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Energy-resolved spin correlation measurements: Decoding
transverse spin dynamics in weakly interacting Fermi gases
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We study transverse spin dynamics on a microscopic level by measuring energy-resolved spin correlations
in weakly interacting Fermi gases (WIFGs). The trapped cloud behaves as a many-body spin lattice in energy
space with effective long-range interactions, simulating a collective Heisenberg model. We observe the flow of
correlations in energy space in this quasi-continuous system, revealing the connection between the evolution of
the magnetization and the localization or spread of correlations. This work highlights energy-space correlation
as an observable in quantum phase transition studies of WIFGs, decoding system features that are hidden in
macroscopic measurements.
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Collective spin dynamics plays a central role in spin-lattice
models, such as Heisenberg models of quantum magnetism
[1], Anderson pseudospin models of superconductivity [2],
and Richardson-Gaudin models of pairing [3]. These models
have been simulated in discrete systems, including ion traps
[4–6], quantum gas microscopes [7], and cavity-QED exper-
iments [8], which achieve single-site resolution. In contrast,
weakly interacting Fermi gases (WIFGs) provide a powerful
many-body platform for realizing spin-lattice models in a
quasi-continuous system. In the nearly collisionless regime,
the energy states of the individual atoms are preserved over
experimental time scales, creating a long-lived synthetic lat-
tice [9] in energy space that is not achievable in a strongly
interacting regime. This energy lattice simulates collective
Heisenberg Hamiltonians with tunable long-range interactions
[10–17] and adjustable anisotropy [18].

In this work, we demonstrate measurements of energy-
resolved spin correlations, which provide a physically
intuitive picture of the transverse spin dynamics in an energy-
space spin lattice. This method enables a microscopic look
into the signatures of quantum phase transitions and the ori-
gins of the macroscopic properties, such as magnetization.
In a many-body spin lattice with a collective Heisenberg
Hamiltonian, the interplay between the site-dependent en-
ergy and site-to-site interactions leads to a transition to a
spin-locked state as the interaction strength is increased, pro-
ducing a large total transverse spin. This transition has been
observed in a WIFG of 40K [16], using the total transverse
magnetization as the order parameter. More insight into the
spin-locking transition is provided by our energy-resolved
measurements, which illustrate the emergence of strong cor-
relations between transverse spin components in localized
low-energy and high-energy subgroups and the spread of these
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correlations throughout the energy lattice as interaction
strength increases.

The observation of energy-resolved transverse correlation
is implemented in a degenerate Fermi gas, consisting of
6.2 × 104 6Li atoms. The cloud is confined in an optical trap
and cooled to temperature T = 0.21 TF , where Fermi temper-
ature TF ≈ 0.73μK. The ratio between radial and axial trap
frequencies is ωr/ωx ≈ 27, allowing a qiasi-one-dimensional
(quasi-1D) approximation for modeling. A superposition of
the two lowest hyperfine-Zeeman states, which are denoted
by | ↑z〉 and | ↓z〉, is prepared by an rf pulse at the beginning
of each experimental cycle.

The collision rate is controlled to be negligible during a
single cycle by tuning the bias magnetic field B to provide a
sufficiently small scattering length a(B). Therefore, in such a
weakly interacting regime, the energy and the energy state of
each particle are conserved, allowing us to simulate the system
as a 1D lattice in energy space. Each lattice site i represents
the ith harmonic oscillator state along the axial direction of the
sample, with an energy Ei = (ni+1/2) h̄ωx and dimensionless
collective spin vector �s (Ei ) ≡ �si. Hence, this synthetic lattice
can be described by a Heisenberg Hamiltonian [12]:

H (a)

h̄
=

∑
i, j �=i

gi j (a) �si · �s j +
∑

i

�′Ei szi. (1)

The first term represents the effective long-range interactions
between energy lattice site i and j due to the overlap of
probability densities in real space for the energy states i and j.
gi j (a) is the coupling parameter, scaling linearly with scatter-
ing length a. The average of gi j (a) for all i j pairs is denoted
by ḡ(a).

The second term arises from the magnetic field variation
along the axial direction of the cloud, resulting in an effective
spin-dependent harmonic potential and corresponding site-
dependent detuning rate �′ = −δωx/(h̄ωx ). The statistical
standard deviation of �′ Ei, denoted by σ�z , determines the
spread in the spin-precession rate, σ�z ≈ 1.4Hz in our system.
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The ratio of these two terms in Eq. (1) determines
the behavior of the system during evolution. For this rea-
son, we define the dimensionless interaction strength ζ ≡
ḡ(a)/(

√
2σ�z ). Here, larger ζ represents a stronger mean-field

interaction, and for small ζ , the system is dominated by the
spread in Zeeman precession.

To predict the dynamics of the system with the Hamil-
tonian Eq. (1), a quasi-classical spin model is adopted. In
the simulation, a mean-field approximation is applied, and
the classical collective spin vectors are obtained by neglect-
ing quantum correlations in the Heisenberg equations: �̇si =
[
∑

j �=i gi j (a)�s j + �′Eiêz] × �si [12,19]. The components of
collective spin vectors for different energy groups sσ (Ei ) are
obtained by numerical integration. This equation of motion
describes the evolution of spin vectors in the Bloch resonant
frame, which rotates at the instantaneous hyperfine resonant
frequency for the particles in the lowest energy site: Ei = 0.

To observe the transverse component of the spin vector,
a Ramsey sequence is applied. Starting from an initially z-
polarized state, the first excitation ( π

2 )y rf pulse produces an
x-polarized sample. After that, the system is allowed to evolve
for a period τ at the scattering length a of interest. Then,
a second ( π

2 )y rf pulse is applied to collectively rotate the
spin vectors about the y axis, projecting the x component
onto the measurement z axis, ideally. Immediately after the
last rf pulse, spin states | ↑z〉 and | ↓z〉 are imaged. In real-
ity, as discussed below, sz(x) = [n↑(x) − n↓(x)]/2 ≡ smeas(x)
measures a combination of transverse components of the spin
vector in the Bloch resonant frame, s̃x and s̃y, just prior
to imaging.

In this quasi-continuous spin system, which contains a
large number of atoms with closely spaced energy levels, the
spin profiles in real space and in energy space are related by
[20]

smeas(x) = 1

π

∫
dE |φE (x)|2 smeas(E ). (2)

|φE (x)|2 is the probability density which is evaluated using
a WKB approximation. Using Abel inversion, Eq. (2) yields
the energy-resolved spin density {smeas(E )|E ∈ [0, EF ]}
from measurements in real space {smeas(x)|x ∈ [−σFx, σFx]}
[20,21]. EF is the effective Fermi energy and σFx is the fitted
Thomas-Fermi width of the cloud. In the data analysis, we
use an energy bin width of 
E = EF /50 limited by imaging
resolution and the mapping algorithm.

During the experimental cycle, magnetic field fluctuation,
at even 10−4 G level, causes imperfectly controlled rf de-
tuning and subsequent phase ϕ accumulation, changing the
relative contribution of the x and y components of spin vec-
tors in the measurement, smeas = cos(ϕ)s̃x + sin(ϕ)s̃y. With a
broad spread ϕ ∈ [0, 2π ], a multishot average 〈smeas〉 tends
to vanish. As the ϕ distribution for each data set is usually
irreproducible, the contribution of the x and y components in
〈smeas〉 cannot be controlled efficiently and reliably, even with
data selection [20].

In the analysis of smeas correlations presented in this
work, this problem is circumvented. The correlation between

measured operators with energy Ei and Ej has the form [20]

C⊥
i j ≡ 〈

smeas
i smeas

j

〉 = 1
2 〈s̃xis̃x j + s̃yis̃y j〉
+ 1

2 〈cos(2ϕ)〉〈s̃xis̃x j − s̃yis̃y j〉
− 1

2 〈sin(2ϕ)〉〈s̃xis̃y j + s̃yis̃x j〉, (3)

where 〈· · · 〉 denotes an average over multishots, and s̃σ i is the
σ component of spin vector in the Bloch frame before the
last ( π

2 )y pulse. In the data analysis, a data group is selected
with a specific phase distribution [20] to enforce 〈cos(2ϕ)〉 =
〈sin(2ϕ)〉 = 0, estimated using the quasi-classical spin model.
This method ensures that the correlation obtained by av-
eraging the selected data is C⊥

i j = 1
2 〈s̃xis̃x j + s̃yis̃y j〉, without

making assumptions about the ϕ distribution for the whole
data set.

In contrast, the longitudinal spin vectors and its corre-
lation, 〈s̃zi〉 and 〈s̃zi s̃z j〉, can be measured easily without
data selection, as this measurement does not require the last
( π

2 )y rf pulse, and therefore is insensitive to the rf detun-
ing. We have conducted ensemble-averaged s̃z measurement
and found that (〈s̃zis̃z j〉 − 〈s̃zi〉〈s̃z j〉)/(NiNj/4) has a value of
∼5 × 10−3, which is comparable to spin projection noise,
indicating the system is not quantum correlated. In addition, as
our previous single-shot measurements showed, this large spin
system can be well explained by the quasi-classical model
[19]. Therefore, this system is expected to evolve classically,
where the classical correlation C⊥

i j is of interest. By con-
struction, C⊥

i j also detects quantum correlations when they
are present.

To study the correlation between one pair of particles with
energies Ei and Ej , C⊥

i j is normalized by atom numbers in
the ith and jth energy partitions, Ni and Nj . The normalized
transverse correlation is defined as c⊥

i j ≡ C⊥
i j /( Nj Nj

4 ). Then, by
construction from Eq. (3), c⊥

i j ∈ [− 1
2 , 1

2 ]. In this work, it is
observed that the normalized transverse correlation evolves
in qualitatively distinct ways as the interaction strength ζ

increases.
Figure 1 illustrates the different behaviors of c⊥

i j at ζ = 1.2
[Figs. 1(a)–1(c)] and ζ = 1.8 [Figs. 1(d)–1(f)]. At early time,
for both interaction strengths, the spins are x-polarized and
the transverse spin components are mostly self-correlated, and
their c⊥

i j have very similar distributions in energy space as
shown in Figs. 1(a) and 1(d). As time evolves, in the system
with smaller interaction strength [Figs. 1(b) and 1(c)], the
single particle pair correlation tends to be localized between
multiple specific energy subgroups. In contrast, for the case
with stronger interaction [Figs. 1(e) and 1(f)], the correlation
tends to become more uniform across all pairs of energy
groups at a later time. This distinct behavior of microscopic
correlations reveals the source of the phase transition that the
system undergoes.

In addition to visualizing the distribution of highly corre-
lated regions in the energy lattice using surface plots (Fig. 1),
the energy-resolved transverse correlation measurement di-
rectly yields the macroscopic transverse magnetization, which
undergoes a phase transition as interaction strengths increase.
The system magnetization is related to the ensemble-
averaged correlation functions. The square of total transverse
magnetization M2

⊥ = S2
x + S2

y is the double summation of
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FIG. 1. Correlation function c⊥
i j , ensemble-averaged over 30

shots with a selected ϕ distribution, at different evolution times
with interaction strength ζ = 1.2 (a)–(c) and ζ = 1.8 (d)–(f). Ei

and Ej are in units of effective Fermi energy EF . Only the lowest
70% of energy bins are adopted in data analysis as higher energy
groups contain very few particles. The c⊥

i j values shown here and in
Figs. 2(c)–2(e) and 2(h)–2(j) are amplified by dividing by an energy-
dependent attenuation coefficient �(Ei ) arising from the finite energy
resolution (� 0.08

√
Ei) to restore the amplitudes to their correct

values [20].

the transverse correlation in energy space: 1
2M2

⊥ = ∑
i, j C⊥

i j .

In this way, 1
2M2

⊥ data presented in this work are calculated
using our measured C⊥

i j . However, the macroscopic magneti-
zation does not fully represent the structure of the correlations
across the energy-space landscape.

The C⊥
i j measurement opens different ways to observe the

microscopic spin dynamics of the system in energy space. One
method to describe the microscopic information is to quantify
the extent of the correlations by determining the magnitude of
the correlation gradient near the point of maximum correlation
Dm. To calculate Dm from the correlation matrix c⊥

i j , first,
we find the energy partition Ei = Em where the center of the
highest correlated region is located. Then, we calculate the
absolute values of the gradient for the transverse spin corre-
lation between this energy partition and all other partitions,
c⊥

m j . Finally, Dm is defined as the average magnitude of the
gradient of c⊥

m j for all energy partitions j ∈ [1, jmax] for the
fixed m:

Dm ≡ 1

jmax

jmax∑
j=1

|∇c⊥
m j |, (4)

where jmax is the number of total energy groups adopted in
data analysis [20]. Therefore, Dm measures the maximum
magnitude of the gradient for normalized correlations be-
tween transverse spin vectors in one energy partition and
in all other partitions. A large Dm value indicates that high
correlations cluster around specific energy-group pairs Em and
some of Ej . A small Dm means that the high correlation region
is spread evenly across most lattice site pairs in energy space.

The time evolution of M2
⊥ and Dm at different interac-

tion strengths is shown along with corresponding microscopic

transverse correlation plots in Fig. 2. In this figure, panels in
the left half [Figs. 2(a)–2(e)] for small interaction strength
ζ and panels in the right half [Figs. 2(f)–2(j)] for large in-
teraction strength demonstrate two distinct behaviors as time
evolves. As each sample is initially x-polarized, at τ = 0 ms
the transverse magnetizations 1

2M2
⊥ are maximum and the

transverse correlation is strong between most energy groups.
For relatively short evolution time (τ < 60 ms), the site-
dependent Zeeman tuning [second term in Eq. (1)] dominates
the system behavior for all the scattering lengths studied in
this work, causing the systems to behave similarly: the spin
vectors spread out in the transverse plane, making 1

2M2
⊥ de-

crease and Dm increase initially. The behaviors of systems
with small and large interaction strengths become distinct
over extended periods of evolution. A system with small
interaction strength (ζ = 0, 0.6, 1.2) tends to demagnetize
as time evolves: 1

2M2
⊥(t → ∞) asymptotes to a small value

[Fig. 2(a)]. The normalized transverse correlation in such a
system acts similarly to the example in the top row of Fig. 1:
the largest correlations |c⊥

i j | (either positive or negative) arise
between certain localized energy groups, either forming thin
stripes or forming islands, as shown in Figs. 2(c)–2(e). The
corresponding maximum correlation gradient at these inter-
action strengths increases over time [Fig. 2(b)], in agreement
with the features of surface plots [Figs. 2(c)–2(e)]. In contrast,
for stronger interactions (ζ � 1.8), 1

2M2
⊥(t → ∞) oscillates

relative to a larger static level as ζ increases [Fig. 2(f)]. In
such cases, Figs. 2(h)–2(j) suggest that the high correlation
domain tends to extend over all pairs of energy lattice sites,
as opposed to the trend in Figs. 2(c)– 2(e). The measurement
of Dm illustrates this trend in a quantitative way: c⊥

i j has a
persistent low correlation gradient [Fig. 2(g)], corresponding
to an extended correlation region.

Furthermore, even when M2
⊥ has the same value at

two different times, by comparing the corresponding cor-
relation plots, it is observed that the strongly correlated
region in energy space can have completely different distri-
butions. For example, for ζ = 1.8 (the lightest green data) in
Fig. 2(f), M2

⊥(80 ms) = M2
⊥(200 ms), but the corresponding

c⊥
i j [Fig. 2(h)] shows different features for these two times:

at 80 ms, the transverse spin vectors are strongly correlated
mainly between low-energy groups, and in contrast, at 200 ms,
the high transverse correlation domain has extended to energy
partition pairs that are further apart. Similarly, for ζ = 1.2 (the
darkest blue data) in Fig. 2(a), M2

⊥(200 ms) = M2
⊥(280 ms),

but Figs. 2(e) and 1(c) show different distributions of c⊥
i j .

These different structures observed in correlation plots are
very well represented by corresponding high and low values
of Dm for these cases. Therefore, the observations of energy-
resolved transverse correlation provide different probes to
characterize the spin dynamics more deeply than simply mea-
suring macroscopic quantities.

From the measured energy-space correlation function c⊥
i j ,

we conclude that a system with a more localized trans-
verse correlation between multiple specific energy-group
pairs tends to be demagnetized as time evolves [Fig. 2(a)].
In contrast, a system with the transverse correlation spread
over most energy lattice site pairs at a long evolution time
maintains the high initial magnetization [Fig. 2(b)]. These
transitions in the magnetization with increasing interaction
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FIG. 2. Time-dependent transverse magnetization ( 1
2M2

⊥) and correlation gradient (Dm) at different interaction strengths ζ , along with
corresponding c⊥

i j correlation plots. Solid circles in (a) and (f) are 1
2M2

⊥ obtained by ensemble averaging over multiple shots with the desired
ϕ distribution. Darker blue or green corresponds to the cases with stronger interaction. A detailed description of data selection and error
bar calculation is in Supplemental Material [20]. Dashed lines are predictions from the quasi-classical spin model [12,19]. Hollow circles in
(b) and (g) are correlation gradient Dm extracted from normalized correlation c⊥

i j data at corresponding interaction strength and evolution time.
Note that the vertical scale in (g) is expanded to show the details. Correlation plots (c)–(e) and (h)–(j) show c⊥

i j at τ = 80 ms (left of each
pair) and 200 ms (right of each pair). (c) ζ = 0 (a = 0 a0 ), (d) ζ = 0.6 (a = 2.62 a0 ), (e) ζ = 1.2 (a = 5.19 a0), (h) ζ = 1.8 (a = 8.05 a0 ), (i)
ζ = 2.3 (a = 10.54 a0 ), (j) ζ = 5.3 (a = 23.86 a0).

strength are shown in Fig. 3 for four evolution times. Blue
circles are M2

⊥ obtained directly from the double sum of the
correlation function as described above. Predictions of M2

⊥
(red curves) are obtained using the quasi-classical model. We
find that, as the interaction strength increases, the transverse
magnetization surges, simulating the transition from a para-
magnetic phase to a ferromagnetic phase. Figures 2(c)–2(e)
and 2(h)–2(j) show how the corresponding spin correlations
change from localized to global across this transition.

In summary, we have developed energy-space spin cor-
relation measurement as a method for characterizing the
spin dynamics of quasi-continuous systems, which simulate a
synthetic lattice of spins pinned in energy space. This method

enables a full microscopic view of how correlations develop
between the extensive subsets of spins in energy space, asso-
ciating the evolution of the macroscopic properties with the
local correlation behavior. Utilizing this idea, we connect the
spread and localization of correlations to the system mag-
netization and demagnetization by observing the correlation
distribution as a function of time and interaction strength.

The observables developed in this work are broadly
applicable in weakly interacting quantum gases. In these
systems, long-range interactions between lattice sites in en-
ergy space can be engineered to simulate a wide variety of
model Hamiltonians. For example, tunable spatial asymme-
try can be introduced into the coupling constant by creating

FIG. 3. Observing the emergence of spin locking by measuring 1
2M2

⊥ for various interaction strengths ζ (top axis) and corresponding
scattering lengths a (bottom axis) at (a) 80 ms, (b) 120 ms, (c) 160 ms, and (d) 200 ms. Blue circles are averaged data over multiple shots with
the same averaging and error bar calculation for Fig. 2. Bright red curves are predictions with the quasi-classical spin evolution model, and the
pink bands correspond to a 2% standard deviation in cloud size σFx .
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spin-dependent energy states [18]. Further, the scattering
length can be controlled with high spatial and temporal pre-
cision with an optical control technique [22]. Therefore, these
energy-resolved probes can be exploited in broad studies of
macroscopic out-of-equilibrium dynamics and critical dynam-
ics across quantum phase transitions in quantum simulators.
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