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In this supplemental material, we discuss the calculation of the radio-frequency spectra arising
from confinement-induced dimers and polarons in a quasi-two-dimensional Fermi gas. We determine
the dimer binding energies, including both the tight axial confinement and the nonzero transverse
confinement. We provide the probabilities for dimer-to-dimer transitions and the shape of the dimer-
to-scattering state spectrum. We also find the energy and quasi-particle weights for polarons in the
two-dimensional gas and the corresponding resonance frequencies for polaron-to-polaron transitions.
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We begin by reviewing briefly in § I the radio-frequency
spectrum arising from confinement-induced pairs, in-
cluding final state interactions, but ignoring many-
body effects, using the method employed for the three-
dimensional case by Chin and Julienne [1]. We consider
mixtures of the three lowest hyperfine states of 6Li, de-
noted |1⟩, |2⟩, |3⟩. For the conditions of our experi-
ments in a 12 mixture at 720 G, the observed 2 → 3
threshold spectrum is well described by a 12-dimer-to-
13-scattering-state transition. In contrast, at 834 G, the
predicted dimer spectrum is in marked disagreement with
the data. In particular, we find that the difference be-
tween the ground and excited state dimer energies is too
small. In § II we determine the energies for noninter-
acting confinement-induced polarons. We find that the
locations of the observed resonances for a 12 mixture near
834 G are well modeled by the predicted energy difference
between isolated state 2 polarons and state 3 polarons,
in a bath of atoms in state 1.

I. CONFINEMENT-INDUCED DIMERS

A simple golden rule calculation gives the radio-
frequency-induced transition rate out of the initial state
to all possible final states Ri(ωrf ) =

∑
F Rf←i, where

Rf←i = (2π/h̄)|H̃ ′fi|2 δ(Ef − Ei − h̄ωrf ), with H̃ ′fi =

h̄Ωfi⟨F |I⟩/2. Here, Ωfi is the Rabi frequency for chang-
ing the hyperfine state of a single atom from the cho-
sen populated state (i) to the initially unpopulated state
(f) and ⟨F |I⟩ is the overlap between the initial and fi-
nal wave-functions for the relative motion of the atom-
pair. Since the center of mass energy does not change
in the rf transition, Ef − Ei is the total change in the
atomic hyperfine energy (≡ h̄ωfi) plus the change in
the energy of the relative motion of the pair EF − EI .
Since

∑
F |⟨F |I⟩|2 = 1,

∫
dωrf Ri(ωrf ) = (π/2)Ω2

fi. We

define a normalized spectrum I(ω) where Ri(ωrf ) =
(π/2)Ω2

fi I(ω) and ωrf = ωfi + ω, with ω the frequency

relative to the (unshifted) free-atom hyperfine transition
frequency. Then, I(ω) =

∑
F |⟨F |I⟩|2 h̄δ(EF − EI − h̄ω)

and
∫
dωI(ω) = 1.

For transitions between bound dimer states, we deter-
mine the resonance frequencies from the difference be-
tween the binding energies for the initial and final dimer
states. In a 1-2 mixture, for transitions from an occu-
pied state 2 to an initially empty state 3, the expected
bound-to-bound transition frequency is then determined
by the difference between the 1-2 dimer and 1-3 dimer
binding energies. We note that interactions arising from
2 − 3 scattering do not shift the 2 → 3 transition fre-
quency [2, 3].

To determine the spatial wavefunctions and the pair
binding energies, we note that the range of the two-body
interaction is small compared to the interparticle spac-
ing as well as to the harmonic oscillator confinement
scale lz ≡

√
h̄/(mωz). In this case, interactions be-

tween atoms in two different spin states are well described
by the s-wave pseudopotential in three dimensions [4],
V (r) = (4πh̄2a/m) δ(r)∂r(r...), where r is the distance
between the atoms, m is the mass of a single atom and
a is the magnetically tunable s-wave scattering length.
The spatial wavefunctions are readily written in terms of
the Green’s function GE(r) for the relative motion of the
two atoms in the confining potential, which we take to be
harmonic, with ground state energy E0. The two-atom
scattering states with energy E = E0+Es, where Es ≥ 0,

take the form ψs(r) = ψ
(0)
Es

(r) − aGEs(r)u
′
s(0), where

ψ
(0)
Es

is the input state and ψ = u/r with u regular at
r = 0. For the bound states, where there is no input, we
have ψb(r) = −aGEb

(r)u′b(0), where E = E0 − Eb with
Eb > 0. Using ∂r[rψb(r)]r→0 = u′b(0) yields the equa-
tion for the binding energy [4], 1 = −a ∂r[rGEb

(r)]r→0,
where the right side projects out the regular part of G
at r = 0. For a three dimensional harmonic trap, the
Green’s function is

Gϵ(r) =
i

lz
√
4π

∫ ∞
0

dη eiϵη
∏
j

e
i cot(βjη)

(
xj
2lj

)2

fj(η), (1)

where E = E0 + ϵ h̄ωz, with ϵ = −ϵb for bound
states and ϵ > 0 for scattering states. Here, fj(η) =√

2βj/(1− e−2iβjη), with βz ≡ 1, βx,y = ωx,y/ωz and
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lj = lz/
√
βj . After subtracting the irregular part of G

and changing to real variables, we determine the dimer
binding energies Eb = ϵbh̄ωz > 0 from

lz
a

=

∫ ∞
0

du√
4πu3

1−
∏
j

(
2βju

1− e−2βju

)1/2

e−ϵbu

 . (2)

The dimer binding energy is significantly increased for
nonzero transverse confinement. At resonance, where
lz/a→ 0, for ν⊥/νz = 0 we obtain Eb = 0.245hνz, while
for ν⊥/νz = 1/25 we obtain Eb = 0.290hνz. At 842
G in the shallowest trap, the binding energy of the 13
dimer is increased from 0.15 kHz without transverse con-
finement to 0.78 kHz with transverse confinement. We
compute the pair binding energy Eb ≡ ϵb h̄ωz as a func-
tion of magnetic field using the s-wave scattering lengths
a measured in Ref. [5].
The scattering state is determined using u′s(0) =

u′
(0)
s (0)/{1 + a ∂r[rGEs(r)]r→0}. Using the relation

(one-to-one correspondence) between the scattering
length and the bound state energy, we have u′s(0) =

u′
(0)
s (0)/{a [GEs(r)−GEb

(r)]r→0}, where Eb is the bind-
ing energy corresponding to the scattering length a and
we have used ∂r{r[GEs(r) − GEb

(r)]r→0} = [GEs(r) −
GEb

(r)]r→0, which is regular at r = 0. Then, the scat-
tering state takes the form

ψs(r) = ψ
(0)
Es

(r)− GEs(r)u
′(0)
s (0)

[GEs(r)−GEb
(r)]r→0

, (3)

where u′
(0)
s (0) = ψ

(0)
Es

(0), since the input state is regular
at r = 0.
For 2 → 3 transitions in a 12 mixture at 834 G,

the binding energies are small compared to the en-
ergy difference between symmetric axial states 2h̄ωz,
which are coupled by the s-wave scattering interaction.
In this case, the Green’s functions, and hence the 1-
2 and 1-3 bound states and the 1-3 scattering states,
are well approximated by axial ground state compo-
nent. For the scattering state Green’s function, ig-
noring the transverse confinement in Eq. 1 and taking
Es = ϵ⊥h̄ωz = h̄2 k2⊥/m, the axial ground state com-

ponent is G
(0)
ϵ⊥ (z, ρ) = ϕ0(z)

∫
dz′ϕ0(z

′)Gϵ⊥(z
′, ρ), where

ϕ0(z) is the axial ground vibrational state for the relative
motion (reduced mass µ = m/2), which is real. It is easy
to show by direct integration that

G(0)
ϵ⊥

(z, ρ) = ϕ0(z)ϕ0(0)

{
π iH

(1)
0

(
ρ
√
ϵ⊥
lz

)}
, (4)

where
√
ϵ⊥/lz = k⊥ is the transverse wavevector. For a

bound state, the axial ground state Green’s function is

G
(0)
ϵb (z, ρ) = ϕ0(z)

∫
dz′ϕ0(z

′)Gϵb(z
′, ρ), which is readily

obtained from Eq. 1 and corresponds to taking
√
ϵ⊥ →

i
√
ϵb in Eq. 4. We obtain

G(0)
ϵb

(z, ρ) = ϕ0(z)ϕ0(0)

{
2K0

(
ρ
√
ϵb
lz

)}
. (5)

Eq. 5 yields the normalized bound state,

ψϵb(z, ρ) = ϕ0(z)
κ√
π
K0(κρ), (6)

where Eb = ϵb h̄ωz is the pair binding energy for the
given scattering length, and h̄2κ2/m = Eb, i.e., κ =√
ϵb/lz. The 1-2 bound state to 1-3 bound state transi-

tion strength is then determined by the overlap between
of the modified Bessel functions, K0(κ12ρ) and K0(κ13ρ),

where κ12(13) is determined by ϵ
12(13)
b . The 1-2 bound to

1-3 bound contribution to the lineshape is then given by

Ibb(ν) = ϵbb(q) δ[ν − (ϵ12b − ϵ13b )νz], (7)

where νz is the axial harmonic oscillator frequency in Hz
and ν is the rf frequency in Hz, relative to the bare 2-
3 hyperfine transition frequency of ≃ 83 MHz. For the
axial ground state, the frequency integrated bound to
bound transition strength can be written compactly in
terms of q ≡ ln(ϵ13b /ϵ

12
b ),∫

dν Ibb(ν) ≡ ϵbb(q) =
q2

4 sinh2(q/2)
. (8)

We plot ϵbb as a function of magnetic field in Fig. 1 for
the general case, valid for both weak and tight binding of
the 1−2 or 1−3 dimers, including the contribution of the
first 50 even axial states. For comparison, we show the
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FIG. 1: Bound 12 dimer to bound 13 dimer transition frac-
tion versus magnetic field for ν⊥/νz = 1/25. Upper curves
(red online): Trap depth U0 = 280µK, νz = 82.5 kHz; Lower
curves (blue online) U0 = 21µK and νz = 24.5 kHz. Solid
lines denote the square of Frank-Condon overlap integral, in-
cluding the first 50 even axial states. Dashed lines denote the
corresponding results using only the ground axial state, Eq. 8.

weak binding approximation given by Eq. 8, which in-
cludes only the ground axial vibrational state. For small
binding energies, increasing the trap depth significantly



3

increases the pairing energy, increasing the overlap inte-
gral for bound-to-bound transitions.
From Fig. 1, we see that for a trap depth U0 = 21µK

at 720 G, the 2 → 3 transition in a 12 mixture is dom-
inated by bound-to-free transitions. In contrast, at 834
G, the corresponding bound-to-bound transition is dom-
inant and increases with increasing trap depth.
In the same weak binding approximation as used for

the bound states, again neglecting the transverse con-
finement, the two dimensional box-normalized (to area
A) 1-3 scattering state takes the form ψϵ⊥(z, ρ) =

ϕ0(z)ψϵ⊥(ρ), with Es = ϵ⊥h̄ωz = h̄2 k2⊥/m. Assum-
ing that the incident transverse state is the azimuthally-
symmetric part (l = 0) of a box normalized plane-wave

state exp(ik⊥ · x⊥)/
√
A, i.e., J0(k⊥ρ)/

√
A, Eq. 3 with

u′
(0)
s (0) = ϕ0(0)/

√
A gives

ψϵ⊥(ρ) =
1√
A

{
J0(k⊥ρ)−

πi

ln(ϵb/ϵ⊥) + πi
H0(k⊥ρ)

}
,

(9)
where we have used

[π iH
(1)
0 (ρ

√
ϵ⊥/lz)− 2K0(ρ

√
ϵb/lz)]lim ρ→0

= π i+ ln(ϵb/ϵ⊥).

We determine the overlap integral of the 1-2 bound
state Eq. 6 with the 1-3 scattering state Eq. 9 and inte-
grate the transition rate using the density of transverse
states, A/(2π)2 2πk⊥dk⊥, to obtain the 1-2 bound to 1-
3 scattering state contribution to the lineshape, which
takes the form of a threshold function,

Ibf (ν) =
ϵ12b νz
ν2

q2 θ(ν − ϵ12b νz)[
q − ln

(
ν

ϵ12b νz
− 1

)]2
+ π2

. (10)

Note that
∫
dν Ibf (ν) = 1− ϵbb(q), as it should. We find

that Eq. 10 well fits the radio frequency spectra obtained
at 720 G, where the dimer binding energy is larger than
the transverse Fermi energy.

II. POLARONS IN A TWO-DIMENSIONAL
FERMI GAS

For radiofrequency 2 → 3 spectra obtained near 834
G in a 12 mixture, we find that the difference between
the calculated dimer binding energies significantly un-
derestimates the observed frequency shifts, as shown in
Figs. 2, 3, and 4 of the main paper. We consider the
possibility that the spectra may arise from transitions
between polaronic states, as the atom produced in state
3 is naturally an impurity. Further, the polaron energy is
significantly more negative than the corresponding dimer
energy when the transverse Fermi energy is larger than
the dimer binding energy and is therefore energetically
preferred [6].
To estimate the polaron energies, we consider either

an isolated impurity atom in state 2 or in state 3, im-
mersed in a bath of atoms in state 1. We note that for

the 2 → 3 transition, the interaction between states 2
and 3 does not affect the transition frequency of the co-
herently rotated hyperfine state. We employ the method
described for polarons in three dimensions in the supple-
mentary material of Schirotzek at al. [7], which is based
on the zero momentum polaron wavefunction proposed
by Chevy [8], which for a polaron in state i = 2, 3 takes
the form

|Ei⟩ = φ0i|0⟩i |FS⟩1 +
∑

q<kF<k

φkq|q− k⟩i c†k1cq1 |FS⟩1.

(11)
Here, the first term describes an impurity i of zero mo-
mentum in a Fermi sea of atoms in state 1 for which the
net momentum is zero. Collisions between the impurity
and the background atoms couple the zero momentum
impurity state to that with momentum q− k, producing
a particle-hole pair from the Fermi sea of atoms in state
1 with net momentum k− q, conserving the total zero
momentum.

For the 2D calculations, we replace the box normaliza-
tion volume in the supplementary material of Schirotzek
at al. [7] by the corresponding area A, so that the polaron
energy in 2D takes the form

Epi =
1

A

∑
q<kF

f(Epi, q), (12)

where

f−1(Epi, q) =
1

g0
+

1

A

∑
k>kF

1

ϵk − ϵq + ϵq−k − Epi
. (13)

Here, ϵk = h̄2k2/(2m) and kF is the local Fermi wavevec-
tor with EF = h̄2k2F /(2m) the corresponding local trans-
verse Fermi energy.

Following Zöllner et al., Ref. [6], we assume that the
effective bare interaction U arises from a short range
2D potential, so that the matrix elements Ukk′ = g0/A
are momentum independent. g0 can be rewritten using
the physical two-body T-matrix element in 2D, 1/g0 =
1/T2B(k0) − (1/A)

∑
k 1/(2ϵk − 2ϵk0). This method is

similar to that employed previously [6, 9, 10]. Here,
we choose the T-matrix element Tk′k0 = T2B(k0)/A so
that the scattering rate calculated using the generalized
Golden rule reproduces the scattering rate obtained from
the 2D flux corresponding to Eq. 9. Then T2B(k0) =
h̄2 f(k0)/m, with f(k0) = 4π/[πi + ln(Eb/ϵ⊥)]. Here,
ϵ⊥ = 2ϵk0 and Eb = ϵbh̄ωz is the dimer binding energy
calculated from Eq. 2. Both the πi term and the k0 de-
pendence in T2B(k0) are canceled by corresponding terms
in the sum (1/A)

∑
k 1/(2ϵk − 2ϵk0), so that f−1(Epi, q)

is independent of k0 as it should be. For attractive po-
larons with energy Epi < 0, we then obtain the simple
integral equation ϵ(Li) = Σ(Li, ϵi), where

Σ ≡
∫ 1

0

−2 du

−L+ ln[
√
(1− ϵ

2 )
2 − u+ (1− ϵ

2 − u
2 )]

. (14)
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Here, ϵ(Li) ≡ ϵi = Epi/EF and Li = ln(E1i
b /EF ) for an

impurity in state i. Eq. 14 yields the polaron energies
Epi = ϵiEF for the initial and final states i = 2, 3, using
the binding energies E1i

b = ϵ1ib h̄ωz determined from Eq. 2.
Fig. 2 shows the attractive polaron energies obtained

from Eq. 14, which agree with the numerical results of
Ref. [6] and the approximate analytic result of Ref. [11].
We see that the polaron energy Ep is a large fraction of
the local Fermi energy, which can be much larger than
the corresponding dimer binding energy Eb.
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FIG. 2: Polaron energy Ep/EF versus ln[Eb/EF ], where Eb

is the dimer binding energy and EF is the local Fermi energy.

For radiofrequency transitions between impurity states
2 → 3 in a bath of atoms in state 1, the momentum of
the impurity does not change. We therefore assume the
coherent part of the spectrum is given by

I(h̄ω) = Z2 Z3 δ[h̄ω − Ep3 + Ep2], (15)

where |φ∗03φ02|2 = Z2 Z3 is the square of the overlap
integral between the part of the initial and final polaron
states that yields the coherent part of the spectrum. We
determine Z2 = |φ02|2 using Z−12 = 1 − ∂Σ(L2, ϵ)/∂ϵ,
with ϵ → Ep2/EF , as described in Ref. [7] for the 3D
problem, and similarly for Z3 = |φ03|2. Fig. 3 shows
the quasiparticle weight Z obtained from Eq. 14. For the
dimer binding energies in a 12 mixture near 834 G, Table
1 of the main paper, we find that Z2 ≃ 0.85 and Z3 ≃

0.94 for the shallowest trap depth, both close to unity.
Hence, we expect that the overlap between the initial and
final polaron states is strong and that transitions between
polaron states should make an important contribution to
the spectrum.

In the limit that the dimer binding energy is small
compared to the local Fermi energy, i.e., Eb << EF ,
one verifies from Eq. 14 that the corresponding polaron
energy yields the limiting form [6, 11]

Ep ≃ −2EF

ln(2EF /Eb)
, (16)
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FIG. 3: Polaron quasiparticle weight Z versus ln[Eb/EF ],
where Eb is the dimer binding energy and EF is the local
Fermi energy.

which can be interpreted as an effective mean field shift,
since EF is proportional to the 2D density n⊥(ρ). At 842
G, where the dimer binding energy is reasonably small
compared to the transverse Fermi energy in our experi-
ments, this formula overestimates the magnitude of the
polaron energy difference Ep3−Ep2 by about 10% for the
most shallow trap. At 811 G, it overestimates the energy
difference by about 40%. As Eb is not small compared to
EF for most of the data, it is not surprising that EF can-
not be adjusted in Eq. 16 to give the measured frequency
differences.
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