway evaporation under certain conditions. We demonstrate high
evaporation efficiency, which is achieved by maintaining a high ratio η of trap
depth to thermal energy as the trap depth is lowered. We derive and demonstrate a
trap lowering curve which maintains η constant for a unitary gas. This evaporation
curve yields a quantum degenerate sample from a classical gas in a fraction of a
second, with only a factor of three loss in atom number.
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1. Introduction

Evaporative cooling in all-optical traps provides a simple and efficient method for producing
degenerate Bose [1] and Fermi [2, 3] gases. In these all-optical cooling experiments, an optical
dipole trap is directly loaded from a magneto-optical trap (MOT) containing precooled atoms,
and then forced evaporation is initiated in the optical trap by lowering the trapping laser intensity.
All-optical methods have now been used to produce BECs of 87Rb [1], 137Cs [4], 23Na [5], and
diatomic molecular 6Li [6], as well as degenerate Fermi gases of 6Li [2, 7, 8]. Evaporation in
optical dipole traps is currently being used in studies of strongly interacting Fermi gas mixtures,
both by direct loading from an MOT [7, 8] and after initial evaporative cooling in a magnetic
trap [9]–[12].

Strongly interacting Fermi gases are produced using a mixture of atoms in two hyperfine
states, denoted as ‘spin-up and spin-down,’ which is magnetically tuned to a collisional
(Feshbach) resonance. Near the resonance, the zero energy s-wave scattering length for particles
of opposite spin far exceeds the interparticle spacing, producing a strongly interacting gas.
Strongly interacting Fermi gas mixtures are of great interest, since they serve as models to test
non-perturbative many-body theories of exotic systems in nature, from very high temperature
superconductors to neutron stars and quark–gluon plasmas [3, 13].

Near resonance, the magnitude of the scattering amplitude (for collisions between Fermi
atoms of different spin) reaches the maximum permitted by unitarity, i.e., 1/k, where k is the
relative wavevector of the colliding particles. For a degenerate Fermi gas, the interparticle spacing
determines the scale of 1/k = 1/kF, where kF is the Fermi wavevector. The resulting large
collision cross-section enables rapid evaporation of the strongly interacting gas to quantum
degeneracy [7].

In this paper, we study forced evaporative cooling of a unitary Fermi gas which is contained
in an optical trap that is continuously lowered. Under some conditions, the unitary gas enables
runaway evaporative cooling, i.e., an increase in the collision rate with decreasing trap depth,
which arises from the increase in the scattering cross-section with decreasing relative kinetic
energy. By contrast, for evaporative cooling of a gas with an energy-independent scattering
cross-section, the collision rate always decreases as the trap is lowered [14]. We measure the
scaling laws for the atom number and cloud size during forced evaporation of a unitary Fermi gas
in a continuously lowered optical trap, and show that they are consistent with our predictions.
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Efficient evaporation is obtained when the ratio η of the trap depth U to the thermal energy
kBT is large. When inelastic processes are not important, the large value of η assures that
evaporating atoms carry away a large amount of energy compared to the average thermal energy,
assuring high efficiency, i.e., a large fraction of the initial atom number remains when degeneracy
is achieved. Although the evaporation rate is suppressed by the Boltzmann factor exp(−η), for
an optically trapped gas, the collision rate is very high so that typically η = U/kBT can be ten
or more, but it may vary during the evaporation sequence. For an arbitrary time-dependent trap
lowering curve U(t), η is not generally constant. However, by considering the evaporation rate, it
is possible to lower the optical trap so that η is held at a constant large value [14]. For any constant
value of η, it is easy to obtain analytic results for the scaling laws and for the trap lowering curve
[14], as described below for the unitary gas in section 4.

2. Scaling laws

We begin by reviewing the scaling laws. The optical trapping potential can be written generally as

V(x, t) = −U(t)g(x), (1)

where g(x) describes the trap shape, with g(0) = 1 and g(|x| → ∞) → 0. We assume that
evaporation is carried out at low temperatures near stagnation, where the average thermal energy
kT � U, with U ≡ U(t).

The scaling laws easily follow from energy conservation, with the assumption of constant
η. The trapped gas loses energy at a rate Ė by evaporation and by the work done as the trapping
potential is lowered. For kT � U, the atoms are approximately in a harmonic potential, so that

Ė = U̇

U

E

2
+ Ṅ(U + αkT ). (2)

Here, the first term arises from the change in the harmonic potential energy. The second term
arises from the evaporation rate, so that Ṅ < 0. U + αkBT is the average energy carried away
per particle.

In general, 0 � α � 1 [15]. For example, using an energy-independent s-wave scattering
cross-section, we find α = (η − 5)/(η − 4) for any potential which is harmonic near the
minimum.1 The value of α is nearly the same for a unitary gas, because the relative kinetic
energy that appears in the collision cross-section is determined by the trap depth U, as discussed
below. Hence, the cross-section is nearly constant in the collision integral, and can be factored
out, so that the ratio of the evaporative energy loss to the number loss is essentially unchanged
from that of an energy-independent cross-section.

For evaporative cooling from the classical regime to degeneracy, we can take the total energy
to be that of a classical gas in a harmonic potential, E = 3NkBT . Using this in equation (2) for

1 Note that the s-wave Boltzmann equation contains the trapping potential explicitly only in the density of states
D(εmin) [15]. For evaporation, it can be shown that εmin � kT � U, so that D(εmin) can be approximated by the
harmonic oscillator result ∝ ε2

min.
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fixed η, one readily obtains the atom number scaling,

N

N0
=

(
U

U0

) 3
2(η′−3)

, (3)

where the subscript 0 denotes the initial conditions at t = 0 and N = N(t). Here, η′ = η + α =
η + (η − 5)/(η − 4).

We can also determine how the phase space density scales. The phase space density per spin
state in the classical regime is essentially the fugacity per spin state, or, for a 50–50 mixture of
two spin states, just N/2 divided by the total number of accessible harmonic oscillator states, i.e.,
ρ = (N/2)(hν̄/kBT)3, where ν̄ ≡ (νxνyνz)

1/3. Using ν̄ ∝ √
U and kBT ∝ U, with equation (3),

we obtain

ρ

ρ0
=

(
U0

U

) 3(η′−4)

2(η′−3)

=
(

N0

N

)η′−4

. (4)

The evaporation efficiency χ is very high for optical traps with large η, according to equation (4):

χ = ln(ρ/ρ0)

ln(N0/N)
= η′ − 4. (5)

While χ � 3 is typical for BECs produced in magnetic traps [16], for η = 10, equation (5) yields
χ = 6.83. Hence, in optical traps, a quantum degenerate gas is produced with little reduction in
atom number, as demonstrated below.

For a fixed value of η, the mean square cloud size in the trap does not change. This follows
from the scaling of the total energy, which is six times the potential energy for one direction,
x, i.e., E = 3NMω2

x〈x2〉trap. Note that this result is a consequence of the virial theorem, and
holds generally for both a unitary gas and an ideal gas in a harmonic trap [17]. Here, M is
the atom mass and ωx is the harmonic oscillation frequency of an atom in the x-direction.
We assume a harmonic approximation to a gaussian trap, where the trapping potential takes
the form U(t)(1 − exp(−2x2/a2

x)) � Mω2
x(t) x2/2, and similarly for the y-direction, with ax the

trap field 1/e radius in the x-direction, i.e., the intensity 1/e2 radius. Then, both the energy
E = 3NkBT = 3NU/η and the spring constant Mω2

x = 4U/a2
x are proportional to U. Hence, the

mean square radius of the trapped cloud does not change as the trap is lowered with a constant
value of η, and

〈x2〉trap = a2
x

4η
, (6)

remains constant.

3. Experiments

Our experiments employ a 50–50 mixture of the two lowest hyperfine states of 6Li fermions,
which is confined in a stable CO2 laser trap [18]. The mixture exhibits a Feshbach resonance at
834 G for which the s-wave scattering length diverges [19], producing a unitary gas where the
scattering cross-section is inversely proportional to the relative kinetic energy.
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Figure 1. Atom number versus trap depth. The solid green line shows the scaling
law prediction for η = U/kBT = 10. Note that the data deviate from the scaling
law prediction when the gas becomes degenerate, near U/U0 = 0.007. Red solid
circles: obtained using a trap lowering curve for an energy-independent scattering
cross-section. Blue open squares: obtained using the trap lowering curve for
unitary gas. Note that trap lowering time increases from right to left.

The maximum laser power P0 at the trap focus is between 50 and 60 W. Parametric
resonance measurements in the weakly interacting regime at low magnetic field yield typical
harmonic oscillator frequencies at full trap depth U0, ωx = 2πνx = 2π × 5500 Hz, ωy = 2πνy =
2π × 5400 Hz, and ωz = 2πνz = 2π × 190 Hz.

We estimate the maximum trap depth using the known power and U0 = 4αg P0/(c axay),
where αg is the ground state static polarizability of 6Li, 24.3 × 10−24 cm3 [20], and c =
3 × 1010 cm s−1. It is easy to show that for a given power, a4

x = 4(νy/ν
3
x)αg P0/(π

2Mc), where
M = 1.0 × 10−23 g is the atom mass, and ay = axνx/νy. Assuming P0 = 60 W, we obtain
ax = 50.3 µm, ay = 51.2 µm, and U0/kB = 550 µK. For P0 = 50 W, the estimated spot sizes
are reduced by a factor of 0.96, and the estimated trap depth is 500 µK.

The CO2 laser trap is directly loaded from a 6Li MOT. Typically, the total number of atoms
is 2 × 106. The magnetic field is ramped to the Feshbach resonance and the atoms are allowed
to evaporate at fixed trap depth, yielding N0 = 8 × 105 at stagnation. The trap is then lowered
by a factor U(t)/U0.

Figure 1 shows how the observed total number of atoms N/N0 scales with trap depth
U/U0 for two different trap lowering curves, shown in red solid circles and blue open squares,
which are described in detail in section 4. Note that trap lowering time increases from right
to left. Fitting N/N0 = (U/U0)

p, we obtain p = 0.21(0.01). For η = 10, equation (3) predicts
p = 0.191, which is shown as the solid line. The scaling law is obeyed down to about 1% of
the maximum trap depth, where the Fermi gas becomes degenerate and the scaling law fails, as
discussed further below.

We also measure the transverse cloud size after release and subsequent expansion for a time
texp, which is between 400 and 1200 µs. The measured transverse cloud size is found to scale
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Figure 2. Mean square cloud size in the trap, which is nearly independent of trap
depth. Red solid circles: obtained using the trap lowering curve for an energy-
independent scattering cross-section. Blue open squares: obtained using the trap
lowering curve for unitary gas. Note that the trap lowering time increases from
right to left.

linearly with trap depth U and quadratically with expansion time texp, the result expected for a
trapped cloud radius which is independent of U, as we now show.

The size of the observed expanded cloud is related to that of the trapped gas by a scale
factor, i.e., 〈x2〉obs = b2

x(texp) 〈x2〉trap. A unitary gas expands hydrodynamically, by a known scale
factor bx(texp) [7, 21]. However, when ωxtexp � 1, the difference between the hydrodynamic and
ballistic expansion factors is nearly constant. Hence, we takeb2

x(t) � (ωxt)
2. Usingω2

x = 4U/Ma2
x

and equation (6), we see that

〈x2〉obs

(U/U0)t2
exp

= U0

ηM
(7)

should be nearly independent of U/U0.
Figure 2 shows the data corresponding to the left-hand side of equation (7). We find that

the ratio 〈x2〉obs/[(U/U0) t2
exp] � 0.06 m2 s−2 is nearly constant, as expected for a constant value

of η. Equation (7) shows that U0 = 0.06 ηM. Using η = 10 from the number scaling, we find
that U0/kB = 440 µK, comparable to the above estimates which are based on the measured trap
oscillation frequencies and power.

4. Trap depth lowering curve for a unitary gas

The data show that the scaling laws are reasonably well obeyed. We now derive the ideal trap
depth lowering curve for maintaining η constant in a unitary gas, which differs from that obtained
previously for an energy-independent collision cross-section [14].

We begin by determining the collision cross-section for atoms which evaporate from the trap
in the unitary regime. This can be done using the Boltzmann equation for an energy-dependent
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cross-section [22]. Expanding to first order in the small parameter εs/U, where εs = 2 h̄2/(Ma2)

and |a| → ∞ near the Feshbach resonance, we obtain for a single component (Bose) gas,

σ(U) = 16π h̄2

MU
, (8)

where we neglect kBT compared to U, assuming large η. This result is readily obtained by
the following heuristic arguments. For a collision between two particles of energies ε1 and
ε2, energy conservation dictates that ε1 + ε2 = ε3 + ε4, where ε3 and ε4 are the energies of the
outgoing particles. For evaporation, we require that ε4 > U, the trap depth, while ε3 is reduced
in energy. Then, we must have ε3 � kBT , to avoid significantly decreasing the Boltzmann factor
exp(−η), which for evaporation is already small. Since ε3 = Mv2

3/2 + U(xc), with U(xc) the
harmonic trap potential energy at the collision point xc, we must have U(xc) � kBT � U, and
we can take Mv2

3/2 → 0 and U(xc) → 0 compared to the trap depth U. Hence, we can take
v3 � 0, compared to the other speeds for 1, 2, and 4. Then, one easily shows that v2

4 = v2
1 + v2

2.
Momentum conservation yields v1 + v2 = v4, where again we assume v3 = 0. Then, squaring
both sides, we see that v1 · v2 � 0 and v2

rel � v2
4 � 2U/M. Using Mvrel/2 = h̄k in the cross-

section 8π/k2 yields equation (8).
To determine the trap depth lowering curve that is needed to maintain constant η in a unitary

gas, we consider the evaporation rate [14]. To determine the evaporation rate, we need only to
replace the constant cross-section in [14] by the unitary cross-section, σ(U).

From the s-wave Boltzmann equation [15], we obtain the evaporation rate to lowest order
in exp(−η). Neglecting background gas collisions for simplicity (these can be included [14]),
we obtain

Ṅ = −2(η − 4) exp(−η)γ N. (9)

The collision rate γ = nvrelσ scales as Nvrelσ, since the cloud size does not change, so that the
density scales as the number N. Since the relative speed scales as U1/2, and the cross-section as
1/U, we obtain

γ

γ0
=

(
U

U0

) 6−η′
2(η′−3)

. (10)

The initial collision rate γ0 is obtained using the results given in [14], with the constant cross-
section σ replaced by the unitary cross-section of equation (8). With kT0 = U0/η, we obtain
γ0 = (N0/4) 64π2 h̄2ν̄3η/(U2

0 ), where the (1/4) arises for a Fermi gas in a 50–50 mixture of
two spin states. The rate for a single component Bose gas is four times larger. In contrast to
the collision rate for a constant cross-section, for η′ > 6, the unitary collision rate increases
as the trap depth is lowered, because the cross-section increases faster than the flux nvrel

decreases.
Differentiating equation (3) with respect to t and using the result in equation (9), we obtain

the lowering curve for a unitary gas,

U(t)

U0
=

(
1 − t

τu

)2(η′−3)/(η′−6)

. (11)
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Figure 3. Trap depth U/U0 versus time. Red dashed line: lowering curve for
an energy-independent scattering cross-section. Blue solid line: lowering curve
for a unitary gas. Each curve ends when U/U0 = 1/150, where the gas becomes
quantum degenerate.

Here, 0 � t � τu, and

1

τu

= 2

3
(η − 4)(η′ − 6) exp(−η)γ0, (12)

where γ0 is given above. For η′ = 6, one can show that the trap lowering curve is exponential.
Our data were obtained using two different trap lowering curves. The red solid circle data

in figures 1 and 2 show the results obtained using the lowering curve for an energy-independent
cross-section and η = 10, U/U0 = 1/(1 + t/τ)1.45 [14], where τ = 0.08 s is chosen to optimize
the efficiency. The corresponding blue open square data show the results obtained using the
lowering curve for a unitary gas with η = 10, where U(t) is calculated from equations (11) and
(12), U/U0 = (1 − t/τu)

3.24, and τu = 0.77 s. Both curves yield similar results for the number
and trap size, but the unitary lowering curve is much faster, as it includes the effects of runaway
evaporation which does not occur with an energy-independent cross-section.

We can estimate the ratio U/U0 needed to achieve degeneracy for a Fermi gas in the
classical regime, assuming a 50–50 mixture of spin-up and spin-down atoms. The initial phase
space density is ρ0 = (N0/2)(hν̄0/kBT )3. For our trap conditions at full depth, where U0 =
550 µK, we have ν̄0 = 1780 Hz and kBT0 = U0/η = 55 µK for η = 10. With N0 = 8 × 105,
ρ0 = 1.5 × 10−3. From equation (4), with η = 10, we have ρ = ρ0 (U0/U)1.3. Lowering the trap
by a factor of 150 yields ρ � 1. Figure 3 shows trap lowering curves for a gas with an energy-
independent collision cross-section and for a unitary gas. We find that by using the unitary gas
lowering curve, degeneracy is achieved in 0.61 s, while the optimized constant cross-section
curve requires 2.45 s.
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We see that the atom number data of figure 1 deviates from the scaling law predictions below
U/U0 = 0.007 � 1/150, in good agreement with the predicted depth at which degeneracy occurs.
In this regime, where the Fermi gas is degenerate, further lowering of the trap depth cuts into the
Fermi surface causing increased atom loss. A different trap lowering curve is needed to optimize
the efficiency in this regime, and can be determined. However, in practice, one can simply adjust
the final trap depth to slightly cut into the Fermi surface.

5. Mean free path for evaporating atoms

Our derivation assumes that evaporating atoms leave the trap after a binary collision, even though
the gas is unitary and the collision cross-section is large. We now show that although the gas
in the trap is hydrodynamic, the cross-section for evaporating atoms to collide with trapped
atoms can be sufficiently small. We consider the conditions for the mean free path to be larger
than the transverse trap dimension, and determine the minimum trap depth Uc below which our
assumptions are no longer strictly valid.

Consider the ratio of the mean free path l = 1/(n̄σ), at the average density n̄, to the rms
transverse trap size dx ≡ √〈x2〉trap. This is given by l/dx = (l0/dx)(l/ l0) = (n̄0σ0/n̄σ)/(n̄0σ0dx).
Since the cloud size does not change, the average (density weighted) density n̄ scales as N, and
σ ∝ 1/U, so the ratio scales as U/N. Hence, we have

l

dx

= N0U

NU0

1

n0σ0dx

. (13)

For η = 10, N/N0 = (U/U0)
0.19. Thus, to achieve l > dx we require (U/U0)

0.81 � n0σ0dx. Since
l/dx scales as (U/U0)

0.81, the mean free path decreases almost linearly with trap depth.
Using the above results, we can write n0σ0dx ≡ Ul/U0, where

Ul = 2√
π

λη h̄2N0

Maxay

. (14)

Here, λ = ωz/ωx = 0.035. We use σ0 = 4π h̄2/(MU0) for a Fermi gas in a 50–50 mixture,
and N0 the total atom number. For our trap conditions, we find Ul = 12.7 µK. Hence, the
evaporating atoms scatter with atoms in the trap when Uc/U0 � (12.7/500)1.23 = 0.011. Thus,
we expect that the trap can be lowered by a factor of �100 before the evaporation starts to
become hydrodynamic.

The very good agreement between the scaling law predictions and the data for even lower
trap depths suggests that the value of η � 10 is nearly constant even as the evaporation becomes
hydrodynamic and slows down. There is a mitigating factor which may explain this behaviour. We
note from equation (9) that the evaporation rate is suppressed by a Boltzmann factor exp(−η).
Hence, a decrease in the evaporation rate can be compensated by a small reduction in η, for
example η = 9.5 increases the evaporation rate by a factor of 1.6 compared to η = 10. Thus, it
is not too surprising that η can remain nearly constant until degeneracy is attained.

6. Summary

We have measured the scaling laws for the number and cloud size for forced evaporation of a
unitary gas in an optical trap. By reducing the trap depth using a lowering curve which maintains a
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fixed large ratio η of the trap depth to the average thermal energy, we find that atom loss is reduced
and high efficiency is achieved in Fermi gases which have small inelastic losses. The value of
η = U/(kBT) � 10 does not seem to depend critically on the shape of the lowering curve, but the
correct unitary lowering curve permits quantum degeneracy to be achieved with high efficiency
in a fraction of second. The faster timescale is important for suppressing excess atom loss and
excess heating: In two-component Fermi gases near or below the Feshbach resonance, inelastic
loss and heating can arise from singlet molecular relaxation [12]. Excess heating can also arise
from laser intensity noise and beam pointing noise [23, 24], and from diffractive background gas
collisions, especially in traps at moderate vacuum [25]–[27].

In the degenerate regime, the Fermi energy sets the energy scale, and the classical scaling law
breaks down. In this regime, Pauli blocking can suppress the collision rate and the evaporation
rate. However, as noted previously, the heat capacity of a degenerate Fermi gas → 0 as
the temperature is lowered, making the gas easier to cool [14] and obviating the effects of
Pauli blocking. At low temperatures, where the unitary Fermi gas is a superfluid, the heat
capacity decreases with temperature much faster than for a normal fluid, further improving the
cooling rate.

Acknowledgments

This research is supported by the Army Research Office and the National Science Foundation,
the Physics for Exploration programme of the National Aeronautics and Space Administration,
and the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy
Sciences, Office of Science, US Department of Energy.

References

[1] Barrett M D, Sauer J A and Chapman M S 2001 All-optical formation of an atomic Bose–Einstein condensate
Phys. Rev. Lett. 87 010404

[2] Granade S R, Gehm M E, O’Hara K M and Thomas J E 2002 All-optical production of a degenerate Fermi
gas Phys. Rev. Lett. 88 120405

[3] Thomas J E and Gehm M E 2004 Optically trapped Fermi gases Am. Sci. 92 238
[4] Kramer T, Herbig J, Mark M, Weber T, Chin C, Nageral H-C and Grimm R 2004 Optimized production of a

cesium Bose–Einstein condensate Appl. Phys. B 79 1013
[5] Dumke R, Johanning M, Gomez E, Weinstein J D, Jones K M and Lett P D 2006 All-optical generation and

photoassociative probing of sodium Bose–Einstein condensates New J. Phys. 8 64
[6] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Bose–

Einstein condensation of molecules Science 302 2101
[7] O’Hara K M, Hemmer S L, Gehm M E, Granade S R and Thomas J E 2002 Observation of a strongly interacting

degenerate Fermi gas of atoms Science 298 2179
[8] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Crossover from a

molecular Bose–Einstein condensate to a degenerate Fermi gas Phys. Rev. Lett. 92 120401
[9] Regal C A, Greiner M and Jin D S 2004 Observation of resonance condensation of fermionic atom pairs Phys.

Rev. Lett. 92 040403
[10] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Condensation of

fermionic atom pairs near a Feshbach resonance Phys. Rev. Lett. 92 120403
[11] Strecker K E, Partridge G B and Hulet R G 2003 Conversion of an atomic Fermi gas to a long-lived molecular

Bose gas Phys. Rev. Lett. 91 080406

New Journal of Physics 8 (2006) 213 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.87.010404
http://dx.doi.org/10.1103/PhysRevLett.88.120405
http://dx.doi.org/10.1511/2004.3.238
http://dx.doi.org/10.1007/s00340-004-1657-5
http://dx.doi.org/10.1088/1367-2630/8/5/064
http://dx.doi.org/10.1126/science.1093280
http://dx.doi.org/10.1126/science.1079107
http://dx.doi.org/10.1103/PhysRevLett.92.120401
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/10.1103/PhysRevLett.91.080406
http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[12] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F
and Salomon C 2004 Experimental study of the BEC-BCS crossover region in lithium 6 Phys. Rev. Lett. 93
050401

[13] Kinast J, Turlapov A and Thomas J E 2005 Optically-trapped Fermi gases model strong interactions in nature
Opt. Phot. News 16 21

[14] O’Hara K M, Gehm M E, Granade S R and Thomas J E 2001 Scaling laws for evaporative cooling in time-
dependent optical traps Phys. Rev. A 64 051403(R)

[15] Luiten O J, Reynolds M W and Walraven J T M 1996 Kinetic theory of the evaporative cooling of a trapped
gas Phys. Rev. A 53 381

[16] Ketterle W and Van Druten N J 1996 Evaporative cooling of trapped atoms Adv. At. Mol. Opt. Phys. 37 181
[17] Thomas J E, Turlapov A and Kinast J 2005 Virial theorem and universality in a unitary Fermi gas Phys. Rev.

Lett. 95 120402
[18] O’Hara K M, Granade S R, Gehm M E, Savard T A, Bali S, Freed C and Thomas J E 1999 Ultrastable CO2

laser trapping of lithium fermions Phys. Rev. Lett. 82 4204
[19] Bartenstein M et al 2005 Precise determination of 6Li cold collision parameters by radio-frequency

spectroscopy on weakly bound molecules Phys. Rev. Lett. 94 103201
[20] Windholz L, Musso M, Zerza G and Jäger H 1992 Precise Stark-effect investigations of the lithium D1 and

D2 lines Phys. Rev. A 46 5812
[21] Menotti C, Pedri P and Stringari S 2002 Expansion of an interacting Fermi gas Phys. Rev. Lett. 89 250402
[22] O’Hara K M 2000 Optical trapping and evaporative cooling of fermionic atoms PhD Thesis Duke University,

unpublished
[23] Savard T A, O’Hara K M and Thomas J E 1997 Laser-noise-induced heating in far-off resonance optical traps

Phys. Rev. A 56 1095(R)
[24] Gehm M E, O’Hara K M, Savard T A and Thomas J E 1999 Dynamics of noise-induced heating in atom traps

Phys. Rev. A 58 3914
[25] Bali S, O’Hara K M, Gehm M E, Granade S R and Thomas J E 1999 Quantum-diffractive background gas

collisions in atom-trap heating and loss Phys. Rev. A 60 R29
[26] Beijerinck H C W 2000 Rigorous calculation of heating in alkali-metal traps by background gas collisions

Phys. Rev. A 61 033606
[27] Beijerinck H C W 2000 Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary

collisions Phys. Rev. A 62 063614

New Journal of Physics 8 (2006) 213 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.93.050401
http://dx.doi.org/10.1364/OPN.16.12.000021
http://dx.doi.org/10.1103/PhysRevA.53.381
http://dx.doi.org/10.1103/PhysRevLett.95.120402
http://dx.doi.org/10.1103/PhysRevLett.82.4204
http://dx.doi.org/10.1103/PhysRevLett.94.103201
http://dx.doi.org/10.1103/PhysRevA.46.5812
http://dx.doi.org/10.1103/PhysRevLett.89.250402
http://dx.doi.org/10.1103/PhysRevA.61.033606
http://dx.doi.org/10.1103/PhysRevA.62.063614
http://www.njp.org/

	1. Introduction
	2. Scaling laws
	3. Experiments
	4. Trap depth lowering curve for a unitary gas
	5. Mean free path for evaporating atoms
	6. Summary
	Acknowledgments
	References

