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We demonstrate time-resolved measurement of optical phase-space distributions as a new probe for
investigating the propagation of light in disordered media. Phase-space techniques measure the joint
transverse position and momentum distribution of the scattered light, and are sensitive to the spatially
varying phase and amplitude of the field. Using this method we investigate light backscattered from a
random medium. The measurements indicate that the weakly localized component is a phase conjugate
of the incident light field. A new model of backscatter, based on Wigner phase-space distributions,
elucidates the spatial and angular behavior of the localized and unlocalized components.

PACS numbers: 42.25.Dd, 42.25.Kb
Multiple scattering of light in disordered media con-
tinues to be of great interest in a wide variety of dis-
ciplines. For example, in biomedical imaging, multiple
scattering plays an essential role in limiting the spatial
resolution obtained in tomographic applications [1]. Of
particular interest is the detection of fundamental features
of the scattered light which depend on the phase and am-
plitude of the field, such as the potential observation of
Anderson localization [2]. This refers to a strong reduc-
tion of the diffusion coefficient in a disordered medium
due to the interference of all of the scattered waves. A
precursor to Anderson localization is weak localization
[3] which is manifested for optical fields [4–7] by an in-
crease in the intensity of the retroreflected light as com-
pared to that in other directions. This enhancement arises
from the interference of forward and time-reversed field
paths, and is not described by radiative transport the-
ory, which neglects the interferences. By contrast, the
interferences can be rigorously described by a Wigner
phase-space distribution, i.e., the joint position-momentum
distribution [8], which is sensitive to the spatially varying
phase and amplitude of the scattered field. Hence, it is
important to develop methods which measure the dynami-
cal evolution of Wigner phase-space distributions for the
scattered field.

In this Letter, we demonstrate measurement of time-
resolved phase-space distributions for weakly localized
light backscattered from a random medium. We develop
a new model of backscatter, based on Wigner distribu-
tions, which clearly shows that the weakly localized com-
ponent of the backscattered light does not exhibit diffusion
of the spatial variable and narrows in momentum as the
time increases, in contrast to the unlocalized contribution
which diffuses in space and has a broad momentum dis-
tribution. Remarkably, we detect no wave front curvature
in the weakly localized light, although curvature is mea-
sured for the incident light. We show that this result is a
consequence of time reversal and phase conjugation of the
incident field.
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The optical phase-space distributions measured in our
experiments are directly related to the Wigner distribution,
which in turn is Fourier transform related to the mutual
coherence function of the optical field, �E ��x�E �x0�� [8].
The mutual coherence function is sensitive to the spatially
varying phase and amplitude of the scattered optical field
and to the interferences which cause localization. Direct
measurement of the mutual coherence function has been
achieved by shearing interferometry [9] and has been used
to explore decoherence in a multiple scattering medium
[10]. Soon after optical phase-space distributions were
first obtained from intensity measurements in multiple
planes [11], they were also obtained using heterodyne
detection [12]. The heterodyne technique was first applied
to examine multiple diffractive scattering of coherent
light transmitted through a disordered medium [13]. By
using an inexpensive broadband light source [14,15], the
heterodyne method permits the selection of optical path
lengths in the medium, effectively enabling time-resolved
phase-space measurement. This method has been used to
study the dynamical evolution of light transmitted through
a random medium, isolating phase-space distributions for
low-order scattering [16]. Unfortunately, a theoretical
treatment of the measured time-resolved phase-space
distributions does not yet exist for transmitted light. On
the other hand, backscattering of light from disordered
media and the phenomenon of weak localization, or
enhanced backscatter, is an extensively studied topic
both in theory [6,17,18] and experiment [4,5,7,19–21].
These previous works investigated only the position-
integrated angular distribution of the backscattered light.
However, we find that the previous theory can be readily
extended to yield the time-resolved phase-space distri-
butions of the backscattered light for comparison to our
measurements.

We begin by describing a simple model of the Wigner
distribution for light backscattered from a disordered
medium, where the input field has arbitrary mutual
coherence. For a wave field E varying in one spatial
© 2000 The American Physical Society
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dimension, the Wigner phase-space distribution is given
by [8,22]
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where x is a transverse position, p is a transverse wave
vector (momentum) in the x direction, and �· · ·� denotes a
statistical average for the random medium.

The Wigner distribution for the backscattered light is de-
termined by extending a previous calculation of the angular
distribution by Okamoto and Asakura [17]. In the geome-
try of the backscattering problem, the light field component
propagating with transverse momentum pi first scatters at
a point ri , eventually exiting the medium with transverse
momentum pf at the final scattering point rf . The total
field component E �pf�, for final momentum pf , is found
by summing over all possible combinations of initial and
final scattering positions, all incident transverse momenta
pi and all possible scattering paths within the medium.
Reference [17] determines the angular distribution of the
backscattered light, which for small angles is essentially
the transverse momentum distribution �E ��pf�E �pf��.
To determine the Wigner function, we calculate instead the
transverse momentum coherence �E ��pf 2

q
2 �E �pf 1

q
2 ��. In addition, we assume a wide band light source for
the heterodyne scheme, permitting selection of the propa-
gation time t in the medium.

Following Okamoto and Asakura [17], we assume
that the total phase for different paths in the medium is
random, so that the only contributions to the momen-
tum space coherence arise from single paths and time-
reversed pairs. For a homogeneous random medium,
the sum over paths can be described by a probability
distribution that depends only on the distance between
the initial and final scattering points. As in Ref. [17],
we assume that, for a sufficiently dense random medium
and a long enough propagation time, the probability for
propagation from ri to rf in a time t can be found using
a diffusion approximation [18]. By using these results,
the transverse Wigner distribution for the backscattered
light at the face of the sample takes a very simple
form:
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where position and momentum integrations are over the
transverse directions x and y, with the y dependence (and
integrals) suppressed for simplicity. Here W0�xi , pi� is the
Wigner distribution of the input field, D is the diffusion
constant given by D � yl��3, where y is the speed of
light in the medium, and l� is the transport mean free
path [18].

Equation (2) illustrates the essential features of weak
localization. The second term is readily identified as the
weakly localized component since the spatial variable does
not exhibit diffusion, i.e., xf � xi . This term arises from
the interference of forward and time-reversed paths in the
same coherence area and peaks in the backward direc-
tion where pf � 2pi . The localized component nar-
rows in momentum due to the diffusive increase in the
coherence area Dt as the time t spent in the medium in-
creases. In contrast, the first term represents the unlo-
calized contribution which diffuses in space, i.e., xf fi

xi , and has a broad momentum distribution. Note thatR
dpiW0�xi , pi� � �jE0�xi�j2� is the position distribution

of the incident field E0, so that the broad component is in-
dependent of momentum in the small angle approximation.

In the experiments, we characterize the Wigner phase-
space distribution of the backscattered optical field by us-
ing a simple heterodyne detection scheme. We measure
the mean square beat amplitude SB which is proportional
to the squared magnitude of the spatial overlap integral of
the local oscillator (LO) and signal fields in the detector
planes (Fig. 1). Using Fourier optics, it is straightforward
to show that [12]
SB�dx , dp� ~
Z

dx dp WLO�x 2 dx , p 1 kdp�f�

3 WB�x, p� . (3)

Here WB�x, p� �WLO�x, p�� is the Wigner distribution
given by Eq. (1) of the backscattered (LO) field in the
input plane of lens L2 (L1) of focal length f � 6 cm. The
y integration is suppressed for simplicity. Equation (3)
shows that the signal Wigner distribution is smoothed by
that of the LO [23]. For a Gaussian LO beam, the position
resolution is determined by the diameter of the LO beam
while the momentum resolution is determined by the
corresponding diffraction angle. The relative position dx

between the LO and signal fields is scanned by translating
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FIG. 1. Scheme for heterodyne measurement of time-resolved
phase-space distributions for backscattered light. A broadband
source is used to obtain timing resolution.
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mirror M1 in the LO input path. The relative momentum
2kdp�f, where k � 2p�l, is scanned by translating the
signal beam input lens L2 by a distance dp [12].

A conventional 4f imaging system [24] is used to repro-
duce the phase and amplitude of the backscattered field,
and hence the backscattered Wigner distribution, in the in-
put plane of lens L2. The LO and signal fields are com-
bined at beam splitter BS2, and the rms beat amplitude is
measured with an analog spectrum analyzer tuned to the
beat frequency, 10 MHz. The output of the spectrum ana-
lyzer is squared in real time with a low noise multiplier,
the output of which is sent to a lock-in amplifier. The lock-
in output is directly proportional to SB�dx , dp�, as given in
Eq. (3).

For broadband light sources, the optical paths between
the LO and signal arms must be matched to within the lon-
gitudinal coherence length of the source in order to mea-
sure a beat signal. This is achieved by including a corner
cube, C, in the LO path which is scanned by a distance
dc. Scanning mirror M1 and lens L2 (Fig. 1) also intro-
duces changes in the optical path lengths which must be
compensated to keep the relative path difference constant.
The difference between the LO and signal paths, when
the sample is replaced by a mirror, is D � 2dc 1 dx 2

d2
p��2f� 1 dxdp�f [14]. In the current experiments, a

superluminescent diode from the Anritsu Corporation, op-
erating at 85 mA with an output power of 1.5 mW, is used
to provide both the signal and LO beams. The center
wavelength is l � 852 nm and the bandwidth is 10.3 nm
(full width at half maximum). The beat intensity drops by
1�e at D � 26.4 mm, which determines the path length
and temporal resolution [14].

Solutions of 0.5 mm diameter polystyrene spheres �n �
1.59� are used as samples to obtain broad angular scatter-
ing distributions. A glycerol/water mixture �n0 � 1.36�
is used to provide neutral buoyancy for the spheres. For
a scatterer concentration r � 1.1 3 1012 cm3, we obtain
a scattering mean free path of l � 13.8 mm. Using the
Mie solution, the transport mean free path is estimated to
be l� � 53.1 mm. In our experiments, the path length in
the medium is large compared to the scattering mean free
path l, so that the diffusion approximation is valid for all
except the shortest time delays.

Time-resolved optical phase-space distributions were
measured for light backscattered from the turbid sample.
The effective time delay t � D�c is determined by the
path delay D between the LO and signal beams in air,
which ranges from 0–1 mm. Figures 2(a)–2(c) show
the measured distributions for yt � 7 mm, 0.15 mm,
and 0.44 mm, respectively, where y is the speed of light
in the medium. For yt � 7 mm, the time delay is less
than the temporal resolution for our source. A distinct
variation is observed in Figs. 2(a)–2(c). For the longer
time delays, the momentum distribution of the central
localized component narrows, and a bright spot appears
at zero transverse momentum and zero position. This is
68
FIG. 2. Phase-space distributions for light backscattered from
a random medium for different time delays. The broad gray
bands extending in momentum are the diffuse component, while
the bright central feature is the weakly localized component
which narrows in momentum as the time delay is increased. The
time delay t � D�c is determined by the path delay D between
the LO and signal beams in air. (a)–(c) These panels show the
measured distributions for yt � 7 mm, 0.15 mm, and 0.44 mm,
respectively, where y is the speed of light in the medium. The
(d)–(f) panels show the corresponding predictions using our
model. Note that the momentum is given in units of the optical
wave vector, k � 2p�l in air.

the weakly localized component. The gray bands extend-
ing in momentum correspond to the broad unlocalized
component.

We model the optical phase-space distributions by cal-
culating the mean square beat amplitude SB [Eq. (3)] using
the approximate Wigner function of the backscattered
light,WB [Eq. (2)]. The statistical average over the random
medium is already included in WB. However, for a broad-
band source, the beat signal arises from the correlation

between the LO and input fields. The correspond-
ing correlation between WLO and WB is evaluated
by writing WLO in terms of ELO�x� and writing W0
in Eq. (2) in terms of the input field E0�x�. The correla-
tion is determined from the cross spectral density which,
in the notation of Ref. [25], is given by

�E �
LO�x�E0�x0�� ~ exp
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In this expression, we introduce the spatial intensity width,
2ss � 0.9 mm, the transverse coherence length, sg �
4 mm, and the beam curvature, R � 480 mm. These pa-
rameters are measured for the incident beam by replacing
the sample cell with a mirror and using the same hetero-
dyne method to characterize the coherence [14,15]. For
simplicity, we assume that the LO has a sufficiently small
longitudinal coherence length to directly select the path
length in the medium. Thus, the Dt terms in Eq. (2) are
replaced by Dt �

1
3yl�t �

1
3 l�D�n0.
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Performing the tranverse position and momentum inte-
grals in both the x and y directions, the mean square beat
signal is given by
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where we hold the y components of the momentum and
position equal to zero. As in Eq. (2), the first and second
terms are the diffuse and weakly localized components,
respectively. Here, px � kdp�f, 1�a2 � 1��4s2

s � 1

1�s2
g, 1�d2 � 1��Dt� 1 4�a2, a02 � a2�Dt�d2�, and

1�d02 � 1�d2 1 4k2s2
s �R2. Figures 2(e) and 2(f) show

the predicted phase-space distributions for yt of 0.15 and
0.44 mm. The diffuse component produces the broad
vertical bands, while the weakly localized component
produces the bright central feature. In both cases, the
diffusion approximation adequately reproduces the mea-
sured phase-space distribution without free parameters.
For yt � 7 mm [Fig. 2(d)], the prediction only qualita-
tively reproduces the measured distribution, because the
diffusion model requires yt ¿ l, which is not satisfied.

Surprisingly, neither the measured nor predicted phase-
space distributions exhibit wave front curvature. When
curvature is detected, the phase-space contours depend on
momentum through the variable p 2 kx�R. Hence, the
contours rotate due to the correlation between the momen-
tum and position for a diverging or converging beam [12].
This rotation is readily observable when the incident beam,
which has a curvature of R � 480 mm, is reflected from
a mirror [14]. By contrast, the localized component of the
backscatter is time reversed, i.e., W�x, p� ! W�x, 2p�,
and the scattered field curvature is equal and opposite to
that of the incident beam, and also to that of the LO in our
current experiments. For this case, the beat amplitude is
readily shown to factorize into a product of Gaussian func-
tions of p and x. Hence, there is no correlation between
x and p. Thus, the lack of detected wave front curvature
is a consequence of time reversal and phase conjugation in
weak localization [26].

In conclusion, we have demonstrated measurement
of time-resolved optical phase-space distributions in an
important model problem, weak localization of light
backscattered from a disordered medium. The measured
phase-space contours provide a visual as well as quan-
titative method for describing weak localization. We
have shown that backscattering is naturally described
in the language of Wigner phase-space distributions,
which elucidate the spatial and angular behavior of the
weakly localized and unlocalized components of the
backscattered light. Further experiments with a “dual LO”
heterodyne method [27] will enable independent control
of the position and momentum resolution and a direct
observation of the reversal of the wave front curvature in
weak localization. This method will also enable measure-
ment of time-resolved Wigner phase-space distributions
for individual coherence areas, leading to new insights
into the propagation of coherence in random media.
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