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We report a model-independent measurement of the entropy, energy, and critical temperature of a
degenerate, strongly interacting Fermi gas of atoms. The total energy is determined from the mean square
cloud size in the strongly interacting regime, where the gas exhibits universal behavior. The entropy is
measured by sweeping a bias magnetic field to adiabatically tune the gas from the strongly interacting
regime to a weakly interacting regime, where the entropy is known from the cloud size after the sweep.
The dependence of the entropy on the total energy quantitatively tests predictions of the finite-temperature
thermodynamics.
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The thermodynamics of strongly interacting Fermi gases
is of great interest, as these systems exhibit universal
behavior, where the properties are independent of the de-
tails of the microscopic interactions [1–4]. These gases
provide models for testing nonperturbative many-body
theories in a variety of fields from neutron stars and nuclear
matter to quark-gluon plasmas and high temperature super-
conductors. In studies of universal Fermi gases, where
thermometry is difficult [5,6], entropy measurement plays
a central and fundamental role.

In this Letter, we report the measurement of the entropy
S of a strongly interacting Fermi gas as a function of its
total energy E. The results yield the temperature T via the
elementary thermodynamic relation 1=T � @S=@E. Our
experiments quantitatively test recent predictions of the
entropy based on microscopic many-body theory, yield
the dependence of the energy on temperature, and deter-
mine the critical temperature for the superfluid transition
without invoking any specific theoretical model.

Strongly attractive Fermi gases exhibit both fermionic
and bosonic features, and have been studied intensely for
several years in experiment [1,7–12] and theory [13–16].
Measurements of the heat capacity [5] and collective mode
damping versus energy [17] reveal transitions in behavior,
which have been interpreted as a superfluid transition in
this system [5]. Recently, the observation of vortices [18]
has provided a definitive proof of a superfluid phase.
However, there have been no model-independent studies
of the thermodynamic properties.

A strongly interacting Fermi gas is prepared using a
50:50 mixture of the two lowest hyperfine states of 6Li
atoms in an ultrastable CO2 laser trap with a bias magnetic
field of 840 G, just above a broad Feshbach resonance at
B � 834 G [19]. At 840 G, the gas is cooled to quantum
degeneracy by lowering the trap depth U [1]. Then U is
recompressed to U0=kB � 10 �K, which is large com-
pared to the energy per particle of the gas.

At the final trap depth, U0, the measured trap oscillation
frequencies in the transverse directions are !x �
2�� 665�2� Hz and!y � 2�� 764�2� Hz, while the ax-

ial frequency is !z � 2�� 30:1�0:1� Hz at 840 G and
!z � 2�� 33:2�0:1� Hz at 1200 G. Note that axial fre-
quencies differ due to the small change in the trapping
potential arising from the bias magnetic field curvature.
The total number of atoms N ’ 1:3�0:2� � 105 is obtained
from absorption images of the cloud using a two-level
optical transition at 840 G. The corresponding Fermi en-
ergy EF and Fermi temperature TF for an ideal (noninter-
acting) harmonically trapped gas at the trap center are
EF � kBTF � @ �!�3N�1=3, where �! � �!x!y!z�

1=3. For
our trap conditions, we obtain TF ’ 1:0 �K.

The total energy per particle, E840, of the strongly inter-
acting gas at 840 G is measured in a model-independent
way from the mean square size in the axial direction hz2i840

[4]. In this strongly interacting regime, the zero energy
s-wave scattering length aS is large compared to the inter-
particle spacing, which is large compared to the range of
the two-body interaction, so that the gas is universal [1–3].
Then, the local pressure is P � 2E=3, where E is the local
energy density [3,4]. Using force balance for a trapping
potential U, rP� nrU � 0, where n is the local den-
sity, one obtains the total energy per particle E840 �
3m!2

zhz
2i840�1� �� or

 

E840

EF
�
hz2i840

z2
F

�1� ��; (1)

where m is the 6Li mass. Here, z2
F is defined by 3m!2

zz
2
F �

EF, and is weakly dependent on the magnetic field through
the trap frequencies. The correction factor 1� � arises
from anharmonicity [20] in the shallow trapping potential
U0 ’ 10EF used in the experiments. We find that � varies
from 3% at our lowest energies to 13% at the highest. For
simplicity, we neglect an approximately 1% correction
arising from the finite scattering length at 840 G.

The entropy of the strongly interacting gas at 840 G
is determined using an adiabatic sweep of the magnetic
field to 1200 G, where the entropy can be estimated
from the mean square axial cloud size hz2i1200. At
1200 G, the gas is weakly interacting in our shallow trap,
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since kFaS � �0:75, where aS � �2900 bohr [19] and
kF � �2mEF=@2�1=2. We observe ballistic expansion of the
cloud at this field, even at our lowest temperatures, which
also shows that the gas is normal.

The dependence of the entropy on hz2i1200 can be esti-
mated, in the simplest approximation, by assuming a non-
interacting Fermi gas in a Gaussian trapping potential [20].
First, the particle spatial density is determined as a function
of T=TF using the occupation number f��� for a Fermi gas.
Normalization to the atom number then yields the chemical
potential. From the spatial density, we determine hz2i as a
function of T=TF. Then, the energy per particle EI�T=TF�
is obtained by integrating �f��� with the density of states.
Finally, the entropy per particle SI�T=TF� is obtained
by integrating the entropy per orbital, s � �kB�f lnf�
�1� f� ln�1� f�	. Together, these results yield SI�hz

2i�
as well as SI�EI�.

We find that the calculated ideal gas SI�hz2i� differs from
a many-body prediction at kFaS � �0:75 [21] by less than
1% over the range of energies we studied, except at the
point of lowest measured energy, where they differ by
10%. For this comparison, we slightly shift the ground
state size of the ideal gas to coincide with that calculated
for kFaS � �0:75. Hence, at 1200 G, the shape of the
entropy versus cloud size curve is nearly identical to that
for an ideal gas. Measurements of hz2i1200 therefore pro-
vide an essentially model-independent estimate of the
entropy of the strongly interacting gas.

Ideally, a sweep from 840 G to a magnetic field of 528 G,
where the scattering length vanishes, would produce a
noninteracting gas (kFaS � 0), where the entropy is pre-
cisely known. Unfortunately, adiabatic formation of mole-
cules [22] and subsequent molecular decay at fields below
resonance [10] cause unwanted heating for such a down-
ward sweep.

To measure the entropy as a function of energy, we start
with an energy near the ground state and controllably
increase the energy of the gas by releasing the cloud for
an adjustable time and then recapturing it, as described
previously [5]. After recapture, the gas is allowed to reach
equilibrium for 0.7 s. This thermalization time is omitted
for the measurement of the ground state size, where no
energy is added.

After equilibrium is established, the magnetic field is
either ramped to 1200 G over a period of 1 s, or the gas is
held at 840 G for 1 s. In either case, after 1 s, the gas is
released from the optical trap for a short time to increase
the transverse dimension of the cloud for imaging, without
significantly changing (less than 0.5%) the measured axial
cloud sizes that determine S and E, respectively.

We find that the magnetic field sweep is nearly adiabatic,
since the mean square size of the cloud at 840 G after a
round-trip sweep of 2 s duration is found to be within 3% of
that obtained after a hold time of 2 s at 840 G. However, we
also find for our shallow trap that there is a magnetic field

and energy independent heating rate, which causes the
mean square size to slowly increase at a rate of _hzi2 �
0:024z2

F=s, corresponding to 24 nK=s in energy units.
Since we desire the energy and entropy just after equili-
bration, we subtract _hzi2 � 1 s from the measured mean
square axial dimensions for both the 840 G and 1200 G
data. The maximum correction is 5% at the lowest
energies.

Figure 1 shows the ratio of the mean square axial cloud
size at 1200 G (measured after the sweep) to that at 840 G
(measured without the sweep), as a function of the energy
of the strongly interacting gas at 840 G. The energy at
840 G is directly measured from the axial cloud size at
840 G using Eq. (1). The displayed ratio and energy scale
are independent of the atom number and trap parameters.
This is accomplished by measuring the mean square sizes
at each field in units of z2

F for the given field and atom
number. The total data comprise 900 measurements which
have been averaged in energy bins of width �E � 0:04EF.

We note that potential energy has been measured pre-
viously in 40K [23] at a Feshbach resonance and after an
adiabatic sweep to the noninteracting regime. In Ref. [23],
the resulting potential energy ratios are given as a function
of the temperature of the noninteracting gas. In contrast, by
exploiting universality, our cloud size ratios are referred to
the total energy in the strongly interacting regime, which
enables a measurement of S�E� and T for the strongly
interacting gas.

For our measurements of S at 1200 G, we must have
S � 0 when hz2i1200 attains the ground state value hz2i0 �
�2=8, where � is the Fermi radius. We determine � and
T=TF by fitting the spatial profiles at the lowest tempera-
tures with a Sommerfeld approximation for the density
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FIG. 1 (color online). Ratio of the mean square cloud size at
1200 G, hz2i1200, to that at 840 G, hz2i840, for an isentropic
magnetic field sweep. E840 is the total energy per particle of the
strongly interacting gas at 840 G and EF is the ideal gas Fermi
energy. The ratio converges to unity at high energy, as expected
(dashed red line).
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[24]. We obtain hz2i0=z
2
F � 0:71�0:02�. For comparison,

we can predict the ground state cloud size at 1200 G using
the equation of state at zero temperature for the chemical
potential versus local density,��n�. For negative scattering
lengths, using Ref. [25], we find n���. Then, using � �
�g �U, we determine the density for a Gaussian potential
U to include anharmonicity. Normalization to the number
of atoms yields the global chemical potential �g and the
mean square cloud size. At 1200 G, where kFaS � �0:75,
we find hz2i0=z

2
F � 0:69, in good agreement with our

measurements.
To convert the data of Fig. 1 into an entropy measure-

ment, we calculate the entropy at 1200 G in the form
S��hz2i1200 � hz2i0�=z2

F	, using the ideal gas approximation
as described above. This method automatically assures that
S � 0 corresponds to the measured ground state hz2i0 at
1200 G, and compensates for the mean field shift between
the measured hz2i0 and that calculated for an ideal gas in
our Gaussian trapping potential, 0:77z2

F.
Figure 2 shows the entropy (blue dots) of the strongly

interacting gas at 840 G as a function of its energy in the
range 0:4 
 E840=EF 
 2:0. The maximum energy is re-
stricted to avoid evaporation in our shallow trap, which can
reduce the energy and the atom number during the time of
the magnetic field sweep. The entropy of the strongly
interacting gas differs significantly from that of an ideal
gas (lower orange dot-dashed line), which has a larger
ground state energy EI0 � 0:75EF. In addition, the data
are compared to predictions in the resonant regime based
on pseudogap theory [21,26] (dashed green line) and quan-
tum Monte Carlo methods (dotted red line) [27,28].

The temperature is determined in a model-independent
manner from 1=T � @S�E�=@E. This requires parametriz-

ing the S�E� data to obtain a smooth curve. The simplest
assumption consistent with S�E � E0� � 0 is to approxi-
mate the data by a power law in E� E0, where E0 is the
ground state energy. To allow for the different scaling of S
and E with temperature above and below the superfluid
transition [5,26], we use the simple form,

 S<�E� � kBa
�
E� E0

EF

�
b
; E0 
 E 
 Ec

S>�E� � S<�Ec�
�
E� E0

Ec � E0

�
d
; E � Ec;

(2)

where the fit parameters are a, b, d, and Ec. We find that a
good fit is obtained using these two different power laws,
one above and one below a critical energy Ec. The fit yields
a �2 per degree of freedom ’ 1, a factor of 2 smaller than
that obtained by fitting a single power law to all of the data.
We find that Eq. (2) also provides a very close parametri-
zation of the theoretical curves shown in Fig. 2. However,
Eq. (2) ignores the smooth transition in slope near Ec, as
required for continuity of the temperature, since the de-
tailed critical behavior near Ec is not resolvable in our data.
For the power law fits, we take E0 ’ Emin � 0:53�0:02�EF,
the minimum measured energy, which is close to the
estimated ground state energy, 0:50EF, for a unitary gas
in a harmonic trap [5,29,30].

Fitting the data of Fig. 2 with Eq. (2), the critical energy
is found to be Ec=EF � 0:94� 0:05, with a corresponding
critical entropy per particle Sc � 2:7��0:2�kB. Below Ec,
the entropy varies with energy as S<�E� � kB�4:5�
0:2���E� E0�=EF	0:59�0:03. Above Ec, we obtain S>�E� �
kB�4:0� 0:2���E� E0�=EF	0:45�0:01. We find that the var-
iances of a and b have a positive correlation, so that S�E� is
determined more precisely than the independent variation
of a and b would imply. The change in behavior near Ec is
shown clearly in the inset of Fig. 2.

The power law exponent below Ec, b � 0:59, falls
between that of an ideal harmonically trapped Fermi gas,
where a Sommerfeld expansion at low energy yields S /
�E� E0�

1=2 and that of an ideal harmonically trapped
Bose-Einstein condensate, where S / �E� E0�

3=4. By
contrast, above Ec, the exponent d � 0:45 is close to the
result we obtain by fitting a power law to the calculated
entropy of an ideal gas in our Gaussian trap, i.e., SI�E�
EI0� / �E� EI0�q, with q � 0:485 for E below 0:94EF
and q � 0:452 above. This is a consequence of the cloud
size ratios shown in Fig. 1, which converge to unity at
higher energies.

The energy versus temperature E�T� is determined from
the derivative of the fit function S�E�. For E 
 Ec,

 

E� E0

EF
�

�
abT
TF

�
1=�1�b�

: (3)

From the best fit to the entropy data, where a � 4:5, b �
0:59, Ec � 0:94EF, we obtain �E� E0�=EF �
11�T=TF�2:44 below Ec.
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FIG. 2 (color online). Measured entropy per particle of a
strongly interacting Fermi gas at 840 G vs its total energy per
particle (blue dots). Lower orange dot-dashed curve—ideal gas
entropy SI�EI�; green dashes—pseudogap theory [21]; red
dots—quantum Monte Carlo prediction [27]. Inset—entropy
vs energy data showing a change in behavior at Ec � 0:94EF.
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We estimate the critical temperature Tc using the mea-
sured value of Ec � �0:94� 0:05�EF. Here, we interpret
Ec as the critical energy for the superfluid transition. This
value is consistent with our previous measurements based
on the heat capacity, where we observe a change in behav-
ior at E � 0:85EF [5], and in collective mode damping
[17], where a plot of the damping rate versus energy (rather
than empirical temperature) shows a change in behavior
near E � 1:01EF.

Ideally, to obtain Tc, the fit S�E� should have a continu-
ous slope near Ec. Since our fit function has different
slopes above and below Ec, we use the average of the
two slopes to approximate the slope of the tangent to a
smooth curve through the data at Ec. Inverting Eq. (3)
yields T=TF � 0:38��E� E0�=EF	

0:41 and Tc<=TF �
0:26. Similarly, for E�T�>Ec, we find T=TF � 0:56��E�
E0�=EF	

0:55 and Tc>=TF � 0:34. Taking 2=Tc ’ 1=Tc< �
1=Tc>, we find Tc=TF � 0:29��0:03=� 0:02�. Here, the
error estimate includes the cross correlations in the varian-
ces of a, b, Ec, and d.

The measured critical temperature Tc=TF �
0:29��0:03=� 0:02� can be compared to our previous
estimate of Tc=TF � 0:27 from an experiment with a
model dependent temperature calibration [5]. Moreover,
the result 0:29 is in good agreement with predictions for
trapped atoms, 0.29 [5], 0.30 [31], 0.31 [30], 0.30 [32], 0.26
[6], and 0.27 [27,28].

We thank Ingrid Kaldre for help in constructing the cold
atom source. We are grateful to Qijin Chen and Kathy
Levin, U. Chicago, and Aurel Bulgac and Joaquı́n E.
Drut, U. Washington, Seattle, for providing calculations
of the entropy versus cloud size in advance of publication.
We also thank Jason Ho for many discussions about en-
tropy and energy measurement, which stimulated this
work. This research is supported by the Chemical
Sciences, Geosciences, and Biosciences Division of the
Office of Basic Energy Sciences, Office of Science, US
Department of Energy, the Physics Divisions of the Army
Research Office and the National Science Foundation, and
the Physics for Exploration program of the National
Aeronautics and Space Administration.

*Email address: jet@phy.duke.edu
[1] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade,

and J. E. Thomas, Science 298, 2179 (2002).
[2] H. Heiselberg, Phys. Rev. A 63, 043606 (2001).
[3] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
[4] J. E. Thomas, A. Turlapov, and J. Kinast, Phys. Rev. Lett.

95, 120402 (2005).
[5] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic,

and K. Levin, Science 307, 1296 (2005).
[6] H. Hu, X.-J. Liu, and P. D. Drummond, Phys. Rev. A 73,

023617 (2006).

[7] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 (2004).

[8] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F.
Raupach, A. J. Kerman, and W. Ketterle, Phys. Rev.
Lett. 92, 120403 (2004).

[9] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and
J. E. Thomas, Phys. Rev. Lett. 92, 150402 (2004).

[10] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang,
F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans,
and C. Salomon, Phys. Rev. Lett. 93, 050401 (2004).

[11] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim,
J. H. Denschlag, and R. Grimm, Science 305, 1128
(2004).

[12] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack,
and R. G. Hulet, Phys. Rev. Lett. 95, 020404 (2005).
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