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We study the pairing of fermions in a one-dimensional lattice of tunable double-well potentials
using radio-frequency spectroscopy. The spectra reveal the coexistence of two types of atom pairs with
different symmetries. Our measurements are in excellent quantitative agreement with a theoretical model,
obtained by extending the Green’s function method of Orso et al. [Phys. Rev. Lett. 95, 060402 (2005)] to a
bichromatic 1D lattice with nonzero harmonic radial confinement. The predicted spectra comprise
hundreds of discrete transitions, with symmetry-dependent initial state populations and transition strengths.
Our work provides an understanding of the elementary pairing states in a superlattice, paving the way for
new studies of strongly interacting many-body systems.
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Optical superlattices, comprising two optical standing
waves with a tunable relative phase, enable wide control of
the band structure of ultracold atomic gases. Ground
breaking experiments with bosonic atoms in superlattices
have simulated Dirac dynamics, such as Klein tunneling
[1,2], by producing linear dispersion. A relative phase near
zero creates periodic double-well potentials with control-
lable asymmetry. Single atoms in the right or left states of
tilted double-well potentials have been employed to study
nonequilibrium dynamics [3] and to provide an effective
spin-orbit interaction with negligible optical scattering [4].
This has enabled the observation of antiferromagnetic spin
textures [4]. Cyclic variation of the phase and correspond-
ing double-well symmetry has been used to observe
topological (Thouless) pumping for weakly interacting
bosons [5] and fermions [6]. Harmonic confinement with
an applied spin-dependent force produces a bilayer system,
with geometric control of pairing interactions between
species in separated layers [7]. Anharmonicity in optical
lattice potentials generally entangles the center of mass and
relative coordinates of confinement-induced atom pairs,
modifying the pair binding energy as predicted theoreti-
cally [8] and observed in experiments [9]. Anharmonic
coupling also causes confinement-induced loss resonan-
ces, which have been observed [10,11] and studied
theoretically (see [12] and references therein), and is
predicted to modify confinement-induced states in a deep
double-well potential [13]. With magnetically tunable
two-body interactions and wide control of the dispersion
relation, ultracold atomic gases in superlattices provide a
broad platform for studies of many-body physics, includ-
ing entanglement, nonequilibrium dynamics, and exotic
new states of matter. However, there has been no quanti-
tative study of the elementary atom pairing states in a
superlattice.

In this Letter, we report precision measurements of
radio-frequency spectra for a 50-50 mixture of the two
lowest hyperfine states (denoted j1i, j2i) of fermionic 6Li
atoms in an optical superlattice, comprising attractive (red)
and repulsive (green) standing waves with an adjustable
relative phase. The trapped cloud is magnetically tuned
near the broad collisional (Feshbach) resonance at 832.2 G
[14,15] to control the s-wave scattering length a12. The
observed spectra exhibit a rich relative-phase-dependent
structure, which we explain quantitatively using a beyond
Hubbard model treatment, implemented by extending the
rigorous Green’s function method of Orso et al. [8] to a 1D
superlattice with nonzero harmonic radial confinement.
The bichromatic superlattice potential (Fig. 1) is created

by combining on a beam splitter two optical fields of
wavelengths λ1 ¼ 1064 nm and λ2 ¼ 532 nm, with the

FIG. 1. A 1D optical superlattice, formed by crossed
1064/532 nm laser beams, traps atoms along the z axis, while a
10.6 μm CO2 laser provides radial confinement. The potential
energy for the lattice of double wells is given by Eq. (1) with d the
period and ϕ the relative phase set by a Soleil-Babinet compensator
(SB), which determines the separation 2b and a tilt 2Δ between the
double-well minima. In the double-well potentials, atoms form two
types of pairs with similar total energies, which can be thermally
populated and probed by radio-frequency spectroscopy.
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second field obtained by frequency doubling of the first.
The intensities of the two beams are controlled by acousto-
optic modulators, with the green modulator operating at
precisely twice the frequency of the red. The combined
beams are split into two beam pairs, which intersect at an
angle θ ¼ 91.0° to create a fundamental lattice, denoted
“red,” with a period d ¼ λ1/½2 sinðθ/2Þ� ¼ 0.75 μm and a
secondary lattice, denoted “green,” with period d/2. The
relative phase ϕ between the standing waves is manually
tunable using a calibrated Soleil-Babinet compensator [16]
placed in the path of the second beam pair to control the
symmetry of the periodic double-well potential,

Vðz1Þ ¼ −s1ERcos2ðkz1Þ þ s2ERcos2ð2kz1 þ ϕ/2Þ; ð1Þ

where k ¼ π/d and ER ¼ ℏ2k2/ð2mÞ ¼ h × 14.9 kHz is
the recoil energy. A CO2 laser trap propagating along
the z axis provides additional radial confinement. Then,
Vðx1; y1Þ ¼ mω2⊥ðx21 þ y21Þ/2, with ω⊥ ¼ 2π × βER/h as
the net radial frequency and β ¼ 0.0166. Red and green
lattice depths s1 and s2 are calibrated by modulation of the
lattice amplitudes to induce interband transitions [16]. For
our experiments s1 ¼ 7.0 and s2 ¼ 16.5. The trapped cloud
is typically ≃30 μm in length, corresponding to ≃40 sites,
with 250 atoms per site.
The atoms are cooled by evaporation near 832 G and

loaded into the red lattice by increasing the intensity of the
1064 nm laser beam over 250 ms, at fixed CO2 laser trap
intensity. After raising the red lattice to the desired depth,
the CO2 laser trap is increased to provide additional radial
confinement as the repulsive green lattice is ramped up over
250 ms. While the atoms are being loaded into the super-
lattice, the bias magnetic field is tuned to set the desired
scattering length. A radio-frequency pulse of duration
τ ¼ 20 ms is then applied, inducing a transition from a
hyperfine state j2i to an initially unoccupied state j3i. We
measure the fraction of atoms lost from state j2i versus
radio frequency ν.
Spectra measured at 800.6 G probe all of the transitions

from initially occupied j12i atom pair states with d/a12 ¼
þ1.28. The final states are j13i atom pair states, where
d/a13 ¼ −3.78. For data taken in the nearly symmetric
double-well configuration, ϕ ≃ 0, we expect that two-
atom states in the first and second bands will be close in
energy and thermally occupied, as the single particle states
are the nearly degenerate symmetric and antisymmetric
states of a double-well potential, φ�ðz1Þ ≃ ½φ0ðz1 − bÞ �
φ0ðz1 þ bÞ�/ ffiffiffi

2
p

, where φ0ðz1Þ is a ground harmonic
oscillator state and 2b ≃ 0.466d is the separation between
the double-well minima. Shifting ϕ slightly away from zero
localizes the center of mass in either the right or left well,
strongly modifying the excitation spectra by breaking the
symmetry and increasing the initial state energy separation.
To understand the origin of the spectra, we begin by

determining the bound eigenstates and corresponding

energies for two interacting atoms in a one-dimensional
bichromatic superlattice with harmonic radial confinement.
We employ a multiband model, which is summarized
briefly here and described in detail in the Supplemental
Material [16]. Our model is based on the Green’s function
method of Ref. [8], which treated the single 1D lattice case
with no radial confinement. For harmonic radial confine-
ment, the center of mass (c.m.) X, Y motion is independent
of the internal state, so we need only the energies E and
eigenstates for the coupled relative r≡ ðx; y; zÞ and c.m. Z
motion of the two atoms. The relevant Hamiltonian is

Hðr; ZÞ ¼ H0ðr; ZÞ þ gδðrÞ ∂
∂r ½r…�; ð2Þ

where g ¼ 4πℏ2a12/m [21] and

H0ðr;ZÞ¼−
ℏ2

2μ
∇2

rþ
1

2
μω2⊥r2⊥−

ℏ2

2M
∂2

∂Z2
þUðZ;zÞ; ð3Þ

with μ ¼ m/2, M ¼ 2m, and m as the atom mass. Here,
r2⊥ ¼ x2 þ y2 and UðZ; zÞ ¼ VðZ þ z/2Þ þ VðZ − z/2Þ.
The bound state wave functions for an atom pair of

energy E and quasimomentum Q take the form

ΨEðr; ZÞ ∝
Z

dZ0Gs
Eðr; Z; 0; Z0ÞfQE ðZ0Þ; ð4Þ

where Gs
E is a Green’s function, which we expand in a

product basis comprising radial harmonic oscillator
states and single particle Bloch states for lattice parameters
s≡ ðs1; s2;ϕÞ. The function fQE ðZÞ is determined by
solving an eigenvalue equation [16]. Using a nine-band
model and 20 lattice sites, we obtain for each chosen E
and Q nine solutions fQE ðZÞ and corresponding d/a values,
arising from different combinations of c.m. and binding
energy with the same total E and Q. We order the solutions
by their d/a values, from most negative to most positive.
We note that fQE ðZÞ is not the c.m. state, as ΨEðr; ZÞ

generally does not factor, entangling the atom pair relative
coordinate r and the c.m. Z coordinate. However, the
Franck-Condon factors for the transitions are proportional
to the square of the overlap integrals of the fQE ðZÞ functions
for the initial and final states [16], which provides sub-
stantial insight.
Figures 2(a) and 2(d) show the two lowest d/a solutions

for a variety of energies E, as green and blue dots at low
resolution [16] and as continuous curves at high resolution
(insets). Note that the change in color from left to right is
a result of our d/a labeling: for the same E, the smallest
(leftmost) d/a solutions are green; the next larger d/a
solutions are blue. For simplicity, we show predictions for
Q ¼ 0, as the Q dependence for our lattice parameters is
relatively small [16]. States A and B are the two bound
states of lowest total energy at d/a12 ¼ 1.28, denoted by the
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vertical solid black line. For symmetric double-well poten-
tials with ϕ ¼ 0 and Q ¼ 0, dimer states A and B are
delocalized between the right and left wells, respectively, as
depicted in Fig. 2(b) and are symmetric or antisymmetric in
the c.m. Z coordinate relative to the double-well center,
as shown by the eigenstates fQE ðZÞ of Fig. 2(c). For tilted
double-well potentials with ϕ ¼ π/35, states A and B are
localized in the right or left well [Fig. 2(e)], breaking
symmetry [Fig. 2(f)] and increasing the A − B energy
separation compared to Fig. 2(a). The green E versus
d/a solid curve originating at state A asymptotes to the
lowest energy of two unbound atoms in the first band,
2E1

q1¼0 ≡ 0 (lower red horizontal line). The blue curve
originating at state B asymptotes to the lowest energy for
two unbound atoms, one in each of the first and second
bands, E2

�1 þ E1∓1 − 2E1
0 (upper red horizontal line).

The insets of Figs. 2(a) and 2(d), for energies E > 0,
show structure similar to states studied theoretically for
three-dimensional harmonic confinement [22,23]. Here,
the coarse structure arises from the radial energy spacing
2β ¼ 0.033ER, while the finer structure arises from the
lattice energy spacing, which depends on the number of
sites: 20 for the model shown here [16]. For ϕ ¼ 0 and
Q ¼ 0, the blue curve starting at B in Fig. 2(a), which arises

from odd symmetry dimer states, crosses several nominally
horizontal green and blue curves, which arise from even
symmetry states. In contrast, for ϕ ≠ 0, the tilted potential
breaks symmetry and strongly mixes the two lowest
lattice states, which have opposite symmetry. For E > 0,
this mixing changes the crossings of the blue curve in
Fig. 2(a) to avoided crossings in Fig. 2(d), blurring the
energy diagram.
To obtain the spectrum for j12i → j13i radio-frequency

transitions, we determine the possible resonance frequen-
cies from the energies Ei of the initial pair states, where
d/a12 ¼ 1.28, and the energies Ef of the final pair states,
where d/a13 ¼ −3.78. The corresponding transition
strengths are computed from the overlap integrals of the
normalized two-atom eigenstates hfjii. For transitions
originating in dimer state i ¼ A or B, we compute the
normalized spectrum,

SiðνÞ ¼
1

π

X

f

γjhfjiij2
½ν − ðEf − EiÞ/h�2 þ γ2

; ð5Þ

where ν is the radio frequency relative to the resonance
frequency of the bare atom 2 → 3 transition. γ denotes
the spectral linewidth (HWHM) ≃1.8 kHz, which is small

(a)

(c)

(d)

(b) (e)

(f)

FIG. 2. Dimer energies E for a lattice of double-well potentials versus d/a. For each E, green and blue denote the two smallest d/a
values. A and B show the initially populated j12i dimer states with d/a12 ¼ 1.28. Crossings with the dashed black line at d/a13 ¼ −3.78
determine final j13i dimer states. The red horizontal lines denote the lowest energy for two noninteracting atoms in the first band (lower
red line) and for one in each of the first two bands (upper red line). (a) Energy diagram for symmetric double wells, ϕ ¼ 0;
(b) Illustrations depict delocalized A and B dimer states. (c) Corresponding eigenstates fEðZÞ [see Eq. (4)] versus c.m. coordinate Z are
A symmetric or B antisymmetric with respect to the site center. (d) Energy diagram for tilted double wells, ϕ ¼ π/35; (e) Illustrations
depict localized right (A) or left (B) dimer states. (f) Corresponding fEðZÞ. Insets show typical structure for states above E ¼ 0.
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compared to ðEf − EiÞ/h and comparable to that of our
previous measurements [24].
The top panels of Figs. 3(a) and 3(c) show the Franck-

Condon factors jhfjiij2 versus transition frequency, for
transitions from the initial bound states i ¼ A,B of
Figs. 2(a) and 2(d), respectively, to final bound states f
with a fixed value of d/a13 ¼ −3.78. For ϕ ¼ 0, transitions
from the tightly bound symmetric state A (green) comprise a
dominant excitation to the lowest-lying, most tightly bound
symmetric state (left peak) and to a weaker quasicontinuum
of excited bound states. The latter corresponds to a threshold
spectrum for β → 0 [25]. For ϕ ¼ 0, transitions from the
tightly bound antisymmetric state B are dominated by a
single excitation to the lowest-lying, most tightly bound
antisymmetric state (blue peak). For ϕ ¼ π/35, mixing of
left- and right-well localized states increases the number of
transitions from state B, blurring the spectrum near 40 kHz.
Further, the lowest final state at E < 0 acquires a nonzero
overlap with the initial state B [blue peak at 30 kHz in
Fig. 3(c)]. For transitions from the right-well state A, the
strengths decrease quickly above 52 kHz, as the correspond-
ing final states become more left-well localized with
increasing energy above the fuzzy green-blue curve in
Fig. 2(d).
For each initial state i ¼ A or B, we find that the sum of

the Franck-Condon factors,
P

fjhfjiij2¼0.94–0.95, is close
to unity, using only bound state solutions [Eq. (4)]. This

appears to be a general property, arising from the radial
confinement and periodic boundary conditions imposed on a
lattice of finite length [16]. Hence, we can fit the spectrum
using the transition probabilities of Figs. 3(a) and 3(c). As
we expect the initial states to be thermally populated for
the conditions of our experiment, we take the total spectrum
to be proportional to SðνÞ ∝ exp½−EA/kBT�SAðνÞ þ
exp½−EB/kBT�SBðνÞ. The red curves show the fits with
kBT ¼ 0.35ER for ϕ ¼ 0 and 0.43ER for ϕ ¼ π/35.
An extended calculation [16], using a Boltzmann factor
weighted sum over all Q, yields equally good fits, but with
the same temperature, kBT ¼ 0.48ER ≃ kB × 0.34 μK, for
both ϕ ¼ 0 and ϕ ¼ π/35.
From the very good agreement between our model and

the data, we conclude that, for small ϕ, the spectra arise
from two initially populated dimer states (for each Q),
denoted i ¼ A, B in Figs. 2(a) and 2(d). We see that the
symmetry of the double wells greatly affects both the
strengths and the distribution of the transitions.
In summary, we have measured the radio-frequency

spectra of atom pair states in a 1D superlattice with radial
harmonic confinement and have developed a beyond
Hubbard, multiband model, which explains the spectral
structure. This model can be used to test the validity of
analytic approximations and to characterize the states and
populations of atom pairs in general optical lattices,
providing a foundation for new experiments with strongly
interacting fermions.

(a)

(b) (d)

rf rf

(c)

FIG. 3. Radio-frequency j12i → j13i dimer transition spectra (black dots) versus predictions (red curves). Green and blue denote
contributions from states A and B of Fig. 2. (a) Calculated Franck-Condon factors (log scale) for symmetric double-well potentials,
ϕ ¼ 0 as a function of transition frequency. (b) Measured spectrum showing transitions from the symmetric (A) and antisymmetric (B)
states. (c) Calculated Franck-Condon factors for tilted double-well potentials, ϕ ¼ π/35. (d) Measured spectrum showing transitions
from the localized right (A) and localized left (B) states of Fig. 2(d). Error bars denote the standard deviation of the mean of five runs.
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