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We derive the elastic collision rate for a harmonically trapped Fermi gas in the extreme unitarity limit where
the swave scattering cross section k) =4x/k?, with %k the relative momentum. The collision rate is
given in the formI'= y | (T/Tr)—the product of a universal collision rate=kgTr/(67%) and a dimension-
less function of the ratio of the temperatdréo the Fermi temperaturg: . We find thatl has a peak value of
=4.6 atT/T=0.4, |=82 (T/T¢)? for T/Te<0.15, andl=2(T¢/T)? for T/T>1.5. We estimate the colli-
sion rate for recent experiments on a strongly-interacting degenerate Fermi gas of atoms.
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I. INTRODUCTION namic expansion of a strongly interacting Fermi gas as a
function of evaporation timgl]. We estimatep for several
Recently, we[1] and several other group2-5] have be- recent experiments on strongly interacting Fermi gases
gun exploring the strongly interacting regime in degeneratél,4,5.
Fermi gases of atoms. In these experiments, a magnetic field
is applied to the atomic samples to tune the interparticle Il CALCULATING THE COLLISION RATE
interactions to the vicinity of a Feshbach resonance where '
the scattering length is large compared to the interparticle We consider a simple model that assumes thatave
spacing. In this regime, new forms of high-temperature suscattering is dominartl5]. In this case, the collision cross
perfluidity are predicted6—8] and strongly anisotropic ex- section takes the form
pansion has been observgt,4,5. As we pointed out in

Refs.[1,9], the strongly interacting regime leads to unitarity- 477a§
limited mean-field interactions as well as unitarity-limited o(k)= 7 2 (1)
collision dynamics. In the latter case, the scattering cross 1+kag

section is of the order of #/k2 , wherekg is the Fermi wave
vector. In the unitarity limit, the collision rate assumes awherek is the relative wave vector of a colliding pair of
universal form and is proportional to the Fermi energyspin-up and spin-down fermionic atoms.
kg T . At sufficiently low temperatures, Pauli blocking may  In the trap, the average collision rate per partidle,is
suppress the unitarity-limited elastic collision rate for thedetermined from the-wave Boltzmann equatiofl6] under
trapped gas, producing an effectively collisionless regimethe assumption of sufficient ergodicity. We consider the rate
However, a theoretical study of Pauli blocking in the for the process in which a spin-up and a spin-down atom of
unitarity-limited regime has not been presented previouslytotal energye;,= e3+ €4 collide to produce atoms with total
making it difficult to accurately estimate the collision rate. energy e, = €, + €,. The effects of Pauli blocking are in-
The primary purpose of this paper is to present such a treatluded for the particles on the outgoing channel, and we
ment. assume a 50-50 mixture of atoms in the two spin states. The
Several groups have examined the effects of Pauli blockdepletion term in the Boltzmann equation for the particle of
ing on the elastic collision rate for an energy-independenenergye, is integrated ovee, to determine the collision rate
cross sectioi10-13. For comparison to the collision rates I" for either spin stat¢as a collision inherently includes one
obtained with a unitarity-limited cross section, we begin byatom of each spin For an energy-independent cross section,
deriving a formula for the collision rate in a harmonic trap asthe integrated loss rate is théi2=—T'N/2, and
a function of temperature for an energy-independent cross
sectiono. The results reproduce those obtained in REZ] N Mo
within 10%][14]. We then extend the treatment to include the  — =
energy dependence of the cross section in the extreme uni- 2 #2#43
tarity limit, where the zero-energy scattering lengthsatis-
fies |krag>1 and the gas is strongly interacting. We show X(1—=f)(1—-fy)f5f,, (]
that the numerically calculated collision rates for both the
energy-independent and unitarity-limited cross sectiongvherel” is the number of collisions per second per atdin,
agree with analytic expressions derived for the high-is the total number of atoms in the trap, avds the atomic
temperature limit. mass. HereD(emin) is the density of states evaluated at the
The final part of the paper defines a hydrodynamic param€nergy emin=min{ey, &, €3,€&}. fi=1/(g;+1) is the occupa-
eter¢p=I"/w, , the ratio of unitarity-limited collision rat&  tion number withg; =exd(¢—u)/kgT], and u is the chemi-
to the transverse oscillation frequenay of atoms in the cal potential[17]. At zero temperature, the chemical poten-
trap. We calibratep by observing the threshold for hydrody- tial is given by the Fermi energy(0)=er=(3N)"*w

f dejdesdezdes D(€min) O( €1+ €2— €3— €4)
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=kgTr, whereo = (0 0,) " with », andw, the transverse 14
and axial trap oscillation frequencies of a cylindrically sym- 1.2
metric trap.

For fermions, the collision cross section of Ed) with
|kag/<1 is o=4maZ, i.e., half that for indistinguishable
bosons. We begin by determinidgfor this case.
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The integrand in Eq(2) is readily shown to be symmetric Temperature (T/Tg)
under the interchange of all four particle labels. Hence, with-
out loss of generality, we multiply the integrand by 4, and
take emn=¢; and D(emin)=[€/(21°w°)]02105,041, wWhere S
0,,= 6(e,— €;) is a unit step function. y

It is useful to write the collision rate as the product of a ~
natural collision rateyg,, which depends on the trap param- :
eters, and a dimensionless integig|(T/Tg), which de-
scribes the temperature dependence,

3

I'= 1T/ Te). 3 0.0 0.5 1.0 1.5 2.0
velel(T/Te) @ Temperature (T/T)

~ We take the natural collision rate to be the classical col- g, 1. Temperature dependence of the elastic-scattering colli-
lision rate atT =T, sion ratel™ in units of the natural collision ratg. The dashed lines
indicate the high- and low-temperature approximati¢asThe col-
NMalo lision rate for an energy-independent cross sectionThe collision
= 4 rate for a unitarity-limited cross section.
YEI > : (4)
477 kBTF

where 21=\/P2++P2_—P2 determines the relative wave

Note that the rate is 1/4 of that obtained in a spin-polarizedvector g, P.=\2M[e— emin—U(X)]=V2M[ emin—U(X)],
Bose gas. With this choicég, becomes U(x) is the trap potential, and is the total energy of the
colliding particles.
" We are interested in the extreme unitarity limit, where
IEI(T/TF):144J f f dxldxzdxsxi (X1 +Xp) F (X1 +X3) a(k)=4m/k? according to Eq(1) and the elastic collision
0 rate is the maximum possible8]. We write the collision
rate as

X[1=f(x)[1=f(Xs+ X+ X3)]. 5

L= yu lu(T/TE). (7)

Here f(X)=11g(xX)+1], where g(x)=exd(Te/T)(x o _ 5 5
—ule:)]. We assume that for the cases of interest, the traghe natural collision rate, Eq. 4 witlr=4m/kg and kg

depth is large compared g andkgT. =2MkgTg /%2, then takes the form

I is readily determined by numerical integration using
standard results for the chemical potential as a function of __€F )
T/Tg [17]. At low temperatureT/Te<0.2, we find that g, is YO

well fit by 15(T/Tg)=15 (T/Tg)?, which displays the qua-

dratic dependence expected for Pauli blocking in both final The dimensionless integral, is similar to that of Eq.
states. At high temperatur&/Tg> 1.5, we find the expected (5),

temperature dependende,(T/Tg)=Tg/T, as shown below. B B .

The _complete functiohg(T/Tg) is plotted in Fig. 1{:1). The lUL(T/TF):144f dxlf dxzf dxs er F(Xq +Xp)
maximum value) g=1.3, occurs fofT/Tg=0.5. This dem- 0 0 0

onstrates thatyg, is essentially the maximum collision rate.
XF(Xy+X3)[L=F(X) J[1—F(Xp+ X+ X3) ]

B. Unitarity-limited cross section XF(2X1+ X2+ X3,X1), 9

To include the energy dependence of the cross section, Wghere F(x,x,,) determines the energy-dependent cross sec-
adopt the notation of Refl16], and make the replacement tion o(q)=4m/q? in units of 477/k§. The arguments of
2M P (0 F(X,Xy) arex=¢elex and X,= €min/er. As In Eq. (5), we
N . )
0D €min) — —3f dxf dPa(q), (6) takexm=x; without loss of generality.
(2h)>JU<emn  JP_(X) For a harmonic potential,
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cross sectioro=4m/k?, with Mv,/2=%k, we obtainT yr

16 (1 dud?
In _ 2 2 - . .
Y e 2 ' yuL2(Te/T)? in agreement with the numerical results for
TN2Xm /0 VX 2%l Iy (T/TE) shown in Fig. 1b). In this case, the T? tempera-
where  y.(a,u)=A(a,u)+B(a,u), A(a,u)=a+2(1 ture dependence arises because both the flux and the cross

X+(a!u)

F(X,Xm) = (W

—2u?), B(a,u)=22(1— %) (a—20%), and a=x/%p. section vary as T/
We can simplify the form of the integrals in E() by
transforming from coordinate$x;,X,,X3,u} into coordi- lll. HYDRODYNAMIC PARAMETER ¢

nates{w,y,z,s}, where w=x;, y=(Xo+X3)/2Xy, z=(X3

—X,)/2x,, ands=1— uZ. After the transformation, we have The collisional state of a gas can be described by a hy-

drodynamic parametep which is the number of collisions

o o that an atom experiences during a characteristic time scale.
IUL(T/TF)=144J dyG(y)f dww3[1—f(w)] When ¢ is large, the gas is collisionally hydrodynamic,
0 0 while when ¢ is small, the gas is collisionless. The actual
X[1—f(w(1+2y))] values of¢ which qualify as “large” or “small” are deter-

mined by calibration.

We choose the characteristic time scale to be, ldnd
take p=1"/w wherew=w, ,w, are the oscillation frequen-
cies of atoms in the trap. These are also the natural time

(10) scales for ballistic expansion, where the size of the cloud
scales as/1+ w?t? in each direction. In the unitarity-limited
regime, and for a cylindrically symmetric trap with elonga-
tion parameteh = w,/w, , we can write¢, as

X fy dz flw(l+y+2)]f[w(l+y—2)]
-y

with G(y) given by

1 —
G(y)= 1—6] dsxlﬁ{ln[er yI2+s(s+y)]—In(y/2)}.
mJo S+y (3)\N)1/3
(1) $1=—5——lu(T/Te) (13
Equation(10) is plotted in Fig. 1b). The maximum col-
lision rate is larger by a factoe=4 than for an energy- with N the total number of atoms in the 50-50 mixture. Then,
independent cross sectiar=4/kZ, consistent with esti- ¢,= ¢, /\.
mates from radio-frequency measurements of the mean-field
shift in Ref.[4]. ForT/Tg<0.15, we again find the quadratic A. Calibrating ¢
temperature dependence that results from Pauli blocking,
lu =82 (T/T)2. In the highT/Te limit, we find I
=2 (Te/T)2. This matches the high-temperature prediction
given below. The maximum value dfy =4.6 occurs at
T/Te=0.4.

We now turn to the question of determining the approxi-
mate value of¢ for which the transition between collision-
less and collisional behaviors occurs. In Rdf], we inves-
tigated the anisotropic expansion properties of a strongly
interacting, degenerate Fermi gas ®fi. When released
from a highly elongated trap, the originally narrow dimen-
sions of the gas expanded rapidly, while the broad dimension
We check the numerical results for the temperature deperremained largely unchanged—inverting the aspect ratio of
dence of the rates by calculating the collision rhig for  the cloud after 1 ms of expansion. We have studied how the
T>Tg directly from the phase-spacgwave Boltzmann observed aspect ratio of the expanded cloud varies with the
equation[16] in the highT/T limit, where the occupation duration of evaporative cooling. The aspect ratios are mea-
number is given by a Boltzmann factor and Pauli blockingsured for a fixed expansion time of 6@& and are compared
can be neglected. Including the dependence of the scatteririg the predictions of ballistic and hydrodynamic expansion.
cross section on the relative spagd we find generally that The results are plotted in Fig. 2.
N From this figure, we see that the hottest cloydbort
evaporation timesexpand ballistically, while the coldest
FHTEZJ dxn; OOn, (x){vro(ve), 12 Glouds (longest evaporation timgsexpand hydrodynami-
cally. Ballistic expansion is expected in a normal, collision-
where the angled brackets denote an average over the rel@ss gas. Since the rapid transverse expansion extinguishes
tive velocity distribution for pairs of atoms anfixn; | (x) collisions before the axial distribution can change signifi-
=N/2. Equation(12) has a simple physical interpretation: cantly, the collisional behavior of the expanding gas can be
The spin-up atoms at positiox i.e., n;(x) dx, are hit by associated with¢, . For the shortest evaporation times
spin-down atoms at a rate (x)(v,o(v,)). For an energy- shown in Fig. 2, we observe ballistic scaling with=3Tg
independent cross section, we obtdiyr=7yg Te/T in and N=4Xx1C. For our trap, the initial aspect ratin
agreement with the numerical results fgi(T/Tg) of Fig. =0.035. From Eq(13), we obtain¢, =0.4 which then cor-
1(a). The temperature dependence in this limit arises frontesponds to approximately collisionless behavior. Therefore,
the flux, which is the product of the density and the relative¢p=0.4 is, in general, the condition for collisionless behavior
velocity, i.e.,n{v,)«1/T. For the extreme unitarity-limited for any time scale 1J.

C. Comparison with analytic high-T/Tg results

011603-3



RAPID COMMUNICATIONS

GEHM et al. PHYSICAL REVIEW A 68, 011603R) (2003

'DN 11 peratures 0.08 T/Tg<0.2. Equation 13 yields 0F¢,

N o4 Hydrodynamic Scaling =<3.7, while 26< ¢,<106 . The values ot corresponding

loj """"""""""""""""""""""""" to our lowest temperatures indicate that the trapped gas is
o %7 nearly collisionless on the transverse time scale, but colli-
T 08 . sional on the axial.

S The onset of high-temperature superfluidity has been re-
3 0'7____, ________________________________________ cently predicted in the temperature rangélr-=0.25-0.5

g‘ 0g  Balistic Scaling [6—8]. Since Pauli blocking is ineffective for the unitarity-

T T T T 1 limited cross section whe/Tg=0.25, it is not clear how
00 o.sEva oratil‘)% Time (8)1'5 20 collisions in the normal component will affect the formation
p of this high-temperature superfluid.

FIG. 2. Observed aspect ratio of a strongly interacting Fermi gas FOr an e>§pandir.1g gas, we cannot ma.ke a defini.ti\./e state-
after 600us free expansion as a function of evaporation time. Thement about its collisional nature, even if it were collisionless
aspect ratios corresponding to ballistic and hydrodynamic expanwhen trapped, as Pauli blocking may become ineffective as a
sion are indicated by the dashed, horizontal lines, calculated as iresult of nonadiabaticity in the expansion, deformation of the
Ref. [1]. The solid curve has been included to guide the eye. Thd=ermi surface, or through other effe¢td]. The magnitude
gas evolves smoothly from ballistic expansion to hydrodynamic expf these effects, and to what extent they modify remains
pansion as the evaporation time is increased. an open question. We are, therefore, working on experiments

B. Application to experiment which will directly determine if the gas contains a superfluid

. . fraction.
In addition to our work in Ref[1], several groups have

also recently observed hydrodynamic expansion of a Fermi
gas in the strongly interacting reginjé,5]. The authors of
these papers claim that their experiments are collisionally We are indebted to J. T. M. Walraven for stimulating cor-
hydrodynamic. For Ref[4], we take the total number of respondence regarding this work. This research was sup-
atomsN=2.4x10° and T/Tg=0.34, withA=0.016, yield-  ported by the Physics Divisions of the Army Research Office
ing Iy .=4.5 and ¢, =5.4. For Ref.[5], we take N=7 and the National Science Foundation, the Fundamental Phys-
X 10%, T/Tz=0.6, and\=0.35, yieldingl, =3.5 and¢, ics in Microgravity Research program of the National Aero-
=7.7. Hence, we agree with their conclusions. nautics and Space Administration, and the Chemical Sci-

Our experimentg1] produce strongly interacting Fermi ences, Geosciences and Biosciences Division of the Office of
gases at considerably lower temperatures. In those expetasic Energy Sciences, Office of Science, U.S. Department
ments, the total number of atoms Ns=1.5x10° for tem-  of Energy.
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