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Heterodyne measurement of Wigner distributions
for classical optical fields
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We demonstrate a two-window heterodyne method for measuring the x p cross correlation, �E��x�E �p��, of
an optical f ield E for transverse position x and transverse momentum p. This scheme permits independent
control of the x and p resolution. A simple linear transform of the x p correlation function yields the Wigner
phase-space distribution. This technique is useful for both coherent and low-coherence light sources and
may permit new biological imaging techniques based on transverse coherence measurement with time gating.
We point out an interesting analogy between x p correlation measurements for classical-wave and quantum
fields.  1999 Optical Society of America

OCIS codes: 000.1600, 030.1640, 270.6570, 170.3880.
Wigner distribution functions provide a complete de-
scription of the coherence properties of classical-wave
fields. Hence they have important applications in fun-
damental studies of light propagation and tomographic
imaging. For a classical field E �x� varying in one spa-
tial dimension, the Wigner phase-space distribution
is Fourier transform related to the mutual coherence
function1

W �x,p� �
Z de

2p
exp�iep� �E ��x 1 e�2�E �x 2 e�2�� .

(1)

Here x is a transverse position, p is a transverse
wave vector (momentum) in the x direction, and �. . .�
denotes a statistical average. Wigner functions have
been used to display the time–frequency dependence
of classical fields,2 although they are not generally
positive definite.3 The Wigner distribution function
plays a role that is closely analogous to a classical
phase-space distribution in position and momentum,
permitting an intuitive particlelike description of the
underlying wave propagation.

In this Letter we show that Wigner distributions
for classical optical fields can be determined by use
of a novel two-window heterodyne detection scheme.
The signal field is mixed with a local-oscillator (LO)
field comprising a coherent superposition of a tightly
focused beam and a highly collimated beam. This
scheme permits independent control of the x and p
resolution, permitting concurrent localization of x and
p with a variance product that surpasses the minimum
uncertainty limit associated with Fourier-transform
pairs.2 The method can be applied with low-coherence
light, permitting time gating to be combined with
Wigner function measurement, thereby permitting new
venues for biomedical coherence tomography. We also
show that an interesting analogy exists between our
choice of LO field and that employed in a recent
quantum-teleportation experiment.4

We previously described the measurement of
smoothed Wigner phase-space distributions for classi-
cal fields by use of balanced heterodyne measurement
of the mean-square beat amplitude �jVB j

2�.5 The
0146-9592/99/191370-03$15.00/0
mean-square beat amplitude is proportional to the
square of the magnitude of the spatial overlap integral
of the LO and signal fields in the detector planes, D1
and D2, shown in Fig. 1. By use of Fourier optics, it is
straightforward to show that5

�jVB �dx,dp�j2� ~
Z

dxdpWLO�x 2 dx,p

1 kdp�f �WS �x,p� . (2)

Here WS �x, p� �WLO�x, p�� is the Wigner distribu-
tion, given by Eq. (1), of the signal (LO) field in the
input planes of lenses L2 (L1). The y integration is
suppressed for simplicity. Relation (2) shows that
the mean-square beat signal yields a phase-space
contour plot of WS�x, p� with phase-space resolution
determined by WLO. For a Gaussian LO beam the
position resolution is determined by the diameter of
the LO beam, whereas the momentum resolution is
determined by the corresponding diffraction angle.
Hence the phase-space resolution is minimum uncer-
tainty limited, and the measured Wigner distribution
is smoothed.6 The system scans the LO position over
a distance dx � 61 cm by translating mirror M1 in
the LO path. The LO momentum is scanned over
60.3 k, where k � 2p�l is an optical wave vector, by

Fig. 1. Scheme for two-window heterodyne measurement
of Wigner distributions. See text for definitions.
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translation of signal-beam input lens L2 (focal length
f � 6 cm) by a distance dp.5

Heterodyne measurement with coherent light has
been used to measure smoothed Wigner phase-space
distributions for small-angle scattering in a multiple-
scattering medium.7 The use of low-coherence light8

permits selection of optical paths in the scattering
medium. This selectivity has permitted measure-
ments of phase-space distributions for low-order
scattered light in transmission9,10 as well as for coher-
ent backscatter,11 with subfemtowatt sensitivity and a
dynamic range of 13 orders of magnitude.

However, heterodyne measurement with a single
LO field does not permit independent control of the
position and momentum resolutions. One can achieve
independent control by measuring the mutual coher-
ence of the signal field, using shearing interferometry
and Fourier transformation to obtain the Wigner
function.12 Using this method, Cheng and Raymer
measured mutual coherence in a multiple-scattering
medium to explore a classical-wave analog of quantum
decoherence.13 However, since this method does not
rely on a reference field, one cannot readily extend it
to distinguish optical path lengths by exploitation of
low-coherence light sources.

To obtain independent control of the x and p resolu-
tion in a heterodyne measurement, we employ a slowly
varying LO field of the form

E LO�x� � E 0

∑
exp

µ
2

x2

2a2

∂
1 b exp

µ
2

x2

2A2

∂
exp�iu�

∏
,

(3)

Here a is chosen to be small compared with the
distance scales of interest and 1�A is chosen to be
small compared with the momentum scales of interest
in the signal field. We take A2 ..a2. In this case
the phase- �u-� dependent part of the Wigner function
for the LO takes the form

WLO�x,p� ~ exp
µ
2
2x2

A2 2 2a2p2
∂
cos�2xp 1 u�

� cos�2xp 1 u� , (4)

where the last form assumes that the range of the
momentum and position integration in relation (2) is
limited by the signal field.

In the experiments, as illustrated in Fig. 1, the LO
beam is obtained by combination of two fields that dif-
fer in frequency by 5 kHz, so that u � �2p 3 5 kHz�t.
Lens L3 focuses beam LO1 to a waist of width a, and
lenses L4 and L5 expand beam LO2 to width A. We
combine these two components at beam splitter BS 3
to obtain a LO field of the form given in Eq. (3). We
monitor one output of the beam splitter with detec-
tor D3 to phase lock the 5-kHz beat signal to the
reference channel of a lock-in amplifier. Each com-
ponent of the LO beam is shaped so that it is at a
beam waist at the input plane of the heterodyne imag-
ing system (lens L1). The dual LO and signal fields
are mixed at BS 2, and the rms beat amplitude at
10 MHz is measured with an analog spectrum ana-
lyzer. The spectrum analyzer bandwidth, 100 kHz, is
chosen to be large compared with the 5-kHz differ-
ence frequency. The output of the spectrum analyzer
is squared in real time with a low-noise multiplier, the
output of which is sent to the lock-in amplif ier. The
lock-in outputs for the in- and out-of-phase quadra-
tures then directly determine the real and the imagi-
nary parts of the quantity

S�x0,p0� �
Z dx0 dp0

p
exp�2i�x0 2 x0�

3 �p0 2 p0��WS�x0, p0�

� �E��x0�E �p0��exp�ix0p0� . (5)

Here x0 � dx is the center position of the LO fields and
p0 � 2kdp�f is the center momentum. As the position
of mirror M1 is scanned a distance dx, the optical path
lengths of the LO fields change. For the current ex-
periments the change in path lengths is small com-
pared with the Rayleigh length and the coherence
length of the beams, so translating M1 simply changes
the center position of the LO fields. When this is not
the case, lens L3 can be moved in conjunction with M1
so that the beam waist is kept at L1. We can add a
corner ref lector in the LO arm before splitting it into
LO 1 and LO 2 to keep the optical path length constant
as M1 is scanned. This is an important consideration
when one is using low-coherence light.8

Equation (5) defines the Margenau–Hill distribution
of the signal field. Equation (5) gives the correlation
between the field component at position x0 with the
field component of momentum p0. Both the Marge-
nau–Hill and Wigner functions belong to the Cohen
class of functions. It is known that one can easily
transform a function in the Cohen class to yield any
other function in that class.2 Thus we can readily in-
vert the detected signal given in Eq. (5) to obtain the
Wigner function by a linear transformation. Using
the reality of WS�x, p�, we obtain

WS �x,p� �
Z dx0 dp0

p
cos�2�x 2 x0� �p 2 p0��

3 SR�x0,p0� 1
Z dx0 dp0

p
sin�2�x 2 x0� �p 2 p0��

3 SI �x0,p0� , (6)

where SR and SI are the real and the imaginary parts
of Eq. (5), i.e., the in- and out-of-phase lock-in signals.

As an initial demonstration of the capability of this
system, we measure the Wigner function for an ordi-
nary Gaussian beam. The signal beam is shaped by
a telescope so that its waist coincides with input plane
L2 of the heterodyne imaging system. For a Gaussian
beam at its waist, Eq. (1) gives the Wigner distribu-
tion as WS �x, p� � �1�p�exp�2x2�w2 2 w2p2�, where
w � 0.85 mm is the 1�e-intensity width. The x p cor-
relation function for the signal field is measured by
use of a LO beam of the form given by Eq. (3) with
a � 81 mm, A � 2.6 mm, and b � 1. The real and
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Fig. 2. Measured Wigner distribution for a Gaussian signal beam obscured by a wire: (a) in-phase lock-in signal
SR �x, p�, (b) out-of-phase lock-in signal SI �x, p�, (c) recovered Wigner distribution showing negative regions. Note that
the position distribution

R
dpW �x, p� � 0 for x near the wire, as it should. (d) Three-dimensional view of recovered

Wigner distribution. Top, data; bottom, theoretical prediction.
the imaginary parts of the detected signal, Eq. (5),
are used in Eq. (6) to recover the Wigner distribu-
tion of the signal field. We x2 f it the width of the
measured in-phase signal in position for p � 0 to ob-
tain a spatial width w � 0.87 6 0.05 mm, whereas
the corresponding momentum distribution for x � 0
yields w � 0.83 6 0.05 mm. Both results are in excel-
lent agreement with the measured width w � 0.85 mm
obtained by use of a diode array, demonstrating that
high position and momentum resolution can be jointly
obtained.

A more interesting example is the Wigner function
for the same Gaussian beam with a wire placed at
its center in input plane L2. In this case the slowly
varying field is Gaussian as before but multiplied
by a slit function that sets the field equal to zero
for jxj # 0.5 mm. Figures 2(a) and 2(b) show con-
tour plots of the real and the imaginary parts of the
detected signal (top row) and the corresponding pre-
dicted distributions (bottom row), respectively. We
can use the two measured distributions in Eq. (6) to
determine the Wigner distribution for the field, il-
lustrated in Fig. 2(c). An interesting feature of this
distribution is the oscillation in momentum for x � 0,
the position of the wire. This feature can be seen in
Fig. 2(d), in which the inverted data are shown as a
three-dimensional plot (top) and compared with the
predicted distribution (bottom).

We note that an interesting analogy exists between
the small and the large beams of our two-window
LO and the superposition of the position (in-phase)
and the momentum (out-of-phase) squeezed fields that
were used to determine the quantum Wigner function
in a recent teleportation experiment.4 To elucidate
this analogy we consider a suitably chosen lenslike
medium,14 the transverse modes of which provide a
natural harmonic-oscillator basis. A Gaussian beam
of the same size as the lowest mode but displaced in
transverse position and momentum corresponds to a
coherent state, whereas Gaussian beams of smaller
(larger) size than the lowest mode correspond to posi-
tion (momentum) squeezed states. New insights can
be realized by exploration of additional analogies be-
tween classical and quantum optics.15

In conclusion, we have demonstrated two-window
heterodyne measurement of the Wigner function for an
optical field, with independent control of the x and p
resolution. We are currently applying this technique
with low-coherence light sources for time-gated studies
of coherence propagation in multiple-scattering media.
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