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We measure the density profiles for a Fermi gas of 6Li containing N1 spin-up atoms and N2 spin-down
atoms, confined in a quasi-two-dimensional geometry. The spatial profiles are measured as a function
of spin imbalance N2=N1 and interaction strength, which is controlled by means of a collisional
(Feshbach) resonance. The measured cloud radii and central densities are in disagreement with mean-field
Bardeen-Cooper-Schrieffer theory for a true two-dimensional system.We find that the data for normal-fluid
mixtures are reasonably well fit by a simple two-dimensional polaron model of the free energy. Not
predicted by the model is a phase transition to a spin-balanced central core, which is observed above
a critical value of N2=N1. Our observations provide important benchmarks for predictions of the phase
structure of quasi-two-dimensional Fermi gases.
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Layered strongly correlated systems play important roles
in the quest for high temperature superconductors. In high-
transition temperature copper oxide and organic com-
pounds, electrons are confined in a quasi-two-dimensional
geometry, creating complex, strongly interacting many-
body systems, for which the phase diagrams are not well
understood [1]. The basic underlying mechanism for
superconductivity, the pairing of fermions, can be disrupted
by an unequal number of pairing species when the Fermi
surfaces of the two spin components are mismatched,
leading to exotic superconductivity in which pairs acquire
finite momentum [2]. Such spin-imbalanced Fermi mix-
tures also can contain polarons, quasiparticles formed by
mobile impurities in a fermionic bath. Ultracold atomic
Fermi gases provide a new platform for emulation of these
systems, with precise experimental control [3–8].
Previous studies of pairing in spin-imbalanced three-

dimensional (3D) [9–11] and one-dimensional (1D) [12]
Fermi gases revealed phase separation. In 3D, a spin-
balanced, fully paired, superfluid core is surrounded by an
imbalanced normal-fluid shell, followed by a fully polar-
ized shell, a structure successfully described by an elegant
polaron model [13]. For measurements in 1D imbalanced
mixtures, the behavior is reversed: A balanced phase
appears outside a spin-imbalanced core, in agreement with
a mean-field model.
A natural question is how the phase diagram of a quasi-

two-dimensional cloud, containing a spin-imbalanced
Fermi gas, differs from those measured in one and three
dimensions. Does phase separation occur? If so, what
separates? Unlike a 3D gas in free space, a two-dimensional
(2D) gas naturally contains bound dimers [14,15]. The
binding energy of these dimers, Eb ≥ 0, sets the natural
scale of length for scattering interactions in 2D systems. 2D
polarons [16] may be important for a quasi-2D Fermi gas
[17]. The phase diagram for imbalanced mixtures in this

regime is therefore likely to be very rich [18–20], involving
the interplay and phase separation of several components,
including dimer gases, polaron gases, and spin-imbalanced
normal fluids, as shown in Fig. 1. Exotic components
with spatially modulated superfluids (Fulde-Ferrell-
Larkin-Ovchinnikov states), and vortex-anti-vortex pairs
(Berezinskii-Kosterlitz-Thouless states) also have been
predicted for 2D and quasi-2D Fermi gases [19,21–27].
The dimensionality of a single layer in Fig. 1 is determined
by the ratio of the transverse Fermi energy EF to the
energy level spacing hνz in the tightly confined z direction.
The system is two dimensional if EF=hνz ≪ 1 or three
dimensional if EF=hνz ≫ 1.

FIG. 1 (color online). Top: Side image of layered pancake-
shaped atom clouds, separated by 5.3 μm in a CO2 laser standing-
wave trap. Bottom: In each pancake, confinement causes majority
spins (blue-up arrow) and minority spins (red-down arrow) to
pair, producing bound dimers. Polarons form when minority
atoms scatter in the Fermi sea of the majority atoms and become
surrounded by a cloud of particle-hole pairs (dark-blue-light-
blue). Tightly bound dimers also scatter, forming dressed dimers.
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We report measurements of the spatial profiles for
degenerate spin-imbalanced mixtures in the intermediate
quasi-two-dimensional regime [17], where EF=ðhνzÞ≃ 1.
This regime is of great interest, as the onset of a superfluid
phase is predicted [20,28] to occur at a higher critical
temperature than for a true 2D system. Control of the
relative spin population permits precision studies of the
phase diagram for these quasi-2D gases, which has been
the topic of intense theoretical study [14,19–27,29].
In the experiments, typical parameters [30] are N1 ¼

800 atoms per pancake trap at a temperature T=TF < 0.21,
trap potential depth U0 ¼ 3.3 μK, harmonic oscillation
frequencies ω⊥ ¼ 2π × 440 Hz and ωz ¼ 2π × 9.0 kHz

(hνz ¼ 0.43 μK), EF1 ¼ 0.85 μK, Thomas-Fermi radius
RTF1 ¼ 17.5 μm; at 775 G, Eb ¼ 1.15 μK.
We investigate 2D density distributions n2Dðx; yÞ of

imbalanced quasi-2D gases by direct imaging, which
measures the column density profiles n1DðxÞ ¼R
dyn2Dðx; yÞ, Fig. 2, as a function of EF=Eb and N2=N1.

Here N1ðN2Þ is the number of majority(minority) atoms.
The cutoff radii R and the central 2D densities for
each state are extracted using the fit function n1DðxÞ ¼
n1Dð0Þð1 − x2=R2Þ3=2, i.e., the y-integrated spatial profile
of an ideal 2D Fermi gas [30]. Figure 3 shows the cloud
radii for the majority (blue dots) and minority (red dots), for
EF=Eb ¼ 6.6; 2.2, and 0.75. Both radii are given in units of

FIG. 3 (color online). Majority radii (upper-blue) and minority radii (lower-red) in units of the Thomas-Fermi radius for the majority
for EF=Eb ¼ 6.6 (left panel), EF=Eb ¼ 2.1 (middle panel) and EF=Eb ¼ 0.75 (right panel). Dots: Data; solid lines: 2D polaron model
for imbalanced mixture 0 ≤ N2=N1 ≤ 0.9 [30], 2D polaron model for balanced mixture N2=N1 ¼ 1 [30]. Dashed lines: Ideal Fermi gas
prediction, black circle upper right: 2D-BCS theory for a balanced mixture.
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FIG. 2 (color online). Measured column density profiles in units of N1=RTF1 at 832 G, for EF=Eb ¼ 6.6 (left panel) and at 775 G,
for EF=Eb ¼ 0.75 (right panel) versus N2=N1. Green: 1-majority, red: 2-minority. Blue-dashed: Column density difference. Each profile
is labeled by its N2=N1 bin (range � 0.03). For the density difference, the flat center and two peaks at the edges are consistent
with a fully paired core of the corresponding 2D density profiles. These features are more prominent for the higher interaction
strength (right panel).
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the Thomas-Fermi radius RTF1 for the majority, to clearly
demonstrate the deviation from the predictions for an
ideal Fermi gas, which is shown for comparison as the
blue-dashed and red-dashed curves. For the nearly polar-
ized clouds, where N2=N1 ¼ 0.1, the measured majority
radii approach the ideal gas limit. As the N2=N1 is
increased, the measured radii of both species are signifi-
cantly affected by attractive interactions between the two
spin components.
To consider many-body interactions, we first compare

the measured cloud radii for the balanced mixture,
N2=N1 ¼ 1, with Bardeen-Cooper-Schrieffer (BCS) theory
predictions for a true 2D Fermi gas [14], which shows
ϵF ¼ μþ Eb=2. This yields profiles identical to those of
an ideal gas [30,39], leading to R=RTF1 ¼ 1 for both spin
states (black circle, Fig. 3), in disagreement with the
measured radii, which are much smaller.
Now we compare the data in Fig. 3 to a 2D polaron

model, assuming, for simplicity, that most of the atoms
reside in the ground axial state. The model is briefly
summarized here and described in detail in the
Supplemental Material [30]. At zero temperature, the free
energy density f is equal to the energy density. For an
imbalanced mixture, with N2 ≪ N1, we assume the 2D
energy density is

f ¼ 1

2
n1ϵF1 þ

1

2
n2ϵF2 þ n2Epð2Þ: ð1Þ

Here, the first two terms are the energy density for a
noninteracting gas and the last term is the energy density
for minority polarons in state 2, which arises from scatter-
ing in the bath of majority atoms in state 1; n1;2 and ϵF1;2
are the corresponding densities and local Fermi energies.
The two-polaron energy per particle Epð2Þ≡ ymðq1ÞϵF1,
where q1 ≡ ϵF1=Eb. The function ymðq1Þ is derived for a
2D gas in Ref. [17]. For simplicity, we use an analytic
approximation [40], ymðq1Þ ¼ −2= logð1þ 2q1Þ. From
Eq. (1), we directly obtain the local chemical potentials,
μ1 ¼ ∂f=∂n1 and μ2 ¼ ∂f=∂n2, and the corresponding
local 2D pressure, p ¼ n1μ1 þ n2μ2 − f. The chemical
potentials determine the spatial profiles in the trap.
The polaron model predictions for R1 and R2 are shown

as the upper (blue) and lower (red) solid curves in Fig. 3.
Although the model is strictly valid only for small N2=N1,
we display the predictions based on Eq. (1) for the
imbalanced gas for N2=N1 ¼ 0 up to N2=N1 ¼ 0.9. For
N2=N1 ¼ 1, we show the predictions for the balanced
mixture, which employs a spin-symmetrized free energy
density [30].
The central pressure for the balanced gas (N2 ¼ N1) is

determined by the 2D central density nð0Þ, which is
directly obtained from the measured central column
density n1Dð0Þ. As discussed in the Supplemental
Material [30], p ∝ 1=nð0Þ2 and nð0Þ ∝ n21Dð0Þ=N1.

From this, we obtain the 2D pressure at the trap center
in units of the ideal Fermi gas pressure for the same
density, ~p, Fig. 4. The red solid curve shows the
2D polaron model prediction, for the same trap frequency
ω⊥ as used to determine RTF1 in the cloud profile
measurements, with no other adjustable parameters.
For comparison, using the 2D-BCS theory prediction
[14,39], where ϵF ¼ μþ Eb=2, the Gibbs-Duhem
relation requires ~p ¼ 1 for all EF=Eb, in contrast to the
measurements [30].
We have also measured the central density ratio n2=n1 of

the 2D gas as a function of N2=N1. First, we fit a Thomas-
Fermi 1D profile to each column density, from which we
find the corresponding 2D densities as described above.
Also, we employ an inverse Abel transformation of the
column densities to extract the peak 2D densities. Both
methods yield similar results within 5%. We show the
density ratios for three interaction strengths in Fig. 5. The
agreement with the polaron model is reasonably good at
832 G, where EF=Eb ¼ 6.6. However, as the interaction
strength is increased to EF=Eb ¼ 0.75 by increasing the
dimer binding energy at 775 G, the 2D central densities
abruptly become balanced above a critical ratio N2=N1

(right panel, Fig. 5). To ensure that the densities are
balanced not just at the center, but over an extended range,
we examine the measured column density profiles in Fig. 2.
The apparent presence of two peaks at the edges in the
column density difference versus x is consistent with the
y-integrated 2D shell structure of a balanced core sur-
rounded by an unpaired majority fraction [30]. Note that
double integration of the 3D shell structure gives rise to flat
top distributions [41].
Equal densities for any imbalance are not predicted by

the 2D polaron model, as the pressure determined for the
imbalanced gas from Eq. (1) is always greater than or equal
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FIG. 4 (color online). Reduced 2D pressure at the trap center
versus EF=Eb for the balanced gas. Dots: Experiment, solid red
curve: prediction based on the polaron model for the balanced
gas, dashed line: prediction of 2D-BCS theory.
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to the pressure for the balanced gas, contrary to the 3D case
where crossing of the two pressures determines the critical
polarization for the phase separation [13]. This is not
unexpected, as the simple polaron model with the analytic
approximation for the polaron energy ignores nonmono-
tonic behavior [42] on the molecular side of the Feshbach
resonance (B < 832 G), where it overestimates the mag-
nitude of Ep and does not include the effective mass or
molecular repulsion energy. Further, the polaron model is
derived for zero temperature and considers only the ground
axial state of motion in the trap. However, for the experi-
ments, we estimate the upper limit of the gas temperature to
be kBT=EF ¼ 0.21, and a population of the first excited
axial state up to 20% for a noninteracting gas [30]. For
interacting mixtures, dimer pairing decreases the local
Fermi energy of both components, suppressing the pop-
ulation of higher axial states, which can be included in
more complete treatments.
In conclusion, we have created and studied an imbal-

anced strongly interacting quasi-two-dimensional Fermi
gas. The 2D polaron model captures much of the behavior
of the spin-imbalanced normal-fluid mixtures, suggesting
that polarons play an important role. However, more
precise calculations of the pressures for the balanced and
imbalanced components are needed to explain the observed
phase separation and critical spin imbalance. Our mea-
surements will serve as a test for predicted phase diagrams,
which will help to reveal the structure of a quasi-2D
Fermi gas.
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