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Weakly interacting Fermi gases simulate spin lattices in energy space, offering a rich platform for
investigating information spreading and spin coherence in a large many-body quantum system. We show
that the collective spin vector can be determined as a function of energy from the measured spin density,
enabling general energy-space resolved protocols. We measure an out-of-time-order correlation function in
this system and observe the energy dependence of the many-body coherence.
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Trapped, weakly interacting Fermi gases provide a new
paradigm for the study of many-body physics in a large
quantum system containing N ≃ 105 atoms with a tunable,
reversible Hamiltonian [1,2]. In this system, coherent
superpositions of two hyperfine states behave as pseudo-
spins and the s-wave scattering length is magnetically
tuned to nearly vanish [1,3,4]. The corresponding collision
rate is negligible, so that single atom energies are conserved
[1,5–7] over the experimental timescale. The conserved
single particle energy states label the “sites” of an effective
energy-space lattice, simulating a variety of spin-lattice
models [8]. Interactions are effectively long range in energy
space [4,8,9], important for new studies of information
scrambling in a far from equilibrium, nearly zero tempera-
ture regime [10] and for applications to fast scrambling [11]
and “out-of-equilibrium” dynamics in spin-lattice systems
[12]. However, measurements in weakly interacting
Fermi gases [1–7] have been limited to the spatial profiles
of the collective spin density or the total number of atoms
in each spin state, precluding observation of many-
body correlations in chosen sectors of the energy-space
lattice.
Of particular interest is the measurement of out-of-time-

order correlation (OTOC) functions in weakly interacting
Fermi gases. Certain OTOC functions [13–16] can serve as
entanglement witnesses and to quantify coherence and
information scrambling in quantum many-body systems
[10,17]. Originally, OTOC measurements were performed
by reversing the time evolution of the many-body state in
nuclear magnetic resonance experiments at high tempera-
tures, where the initial state is described by a density
operator and high order quantum coherence was observed
[18]. New OTOC studies have been done in trapped ion
systems containing relatively small numbers of atoms,
where the individual sites are nearly equivalent, and the
initial state is pure [10]. Related methods have been
developed for systems containing up to 100 atoms [19],
but the application of OTOC measurement to trapped
ultracold gases has remained a challenge.

In this Letter, we report the demonstration of a general
method for performing energy-resolved measurements of
the collective spin vector in a harmonically trapped weakly
interacting Fermi gas. We show that OTOC measurements
can be implemented in this system and we extract many-
body coherence in energy-resolved sectors, paving the way
for new protocols, such as time-dependent energy-space
correlation measurements.
In the experiments [20], we begin with a degenerate

cloud of 6Li containing a total of N ¼ 6.5 × 104 atoms in a
single spin state. The cloud is confined in a harmonic,
cigar-shaped optical trap, with oscillation frequencies
ωx=2π ¼ 23 Hz along the cigar x axis and ωr=2π ¼
625 Hz in the transverse (y, z) directions. The correspond-
ing Fermi temperature TF ¼ 0.73 μK and T=TF ¼ 0.32.
We employ the two lowest hyperfine-Zeeman states,

which are denoted by j1i≡ j↑zi and j2i≡ j↓zi. The cloud
is initially prepared in state j↓zi in a bias magnetic field of
528.53 G, where the s-wave scattering length a12 ≡ a ¼
4.24a0 [4]. In this case, the largest possible collision rate γc
in the Fermi gas arises for an incoherent mixture with N=2
atoms in each of two spin states. We find γc < 1.7 ×
10−3 s−1 [21], which is negligible for the experimental
timescale < 1 s. Hence, the single particle energies are
conserved and the energy distribution is time independent,
as observed in the experiments [4,20].
The Hamiltonian for the confined weakly interacting

Fermi gas can be approximated as a one-dimensional (1D)
spin “lattice” in energy space [4],

HðaÞ ¼ a
X
i;j≠i

gijsi · sj −
X
i

Ωiszi; ð1Þ

where we take ℏ≡ 1. We associate a “site” i with the
energy Ei ¼ ðni þ 1=2Þhνx of an atom in the ith harmonic
oscillator state along the cigar axis x. For each Ei, we define
a dimensionless collective spin vector si ¼

P
αi
sαi, where

the sum over αi includes the occupied transverse (ny, nz)

PHYSICAL REVIEW LETTERS 126, 070601 (2021)

0031-9007=21=126(7)=070601(6) 070601-1 © 2021 American Physical Society

https://orcid.org/0000-0001-5344-0649
https://orcid.org/0000-0002-0018-2831
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.070601&domain=pdf&date_stamp=2021-02-19
https://doi.org/10.1103/PhysRevLett.126.070601
https://doi.org/10.1103/PhysRevLett.126.070601
https://doi.org/10.1103/PhysRevLett.126.070601
https://doi.org/10.1103/PhysRevLett.126.070601


states for fixed ni. As kBTF=ℏωx ≃ 650, the average
number of atoms at each site is N=650 ≃ 100 [22].
The first term in Eq. (1) is a site-to-site interaction,

proportional to the s-wave scattering length a and
to the overlap of the harmonic oscillator probability
densities for colliding atoms, gij∝

R
dxjϕEi

ðxÞj2jϕEj
ðxÞj2∝

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijEi−Ejj

p
, which is an effective long-range interaction

in the energy lattice [4]. For a zero temperature Fermi gas,
the average interaction energy is aḡ ¼ 3.8ΩMF [23], where
the mean-field frequency [4] for our experimental para-
meters is ΩMF=2π ≃ 0.5 Hz, i.e., aḡ=2π ≃ 1.9 Hz.
The second term in Eq. (1) is an effective site-dependent

Zeeman energy, arising from the quadratic spatial variation
of the bias magnetic field along x, which produces a spin-
dependent harmonic potential. As ωr=ωx ¼ 27, the corre-
sponding effect on the transverse (y, z) motion is negligible,
so that all atoms at site i have the same Zeeman energy. In
Eq. (1), ΩðEiÞ≡Ωi ¼ Ω0Ei þ Δ0, where Ω0 ¼ −δωx=ℏωx,
with δωx=2π ¼ 14.9 mHz for our trap [4]. For atoms with
the mean energy Ēx ≃ kBTF=4, Ω0Ēx=2π ≃ 2 Hz. We
define Δ0 ≡ Δ −Ω0Ēx, where Δ is the global detuning
and Δ ¼ 0 corresponds to Ωi ¼ 0 for the mean energy,
Ei ¼ Ēx.
A key feature of our experiments is the extraction of

energy-resolved spin densities n↑z;↓z
ðEÞ by inverse-Abel

transformation of the corresponding 1D spatial profiles
n↑z;↓z

ðxÞ, which are obtained from absorption images of a
single cloud. The transform method requires a continuum
approximation, which is justified for the x direction, where
kBTF=ℏωx ¼ 650. Further, we require negligible energy
space coherence; i.e., the atomic spins remain effectively
localized in their individual energy sites. This assumption is
justified by the very small transition matrix elements <
10−4ℏωx [24] between three-dimensional harmonic oscil-
lator states, which arise from short-range interactions
between two atoms [20].
In this regime, the spatial profile for each spin state

nσðxÞ, σ ≡ ↑z;↓z, is an Abel transform of the correspond-
ing energy profile nσðEÞ [20]:

nσðxÞ ¼
Z

dEjϕEðxÞj2nσðEÞ

¼ ωx

π

Z
∞

0

dpxnσ

�
p2
x

2m
þmω2

x

2
x2
�
: ð2Þ

In Eq. (2), the last form is obtained by using a WKB
approximation for the harmonic oscillator states ϕEðxÞ
[20]. An inverse-Abel transform [20,25] of nσðxÞ then
determines nσðEÞ with a resolution ΔE ≃ 0.04EF [20].
For the protocol of Fig. 1(a), discussed in detail below,

Fig. 1(b) shows the measured single-shot spin density,
Szðx;ϕÞ ¼ ½n↑z

ðx;ϕÞ − n↓z
ðx;ϕÞ�=2, in units of the central

total spin density nð0Þ. Figure 1(c) shows the correspond-
ing single-shot SzðE;ϕÞ, obtained by inverse-Abel trans-
formation of Szðx;ϕÞ. We see that SzðE;ϕÞ appears smooth
compared to the single-shot spin density Szðx;ϕÞ, which
requires averaging over several shots to obtain a smooth
profile. To check that the inverse-Abel transform has
adequate energy resolution, we Abel transform the
extracted SzðE;ϕÞ, yielding the red dotted curve of
Fig. 1(b), which is consistent with the measured density
profile [20].
Our experimental OTOC protocol, Fig. 1(a), applies a

rotation ϕ to the total interacting spin system in between
forward and time-reversed evolutions. Then, a measure-
ment of szi is performed to diagnose the effects of the
rotation on the spins at “site i” in energy space. We start by
preparing a fully z-polarized state j↓z1↓z2…↓zNi≡ jψ z0i
in a bias magnetic field B1 ¼ 528.53 G, where the scatter-
ing length a1 ≡ a ¼ 4.24a0. Then we apply a 0.5 ms radio-
frequency ðπ=2Þy pulse (defined to be about the y axis),
which is resonant with the j↓zi → j↑zi transition at the
bias field B1, to produce an initial x-polarized N-atom
state jψ0i ¼ e−iðπ=2ÞSy jψ z0i ¼ j↑x1↑x2…↑xNi. The system
evolves for a time τ ¼ 200 ms at the initial bias magnetic
field B1 ¼ 528.53 G. Then, a resonant radio-frequency
pulse ðϕÞx, shifted in phase from the first pulse by
π=2, rotates the N-atom state about the x axis [26] by a
chosen angle ϕ. Immediately following this rotation, we

(a)
(b) (c)

FIG. 1. Energy-resolved out-of-time-order correlation (OTOC) measurement. The system is initially prepared in a pure state, with the
spins for atoms of energy E1; E2;…; EN polarized along the −z axis. (a) OTOC sequence, after which the spatial profiles of the ↑z and
↓z states are measured for each cloud by resonant absorption imaging. (b) “Single-shot" spin density profile SzðxÞ (blue dots). For this
measurement, the scattering length in the Hamiltonian HðaÞ is a ¼ 4.24a0, ϕ ¼ π, and σ ¼ 345 μm. (c) An inverse-Abel transform of
the spatial profile (blue dots) extracts the single-shot energy-resolved spin density SzðEÞ (red dots). An Abel transform of SzðEÞ yields
the red dashed curve shown in (b), consistent with the data.
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reverse the sign of the Hamiltonian by applying a ðπÞy
pulse and tuning the bias magnetic field to a value
B2 ¼ 525.83 G, where the scattering length a2 ¼ −a,
i.e., eiπSyHð−aÞe−iπSy ¼ −HðaÞ, from Eq. (1). After the
system evolves for an additional time τ, the bias field is
ramped back to B1, and a final ðπ=2Þy pulse is applied [20].
The final state of the N-atom system after the pulse
sequence of Fig. 1(a) can be written as

jψfi ¼ e−ið3π=2ÞSyWϕðτÞjψ0i; ð3Þ

where the W operator is defined by

WϕðτÞ ¼ eiHðaÞτe−iϕSxe−iHðaÞτ; ð4Þ

with Sx ¼
P

i;αi sxαi the x component of the total spin
vector for the N-atom sample and jψ0i the fully x-polarized
state. After the pulse sequence, the spin densities n↑zðxÞ
and n↓zðxÞ are measured for a single cloud using two
resonant absorption images, separated in time by 10 μs. We
define one repetition of this experimental sequence as a
“single shot,” in Figs. 1(b) and 1(c). Inverse-Abel trans-
formation of ½n↑zðxÞ − n↓zðxÞ�=2 then measures
SzðEi;ϕÞ≡ szi, for a single shot, Fig. 1(c).
Now we connect the measured szi to information

scrambling [10,13,19]. Consider a single spin labeled
by αi, with spin components sxαi ; syαi ; szαi , interacting
with the many-body system. It is straightforward to show
[20]

Cαi ≡ hψ0j½WϕðτÞ; sxαi �j2jψ0i ¼
1

2
− hψfjszαi jψfi: ð5Þ

As the many-body operatorWϕ and the single spin operator
sxαi initially commute, i.e., ½Wϕð0Þ; sxαi � ¼ 0, a measure-
ment of hψfjszαi jψfi determines how two initially commut-
ing operators fail to commute at a later time, providing a
measure of scrambling.
In the experiments, we measure the collective spin

operators szi ¼
P

αi
szαi , where αi ≡ ðni; ny; nzÞ for fixed

ni. The corresponding mean square commutator, averaged
over the Ns spins with x energy Ei, is [20]

1

Ns

X
αi

Cαiðϕ; τÞ ¼
1

2
−

1

Ns

X
αi

hψfjszαi jψfi: ð6Þ

Further averaging Eq. (6) over atoms with energies within
ΔE of Ei ≡ E, we replace the sum on the right-hand side by
SzðEÞΔE=½nðEÞΔE�, yielding the measured quantity

F ðE;ϕÞ≡ 1

2

n↑z
ðE;ϕÞ − n↓z

ðE;ϕÞ
n↑z

ðE;ϕÞ þ n↓z
ðE;ϕÞ : ð7Þ

Here, nðEÞ ¼ n↑z
ðE;ϕÞ þ n↓z

ðE;ϕÞ is independent of ϕ
and F ðE; 0Þ ¼ 1=2.
We can extract information about the many-body coher-

ence from Eq. (6), by writing the sum on the right-hand side
as

P
m eimϕBm [20]. Nonvanishing coefficients Bm corre-

spond to coherence between states for which the x compo-
nent Sx of the total angular momentum differs bym [17,20].
Since the sum is real, B−m ¼ B�

m, we can expand Eq. (7) for
the measured, energy-selected average in the form

F ðE;ϕÞ ¼ B0 þ
X
m≥1

2jBmj cosðmϕþ φmÞ: ð8Þ

In fitting the data with Eq. (8), we restrict the range ofm to 4.
We find that the fits are not improved by further increase of
m, consistent with the limited number of ϕ values measured
in the experiments.
We measure spin density profiles n↑z;↓z

ðx;ϕÞ for a
scattering length a ¼ 4.24a0. The data are averaged over
6 repetitions for each ϕ, with the ϕ values chosen in random
order. We begin by finding the total number of atoms in
each spin state N↑z;↓z

ðϕÞ ¼ R
dxn↑z;↓z

ðx;ϕÞ for the proto-
col of Fig. 1(a), to find the total collective spin projection Sz
versus rotation angle ϕ, without energy restriction.
Figure 2(a) shows the normalized Sz data FðϕÞ ¼ 1

2
ðN↑z

−
N↓z

Þ=ðN↑z
þ N↓z

Þ (blue dots) and the fit of Eq. (8) (red

(a) (b) (c) (d)

FIG. 2. Total collective spin projection Sz versus rotation angle ϕ without energy restriction. (a) FðϕÞ ¼ 1
2
ðN↑z

− N↓z
Þ=ðN↑z

þ N↓z
Þ

(blue dots) for a measured scattering length ameas ¼ 4.24a0. The red solid curve is the fit of Eq. (8), which determines the magnitudes of
the coherence coefficients jBmj (b) and corresponding phases φm (c). (d) Fit of the mean-field model of Ref. [4] to the data (blue dots) for
a global detuning Δ ¼ 0 with a ¼ ameas (black dashed curve) and with a ¼ 2.63ameas (red solid curve).

PHYSICAL REVIEW LETTERS 126, 070601 (2021)

070601-3



curve), which determines the magnitude [Fig. 2(b)] and
phase [Fig. 2(c)] of the average coherence coefficients Bm.
We note that Fð0Þ ≃ Fð2πÞ < 1=2, the maximum for ideal
conditions. This discrepancy arises from small variations in
the phase shift of the final π=2 pulse, which is applied at a
finite detuning as the magnetic field is ramped from B2

back to its original value B1 [20].
To check that the measurements are reasonable, we

compare the ϕ-dependent data of Fig. 2 to a fit of our
1D mean-field model, which employs a calculated average
transverse density n̄⊥ to fit single-pulse spin-wave data
with no free parameters [4]. The model, evaluated with a

global detuning Δ ¼ 0, is shown in Fig. 2(d). To fit the
observed ϕ dependence (red solid curve), the model
requires a scattering length aeff ≡ 2.63ameas, i.e., 2.63
times larger than the measured value ameas ¼ 4.24a0, which
yields the black dashed curve. The increased aeff may occur
because the measured coherence orders with jmj > 1 arise
from interactions, favoring the largest couplings in a
manner that is not predicted by our model.
Figure 3 shows the energy-resolved measurements

F ðE;ϕÞ, obtained by inverse-Abel transformation of the
same data. The top row shows significant variation in
symmetry and structure as the energy is varied from E ¼ 0

FIG. 3. Energy-resolved collective spin projection SzðEÞ versus rotation angle ϕ for spins of selected energies (left to right) E=EF ¼ 0,
0.15, 0.25, 0.5, 0.7. Here, F ðϕÞ ¼ 1

2
½n↑ðEÞ − n↓ðEÞ�=½n↑ðEÞ þ n↓ðEÞ�. The top row shows the data (blue dots) for a measured

scattering length a ¼ 4.24a0. The red solid curve is the fit of Eq. (8), which determines the magnitudes of the coherence coefficients
jBmj (second row) and corresponding phases φm (third row). The bottom row shows the fits (red solid curves) of the mean-field model of
Ref. [4] to the data (blue dots), using a scattering length 2.63 times the measured value and global detunings, ordered in energy, of
ΔðHzÞ ¼ 0, 0.8, 0.65, −0.8, and 0.15.
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to E ¼ 0.7EF. The red solid curves in the first row show the
fit of Eq. (8), which yields the magnitudes of the coherence
coefficients jBmj and the corresponding phases φm. In the
last row, we compare the data to fits of the mean-field
model [4]. Again, the model captures the complex
ϕ-dependent shapes of the data with aeff ¼ 2.63ameas,
but a different detuning Δ is needed for each energy.
This may be a consequence of averaging data over several
detunings Δ, where each Δ rotates the direction of the
ϕ-rotation axis by Δτ [26].
In summary, we have demonstrated a general method for

measuring energy-resolved collective spin vectors in an
energy-space lattice with effective long-range interactions.
We have shown that an OTOC protocol can be
implemented in this system and that many-body coherence
can be measured in selected energy-space subsystems.
Future measurement of time-dependent correlations
between extensive subsets, CijðtÞ≡ hψ0jsxiðtÞsxjðtÞjψ0i−
hψ0jsxiðtÞjψ0ihψ0jsxjðtÞjψ0i, enables a wide variety of
protocols, extending correlation measurements in small
numbers of trapped ions [27] to large quantum systems. For
an initial x-polarized product state jψ0i, CijðtÞ ¼ 0 for
noninteracting systems and for our mean-field model, so
that CijðtÞ ≠ 0 signifies beyond mean-field physics. As
Cijð0Þ ¼ 0, a scrambling time [28,29] is determined by
observing the evolution from the product state to a
correlated state.
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