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Universal density shift coefficients for the thermal conductivity and shear viscosity
of a unitary Fermi gas
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We measure universal temperature-independent density shifts for the thermal conductivity κT and shear
viscosity η, relative to the high temperature limits, for a normal phase unitary Fermi gas confined in a box
potential. We show that a time-dependent kinetic theory model enables extraction of the hydrodynamic transport
times τη and τκ from the time-dependent free decay of a spatially periodic density perturbation, yielding the
static transport properties and density shifts, corrected for finite relaxation times.
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Measurements of the universal hydrodynamic transport
properties of a unitary Fermi gas connect ultracold atoms to
nuclear matter [1–3] and provide new challenges to theoretical
predictions [4–15]. A unitary Fermi gas is a strongly inter-
acting, scale-invariant, quantum many-body system, created
by tuning a trapped, two-component cloud near a collisional
(Feshbach) resonance [16]. At resonance, the thermodynamic
and transport properties are universal functions of the density
and temperature [17], permitting parameter-free comparisons
with predictions. Early measurements on expanding Fermi
gas clouds with nonuniform density [18,19] have made way
for new measurements in optical box potentials [20], where
the density is nearly uniform [21–26]. For a unitary Fermi
gas, the second bulk viscosity vanishes, as predicted for
scale-invariant systems [27,28] and demonstrated in exper-
iments on conformal symmetry [29]. Hence, in the normal
phase at temperatures above the superfluid transition [30], the
hydrodynamic transport properties comprise only the shear
viscosity η and the thermal conductivity κT .

Remarkably, the measured shear viscosity and thermal con-
ductivity in the normal phase appear to be fit by the simple
expressions [12,23,31],

η = 15

32
√

π

(mkBT )3/2

h̄2 + α2η h̄n0, (1)

and

κT = 15

4

kB

m
η(α2η → α2κ ) (2)

with kB the Boltzmann constant and m the atom mass.
The density shift coefficients α2η and α2κ are temperature-
independent fit parameters. Here, the temperature T and
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density n0 contributions can be understood by dimensional
analysis. For the shear viscosity, with a dimension of
momentum/area, we expect η ∝ h̄/L3, with L a length scale.
At high temperature, L → λT , the thermal de Broglie wave-
length ∝ T −1/2. At lower temperature, where the cloud is
degenerate, 1/L3 = n0. For both η and κT , the leading high
temperature T 3/2 dependence has been obtained by variational
calculations for a unitary gas in the two-body Boltzmann limit
[4,6,12]. In contrast to the two-body T 3/2 coefficients, the
density shift coefficients α2η and α2κ are unknown universal
many-body parameters, which can arise in Fermi gases by
Pauli blocking. In calculations of the transport times for a uni-
tary Fermi gas, however, it has been noted that Pauli blocking
appears to be nearly canceled by in-medium scattering [13].
Precise measurements of the density shifts therefore test the
degree of this fundamental cancellation.

In this work, we measure the universal temperature-
independent density shifts for the static shear viscosity and
thermal conductivity of a normal phase unitary Fermi gas,
confined in a uniform box potential. The time-dependent free-
decay of an initial spatially periodic density perturbation is
observed and analyzed using a time-dependent kinetic the-
ory model to move beyond the fast-relaxation approximation,
assumed for extracting transport properties in previous experi-
ments [22–24]. The model corrects for the suppression of each
transport property measured at finite frequency ω, relative to
the static value [32]. We use this model to extract the uni-
versal hydrodynamic transport times τη and τκ from the data.
The model is examined by measurements for several different
perturbation wavelengths λ, which alters the frequency ∝ 1/λ

and the damping rates ∝ 1/λ2. The extracted relaxation times
determine the static shear viscosity and thermal conductivity,
yielding the two universal density shift parameters α2η, α2κ ,
corrected for the finite response time over which the viscous
force and heat current relax to their Navier-Stokes forms.

The experiments employ ultracold 6Li atoms in a balanced
mixture of the two lowest hyperfine states, which are evap-
oratively cooled in a CO2 laser trap and loaded into a box
potential, Fig. 1, producing a sample of nearly uniform den-
sity n0. The box comprises six sheets of blue-detuned light,
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FIG. 1. A unitary Fermi gas is loaded into a repulsive box poten-
tial created by two digital micromirror devices DMDs (top, right). A
third DMD (bottom) generates a static spatially periodic perturbation
δU (z) with an adjustable wavelength λ, creating spatially periodic
initial 1D density profiles (left). After δU is abruptly extinguished,
the dominant Fourier component exhibits an oscillatory decay (see
Fig. 2).

created by two digital micromirror devices (DMDs) [21,23]
(top and right). The box potential U0(r) yields a rectangular
density profile with typical dimensions (x, y, z) = (52 × 50 ×
175) µm. The density varies slowly in the direction of the
long (z) axis, due to the harmonic confining potential ∝ z2

arising from the curvature of the bias magnetic field, which
has little effect on the shorter x and y axes. The typical total
central density is n0 = 3.3 × 1011 atoms/cm3, with the Fermi
energy εF ≡ kBTF = kB × 0.18 μK and Fermi speed vF �
2.25 cm/s. The box depth U0 � 0.75 μK (see Ref. [23]).

We employ an optical system with a third DMD, Fig. 1
(bottom), to independently project a static optical potential
δU (z), which is spatially periodic along one axis z with an
adjustable wavelength λ. This creates an initial density per-
turbation δn(z)/n0 = A sin(2πz/λ), where a small A = 10%
is chosen for measurement in the hydrodynamic linear re-
sponse regime [31]. The third DMD is illuminated with a
low intensity beam to utilize its full dynamic range. Once
equilibrium is established, the perturbing potential is abruptly
extinguished, causing an oscillatory decay of the measured
density perturbation δn(z, t ) = n(z, t ) − n0(z), with n(z, t ) the
doubly integrated 3D density. By performing a fast Fourier
transform (FFT) of δn(z, t ) at each time, in a region containing
an integer number (typically 3–4) of spatial periods, we obtain
δn(q, t ), Fig. 2. As shown previously [23], in a fast-relaxation
approximation, δn(q, t ) contains a thermally diffusive mode
(� 35%) that decays at a rate ∝ κT and an oscillating first
sound mode, which decays at a rate dependent on both η

and κT , yielding η and κT , albeit uncorrected for the finite
transport times.

To include the finite response times, we derive a relaxation
model in the linear response regime by constructing four
coupled equations: two describe the changes in the density
δn(z, t ) and temperature δT (z, t ), and two describe the relax-
ation of the viscous force and heat current [6,7]. We ignore
the box potential, since we measure the free-decay over time
scales that avoid perturbing δn(z, t ) in the measured central
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FIG. 2. Fourier component of the density perturbation δn(q, t )
with q = 2π/λ, for wavelengths λ = 40.0 µm, 31.3 µm, and 22.7 µm
(red, orange, and blue) at reduced temperatures T/TF = 0.42, 0.36,
and 0.32, respectively. Dots: data; Curves: hydrodynamic relaxation
time model. The error bars are the standard deviation of the mean of
δn(q, t ) for 5–8 runs, taken in random time order.

region by reflections from the boundaries. After the perturbing
potential is extinguished, the density change obeys [31]

δn̈ = c2
T ∂2

z (δn + δT̃ ) + δQη. (3)

The c2
T term in Eq. (3) arises from the pressure change with

cT the isothermal sound speed, and

δQ̇η + 1

τη

δQη = 4

3

p

mn0
∂2

z δṅ (4)

describes the relaxation of the viscous damping force [31].
Here the pressure p = 2

5 nεF fE (θ ), where the universal func-
tion fE (θ ) has been measured [30], n0 is the background
density, and we have used the continuity equation to eliminate
the velocity field. For fast relaxation, Eq. (4) yields the usual
Navier-Stokes form for δQη in Eq. (3) with η = τη p the static
shear viscosity, independent of the single particle phase space
distribution [31].

In Eq. (3), we have defined a scaled temperature,
δT̃ = n0β δT with a dimension of density, where β =
−1/n(∂n/∂T )P is the thermal expansivity [31]. We find

δ ˙̃T = εLP δṅ + δQκ . (5)

The Landau-Placzek parameter εLP ≡ cP1/cV1 − 1 determines
the adiabatic change in the temperature arising from the
change in density. The heat capacities per particle at constant
volume cV1 and at constant pressure cP1 are determined by the
measured equation of state fE (θ ) [30,31], and the heat current
obeys

δQ̇κ + 1

τκ

δQκ = 5

2

kB

m

p

n0cV1

∂2
z δT̃ . (6)

For fast relaxation, Eq. (6) yields the usual heating rate δQκ

in Eq. (5) with κT = 5
2

kB
m τκ p the static thermal conductivity.

Here, the factor 5/2 is dependent on a Maxwell-Boltzmann
approximation for the single particle phase space distribution
[31].
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FIG. 3. Hydrodynamic relaxation times in units of the Fermi time τF ≡ λF /vF = π h̄/εF versus reduced temperature T/TF .(a) τη for the
shear viscosity (solid blue circles). Open circles are predictions of Ref. [8], Fig. 6 divided by π [33]. (b) τκ for the thermal conductivity
(blue squares). Red curves show fits with the density shift coefficients α2η = 0.45 and α2κ = 0.22, which are the same as obtained from the
fits to Figs. 4(a) and 4(b). Red dashed curves: High temperature limits, where α2η = 0 and α2κ = 0 and τκ/τη = 3/2. [(c), (d)] Wavelength
dependence for T/TF � 0.30. Error bars are statistical [34].

A spatial Fourier transform of Eqs. (3)–(6) yields cou-
pled linear equations for δn̈(q, t ), δ ˙̃T (q, t ), δQ̇η(q, t ), and
δQ̇κ (q, t ) with q = 2π/λ. As the system is initially in me-
chanical equilibrium and isothermal, only δn(q, 0) ≡ A �= 0.
Formally, the exact solutions contain four modes [31]. How-
ever, the contributions of the two fast modes to δn(q, t ) are
small (� 1 %) [31] and decay quickly, since τη and τκ �
100 µs in our experiments, so they are not directly measured.
The remaining thermally diffusive mode and first sound mode
then dominate. The free decay of δn(q, t ) is fit by the model
using the amplitude A, the frequency cT q, and the transport
relaxation times τη, τκ as fit parameters, instead of A, cT q, η,
and κT [23]. The wavelength of the perturbation and the fit
frequency cT q self-consistently determine the sound speed cT

and the corresponding reduced temperature T/TF = θ (cT /vF )
from fE (θ ), with the Fermi speed vF given for the average
central density n0 [31]. Figure 2 shows fits of the relaxation
model (solid curves) to typical data (×1/A).

Our fitted transport times τη for the shear viscosity and
τκ for the thermal conductivity are shown as functions of

θ = T/TF in Fig. 3. The transport times are given in units of
the Fermi time τF ≡ λF /vF = π h̄/εF � 120 µs. We see that
the fitted τη is in reasonable agreement with the predictions
of Ref. [8], Fig. 6 [33]. The wavelength dependence of τη

and τκ is shown for θ � 0.30, demonstrating negligible λ

dependence.
The fitted τη determines the static shear viscosity η = τη p

shown in Fig. 4(a) (blue circles), which is in reasonable
agreement with predictions of Ref. [8], Fig. 7 (Open circles).
Equation (1), in units of h̄n0, gives

η(θ ) = α3/2 θ3/2 + α2η, (7)

where α3/2 = 45π3/2

64
√

2
� 2.77 [4,6,12]. The red curve in

Fig. 4(a) shows the fit for η(θ ) with the density shift coeffi-
cient α2η as the only fit parameter, yielding α2η = 0.45(04).
The red -dashed curve in Fig. 4(a) is the high temperature
limit, α2η = 0. The red curve in Fig. 3(a) shows the fit for
τη = η/p, with p = 2

5 nεF fE (θ ), yielding α2η = 0.45, the same
as obtained from the fit to Fig. 4(a).
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FIG. 4. Transport properties obtained from the measured transport times τη and τκ versus reduced temperature θ = T/TF . (a) Shear
viscosity (blue circles). Open circles are predictions of Ref. [8], Fig. 7. (b) Thermal conductivity (blue squares). (c) First sound diffusivity
(blue Triangles). Red solid curves include the density shift coefficients α2η = 0.45 in Eq. (7) and α2κ = 0.22 in Eq. (8). Red dashed curves are
the high temperature limits, where α2η = 0 and α2κ = 0. Error bars are statistical.
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FIG. 5. Sound diffusivity in units of h̄/m versus reduced tem-
perature θ = T/TF . Blue triangles: D1 of Fig. 4(c). Orange dots:
Sound diffusivity data from sound attenuation [22]. Red solid curve
from Fig. 4(c): D1[h̄/m] = 4

3 (2.77 θ3/2+ 0.45) + 5
2

θ

fE (θ ) (2.77 θ3/2+
0.22). Red dashed curve (high temperature limit) D1[h̄/m] =
7/3 × 2.77 θ3/2.

Similarly, the fitted τκ determines the static thermal con-
ductivity κT = 5

2
kB
m τκ p shown in Fig. 4(b) (blue squares).

In the high temperature two-body Boltzmann limit, one can
show that τκ/τη = 3/2 for any isotropic collision cross sec-
tion dσ/d�, so that κT = 15

4
kB
m η. Equation (2), in units of

n0 h̄kB/m, gives

κT (θ ) = 15

4
(α3/2 θ3/2 + α2κ ). (8)

The red curve in Fig. 4(b) shows the fit of κT (θ ) with the
density shift coefficient α2κ as the only fit parameter, yield-
ing α2κ = 0.22(03), i.e., the shift is 15/4 × 0.22 in units of
n0 h̄kB/m. The red dashed curve in Fig. 4(b) is the high tem-
perature limit, α2κ = 0. The red curve in Fig. 3(b) shows the fit
for τκ = 2

5
m
kB

κT /p, yielding α2κ = 0.22, the same as obtained
from the fit to Fig. 4(b). We find that the measured κT are
significantly smaller than predicted in [13] and larger than
predicted in [15].

Finally, Fig. 4(c) shows the corresponding first sound
diffusivity [31,35] D1 in units of h̄/m. The fitted transport

times determine D1[h̄/m] = 8π
15

τη

τF
fE (θ ) + 2π

3
τκ

τF
θ (blue tri-

angles). The red solid curve gives D1 in terms of the
fits of Figs. 4(a) and 4(b) for the static shear viscos-
ity and thermal conductivity, D1 = 4/3 (2.77 θ3/2+ 0.45) +
(n kBT/p) (2.77 θ3/2+ 0.22). Here, n kBT/p = 5/2 θ/fE (θ )
for the unitary gas, where p is the pressure [31]. The
red dashed curve is the high temperature limit D1 = 7/3 ×
2.77 θ3/2.

The fitted density shift coefficients for the shear viscosity
and thermal conductivity are expected to be independent of
reduced temperature. In Fig. 5, we compare our measurements
and predictions based on our measurements (red solid curve)
to the first sound diffusivity measured over a wider range of
reduced temperatures by sound attenuation [22]. We see that
the red solid curve from Fig. 4(c) is in agreement with sound
attenuation data for T/TF > 0.5. However, the sound atten-
uation data exhibit a nearly constant upward shift relative to
our hydrodynamic relaxation data where T/TF < 0.5, which
is not yet understood.

In conclusion, we have shown that time-domain hydro-
dynamic relaxation experiments are well-suited for time-
dependent kinetic theory models that explicitly include the
transport times to determine the static transport properties.
We find that the fitted transport times for the thermal cur-
rent and viscous force vary slowly for reduced temperatures
0.25 � T/TF � 0.45 and are close to one Fermi time λF /vF ,
small, but not negligible, compared to the time scales for
the oscillatory decay of the density perturbation. We obtain a
ratio τκ/τη � 1.2 at T/TF = 0.4, significantly below the high
temperature Boltzmann limit, τκ/τη = 3/2 [13]. The transport
times determine the universal temperature-independent den-
sity shifts, providing a single parameter test of predictions
for each of the static transport properties. Our measure-
ments emphasize the need for new calculations of the leading
density-dependent corrections to the hydrodynamic transport
properties as well as more sophisticated time-dependent re-
laxation models.
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