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Optical heterodyne imaging and Wigner
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We demonstrate that optical heterodyne imaging directly measures smoothed Wigner phase space distributions.
This method may be broadly applicable to fundamental studies of light propagation and tomographic imaging.
Basic physical properties of Wigner distributions are illustrated by experimental measurements.  1996
Optical Society of America
In 1932 Wigner1 introduced a wave-mechanical phase
space distribution function that plays a role closely
analogous to that of a classical phase space distribution
in position and momentum. For a wave field varying
in one spatial dimension, E sxd, the Wigner phase space
distribution is given by2

W sx, pd ­
Z de

2p
expsiepdkE psx 1 ey2dE sx 2 ey2dl ,

(1)

where x is the position, p is a wave vector (mo-
mentum), and angle brackets denote a statistical
average. Despite their frequent use in theory and
potential practical importance to imaging,3 – 5 Wigner
phase space distributions have received relatively
little attention in optical measurements. Because
rigorous transport equations can be derived for Wigner
distributions, these distributions are important for
fundamental studies of light propagation and tomo-
graphic imaging.

In this Letter we demonstrate that the mean-square
heterodyne beat signal, which we measure in real time,
is proportional to the overlap of the Wigner phase space
distributions for the local oscillator and signal f ields.
This remarkable result, which seems not to have been
exploited previously in heterodyne detection,6,7 permits
us to measure Wigner phase space distributions for
the signal field directly as contour plots with high dy-
namic range. The measured phase space contours are
smoothed Wigner distributions for the signal f ield; i.e.,
the phase space resolution is determined by the diffrac-
tion angle and the spatial width of the local oscilla-
tor.8 We measure Wigner distributions for cases that
illustrate their basic physical properties.

The scheme of the heterodyne method, Fig. 1, em-
ploys a helium–neon laser beam that is split at BS1
into a 1-mW local oscillator (LO) and a 1-mW sig-
nal beam. One can introduce a sample into the sig-
nal path to study the transmitted field. The signal
beam is mixed with the LO at a 50–50 beam split-
ter (BS2). Technical noise is suppressed by use of a
standard balanced detection system.9 The beat signal
at 10 MHz is measured with an analog spectrum ana-
lyzer. An important feature of the experiments is that
the analog output of the spectrum analyzer is squared
by a low-noise multiplier.10 The multiplier output is
0146-9592/96/181427-03$10.00/0
fed to a lock-in amplif ier, which subtracts the mean-
square signal and noise voltages with the input beam
on and off.11 In this way the mean-square electronic
noise and the LO shot noise are subtracted in real time,
and the lock-in output is directly proportional to the
mean-square beat amplitude kjVB j2l.

The beat amplitude VB is determined in the paraxial
ray approximation by the spatial overlap of the LO
and signal f ields in the detector planes, z ­ zD .6 The
fields in the detector planes can be related to the f ields
in the source planes at input lenses L1 and L2 sz ­ 0d,
which have equal focal lengths f . L2 is translated off
axis by a distance dp, and mirror M1 is translated off
axis a distance dx. The mean-square beat amplitude
is obtained in the Fresnel approximation as
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Fig. 1. Scheme for heterodyne measurement of Wigner
phase space distributions. The displacement dx of mirror
M1 determines the position x, and the displacement dp of
lens L2 determines the momentum p. AyO’s, acousto-optic
modulators.
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Here E is a slowly varying f ield amplitude (band center
frequency phase factor removed) and k ­ 2pyl. For
simplicity the corresponding y integral in the detec-
tor plane is suppressed. It is assumed here that the
Rayleigh and coherence lengths of the LO field are
large compared with dx, so the translation of M1 sim-
ply shifts the center of the input LO field without sig-
nificantly altering the LO optical path length before
L1. When this is not the case, a variable LO path
length can be introduced to compensate for the path-
length change that is due to moving M1. The detec-
tors, D1 and D2, are located in the Fourier planes
zD ­ f of both lenses L1 and L2, so the LO position
in the detector planes remains fixed as dx is scanned.

Using Eq. (1), we can rewrite relation (2) (suppress-
ing the y integration) as

kjVBsdx, dpdj2l ~
Z

dxdp WLOsx 2 dx, p

1 kdpyf dWSsx, pd . (3)

WSsx, pd fWLOsx, pdg is the Wigner distribution of the
signal (LO) field in the plane of L2 (L1) given by
Eq. (1). Relation (3) shows that the mean-square beat
signal yields a phase space contour plot of WS sx, pd
with phase space resolution determined by WLO.8 The
current system measures position over 61 cm and
momentum over 60.1 k (i.e., 6100 mrad).

First we review the basic properties of Wigner
distributions for Gaussian signal beams and demon-
strate their measurement as phase space contours. A
Gaussian beam has a slowly varying field of the form
E sxd ~ expf2x2ys2w2d 1 ikx2ys2Rdg. Equation (1)
yields the corresponding Wigner distribution (normal-
ized to unity):
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Here the intensity 1ye width is w and the wave-front
radius of curvature is R.

Wigner distributions obey a simple propagation law
in free space: The convective derivative is zero, which
follows from the wave equation in the slowly vary-
ing amplitude approximation. For a time-independent
Wigner distribution propagating paraxially in the z di-
rection with wave vector pz . k the distribution in the
plane z ­ L then is given in terms of that for z ­ 0
according to W sx, p, z ­ Ld ­ W sx 2 pLyk, p, z ­
0d. Hence the x argument propagates in straight
lines. For propagation through a lens of focal length
f it is easy to show that the quadratically varying
phase of the lens, fsxd ­ 2kx2y2f , leads to a change
in the momentum argument: p ! p 1 kxyf . These
results easily yield the ABCD law of Gaussian beam
optics.12 Hence, for example, suppose that WG is the
Wigner distribution for a Gaussian beam at a waist,
i.e., Eq. (4), with w ­ a and R ­ `. Then it is easy to
show that W sx, p, z ­ Ld ­ WG sx 2 pLyk, pd takes the
form of Eq. (4), with w and R given by the usual Gauss-
ian beam results that properly include diffraction.12

In the experiments we begin with Gaussian signal
fields, and WS sx, pd takes the form of Eq. (4). The
LO beam is chosen to be Gaussian with its waist in
the plane of L1. Then WLOsx, pd ­ WG sx, pd is given
by Eq. (4) with w ­ a ­ 380 mm and R ­ `. With
the sample removed (Fig. 1), the signal beam waist
and radius of curvature are determined by a lens
(not shown) that focuses the input beam to a waist,
as ­ 35 mm, at a plane located a distance L behind the
signal input plane at L2.

Figure 2 shows measured phase space contours,
kjVBsdx, dpdj2l, obtained by scanning dx and dp with
stepper motors. The position axis denotes the LO
center position dx. The momentum axis denotes the
LO center momentum pc in units of the optical wave
vector: pcyk ­ 2dpyf . The contours rotate as the
distance L is changed. For L ­ 0 the waist is at L2
and the curvature R ­ `. The phase space ellipse has
its principal axes oriented vertically and horizontally.
The position width of the distribution is dominated
by the LO width in this case, and the momentum
width is dominated by the signal beam. The phase
space ellipse rotates clockwise (counterclockwise) for
L ­ 5 cm (L ­ 25 cm), indicating positive (negative)
curvature, i.e., R . 0 sR , 0d at L2. The rotation of
the phase space ellipse is a simple consequence of the
correlation between the momentum and the position for
a beam with curvature, Eq. (4). As one would expect
for a diverging beam, the mean momentum shifts to
the right for x . 0. These results clearly demonstrate
how the measured phase space contours are sensitive
to the spatially varying phase of the field.

It is instructive to measure phase space contours for
a source consisting of two mutually coherent, spatially
separated Gaussian beams. The input beams are
Fig. 2. Measured Wigner
phase space contours for
Gaussian signal beams:
(a) beam waist (f lat wave
front), (b) diverging (posi-
tive wave-front curvature),
(c) converging (negative
wave-front curvature).
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centered at positions x ­ 6dy2 with d ­ 1 mm and
intensity 1ye radii as ­ 110 mm at the waist in the
plane of L2. The Wigner distribution for this signal
field is given by Eq. (1) as

WS sx, pd ­ WG sx 2 dy2, pd 1 WG sx 1 dy2, pd

1 2WGsx, pdcossdp 1 wd , (5)

where WG denotes the Wigner distribution for either
Gaussian beam at its waist. An interesting feature of
this distribution is that for d .. as, as used here, the
cosine term is dominant at x ­ 0 and negative values
are obtained as p is varied.

Figure 3 shows the measured contour plots. In
the central region the intensity oscillates with nearly
100% modulation but is positive definite, as it must
be.8 Note that the orientation of the phase space
ellipses indicates beam waists. The right-hand ellipse
is centered at a higher momentum than the left,
indicating a small angle between the two input beams.
The two-peaked position profile for p ­ 0 is shown
along with the oscillatory momentum profile for x ­ 0
midway between the two intensity peaks. The solid
curve shows the theoretical f it to the momentum
distribution, with a signal beam 1ye width of 103 mm,
which is consistent with diode array measurements
within 10%.

In conclusion, we have demonstrated direct hetero-
dyne measurement of smoothed Wigner phase space
distributions. This method achieves high dynamic
range13 and is applicable to light from arbitrary
samples. Study of Wigner distributions may be useful
for placing biological imaging methods, such as optical
coherence tomography14 and potential high-resolution
optical biopsy techniques, on a rigorous theoretical
footing.
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Fig. 3. Measured Wigner
phase space contours for
two spatially separated,
mutually coherent beams:
(a) Phase space contour,
(b) position profile for
momentum p ­ 0, (c) mo-
mentum profile at position
x ­ 0. Dotted curves,
data; solid curve, theory.
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