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We study collisions between two strongly interacting atomic Fermi gas clouds. We observe exotic

nonlinear hydrodynamic behavior, distinguished by the formation of a very sharp and stable density peak

as the clouds collide and subsequent evolution into a boxlike shape. We model the nonlinear dynamics of

these collisions by using quasi-1D hydrodynamic equations. Our simulations of the time-dependent

density profiles agree very well with the data and provide clear evidence of shock wave formation in this

universal quantum hydrodynamic system.
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Fermi gases with magnetically tunable interactions
provide a new universal medium for studies of nonlinear
hydrodynamics in quantum matter. Near a collisional
(Feshbach) resonance, where the s-wave scattering length
diverges, a bias magnetic field can continuously tune the
cloud from a weakly interacting molecular Bose-Einstein
condensate to a weakly interacting Fermi gas, i.e., the so-
called BEC-BCS crossover. At resonance, a Fermi gas is
the most strongly interacting nonrelativistic system known
[1]. It exhibits anisotropic hydrodynamic expansion [2] or
‘‘elliptic flow,’’ in common with a quark-gluon plasma
[3,4], a state of matter that existed microseconds after the
big bang and was recently recreated in gold ion collisions.
Further, both systems have an extremely low (quantum)
viscosity [5] and nearly the same ratio of shear viscosity to
entropy density, just a few times the conjectured lower
bound for a perfect fluid [6].

In this Letter, we report the observation of shock waves

in a strongly interacting Fermi gas. Shock waves are of

recent interest in nonequilibrium electron Fermi gases

[7,8] and occur generally in hydrodynamic systems when

regions of high density move with a faster local velocity

than regions of low density, resulting in increasingly large
density gradients. In the absence of dissipative or disper-
sive forces, this process leads to a ‘‘gradient catastrophe,’’
where the density develops infinite gradients. We find that
a gradient catastrophe is avoided in a strongly interacting
Fermi gas by dissipative forces, which we model as arising
from the local shear viscosity. The data are well fit with a
kinetic viscosity 10@=m, where m is the atom mass [9].

In contrast, previous experiments on nonlinear hydro-
dynamics in quantum matter have focused on weakly
interacting Bose-Einstein condensates (BECs) [10].
There, the mean field and quantum pressure (i.e., the
Gross-Pitaevski equation) lead to dispersive shock waves,
characterized by density oscillations [11–13]. For BECs,

dispersive shock waves produce soliton trains [14], which
also have been observed and modeled for rapidly rotating
BECs [15] and for merging and splitting BECs [16].
Recently, quantum turbulence has been observed in
BECs, by using oscillating potentials [17,18].
Our experiments employ a 50:50 mixture of the two

lowest hyperfine states of 6Li, confined in a cigar-shaped
CO2 laser trap and bisected by a blue-detuned beam at
532 nm, which produces a repulsive potential. The gas is
then cooled via forced evaporation near a broad Feshbach
resonance at 834 G [19]. After evaporation, the trap is
adiabatically recompressed to 0.5% of the initial trap
depth. This procedure produces two spatially separated
atomic clouds, containing a total of ’ 105 atoms per spin
state. In the absence of the blue-detuned beam, the trapping
potential is cylindrically symmetric with a radial trap
frequency of !x ¼ !y ¼ !? ¼ 2�� 437 Hz and an ax-

ial trap frequency of!z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

Oz þ!2
Mz

q
¼ 2�� 27:7 Hz,

where the axial frequency of the optical trap is !Oz ¼
2�� 18:7 Hz and !Mz ¼ 2�� 20:4 Hz arises from cur-
vature in the bias magnetic field. When the repulsive
potential is abruptly turned off, the two clouds accelerate
toward each other and collide in the CO2 laser trap. After a
chosen hold time, the CO2 laser is turned off, allowing
the atomic cloud to expand for 1.5 ms, after which it is
destructively imaged with a 5 �s pulse of resonant light.
Figure 1 shows false color absorption images for a

collision of the atomic clouds at different times after the
blue-detuned beam is extinguished. Two distinctive fea-
tures are clearly seen in these data: (i) the formation of a
central peak, which is well-pronounced and robust and
(ii) the evolution of this peak into a boxlike shape with
very sharp boundaries, which propagates outward. The
observed large density gradients provide strong evidence
of shock wave formation in this system, where the sharp
boundaries of the ‘‘box’’ are identified as shock wave
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fronts. Numerical modeling of the hydrodynamic theory
for one-dimensional motion is used to predict the evolution
of the atomic density, yielding profiles in good agreement
with the data.

For simplicity, we assume that the cloud is a strongly
interacting Fermi gas at zero temperature; i.e., we model
the cloud as a single fluid, consistent with our measure-
ments of the sound velocity [20]. In this case, the local
chemical potential has the universal form �ðn3DÞ ¼ ð1þ
�Þ�Fðn3DÞ, where �Fðn3DÞ ¼ @

2

2m ð3�2n3DÞ2=3 is the ideal

gas local Fermi energy corresponding to the three-
dimensional density n3D. Here, � ¼ �0:61 is a universal
scale factor [2,21,22].

Neglecting viscous forces, the dynamics for the density
n3Dðr; tÞ and the velocity field vðr; tÞ are described by the
continuity equation

@tn3D þr � ðn3DvÞ ¼ 0 (1)

and the Euler equation

m@tvþr½�ðn3DÞ þUtrapðr; zÞ þ 1
2mv2� ¼ 0; (2)

where we assume irrotational flow. Here UtrapðrÞ ¼
1
2m!2

?r
2 þ 1

2m!2
zz

2 is the confining harmonic potential

of the cigar-shaped trap.
To determine the initial density profile for the separated

clouds, we consider the equilibrium 3D density of the
Fermi gas in the trap, including a knife-shaped repulsive
potential VrepðzÞ. A blue-detuned laser beam is shaped by a

cylindrical lens telescope; i.e., the spot size is small com-
pared to the long dimension of the cigar-shaped cloud and
large compared to the transverse dimension. Therefore, the
repulsive potential varies only in the z (axial) direction:
VrepðzÞ ¼ V0 exp½�ðz� z0Þ2=�2

z�. We measure the width

�z ¼ 21:2 �m. The offset z0 ¼ 5 �m of the focus from

the center in the long direction of the optical trap is
determined by a fit to the first density profile at 0 ms.
Using the beam intensity and the ground state static polar-
izability of 6Li at 532 nm, we find V0 ¼ 12:7 �K. The
initial density profile is then

n3Dðr; zÞ ¼ ~n

�
1� r2

R2
?
� z2

R2
z

� VrepðzÞ
�G

�
3=2

; (3)

where ~n ¼ ½ð2m�G=@
2Þ=ð1þ �Þ�3=2=ð3�2Þ. In Eq. (3),

Rz;? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�G=ðm!2

z;?Þ
q

and �G is the global chemical

potential, which is determined by normalizing the integral
of the 3D density to the total number N of atoms in both
spin states. For N ¼ 2� 105, we find �G ¼ 0:53 �K,
Rz ¼ 220 �m, and R? ¼ 14 �m.
We note that �G=ð@!?Þ ¼ 27, which means that the

typical number of filled energy levels of transverse quan-
tization is large. Therefore, in this Letter, we use 3D
hydrodynamics [Eqs. (1) and (2)] and neglect effects of
transverse quantization even though they are more pro-
nounced in regions with lower density.
We model the dynamics for the one-dimensional motion

in the long direction of the cigar-shaped trap. Just after the
blue-detuned beam is extinguished, the initial 1D density
profile is determined by integrating n3D of Eq. (3) over the
transverse dimension r:

n1DðzÞ ¼ 2�

5
R2
?~n

�
1� z2

R2
z

� VrepðzÞ
�G

�
5=2

: (4)

In the following, we assume that during the evolution the
r dependence of Eq. (3) is preserved with the effective size
of the cloud being a slow function of z and t. We also
assume that the hydrodynamic velocity is along the z axis

FIG. 1 (color online). Collision between two strongly interacting Fermi gas clouds in a cigar-shaped optical trap. The clouds are
initially separated by a repulsive 532 nm optical beam. After the 532 nm beam is extinguished (0 ms), the clouds approach each other.
False color absorption images show the spatial profiles versus time. Initially, a sharp rise in density occurs in the center of the collision
zone. At later times the region of high density evolves from a ‘‘peaklike’’ shape into a ‘‘boxlike’’ shape as the shock front propagates
outward. The well defined edges of the central zone in the last four images provide evidence of shock wave formation in the strongly
interacting Fermi gas.
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and does not depend on r. Then the subsequent time
evolution of the density follows the quasi-1D nonlinear
hydrodynamic equations:

@tn ¼ �@zðnvÞ; (5)

@tv ¼ �@z

�
v2

2
þ Cn2=5 þ 1

2
!2

zz
2

�
þ �

@zðn@zvÞ
n

; (6)

where C ¼ 1
2!

2
?l

2
?ð15�2 l?Þ2=5ð1þ �Þ3=5 and l? ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=ðm!?Þ
p

is the oscillator length. For brevity, we have
omitted the subscript 1D in Eqs. (5) and (6). The last
‘‘viscosity’’ term in Eq. (6) is added phenomenologically
to describe dissipative effects. For the strongly interacting
1D fluid, � is the effective kinematic viscosity, which has
a natural scale @=m. It is the only fitting parameter in the
theory [9].

For our previous sound wave experiments [20], we
observed nonlinear (amplitude-dependent) propagation
without shock waves. By reducing the density perturbation,
we observed linear propagation. In this regime, one can
expand the differential equations (5) and (6) around an
equilibrium density configuration n0ðzÞ in a harmonic
trap. By defining nðz; tÞ � n0ðzÞ þ �nðz; tÞ, the linearized
evolution equation for �nðz; tÞ (neglecting viscosity) is

@2t �n ¼ @z

�
n0@z

�
2C

5m
n�ð3=5Þ
0 �n

��
: (7)

With a flat background density, i.e., constant n0, with

�G ¼ Cn2=50 , Eq. (7) reduces to @2t �n ¼ c2@2z�n with the

sound velocity c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�G=5m

p
, in agreement with predic-

tions [23,24].
To compare the numerical solutions of Eqs. (5) and (6)

with experiment, we note that the images are taken after an
additional free expansion for 1.5 ms, during which n1D
continues to slowly evolve in the axial potential of the bias
magnetic field, i.e., !z ! !Mz ¼ 2�� 20:4 Hz. We as-
sume that, during this expansion, the transverse density
profiles keep the same form, but the radius increases with
time. Then n3Dðr; zÞ ! n3Dðr=b?; zÞ=b2?, where b?ðtÞ is a
transverse scale factor, which obeys €b? ¼ !2

?b
�7=3
? , with

b?ð0Þ ¼ 1 and _b?ð0Þ ¼ 0 [2,25,26]. Since the 3D pressure

scales as n5=33D , the 1D pressure scales as b�4=3
? . This leads to

a simple modification of Eq. (6): C ! CðtÞ ¼ C=b4=3? ðtÞ.
We numerically integrate Eqs. (5) and (6) by using the

measured values of the trap frequencies, the atom number,
and the offset, depth, and width of the repulsive potential.
In the numerical simulation, we create and load a density
array as well as a velocity array with grid spacing �z. The
initial velocity is set to zero. The simulation then updates
the density and velocity field in discrete time steps �t

according to Eqs. (5) and (6). The 1D density profiles are
calculated as a function of time after the repulsive potential
is extinguished. Figure 2 shows the predictions and the

data, which are in very good agreement. For the simulation
curves shown in the figure, we use a grid of 150 points.
To check for numerical consistency, we also employ a
smoothed-particle-hydrodynamics [27] approach, where
the fluid is described by discrete pseudoparticles. The
results obtained indeed coincide with the discretized-grid
approach described above.
As shown in Fig. 2, we observe a dramatic evolution for

the density of the gas. During the collision, a distinct and
stable density peak forms at the point of collision in the
center of the trap [28]. The density gradient at the side of
the central peak increases from its onset until � 3 ms,
at which point the gradient reaches its maximum value.
A large gradient at the edge of the collision zone is main-
tained throughout the rest of the experiment. For most
of the data, we find relatively small deviations from the
simulation. The largest deviation occurs at 4 ms, where the
maximum density of the observed central peak exceeds
that of the simulation by ’ 20%.
The steep density gradients observed in Fig. 1 suggest

shock wave formation. A deeper analysis of the simulation

FIG. 2 (color online). 1D density profiles divided by the total
number of atoms versus time for two colliding strongly interact-
ing Fermi gas clouds. The normalized density is in units of
10�2=�m per particle. Red dots show the measured 1D density
profiles. Black curves show the simulation, which uses the
measured trap parameters and the number of atoms, with the
kinetic viscosity as the only fitting parameter.
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curves provides additional evidence for shock waves.
Without any dissipation, the numerical integration of the
quasi-1D theory breaks down due to a gradient catastrophe.
We find that the dissipative force in Eq. (6), which is
described by the kinematic viscosity coefficient �, is
required to attenuate the large density gradients and avoid
gradient catastrophe. For the data shown in Fig. 2, we find
that the best fits are obtained with the viscosity parameter
� ¼ 10@=m. For smaller values of �, the simulation pro-
duces qualitatively similar results to those shown in the
figure, only with steeper density gradients at the edges of
the collision zone. The dissipative term / � has a relatively
small effect on the density profiles, unless we are in a shock
wave regime, where the density gradients are large. Hence,
the numerical model suggests that the large density gra-
dient observed at the edge of the collision zone is the
leading edge of a dissipative shock wave.

Our one-dimensional data for a strongly interacting
Fermi gas are very well described by a model based on
dissipative nonlinear quantum hydrodynamics. The model

employs an effective chemical potential �1D ¼ Cn2=51D ,

assuming a single fluid near the ground state. However,
we expect that at higher temperatures, even in the normal
fluid regime, rapid collisional equilibrium in the strongly
interacting gas will produce nearly adiabatic evolution

with a three-dimensional pressure / n5=3 and, hence, an
identical power-law dependence for the effective one-
dimensional chemical potential. The radial density varia-
tions observed in the two-dimensional image are not
captured in the one-dimensional profiles but may be
studied by expanding the numerical analysis to three
dimensions.

In conclusion, we have observed shock waves in a
strongly interacting Fermi gas, which provides an entirely
new regime for studies of nonlinear wave propagation in
cold quantum gases. Studies of nonlinear hydrodynamics
can now be done over a wide range of temperatures, in both
the superfluid and normal fluid regimes, and magnetic field
control of the interaction strength enables continuous tun-
ing from a dispersive BEC to a dissipative Fermi gas. In
future work, it will be interesting to study the origin of the
effective viscosity, the effects of transverse quantization,
and the higher derivative dispersive terms in the stress
tensor [7,8,11,29], which become important for large den-
sity gradients.
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