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Weakly interacting Fermi gases simulate spin lattices in energy space, offering a rich platform for

investigating information spreading and spin coherence in a large many-body quantum system. We show

that the collective spin vector can be determined as a function of energy from the measured spin density,

enabling general energy-space resolved protocols. We measure an out-of-time-order correlation function in
this system and observe the energy dependence of the many-body coherence.
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Trapped, weakly interacting Fermi gases provide a new
paradigm for the study of many-body physics in a large
quantum system containing N =~ 10° atoms with a tunable,
reversible Hamiltonian [1,2]. In this system, coherent
superpositions of two hyperfine states behave as pseudo-
spins and the s-wave scattering length is magnetically
tuned to nearly vanish [1,3,4]. The corresponding collision
rate is negligible, so that single atom energies are conserved
[1,5-7] over the experimental timescale. The conserved
single particle energy states label the “sites” of an effective
energy-space lattice, simulating a variety of spin-lattice
models [8]. Interactions are effectively long range in energy
space [4.,8,9], important for new studies of information
scrambling in a far from equilibrium, nearly zero tempera-
ture regime [10] and for applications to fast scrambling [11]
and “out-of-equilibrium” dynamics in spin-lattice systems
[12]. However, measurements in weakly interacting
Fermi gases [1-7] have been limited to the spatial profiles
of the collective spin density or the total number of atoms
in each spin state, precluding observation of many-
body correlations in chosen sectors of the energy-space
lattice.

Of particular interest is the measurement of out-of-time-
order correlation (OTOC) functions in weakly interacting
Fermi gases. Certain OTOC functions [13—16] can serve as
entanglement witnesses and to quantify coherence and
information scrambling in quantum many-body systems
[10,17]. Originally, OTOC measurements were performed
by reversing the time evolution of the many-body state in
nuclear magnetic resonance experiments at high tempera-
tures, where the initial state is described by a density
operator and high order quantum coherence was observed
[18]. New OTOC studies have been done in trapped ion
systems containing relatively small numbers of atoms,
where the individual sites are nearly equivalent, and the
initial state is pure [10]. Related methods have been
developed for systems containing up to 100 atoms [19],
but the application of OTOC measurement to trapped
ultracold gases has remained a challenge.
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In this Letter, we report the demonstration of a general
method for performing energy-resolved measurements of
the collective spin vector in a harmonically trapped weakly
interacting Fermi gas. We show that OTOC measurements
can be implemented in this system and we extract many-
body coherence in energy-resolved sectors, paving the way
for new protocols, such as time-dependent energy-space
correlation measurements.

In the experiments [20], we begin with a degenerate
cloud of °Li containing a total of N = 6.5 x 10* atoms in a
single spin state. The cloud is confined in a harmonic,
cigar-shaped optical trap, with oscillation frequencies
w,/2r =23 Hz along the cigar x axis and w,/27w =
625 Hz in the transverse (y, z) directions. The correspond-
ing Fermi temperature 7 = 0.73 uK and T/Ty = 0.32.

We employ the two lowest hyperfine-Zeeman states,
which are denoted by |1) = |1,) and |2) = ||,). The cloud
is initially prepared in state || ) in a bias magnetic field of
528.53 G, where the s-wave scattering length a;, =a =
4.24aq [4]. In this case, the largest possible collision rate y,.
in the Fermi gas arises for an incoherent mixture with N /2
atoms in each of two spin states. We find y, < 1.7 x
1073 s=' [21], which is negligible for the experimental
timescale < 1 s. Hence, the single particle energies are
conserved and the energy distribution is time independent,
as observed in the experiments [4,20].

The Hamiltonian for the confined weakly interacting
Fermi gas can be approximated as a one-dimensional (1D)
spin “lattice” in energy space [4],

H(a) = aZgijsi *S;— Zgiszi’ (1)

LJ#i

where we take 7= 1. We associate a ‘“site” i with the
energy E; = (n; + 1/2)hv, of an atom in the ith harmonic
oscillator state along the cigar axis x. For each E;, we define
a dimensionless collective spin vector s; = Za[ Sq,» Where
the sum over ¢; includes the occupied transverse (ny, n;)
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states for fixed n;. As kzTp/hw, ~ 650, the average
number of atoms at each site is N/650 ~ 100 [22].

The first term in Eq. (1) is a site-to-site interaction,
proportional to the s-wave scattering length a and
to the overlap of the harmonic oscillator probability
densities for colliding atoms, g;; o [dx|¢, (x)]?|, (x)]* o
1/+/|E;—E||, which is an effective long-range interaction
in the energy lattice [4]. For a zero temperature Fermi gas,
the average interaction energy is ag = 3.8Qyr [23], where
the mean-field frequency [4] for our experimental para-
meters is Qug/27 ~ 0.5 Hz, i.e., ag/2n ~ 1.9 Hz.

The second term in Eq. (1) is an effective site-dependent
Zeeman energy, arising from the quadratic spatial variation
of the bias magnetic field along x, which produces a spin-
dependent harmonic potential. As w,/w, = 27, the corre-
sponding effect on the transverse (y, z) motion is negligible,
so that all atoms at site i have the same Zeeman energy. In
Eq. (1), Q(E;) =Q; = Q'E; + A’, where Q' = —éw, /hw,,
with Sw,/2z = 14.9 mHz for our trap [4]. For atoms with
the mean energy E,~kgTr/4, QE, /2n~2 Hz. We
define A’ =A —Q'E,, where A is the global detuning
and A =0 corresponds to Q; = 0 for the mean energy,
Ei — Ex.

A key feature of our experiments is the extraction of
energy-resolved spin densities n;_| (E) by inverse-Abel
transformation of the corresponding 1D spatial profiles
ny_.(x), which are obtained from absorption images of a
single cloud. The transform method requires a continuum
approximation, which is justified for the x direction, where
kpTr/hw, = 650. Further, we require negligible energy
space coherence; i.e., the atomic spins remain effectively
localized in their individual energy sites. This assumption is
justified by the very small transition matrix elements <
10~*hw, [24] between three-dimensional harmonic oscil-
lator states, which arise from short-range interactions
between two atoms [20].

In this regime, the spatial profile for each spin state
ns(x), 6 = 1., ., is an Abel transform of the correspond-
ing energy profile n,(E) [20]:

H(a)
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In Eq. (2), the last form is obtained by using a WKB
approximation for the harmonic oscillator states ¢p(x)
[20]. An inverse-Abel transform [20,25] of n,(x) then
determines n,(E) with a resolution AE ~ 0.04E [20].

For the protocol of Fig. 1(a), discussed in detail below,
Fig. 1(b) shows the measured single-shot spin density,
S.(x, ¢) = [n4_(x, ) — n,_(x,¢)]/2, in units of the central
total spin density n(0). Figure 1(c) shows the correspond-
ing single-shot S.(E, ¢), obtained by inverse-Abel trans-
formation of S, (x, ¢). We see that S_(E, ¢p) appears smooth
compared to the single-shot spin density S.(x, ¢), which
requires averaging over several shots to obtain a smooth
profile. To check that the inverse-Abel transform has
adequate energy resolution, we Abel transform the
extracted S,(E,¢), yielding the red dotted curve of
Fig. 1(b), which is consistent with the measured density
profile [20].

Our experimental OTOC protocol, Fig. 1(a), applies a
rotation ¢ to the total interacting spin system in between
forward and time-reversed evolutions. Then, a measure-
ment of s,; is performed to diagnose the effects of the
rotation on the spins at “site i”” in energy space. We start by
preparing a fully z-polarized state |},;}.2-..d.n) = [w.0)
in a bias magnetic field B; = 528.53 G, where the scatter-
ing length a; = a = 4.24a,. Then we apply a 0.5 ms radio-
frequency (7/2), pulse (defined to be about the y axis),
which is resonant with the ||.) — |1,) transition at the
bias field B, to produce an initial x-polarized N-atom
state [y) = e~ @25 |y ) = [T, 112...Tyy). The system
evolves for a time 7 = 200 ms at the initial bias magnetic
field B; = 528.53 G. Then, a resonant radio-frequency
pulse (¢),, shifted in phase from the first pulse by
/2, rotates the N-atom state about the x axis [26] by a
chosen angle ¢. Immediately following this rotation, we

(b) ;. (c)
0.1 s n 0.02
el . e R -
1"\ - L4 ,'\' L.
' i ~
8 y » f P ;'- *;e"‘ E’l
LR T B LI CPEE
n s "‘: ‘I,- ~ 5] .
: . -...
-041 ° -0.02
-1 0 1 0 0.5 1
X/o E/E;

Energy-resolved out-of-time-order correlation (OTOC) measurement. The system is initially prepared in a pure state, with the
., Ey, polarized along the —z axis. (a) OTOC sequence, after which the spatial profiles of the 1, and

| . states are measured for each cloud by resonant absorption imaging. (b) “Single-shot" spin density profile S.(x) (blue dots). For this
measurement, the scattering length in the Hamiltonian H(a) is a = 4.24ay, ¢ = x, and ¢ = 345 pm. (c) An inverse-Abel transform of
the spatial profile (blue dots) extracts the single-shot energy-resolved spin density S, (E) (red dots). An Abel transform of S,(E) yields
the red dashed curve shown in (b), consistent with the data.
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reverse the sign of the Hamiltonian by applying a (ﬂ)y
pulse and tuning the bias magnetic field to a value
B, = 525.83 G, where the scattering length a, = —
ie., e™vH(—a)e ™ = —H(a), from Eq. (1). After the
system evolves for an additional time z, the bias field is
ramped back to By, and a final (/2), pulse is applied [20].
The final state of the N-atom system after the pulse
sequence of Fig. 1(a) can be written as

lwy) = e CTISW 4 (2) o). (3)
where the W operator is defined by

W(/)(T) — eiH(a)‘re—i(/)Sxe—iH(a)‘r’ (4)
with §, = Zi,ai Syq, the x component of the fofal spin
vector for the N-atom sample and |y) the fully x-polarized
state. After the pulse sequence, the spin densities 74 (x)
and n,(x) are measured for a single cloud using two
resonant absorption images, separated in time by 10 us. We
define one repetition of this experimental sequence as a
“single shot,” in Figs. 1(b) and 1(c). Inverse-Abel trans-
formation of [ny (x) —n,(x)]/2 then measures
S.(E;, ¢) = s,;, for a single shot, Fig. 1(c).

Now we connect the measured s, to information
scrambling [10,13,19]. Consider a single spin labeled
by a;, with spin components s, , Sy, S, interacting
with the many-body system. It is straightforward to show
[20]

1

Co, = Wol Wy (2): 510 )P Iwo) = 5 = Wrlsealwy). (5)
As the many-body operator W, and the single spin operator
Syq, initially commute, i.e., [W,;(0),s,,] = 0, a measure-
ment of (y/|s., [ ) determines how two initially commut-
ing operators fail to commute at a later time, providing a
measure of scrambling.

In the experiments, we measure the collective spin
Operators S.; = » _, S.q,, Where a; = (n;, ny,n_) for fixed

0.5 a b
@) 0.12 ()
0.3 _
= g 0.08
N—
Y _
0.04
0.1 0
0 05 1 15 2 0 2 4

b/m m

FIG. 2. Total collective spin projection S, versus rotation angle ¢ without energy restriction. (a) F(¢) =

n;. The corresponding mean square commutator, averaged
over the N, spins with x energy E,, is [20]

bR =y sy (6)

‘(t Soa;

Further averaging Eq. (6) over atoms with energies within
AFE of E; = E, we replace the sum on the right-hand side by
S.(E)AE/[n(E)AE], yielding the measured quantity

1y, (E.¢)—n, (E.9)

FED) = Ed) T, (Ed)

(7)

Here, n(E) = n; (E,¢) +n, (E,¢) is independent of ¢
and F(E,0) = 1/2.

We can extract information about the many-body coher-
ence from Eq. (6), by writing the sum on the right-hand side
as >, ¢™B,, [20]. Nonvanishing coefficients B,, corre-
spond to coherence between states for which the x compo-
nent S, of the total angular momentum differs by m [17,20].
Since the sum is real, B_,, = B;,, we can expand Eq. (7) for
the measured, energy-selected average in the form

F(E.¢) = Bo+ > _2|By|cos(mp+¢,).  (8)

m>1

In fitting the data with Eq. (8), we restrict the range of m to 4.
We find that the fits are not improved by further increase of
m, consistent with the limited number of ¢ values measured
in the experiments.

We measure spin density profiles ny_| (x,¢) for a
scattering length a = 4.24a,. The data are averaged over
6 repetitions for each ¢, with the ¢ values chosen in random
order. We begin by ﬁnding the total number of atoms in
each spin state Ny_, (¢) = [dxny_| (x.,¢) for the proto-
col of Fig. 1(a), to find the total collective spin projection S,
versus rotation angle ¢, without energy restriction.
Figure 2(a) shows the normalized S, data F(¢) =1 (N —
N,.)/(N4y, + N,.) (blue dots) and the fit of Eq. (8) (red

(©)
0
f
25 2 4
m

5(Ny,=N,)/(Ny. +N,)

(blue dots) for a measured scattering length a,,.,; = 4.24a,. The red solid curve is the fit of Eq. (8), which determines the magnitudes of
the coherence coefficients |B,,| (b) and corresponding phases ¢,, (¢). (d) Fit of the mean-field model of Ref. [4] to the data (blue dots) for
a global detuning A = 0 with a = ap,,, (black dashed curve) and with a = 2.63a,,.,, (red solid curve).
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curve), which determines the magnitude [Fig. 2(b)] and
phase [Fig. 2(c)] of the average coherence coefficients B,,.
We note that F(0) ~ F(2z) < 1/2, the maximum for ideal
conditions. This discrepancy arises from small variations in
the phase shift of the final z/2 pulse, which is applied at a
finite detuning as the magnetic field is ramped from B,
back to its original value B; [20].

To check that the measurements are reasonable, we
compare the ¢-dependent data of Fig. 2 to a fit of our
1D mean-field model, which employs a calculated average
transverse density 7, to fit single-pulse spin-wave data
with no free parameters [4]. The model, evaluated with a

global detuning A = 0, is shown in Fig. 2(d). To fit the
observed ¢ dependence (red solid curve), the model
requires a scattering length a.; = 2.63a,,006, 1.€., 2.63
times larger than the measured value a,,.,, = 4.24a,, which
yields the black dashed curve. The increased a.; may occur
because the measured coherence orders with |m| > 1 arise
from interactions, favoring the largest couplings in a
manner that is not predicted by our model.

Figure 3 shows the energy-resolved measurements
F(E, ), obtained by inverse-Abel transformation of the
same data. The top row shows significant variation in
symmetry and structure as the energy is varied from £ = 0
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FIG. 3. Energy-resolved collective spin projection S.(E) versus rotation angle ¢ for spins of selected energies (left to right) E/Er = 0,

0.15, 0.25, 0.5, 0.7. Here, F(¢) = %[ny(E) —ny(E)]/[n4+(E) + ny(E)]. The top row shows the data (blue dots) for a measured
scattering length a = 4.24a,. The red solid curve is the fit of Eq. (8), which determines the magnitudes of the coherence coefficients
|B,,| (second row) and corresponding phases ¢,, (third row). The bottom row shows the fits (red solid curves) of the mean-field model of
Ref. [4] to the data (blue dots), using a scattering length 2.63 times the measured value and global detunings, ordered in energy, of

A(Hz) = 0, 0.8, 0.65, —0.8, and 0.15.
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to E = 0.7E. The red solid curves in the first row show the
fit of Eq. (8), which yields the magnitudes of the coherence
coefficients |B,,| and the corresponding phases ¢,,. In the
last row, we compare the data to fits of the mean-field
model [4]. Again, the model captures the complex
¢-dependent shapes of the data with a.4 = 2.63¢ 045
but a different detuning A is needed for each energy.
This may be a consequence of averaging data over several
detunings A, where each A rotates the direction of the
¢-rotation axis by Az [26].

In summary, we have demonstrated a general method for
measuring energy-resolved collective spin vectors in an
energy-space lattice with effective long-range interactions.
We have shown that an OTOC protocol can be
implemented in this system and that many-body coherence
can be measured in selected energy-space subsystems.
Future measurement of time-dependent correlations
between extensive subsets, C;;(t) = (wo|s(2)s;(t)[wo)—
(wolsxi()lwo)(wolsx;()lyo), enables a wide variety of
protocols, extending correlation measurements in small
numbers of trapped ions [27] to large quantum systems. For
an initial x-polarized product state |y), C;;(1) =0 for
noninteracting systems and for our mean-field model, so
that C;;(7) # 0 signifies beyond mean-field physics. As
C;j(0) = 0, a scrambling time [28,29] is determined by
observing the evolution from the product state to a
correlated state.
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