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Verifying a quasiclassical spin model of perturbed quantum rewinding in a Fermi gas
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We systematically test a quasiclassical spin model of a large spin lattice in energy space, with a tunable,
reversible Hamiltonian and effective long-range interactions. The system is simulated by a weakly interacting
Fermi gas undergoing perturbed quantum rewinding using rf pulses. With single-shot analysis techniques, the
measurement of energy-resolved spin density quantitatively substantiates the classical treatment of this many-
body spin system. This work also elucidates the effects of rf detunings on the system and measurements, pointing
the way to new correlation measurement methods.
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Measurement of coherence, entanglement, and correla-
tions in time-reversible many-body spin lattices is of great
interest, broadly impacting our understanding of quantum
measurement and information processing [1–3]. A nearly
ideal platform for exploring large spin lattices is a weakly
interacting Fermi gas, containing N � 105 atoms that simu-
lates a tunable, reversible, collective Heisenberg Hamiltonian,
which is a paradigm for quantum magnetism [4]. The trapped
cloud behaves as a spin lattice in energy space with effec-
tive long-range interactions [2,5–14]. Remarkably, classical
hydrodynamic behavior has been observed in large spin mate-
rials with long-range interactions and disorder [15]. However,
it is unclear if a weakly interacting Fermi gas obeys classical
spin evolution [16–19].

Spin waves observed in nearly collisionless Fermi gases
have been explained by several models [6–11,13], including a
one-dimensional (1D) quasiclassical spin evolution model [8],
which appeared to fail in perturbed quantum rewinding exper-
iments [20]. In such experiments, an rf pulse rotates the entire
spin system by an angle φx about the x axis as a perturbation
in between forward and backward evolution. In a quantum
picture, the φx rotation changes the relative phases of the
superposed total angular momentum states that describe the
system, i.e., |S, Mx〉 → e−iMxφx |S, Mx〉 for each state, leading
to coherence amplitudes with φx-dependent phases between
states differing in Mx. To fit the data, an unphysical scattering
amplitude ≈2.5 times the measured value was needed [20],
questioning the adequacy of the quasiclassical treatment and
suggesting possible quantum effects.

In this Letter, we report precise, systematic tests of a
quasiclassical spin model using single-shot measurements of
the spin-density profiles from perturbed quantum rewind-
ing experiments. Such experiments are ideal for testing the
model, since unperturbed rewinding experiments can be im-
plemented in advance to prove that the system is reversed
properly without model-dependent fits, as shown in Fig. 1.
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We show the advantages of single-shot data analysis for stud-
ies of ensemble-averaged energy-resolved spin density, and
quantitatively demonstrate the important roles of different rf
detunings during the forward and backward evolution periods.
By using two detunings as separate fit parameters, the data are
explained by the model using the measured scattering length.
The new approach reported here validates the modified quasi-
classical treatment of this quantum spin system and suggests
detuning-independent measurement methods for future corre-
lation studies, avoiding probabilistic methods in data selection
[12].

Our experiments [21] employ degenerate clouds of 6Li
containing a total of N = 6.5 × 104 atoms initially in a single
spin state. The cloud is confined in a harmonic, cigar-shaped
optical trap, with oscillation frequencies ωx/2π = 24.4 Hz in
the axial direction and ωr/2π = 650 Hz in the radial direc-
tion. The corresponding Fermi temperature TF = 0.76 µK and
T/TF = 0.31. The rf pulses prepare coherent superpositions
of the two lowest hyperfine-Zeeman states, which are denoted
by |1〉 ≡ |↑z〉 and |2〉 ≡ |↓z〉. The experiments are done in the
weakly interacting regime, where the energy-state changing
collision rate is negligible over the timescale of the measure-
ments [8].

As the single-particle energies are fixed and the energy
distribution is time independent [8], we approximate the cigar-
shaped weakly interacting Fermi gas as a one-dimensional
(1D) spin “lattice” in energy space [8], with a Hamiltonian

H (a)

h̄
= a

∑

i, j 	=i

gi j 
si · 
s j +
∑

i

�′Ei szi + �(t )Sz. (1)

We associate a “site” i with the energy Ei = (ni + 1/2) hνx

of the ith harmonic oscillator state along the cigar axis x.
For each Ei, we define a dimensionless collective spin vector

s (Ei ) ≡ 
si.

The first term in Eq. (1) is the site-to-site interaction, pro-
portional to the s-wave scattering length a and to the overlap
of the harmonic oscillator probability densities for colliding
atoms. In a WKB approximation, gi j ∝ 1/

√|Ei − Ej |, which
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FIG. 1. Observing quantum rewinding by comparing the spin densities for forward evolution (red circles) and backward evolution (blue
circles). The scattering length a = 8.0a0 and σTF ≈ 335 µm. The Hamiltonian is reversed at τ f = 280 ms (top) and τ f = 400 ms (bottom). For
forward evolution data, the time tk shown on the top right corner of each tile is the total evolution time tfk: For the backward evolution data, the
total evolution time tbk = τ f + τb, where τ f is the time at which reversal occurs, and τb = τ f − tk is the backward evolution time (see Fig. 2).
To avoid confusion with the x axis of the rf or Bloch frame, here, we clarify that x in all spatial profiles means the axial direction along the
longitudinal axis of the cigar-shaped cloud.

is an effective long-range interaction in the energy-space
lattice [8]. For a zero-temperature Fermi gas, the average
interaction energy (in rad/s) is aḡ = 6.8 n0 h̄a/m, where n0

is the peak density. For our experimental parameters, with
a = 5.2a0, aḡ/2π � 1.6 Hz.

The second term in Eq. (1) is an effective site-dependent
Zeeman energy, arising from the quadratic spatial varia-
tion of the bias magnetic field along x, which produces a
spin-dependent harmonic potential. As ωr/ωx = 26.6, the cor-
responding effect on the radial motion is negligible, enabling
a 1D approximation, where atoms in different radial energy
states at site i have the same Zeeman energy. In Eq. (1),
�′ = −δωx/(h̄ωx ), with δωx/2π = 14.2 mHz for our trap [8].
For the mean energy Ēx � kBTF /4, �′ Ēx/2π � 2.3 Hz.

The last term in Eq. (1) arises from the time-dependent
global detuning �(t ), which plays a central role in the anal-
ysis of the rewinding data. Here, Sz = ∑

i szi. Fluctuations in
the bias magnetic field and magnetic tuning of the scattering
length cause �(t ) to change at 5 kHz/G for |1〉-|2〉 superposi-
tion states.

To implement perturbed quantum rewinding, we employ
the pulse sequence shown in Fig. 2 [20]. The system is initially
prepared in a pure z-polarized spin state |ψ0z〉. The first (π/2)y

pulse (0.5 ms), defined to be about the y axis, creates an x-
polarized state |ψ0x〉. Here, the y and x axes are defined in the
rotating frame of the rf pulses (rf frame). Then, the system is
allowed to evolve forward for a time τ f . A voltage-controlled
change of the rf phase by π/2 permits rotation about the
x axis by an angle φx. Applying a (π )y pulse (1 ms) and
magnetically tuning the scattering length from a → −a (10
ms) inverts the sign of Hamiltonian shown in Eq. (1), causing
the system to evolve backward for a time τb [21]. As described
below, we perform experiments both with and without the

final (π/2)y pulse, after which the spatial profiles of the |↑z〉
and |↓z〉 states are measured by two resonant absorption imag-
ing pulses, separated by 10 µs, to obtain the single-shot spin
density Sz(x) = [n↑z (x) − n↓z (x)]/2. For each shot, Sz(x) is
normalized to the total central density n(0) = n↑z (0) + n↓z (0)
to minimize errors arising from shot-to-shot variation in the
atom number and cloud width. All spatial profiles are folded
about x = 0 and displayed for 0 � x � σTF.

The reversibility of the system is tested using the pulse
sequence of Fig. 2 with φx = 0 and without the final (π/2)y

pulse. This sequence measures the component of the collec-
tive spin vector 
si that was along the z axis just prior to
imaging. The longitudinal (z) component is insensitive to the
detuning �(t ) that causes a rotation of 
si about the z axis
relative to the rf frame, enabling a robust test. In the data anal-
ysis, since Sz = 0 for φx = 0, global spin balance is enforced
to minimize the error from small shot-to-shot changes in the

FIG. 2. Characterizing perturbed quantum rewinding. The atom
cloud is initially prepared in a pure z-polarized spin state. The system
runs forward for a time τ f and backward for τb, after which the
spatial profiles of the |↑z〉 and |↓z〉 states are measured. Green and
red blocks represent rf pulses and rotation angles about the y and x
axes, respectively, whose durations are τ f , τb.
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detuning of the rf pulses, which arises from magnetic field
fluctuation.

In these experiments, it is essential to carefully calibrate
the bias magnetic field B0 at which the s-wave scattering
length vanishes. This is best done by quantifying the reversal
results using different magnetic fields, which is independent
of fitting models and less sensitive to the initial conditions,
in contrast to the method adopted in Ref. [8]. B0 is found by
minimizing the sum of the mean-square differences between
the forward and backward spin-density profiles at correspond-
ing times [21]. Unperturbed rewinding experiments done at
scattering lengths of ±5.2a0 and ±8.0a0 suggest that B0 =
527.150(5) G, which is lower by 30 mG compared to the B0 of
Ref. [8].

Figure 1 shows rewinding data (six-shot average) at corre-
sponding forward (red) and backward (blue) evolution times
for a = 8.0a0 and −8.0a0, respectively. With the calibrated
B0, the corresponding forward and backward spin-density pro-
files demonstrate good agreement for reversal at 280 ms (top
row), while reversal at 400 ms (bottom row) leads to greater
differences between the corresponding forward and backward
data profiles.

Having established that the system is reversible for scat-
tering lengths |a| � 8.0a0 and evolution time τ ≡ τ f = τb �
280 ms, data are mainly obtained with τ = 200 ms at 5.2a0
(denoted [5.2a0; 200 ms]) using the full pulse sequence of
Fig. 2. This provides stringent tests of quasiclassical collective
spin vector models. Here, the final (π/2)y pulse is included
to measure the transverse spin components that were along
the x axis in the rf frame in Fig. 3 just prior to imaging. For
φx = 0 and a detuning �(t ) that is constant over the total
sequence, the system is expected to rewind to the initial state,
where the density profiles for both spins are Thomas-Fermi.
For φx 	= 0, however, the rewinding is perturbed, producing
complex spin-density profiles after the full sequence.

Figure 4 shows single-shot spin-density profiles for φx =
π/2, π, 3π/2. We obtain the corresponding energy-space
profiles szi ≡ sz(E ) by inverse Abel transformation [22] of the
spatial profiles, which is valid in a WKB approximation when
energy-space coherence is negligible and a quasicontinuum
approximation is valid, as in our experiments [8].

To understand the perturbed rewinding data of Fig. 4, we
include a time-dependent global detuning �(t ) in the Hamil-
tonian of Eq. (1). The detuning determines the relative angle
between the rf frame and the Bloch frame ϕ f b in Fig. 3. Here,
the rf frame is defined by xrf and yrf axes that rotate about the z
axis at the instantaneous rf frequency ωrf(t ), tracking the total
phase of the rf field. We define the rotation axes for all of the rf
pulses in Fig. 2 to be in the rf frame, i.e., x ≡ xrf and y ≡ yrf.
The Bloch frame is defined by xB and yB axes that rotate at
the instantaneous hyperfine resonance frequency ωhf(t ) for an
atom of axial energy E = 0.

The detuning, �(t ) = ωhf(t ) − ωrf(t ), causes the compo-
nents of the spin vectors in the Bloch frame to rotate relative
to the rf frame by generally different angles ϕ f = ∫

τ f
dt �(t )

and ϕb = ∫
τb

dt �(t ), during the forward and backward evo-
lution times, respectively, even for τb = τ f = τ as in our
experiments. Just after the forward evolution, the perturbing
φx rotation is effectively applied about a rotated axis êx′ =
cos ϕ f êx − sin ϕ f êy [21].

FIG. 3. Relation between the spin vector components in the
radio-frequency (rf) and Bloch (B) frames for nonzero ϕ f b.

For each shot, the operator szi is measured for an ensemble
of atoms in a selected energy group Ei ∈ [E , E + �E ]. The
energy resolution �E of the inverse Abel-transform method
is small enough that all of the atoms in the energy group
evolve identically over the timescale of the pulse sequence.
The measurements then yield the ensemble average of the x
component relative to the rf frame just before the final (π/2)y

pulse,

s̃′
xi = cos ϕ f b s̃xi − sin ϕ f b s̃yi, (2)

where s̃xi and s̃yi are the components in the Bloch frame
[21] (Fig. 3). For each measurement, the difference between
the backward and forward phase shifts, ϕ f − ϕb ≡ ϕ f b, deter-
mines the relative contribution of the spin components in the
Bloch frame to the measured projection in the rf frame.

To predict the measured szi, we employ a mean-field ap-
proximation to obtain a quasiclassical model [8], where the
Heisenberg equations are solved numerically by treating the
collective spin vectors as classical variables, which ignores
quantum correlations between the spin vectors for different
energy groups. The Heisenberg equations of motion for the
collective spin vectors take a simple form in energy space,

̇si(t ) = 
ωi(t ) × 
si(t ), with


ωi(t ) = a
∑

j 	=i

gi j 
s j (t ) + �′Ei êz + �(t )êz. (3)

For a given choice of the forward and backward detunings,
i.e., the phases ϕ f and ϕb, szi is determined by numerical
integration. An Abel transform of szi ≡ sz(E ) then yields the
corresponding spin density sz(x) [8].

Experimentally, 60 shots are taken for each set of param-
eters. Examples of single-shot data are shown in Fig. 4 and
in the Supplemental Material [21]. Due to the complexity
of the spatial profiles for φx 	= 0, single-shot data analysis
is essential for this experiment. A small variation (�5%) in
cloud parameters results in shifted spatial profiles, even for
fixed ϕ f and ϕb, so averaging over shots with slightly different
initial conditions can wash out the fine structure. Figure 4
compares two quasiclassical models with the single-shot data
(blue dots). For the model reported in this Letter, the forward
and backward evolution phases ϕ f and ϕb are treated as two
free parameters. This model (red curves) is in good agreement
with data taken with all experimental parameters φx and [a;
τ ] in Fig. 4: [5.2a0; 200 ms] data are shown in Figs. 4(a),
4(e) and 4(b), 4(f); [8.0a0; 200 ms] in Figs. 4(c) and 4(g);
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FIG. 4. Single-shot spin-density profiles in space (top) and in energy space (bottom) for perturbed quantum rewinding. For this set of
data, σTF ≈ 340 µm, (a), (e) measured scattering length a = 5.2a0, φx = π/2, τ = 200 ms; (b), (f) a = 5.2a0, φx = π , τ = 200 ms; (c), (g)
a = 8.0a0, φx = 3π/2, τ = 200 ms; (d), (h); a = 5.2a0, φx = π/2, τ = 400 ms. Blue dots are single-shot data. Red curves: Quasiclassical
collective spin vector model using the measured scattering length, with forward and backward evolution phases ϕ f and ϕb as fit parameters.
Black dashed curves show the fits using the analysis method of Ref. [20], which requires afit = 9.0a0 for (a), (e) and (b), (f). Black dashed
curves in (c), (g) and (d), (h) show typical fit failures for the same method.

and [5.2a0; 400 ms] in Figs. 4(d) and 4(h). Additional data
obtained at [5.2a0; 200 ms] with φx in steps of φx = π/4
are shown in the Supplemental Material [21], demonstrating
equally good agreement. Section IV B of the Supplemental
Material explains the sources of minor defects observed in
data for [8.0a0; 200 ms] and [5.2a0; 400 ms].

The model adopted in Ref. [20] assumes ϕ f ≡ ϕb + π

mod 2π . The fits (black dashed curves) to the data in
Figs. 4(a), 4(e) and 4(b), 4(f) for [5.2a0; 200 ms] require a
fitted scattering length of afit = 9.0a0, in disagreement with
the measured value. The magnetic field calibration allows a
precision of 0.03a0 in scattering length measurement, thus,
this fitting parameter afit is unphysical. Therefore, Ref. [20]
suggested a major breakdown of this quasiclassical model.
In addition, this model fails to fit data in experiments im-
plemented with parameters [5.2a0; 400 ms] and [8.0a0; 200
ms] regardless of the afit value. The black dashed curves in
Figs. 4(c), 4(g) and 4(d), 4(h) show typical fit failures of the
Ref. [20] model. By analyzing single-shot data and including
rf detunings correctly in the model, the experiment reported

in this work validates the classical treatment of this large spin
lattice undergoing perturbed quantum rewinding.

The modified model reported here explicitly shows the
difficulty of multishot averaged measurements of transverse
spin components, such as sx, where the averages of cos ϕ f b

and sin ϕ f b in Eq. (2) tend to vanish. Previously, the im-
perfect phase control problem was partially circumvented
by using a maximum likelihood estimation [12]. However,
Eq. (2), which is valid for both quasiclassical and full
quantum treatments [21], suggests that multishot averaged
measurements of energy-space spin operator products, such
as 〈szisz j〉 = 〈s̃′

xis̃
′
x j〉, are important, since the random-phase

averages 〈cos2 ϕ f b〉 = 〈sin2 ϕ f b〉 = 1/2. This method en-
ables improved out-of-time-order correlation measurements
in quantum gases, where the W operator is unchanged and the
operator V = sxi is replaced with V = sxisx j , since the initial
x-polarized state is an eigenstate of both operators [14,20,23].

In summary, this Letter verifies that a quasiclassical spin
vector model of weakly interacting Fermi gases explains per-
turbed quantum rewinding experiments, using measurements
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of single-shot spin-density profiles with sufficient resolution
to enable quantitative study. The analysis reported here elu-
cidates the effects of uncontrolled forward and backward
evolution phases, ϕ f and ϕb, on the system and measure-
ments, resolving an outstanding conflict with a previous
treatment [20]. Our results suggest new correlation analysis
methods based on energy-resolved operator products, which
yield signals that are independent of the uncontrolled rf de-
tuning without assuming phase distributions [12]. Applying
such methods to measure the time dependence of correla-

tions between transverse components 〈s̃⊥i · s̃⊥ j〉 allows the
study of entanglement development in a large system [24]
and investigations of many-body dynamics and information
propagation [25]. Such experiments will be a topic of future
work.
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