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We observe strong dynamical suppression of optically induced loss in a weakly interacting Fermi gas as
the s-wave scattering length is increased. A single trapped cigar-shaped cloud behaves as a large spin lattice
in energy space with a tunable Heisenberg Hamiltonian. The loss suppression occurs as the lattice
transitions into a magnetized state, where the fermionic nature of the atoms inhibits interactions. The data
are quantitatively explained by incorporating spin-dependent loss into a quasiclassical collective spin
vector model, the success of which enables the application of optical control of effective long-range
interactions to this system.
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In trapped, ultracold gases, understanding optically
induced atom loss is essential for developing optical probes
and control methods for many-body systems [1–5]. Loss
due to optically induced inelastic scattering has been used
to study the BEC-BCS crossover in a Fermi gas via
photoassociation [6] and accompanies optical control of
the s-wave scattering length [7–11]. Modeling optically
induced two-body loss in a coherently prepared, weakly
interacting Fermi gas is nontrivial, as it exhibits a coherent
many-body spin evolution [12–20]. Understanding this loss
allows the spin dynamics to be probed and enables optical
control of interactions in this system, which can be used to
engineer the Hamiltonian [21].
The Pauli principle plays an essential role in the

evolution of the loss in an ultracold, weakly interacting
Fermi gas, as the atoms cannot undergo inelastic s-wave
scattering when the spin state of a colliding atom pair is
symmetric. This is especially relevant when the gas evolves
into a magnetized state, which occurs at a sufficiently large
scattering length [18,22]. Fermi gases have recently pro-
vided new demonstrations of the Pauli principle in degen-
erate samples, where Pauli blocking suppresses light
scattering for atoms in a Fermi sea [23–26]. In contrast,
the suppression of light scattering reported here emerges
from effective long-range spin-spin interactions and is both
dynamical and collective.
In this Letter, we examine the collective suppression of

optically induced inelastic scattering in a weakly interact-
ing 6Li Fermi gas. Each atom is prepared in a pseudospin-
state comprising a superposition of the two lowest hyper-
fine states j1i and j2i. As the s-wave scattering length is
increased, we observe a crossover from high to low
optically induced loss. We develop and test a model for

the spin-dependent loss, which shows that dynamical loss
suppression arises from the onset of a magnetized state.
Tunable two-body scattering with optically induced loss

is accomplished using a collisional Fano-Feshbach reso-
nance, Fig. 1(b). The resonance arises from hyperfine
coupling between the triplet 3Σu continuum jki and a
molecular vibrational state jg1i in the singlet 1Σg channel.
At low temperatures, where s-wave scattering dominates,
the s-wave scattering length aS is controlled by a bias
magnetic field Bz, which tunes the total Zeeman-hyperfine
energy of an incoming pair of atoms in state jki near

FIG. 1. (a) Energy-space spin lattice. Atoms remain fixed at
axial energy “sites” (0 ≤ n≲ 650) in the harmonic potential of a
cigar-shaped optical trap. Collective spin vectors (large red
arrows) in each axial x energy state En contain pseudospins
in several transverse ðy; zÞ states. Site-to-site couplings n ↔ n0
are determined by the overlap of the spatial probability dis-
tributions jϕnðxÞj2. (b) Molecular states for two-body scattering
near a Fano-Feshbach resonance. A pair of atoms collides in a
relative momentum state jki in the triplet channel 3Σu, which is
hyperfine-coupled to a bound state jg1i in the singlet channel
1Σg. Loss is induced by an optical field ν1 that drives a transition
from jg1i to jei.*Contact author: jethoma7@ncsu.edu
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resonance with jg1i. Inelastic loss is induced by an optical
field ν1 resonant with a transition from jg1i to an excited
electronic state jei, which spontaneously decays, causing
loss of both atoms from the trap [8,11,27]. Related level
schemes have been used for optical control of aS via a ν1-
induced light shift of jg1i [7,8,10,11]. As the s-wave
relative motion state is symmetric under the interchange
of the atom labels, denoted i, j, scattering in the Fermi gas
requires an antisymmetric two-atom hyperfine state,
jΨaði; jÞi ¼ ð1= ffiffiffi

2
p Þðj1iij2ij − j2iij1ijÞ. Hence, the pro-

jection of the two-atom pseudospin state onto jΨaði; jÞi
determines the scattering probability.
A “weakly interacting” Fermi gas is created by tuning aS

to be small enough that the energy-changing collision rate
∝ a2S is negligible during each measurement period. In the
absence of optically induced loss, atoms remain fixed in
their respective energy states, allowing the system to be
described as a lattice in a “synthetic dimension” [28] formed
by the energy eigenstates of the trapping potential, Fig. 1(a).
The lattice picture simplifies the description in comparison
to a real space treatment, as the motional states of the atoms
are fixed and the system evolves via pure spin dynamics,
simulating a collective Heisenberg Hamiltonian [12–20].
We will use the word “site” or “energy site” to denote the
“location” n of an energy group in the synthetic lattice.
In our experiments, the atoms are confined in a cigar-

shaped optical trap. The curvature of a bias magnetic field
∂
2
xBz along the cigar axis x produces a precession rate Ω0

xE
for pseudospins of axial energy E [21]. Because of the tight
transverse confinement, Ω0

y and Ω0
z are 900 times smaller

thanΩ0
x and negligible. This allows a 1D approximation for

the lattice, where the dependence of the spin-spin couplings
on the different transverse states is replaced by a transverse
probability density-averaged coupling. Then, all pseudo-
spins in a group with nearly the same axial energy E evolve
in the same way, as described by a collective spin vector
SðE; tÞ for each site. We find that this model is in very good
agreement with our observations [14,21,22,29].
Without loss, the evolution of SðE; tÞ is described by the

spin Hamiltonian HðEÞ ¼ ωðEÞ · SðEÞ, where

ωðEÞ ¼ Ω0
xEêz þ

X

E0≠E

gðE;E0ÞSðE0Þ: ð1Þ

Here, gðE;E0Þ ∝ aS is the coupling between spins at
axial energy sites E and E0 ≠ E, which is proportional to
the overlap of the spatial probability densities, producing
effective long-range interactions. The coupling arises from
forward scattering between atoms in two different spin
states, where the identical spin rotation effect (ISRE)
[17,30,31] causes a rotation of each spin about the con-
served total spin vector. In our experiments, for aS ¼ 5.0a0
with a0 the Bohr radius, the average coupling
ḡ ≃ 1.6 Hz × 2π. The rms spread in Ω0

xE, denoted Ω0
xσE,

is ≃1.4 Hz × 2π. Defining SðE; tÞ ¼ SðE; tÞŜðE; tÞ, where
ŜðE; tÞ is a unit vector,

ṠðEÞ ¼ SðEÞ ˙̂SðEÞ þ ṠðEÞŜðEÞ: ð2Þ

Here SðE; tÞ ¼ NEðtÞ=2 with NEðtÞ the number of atoms
with axial energy E. Neglecting loss, where ṠðEÞ ¼ 0, the
rotation of SðEÞ, given by the first term in Eq. (2), is
determined by the Heisenberg equations,

˙̂SðE; tÞ ¼ ωðE; tÞ × ŜðE; tÞ: ð3Þ

We solve Eq. (3) for the unit vectors ŜðE; tÞ in a
quasiclassical approximation, treating SðE; tÞ and
SðE0; tÞ as classical vectors.
The evolution of the collective spin vectors is deter-

mined by the competition between ΩBðEÞ≡ Ω0
xEêz and

ωMFðE; tÞ≡P
E0≠E gðE;E0ÞSðE0; tÞ in Eq. (1). As the

lattice is not in thermal equilibrium, this competition results
in two dynamical phases: a spin-unlocked phase, where
ΩBðEÞ dominates and a spin-locked phase, where
ωMFðE; tÞ ∝ aS dominates, independent of the sign of
aS. With increasing jaSj, the lattice exhibits a crossover
between these two dynamical phases [18,22]. As the
pseudospins are initially spin polarized, they cannot inter-
act until ΩBðEÞ causes the collective spin vectors to fan out
with E-dependent angles in the transverse plane. The
crossover is characterized by the interaction strength ζ≡
ḡ=ðΩ0σE

ffiffiffi
2

p Þ [21,22]. For small aS, ζ is small and ΩBðEÞ
dominates, which is reflected in a low magnitude of the
total spin vector SðtÞ ¼ jPE SðE; tÞj, Fig. 2. We find that
when aS is large enough that ζ ≳ 1.5, ωMFðE; tÞ dominates
over ΩBðEÞ and the spins lock together. However, spin
locking produces parallel spins that suppress the spin-
rotation rate ∝ SðEÞ × SðE0Þ, enabling ωBðEÞ to again fan
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FIG. 2. Predicted magnitude of the total spin vector as a
function of time for loss-free evolution with different s-wave
scattering lengths. In the model, we use the experimental
parameters given in the text. For aS=a0 ¼ 0, 5, 10, 15, 24
(bottom to top), the respective interaction strengths are ζ ¼ 0,
0.8, 1.6, 2.4, 3.9.
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out the spin vectors, which then reenables scattering and
subsequent spin locking, resulting in an oscillation
of SðtÞ, Fig. 2. With increasing ζ ∝ jaSj, the average
SðtÞ (magnetization) increases and the oscillation ampli-
tude decreases.
Inelastic scattering is optically induced as described

above, Fig. 1(b). Spontaneous emission from jei causes
loss of both atoms, without heating or pumping into higher-
or lower-energy trap modes, allowing use of the energy-
space spin-lattice picture. With loss, the collective spin
vectors rotate and change length, Eq. (2) with ṠðE; tÞ ¼
ṄEðtÞ=2 ≠ 0. To incorporate loss into the model, we
determine NEðtÞ as follows.
Loss due to two-body inelastic collisions between two

species A and B with 3D densities nAðr; tÞ and nBðr; tÞ is
generally modeled as

ṅAðr; tÞ ¼ ṅBðr; tÞ ¼ −KAB
2 nAðr; tÞnBðr; tÞ: ð4Þ

Here KAB
2 ≡ hvrσABineli with σABinel the AB inelastic cross

section and h…i denotes an average over relative speed
vr. In the energy-space spin lattice, each energy corre-
sponds to a definite spin vector. In our quasiclassical
picture, atoms of axial energy E, in the spin state
jŜðEÞi, collide with atoms of energy E0 in the spin state
jŜðE0Þi for all E0 ≠ E. To find NEðtÞ, we generalize Eq. (4)
to model the loss of the spin-energy correlated 3D densities
nEðr; tÞ, i.e., the density of atoms with axial energy E:

ṅEðr; tÞ ¼ −
X

E0
KðE;E0; tÞnEðr; tÞnE0 ðr; tÞ; ð5Þ

where KðE; E0; tÞ is the effective loss rate coefficient. Spin-
dependent Fermi suppression is manifested in our expres-
sion for KðE;E0; tÞ, which weights the two-body loss
coefficient Ka

2 associated with the antisymmetric two-
atom hyperfine jΨaði; jÞi by the probability that the
incoming two-atom spin state jŜðEÞiijŜðE0Þij is in the
state jΨaði; jÞi [21],

KðE;E0; tÞ ¼ Ka
2

4
½1 − ŜðE; tÞ · ŜðE0; tÞ�: ð6Þ

In the quasiclassical approximation, dynamical suppression
of loss appears in the time dependence of the unit vectors,
ŜðE; tÞ. KðE; E0; tÞ has a maximum of Ka

2=2 when the
colliding spin vectors are antiparallel and vanishes when
the spin vectors are parallel, which is most likely for a
magnetized state.
To determine NEðtÞ from Eq. (5), we employ a quasi-1D

approximation, where the 3D density factors [21]:
nEðr; tÞ ¼ nEðρ; x; tÞ ≃ NEðtÞRðρ; tÞjϕEðxÞj2. Here x is
the axial coordinate and ρ is the radial coordinate. We
take Rðρ; tÞ to be the normalized transverse probability
density,

R
dρ2πρRðρ; tÞ ¼ 1 for all t and

R
d3rnEðr; tÞ ¼

NEðtÞ. Integrals of Eq. (5) over x, ρ result in coupled

equations for Ṙðρ; tÞ and ṄEðtÞ [21]. Density-dependent
loss causes NEðtÞ to decrease in time andRðρ; tÞ to change
shape, reducing the average transverse probability density
n̄⊥ðtÞ ¼

R
dρ2πρ½Rðρ; tÞ�2. While we cannot directly mea-

sure Rðρ; tÞ, including the time dependence of n̄⊥ðtÞ is
essential, as is made apparent by comparing the measured
loss rates to the model predictions with n̄⊥ ¼ n̄⊥ðtÞ and
with n̄⊥ ¼ n̄⊥ð0Þ [21]. The evolution equations for
SðE; tÞ ¼ NEðtÞ=2, ŜðE; tÞ, and Rðρ; tÞ determine the
evolution of the total atom number NðtÞ ¼ P

E NEðtÞ.
To test the loss model, we measure the time-dependent

loss of the total atom number NðtÞ for scattering lengths
aS ¼ 0 to 24 Bohr (a0), corresponding to interaction
strengths ζ ¼ 0 to 5.39. The trapped gas is illuminated
by a nominally uniform optical field resonant with the
jg1i → jei transition and evolves for a variable amount of
time before resonant absorption imaging of the atom
densities for the spectrally resolved hyperfine states j1i
and j2i.
In the experiments, a gas of Nð0Þ ¼ 6 × 104 6Li atoms is

prepared in the weakly interacting regime [14]. The
temperature of the gas is T ¼ 0.18TF, where the Fermi
temperature TF ≃ 0.75 μK. We use the calibration from
Ref. [14] to tune to the desired scattering length aSðBÞ,
where rf spectroscopy precisely determines B. A 0.5 ms
π=2 RF pulse is applied to a z-polarized sample to prepare
the atoms in an equal superposition of the lowest-energy
hyperfine states j1i and j2i, i.e., the pseudospins are
initially polarized orthogonal to the magnetic field direction
z. Immediately following the pulse, a loss-inducing optical
field is applied and the system evolves for a time
0 ≤ t ≤ 400 ms. The Rabi frequency of the optical
field is estimated to be [21] Ω1 ≃ γe=2, where γe ¼
2π × 11.8 MHz is the spontaneous emission rate from
the excited molecular state jei. Since the optical field is
on resonance, there is no optical shift of the scattering
length [27]. The trap frequencies are ωρ ¼ 2π × 668 and
ωx ¼ 2π × 25 Hz. A fit to a zero-temperature Thomas-
Fermi profile yields an axial width σTF ¼ 330 μm. The
radial width of 12 μm is computed from the ratio of the trap
frequencies. For each measurement with a coherently
prepared sample, the two-body loss rate coefficient Ka

2 is
measured for a 50-50 mixture. These measured values of
Ka

2 are used as inputs into the loss model.
The fraction of atoms remaining after 370 ms of

illumination, Nð370 msÞ=Nð0Þ, is shown in Fig. 3 for
the different scattering lengths. The data demonstrate a
crossover between the unlocked and spin-locked dynamical
phases, where the Fermi suppression more than doubles the
number of atoms remaining between the aS ¼ 0 and 24 a0
cases. Error bars represent the standard deviation of the
mean for six shots. The prediction generated by the loss
model (red curve) agrees well with the data. For the
prediction, we use the averaged atom number, axial widths,
and values of Ka

2 from the measurements.
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Measurements of the fraction of atoms remaining
throughout the evolution NðtÞ=Nð0Þ for coherently pre-
pared samples are shown in Fig. 4, along with the
corresponding predictions using no free parameters.
Predictions and measurements for aS ¼ 0a0ðζ ¼ 0Þ, where

interactions are absent, are shown as a reference, and agree
very well. The atom number is nearly stagnant for the first
≈80 ms, corresponding to the time needed for the energy-
dependent Zeeman precession rates to separate the collec-
tive spin vectors. Once the spin vectors are sufficiently
separated, the effective loss rate coefficient KðE;E0; tÞ
becomes non-negligible and the atom number begins to
decay. At aS ¼ 5a0 (ζ ¼ 1.03), the data are almost indis-
tinguishable from the aS ¼ 0a0 case, Fig. 4(a). This is
consistent with Fig. 2, where, for aS ¼ 5a0 at our exper-
imental densities, the system is still in the energy-depen-
dent precession-dominated regime. The data show that a
transition out of this dynamical phase occurs between aS ¼
5a0 and aS ¼ 10a0 (ζ ¼ 2.32), where the measurements at
aS ¼ 10a0 exhibit the onset of loss suppression, Fig. 4(b).
The loss is further suppressed for the aS ¼ 15a0ðζ ¼ 3.59Þ
data, Fig. 4(c), and even more for the aS ¼ 24a0ðζ ¼ 5.39Þ
data, Fig. 4(d), reflecting the increasing collective align-
ment of the spins, as depicted for the lossless case of Fig. 2.
Our collective spin vector model of loss for the energy-

space lattice is in good quantitative agreement with
measurements. The average of the values of Ka

2 used to
generate the curves in Fig. 4, 62� 6.2 μm3=s, is in good
agreement with the predicted value of 69.4 μm3=s [21]. For
extraction of Ka

2 from loss measurements in a 50–50
mixture, we assume that a pair of colliding atoms is in
the product state j1iij2ij and hence has a probability
jhΨaði; jÞj1iij2ijj2 ¼ 1=2 to be in the antisymmetric spin
state [21]. However, we find that the values of Ka

2 used in
the model need to be half of those extracted from
measurements in the 50–50 mixture [21]. This origin of
this discrepancy is not yet clear.
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FIG. 3. Measurements of the atom fraction remaining after τ ¼
370 ms of illumination (blue points) vs scattering length and
interaction strength ζ, compared to the theoretical prediction (red
curve). The densities and values of Ka

2 vary slightly for each
measurement [21]. For the prediction, we use the average values
Nð0Þ ¼ 6.1 × 104 atoms, σTF ¼ 332 μm, and Ka

2 ¼ 62 μm3=s.
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FIG. 4. Suppression of optically induced loss versus illumination time as the scattering length is increased. NðtÞ=Nð0Þ is the atom
fraction remaining after a time t. For reference, the lower black curves show the data and the model for a noninteracting gas aS ¼ 0a0
(ζ ¼ 0). Each point represents the average of six shots, and the error bar is the standard deviation of the mean. (a) aS ¼ 5a0 (ζ ¼ 1.03),
(b) aS ¼ 10a0 (ζ ¼ 2.32), (c) aS ¼ 15a0 (ζ ¼ 3.59), (d) aS ¼ 24a0 (ζ ¼ 5.39). Note that the interaction strength ζ is not precisely linear
in the scattering length due to slight variations in the density. Predictions use half of the two-body loss constant Ka

2 measured for each
scattering length in a 50–50 mixture, tabulated in [21].
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In summary, we have observed dynamical collective
suppression of optically induced inelastic scattering in a
coherently prepared, weakly interacting Fermi gas. As the
scattering length is increased at fixed initial density, we
observe a crossover from high to low loss. We understand
this suppression via the Pauli principle, where the system
undergoes a crossover into a magnetized dynamical phase
with parallel collective spin vectors, Fig. 2, causing
suppression of s-wave scattering. In this way, loss sup-
pression serves as a new probe of the magnetization of the
system. We have developed a loss model that quantitatively
agrees with observations and incorporates the many-body
evolution of the collective spin vectors. This work paves the
way for tailoring of spin-spin couplings by optical control
the interactions [21], as the accompanying loss can now be
included in energy-space spin-lattice models.
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