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Experimental Simulation of Two-Particle Quantum Entanglement using Classical Fields
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We experimentally demonstrate simulation of two entangled quantum bits using classical fields of
two frequencies and two polarizations. Multiplication of optical heterodyne beat signals from two spa-
tially separated regions simulates coincidence detection of two particles. The product signal so obtained
contains several frequency components, one of which can be selected by bandpass frequency filtering.
The bandpassed signal contains two indistinguishable, interfering contributions, permitting simulation of
four polarization-entangled Bell-like states. These classical field methods may be useful in small scale
simulations of quantum logic operations that require multiparticle entanglement without collapse.
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Currently, there is great interest in classical-wave simu-
lation of quantum logic [1–3] and quantum measurement
[4]. Classical-wave simulation is equivalent to an analog
electronic computer which reproduces the interferences
that arise in a quantum system [3]. Analogous to quan-
tum systems, classical-wave fields obey a superposition
principle, enabling operations with superposition states
on which much of the quantum information processing
is based. Since decoherence is readily avoided, classical
fields are well suited for simulating the unitary evolution
of a quantum system. In addition to potential practical
applications, study of classical-wave systems will help to
elucidate the fundamental differences between classical-
wave and quantum systems. Although it has been pointed
out by several authors that classical-wave simulation of
n single particle quantum bits (qubits) should exhibit ex-
ponential scaling of the number of optical paths with n,
the ability to perform unitary operations with simple beam
splitters and polarizers [1] makes classical-wave analogs
useful for simulating small-scale quantum systems.

An important feature often associated with quantum sys-
tems is the concept of entanglement which describes cor-
relations between different degrees of freedom. Two types
of entanglement have been identified [1–3]: (i) nonlocal
entanglement between separate particles and (ii) local en-
tanglement between different properties of a single par-
ticle, such as polarization and momentum. It has been
shown theoretically that classical-wave systems which
simulate type (ii) quantum entanglement fail to simulate
quantum nonlocality because a single particle cannot be
sent to two spatially separated observers. Classical simu-
lation of type (ii) entanglement has been discussed in
detail, including quantum information processing and vio-
lation of generalized Bell’s inequalities which depend only
on sums of single particle detection signals [3]. It has also
been shown that single photon quantum interference can
be fully simulated by classical-wave interference [5]. Re-
cently, a hybrid approach has been suggested to implement
type (i) entanglement using quantum nondemolition mea-
surement to entangle separated one-photon interferometers
[6]. While a variety of classical-wave schemes for simu-
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lating quantum logic have been proposed, relatively few
have been implemented. Further, the proposed schemes
have been limited to single-particle entanglement.

In this Letter, we describe and demonstrate a simple,
general method for classical-wave simulation of type (i)
entanglement of more than one particle. The simulations
employ optical heterodyne detection of fields of different
frequencies. The field at each frequency is a classical
analog (c-bit) of a qubit which can be in an arbitrary
polarization state, i.e., a superposition of two orthogonal
polarizations. Essential to the method is the use of ana-
log multiplication of the heterodyne signals from indepen-
dent spatially separated detectors to simulate coincidence
measurement of multiple particles. The product signal so
obtained contains several frequency components, one of
which can be selected by bandpass frequency filtering. The
bandpassed signal generally contains several indistinguish-
able, interfering contributions, permitting simulation of a
specific multiparticle entangled state.

Our experiments simulate entanglement of two c-bits.
The first is a beam of frequency vV � v 1 2p 3 100 kHz
with vertical polarization which is combined on a 50-50
beam splitter with a second c-bit which is a beam of fre-
quency vH � v 1 2p 3 25 kHz with horizontal polar-
ization. In the “parenthesis” notation of Ref. [3], the two
output fields of the beam splitter can be represented as
states jc1� � �jH1� exp�2ivHt� 1 jV1� exp�2ivV t���

p
2

and jc2� � �jH2� exp�2ivHt� 2 jV2� exp�2ivV t���
p

2.
These output beams are sent to two spatially separated
measurement systems, each of which employs heterodyne
detection with an independent local oscillator (LO) of fre-
quency v and a variable polarization u1 and u2, respec-
tively. For arbitrary polarizations, each heterodyne signal
contains two frequency components, at 25 and 100 kHz.
These signals are multiplied together in an analog multi-
plier, and the product signal is bandpassed at 125 kHz to
obtain a signal containing two indistinguishable contri-
butions, one from jV1� jH2� which is ~ cosu1 sinu2 and
one from 2jH1� jV2� which is ~ 2 sinu1 cosu2. The
squared magnitude of the product signal at 125 kHz is
then ~ sin2�u1 2 u2�, independent of the phases of the
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independent LO fields. The angle dependence is identical
to the joint probability obtained in quantum mechanical ex-
periments employing coincidence counting of correlated,
orthogonally polarized, signal and idler photon pairs gen-
erated by parametric down-conversion [7]. Since a single
classical beam can contain fields of many frequencies each
of arbitrary polarization, this method is readily generalized
to explore entanglement of more than two particles.

Previously, classical-wave analogs of the Schrödinger
wave function have been explored both theoretically and
experimentally. It is well known that, in the paraxial ap-
proximation, the transverse mode of an electromagnetic
field obeys a propagation equation which is formally iden-
tical to the Schrödinger equation with the time replaced
by the axial coordinate. Hence, the transverse modes of
the field in a lenslike medium are identical in structure to
harmonic oscillator wave functions in two dimensions [8].
This has led to the study of a number of classical-wave
analogs of quantum wave mechanics, including analogs of
Fock states [9,10] and measurement of Wigner phase-space
distributions for classical optical fields which can exhibit
negative regions [11–14]. However, exploration of classi-
cal analogs has been limited principally to measurement of
first order coherence, i.e., single-particle states. Classical-
wave analogs of higher order coherence, i.e., multiparticle
states, have been relatively unexplored.

In our experiments (Fig. 1), a HeNe laser beam is split
and sent through two fixed-frequency acousto-optic modu-
lators to produce a beam of frequency vH � v 1 dhoriz
with horizontal polarization and a beam of frequency vV �
v 1 dvert with vertical polarization, where dhoriz � 2p 3

25 kHz and dvert � 2p 3 100 kHz. These two beams are
combined on beam splitter BS1. Note that the relative
phase between the 25 and 100 kHz fields is the same for
each port of BS1, except for a p phase shift which arises
from the beam splitter. The total output field from each
port 1 and 2, denoted E1 and E2, is sent to heterodyne
detection systems at beam splitters BS2 and BS3, respec-
tively. Here, they are mixed with independent local os-
cillator beams LO1 and LO2 of variable polarizations and
equal frequencies v. The LO polarizations are controlled
by independent half-wave plates, and are given by

êLO1 � cosu1V̂ 1 sinu1Ĥ

êLO2 � cosu2V̂ 1 sinu2Ĥ ,
(1)

where H (V ) denotes the horizontal (vertical) direction.
The beat signal amplitudes A1 and A2, at the outputs of
BS2 and BS3, respectively, can be represented as inner
products in the parenthesis notation of Ref. [3],

A1 � �ELO1j1�

�
Z

dx dy E�
LO1�x, y, t�ê�

LO1 ? E1�x, y, t� , (2)

and similarly for LO2. Here, ELO1�x, y, t� � ELO1�x,y� 3

exp�2ivt� is the LO1 field in the plane of a photodiode
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FIG. 1. Experimental arrangement. Local oscillators at fre-
quency v and linear polarizations u1 and u2 are mixed with
fields E1 and E2, respectively. The detected beat signals are
multiplied together and band pass filtered at 125 kHz, yielding
a product signal containing two indistinguishable contributions
in the horizontal-vertical product basis. The squared magnitude
of the product signal at 125 kHz is determined as a function of
u1 and u2 to simulate coincidence measurement of two particles.

detector and E1 is the vector field amplitude from port 1
of BS1. The beat signals are sent to an analog multiplier
which yields a product signal proportional to the real part
of the amplitude A1A2 1 A�

1A2.
To select a particular classically entangled state, we

take advantage of the fact that the product signal contains
four different frequencies: The fields E1 and E2 con-
tain frequencies v 1 dhoriz and v 1 dvert. Hence, for
arbitrary LO polarizations, the beat amplitudes A1 and A2
each contain two beat frequencies dhoriz and dvert, yield-
ing four nonzero frequency components in the product sig-
nal: dhoriz 6 dvert, 2dhoriz and 2dvert. A bandpass filter
is used to select the product signal at frequency D1 �
dhoriz 1 dvert � 125 kHz. In this case, we measure only
the signal corresponding to the real part of the amplitude
A1A2 which contains two contributions:

g�u1, u2� ~ sinu1 cosu2�ELO1jEH1� �ELO2jEV2�
6 cosu1 sinu2�ELO1jEV1� �ELO2jEH2� . (3)

Here, �ELO1jEH1� denotes the spatial overlap integral of
LO1 and the horizontal component of the field from port 1
097902-2



VOLUME 88, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 4 MARCH 2002
of BS1, and similarly for the other overlap integrals. The
relative sign 6 is controlled by placing a half-wave plate
oriented at a zero degree angle in one output of BS1. The
two terms in Eq. (3) arise because there are two ways to
obtain a product signal at frequency 125 kHz. Note that
the products of the spatial overlap integrals have the same
amplitude and phase in both terms, i.e., �ELO1jEH1� 3

�ELO2jEV 2� � �ELO1jEV1� �ELO2jEH2�, which factors
out in the signal amplitude. Hence, the overall phases of
LO1 and LO2 cancel in the measurements, and the sig-
nal can be normalized by finding the maximum value
with u1 � 45± � 6u2. Dividing by the maximum value
yields the normalized signal amplitude gN�u1,u2� �
sin�u1 6 u2�.

The signal amplitude at 125 kHz can be rewritten in
the form g�u1, u2� ~ �êLO1, êLO2jC

cl
6�D1

where jCcl
6 �D1

are the classical analogs of the entangled states

jCcl
6�D1

�
1
p

2
�jH1� jV2� 6 jV1� jH2�� . (4)

Here, jH1� arises from the 25 kHz horizontally polarized
field from port 1, etc. Equation (4) shows that classical
analogs of two different Bell states can be measured. The
other two Bell states can be obtained by inserting a half-
wave plate oriented at 45± in one output of BS1. This
interchanges the horizontal and vertical frequencies in one
port so that the product signal at frequency D1 contains
the polarization states jH1� jH2� and jV1� jV2�,

jwcl
6 �D1

�
1
p

2
�jH1� jH2� 6 jV1� jV2�� . (5)

Here, the relative sign is again controlled by using an ad-
ditional half-wave plate oriented along the output V axis
of one port.

By measuring the magnitude of g�u1, u2� using a digital
oscilloscope (or lock-in detection at the frequency D1�,
we obtain jgN �u1, u2�j2. Hence, after normalization to the
maximum signal, we measure the classical joint intensity
Pcl�êLO1, êLO2� � jgN �u1, u2� j2 � sin2�u1 6 u2�.

Note that, if Eq. (4) were a true, normalized quantum
state, then the joint probability for coincidence detection
of two photons with polarizations ê�u1� and ê�u2� would
be sin2�u1 6 u2��2. This differs from our classical result
only by a multiplicative factor of 1�2, arising from our
choice of normalization.

In Fig. 2(a), we measure the quantity jgN �u1 � 30±,
u2�j2 for the state jCcl

2� of Eq. (4) as a function of u2
between 290± and 90±. The solid line is the theoretical
prediction with jgN �u1, u2�j2 � sin2�u1 2 u2�. By insert-
ing a half-wave plate in one port, we have measured jgN j

2

for the state jCcl
1�, where jgN �u1, u2�j2 � sin2�u1 1 u2�

(not shown).
To measure the other two Bell states, jwcl

6�, of Eq. (5),
we insert a half-wave plate oriented at 45± in one out-
put of BS1. A second half-wave plate oriented at 0± se-
lects the relative phase 6. In this case, jgN �u1, u2�j2 �
097902-3
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FIG. 2. Measured joint intensity jgN �u1, u2�j2 as a function of
u2 for the Bell states: (a) �1�

p
2 � �jH1� jV2� 2 jV1� jH2�� with

u1 � 30± and (b) �1�
p

2 � �jH1� jH2� 1 jV1� jV2�� with u1 � 60±.

cos2�u1 7 u2�. Normalization is accomplished by mea-
suring the maximum product signal with u1 � 45± and
u2 � 645±. For the jwcl

1� state, measurements of the quan-
tity jgN �60±, u2�j2 are shown in Fig. 2(b). We have also
measured jgN �60±, u2�j2 for the state jwcl

2� (not shown).
For each of the four Bell states, the measured joint inten-

sities take the same form as in a quantum joint-probability
measurement. Hence, it is possible to violate formally a
classical analog of the Bell inequality used in recent quan-
tum measurements of the joint detection probability for
entangled photon pairs [15,16]:

Fcl�a, b, c� � Pcl�a, b� 1 Pcl�b,c� 2 Pcl�a, c� $ 0 ,
(6)

where Pcl�a, b� � jgN �ua, ub�j2 is the joint intensity
when the local oscillators have linear polarizations a and
b, respectively.

By proper choice of angles for the polarizations a, b, c
in Eq. (6), the classical joint intensity exhibits a maxi-
mum violation of the Bell inequality Fcl $ 0. To dem-
onstrate the violation for the state jCcl

1� of Eq. (4), we
take b � V̂ , i.e., uB � 0±, a � c and measure Fcl�a, b, c�
of Eq. (6) as a function of ua � uc � u for u between
0± and 90±. We obtain the data shown in Fig. 3. The
maximum violation occurs at u � 30±, as in a quan-
tum joint probability measurement, and has the value
Fcl � 20.25. The solid line shows the prediction
Fcl�u, 0±, u� � jgN �u, 0±�j2 1 jgN �0±, u�j2 2 jgN �u, u�j2 ,
where jgN �u1, u2�j2 � sin2�u1 1 u2�.

The results of the frequency selected measurements are
identical in structure with the predictions of analogous
quantum optics experiments. The correlated polarization
measurements for our polarization-entangled Bell states
demonstrate a violation of Bell’s inequality very similar
to that obtained using polarization-entangled photons from
a parametric down-converter, where coincidence detection
performed a postprojection of the entangled state [7]. Fur-
ther, the joint intensities depend only on u1 6 u2, so that
097902-3
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FIG. 3. Classical simulation of Bell’s inequality violation
for the jCcl

1� state. A classical analog of the inequality is
Fcl�u, 0, u� $ 0. The maximum violation, Fcl�u, 0, u� �
20.25, occurs when u � 30±.

the results do not depend on a particular orientation of ei-
ther LO. However, the system does not exhibit particle-
like behavior or collapse, so that Bell’s inequalities are not
strictly applicable. Hence, if our experiments were done
using polarizing beam splitters in the two detection regions
(and LO’s with 45±polarization), all outputs would contain
signals simultaneously. By contrast, in a true two-photon
experiment, if a photon is detected in the horizontal port
for beam 1, the polarization of the photon detected in beam
2 must be vertical. In our classical simulation, this corre-
sponds to setting the LO in port 1 to project out the hori-
zontal component, so that the signal from detector 1 is at
25 kHz. If the product of this signal and that obtained at
port 2 is obtained and bandpass filtered at 125 kHz as be-
fore, then the maximum signal is obtained when the LO
in port 2 is vertically polarized. Of course, our scheme
does not prepare a true entangled state, but we measure
a classical analog by postprojection using the appropriate
frequency.

In conclusion, we have shown that analog multiplication
of heterodyne signals arising from classical fields leads
to measurement in a product basis and permits simulation
of multiparticle entanglement. Our method of signal
multiplication and frequency selection enables straightfor-
ward simulation of higher order interference for a variety
of quantum experiments which employ linear optical
systems. For example, we have simulated a four-particle
entangled state, such as jC� ~ jH1� jH2� jH3� jH4� 1

jV1� jV2� jV3� jV4�. The experiments use two beam split-
ters and four beam heterodyne detection, followed by
097902-4
analog multiplication of the four signals and appropri-
ate sum frequency selection. Using this method, we
have been able to reproduce the truth tables of a recent
Greenberger-Horne-Zeilinger experiment [17] by using an
optical system nearly identical to the quantum version, but
replacing the source by a combination of fields of two fre-
quencies. It is also possible to reproduce the behavior of
two-photon interferometers for which the fringe frequency
is twice that of a one-photon interferometer. In view of the
stability and high signal-to-noise ratio obtainable using
classical optical waves and the potential for producing
observations analogous to those of a quantum system, the
study of classical-wave analogs of quantum optics appears
to be a worthwhile goal. Exploration of classical-wave
analogs may yield new insights into quantum communica-
tion, quantum cryptography, and error correction schemes.
In addition, such studies may provide useful insights into
fundamental features of quantum mechanics.
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