
Observation of Conformal Symmetry Breaking and Scale Invariance in
Expanding Fermi Gases

E. Elliott,1,2 J. A. Joseph,1 and J. E. Thomas1*
1Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

2Department of Physics, Duke University, Durham, North Carolina 27708, USA
(Received 18 October 2013; revised manuscript received 18 December 2013; published 29 January 2014)

We precisely test scale invariance and examine local thermal equilibrium in the hydrodynamic expansion
of a Fermi gas of atoms as a function of interaction strength. After release from an anisotropic optical trap,
we observe that a resonantly interacting gas obeys scale-invariant hydrodynamics, where the mean square
cloud size hr2i ¼ hx2 þ y2 þ z2i expands ballistically (like a noninteracting gas) and the energy-averaged
bulk viscosity is consistent with zero, 0.00ð0.04Þℏn, with n the density. In contrast, the aspect ratios of the
cloud exhibit anisotropic “elliptic” flow with an energy-dependent shear viscosity. Tuning away from
resonance, we observe conformal symmetry breaking, where hr2i deviates from ballistic flow.
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The identification and comparison of scale-invariant
physical systems, defined as those without an intrinsic
length scale, has enabled significant advances connecting
diverse fields of physics. Of recent interest are connections
between scale-invariant strongly interacting systems and
their weakly interacting counterparts. An important exam-
ple is the anti–de Sitter-conformal field theory correspon-
dence, which provides a geometric link between a broad
class of scale-invariant (conformal) strongly interacting
quantum fields and their weakly interacting gravitational
field counterparts in five dimensions [1]. In the weakly
interacting representation, both the shear viscosity η and the
entropy density s are found to be proportional to the surface
area of a black hole. The surface area therefore cancels in
the ratio η=s, enabling a prediction of a universal lower
bound for η=s in strongly interacting systems [2]. This
prediction connects quark-gluon plasmas [3,4] to ultracold
Fermi gases, which have nearly identical η=s ratios, just a
few times the lower bound, despite differing in temperature
by 19 orders of magnitude and in density by 25 orders of
magnitude [1,5–7]. An ultracold Fermi gas is a paradigm
for scale-invariant quantum fluids with the unique trait that
a cloud of spin-up and spin-down atoms is magnetically
tunable between scale-invariant strongly interacting and
noninteracting fluids. The development of nonrelativistic
conformal field theory [8] may expose a deep geometric
correspondence between these two regimes.
Near a collisional (Feshbach) resonance, the s-wave

scattering length aS for interactions between spin-up and
spin-down atoms can be tuned to a zero crossing, where
aS ¼ 0 and the gas is noninteracting. Tuning to resonance,
where aS diverges, the cloud is the most strongly interact-
ing, nonrelativistic quantum system known [9]. A central
connection between these two regimes is that in both cases,
the thermal equilibrium pressure p and energy density E are
related by p ¼ ð2=3ÞE, which follows from the universal
hypothesis [10,11]. This equation of state for a resonantly

interacting Fermi gas has been verified experimentally to
high precision [12], but only for a trapped gas. An obvious
distinction between the ideal and strongly interacting
regimes was first demonstrated by observing the aspect
ratio of a Fermi gas after release from an anisotropic trap
[13]. The ideal gas was shown to expand ballistically with
an isotropic momentum distribution, whereas the strongly
interacting gas was found to expand hydrodynamically and
to exhibit anisotropic “elliptic” flow [3,13].
In this Letter, we demonstrate both theoretically and

experimentally that scale invariance connects the reso-
nantly interacting and ideal noninteracting gas by requiring
the mean square cloud size hr2i ¼ hx2 þ y2 þ z2i to
expand identically, in contrast to the aspect ratios.
Tuning the cloud away from resonance, where the scatter-
ing length is finite, we observe breaking of scale invariance,
which is controlled by the conformal symmetry breaking
pressure Δp≡ p − ð2=3ÞE and the bulk viscosity. We

FIG. 1 (color online). Imaging the expanding cloud in three
dimensions. Two CCD cameras are used to measure the density
profile of the cloud. The cloud is released from an asymmetric
optical trap with a 1.0∶2.7∶33 (x∶y∶z) aspect ratio, enabling
observation of elliptic flow in the x-y plane.
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show that measurement of hr2i ¼ hx2 þ y2 þ z2i enables a
precision measurement of the bulk viscosity without
creating a spherical trap and tests local thermal equilibrium
during expansion.
In the experiments, we employ an optically trapped

cloud of 6Li atoms in a 50-50 mixture of the two lowest
hyperfine states, which is cooled by evaporation [13] to
temperatures in the normal fluid regime between T=TFI ¼
0.2 to 0.6, where kBTFI ¼ EF and EF is the Fermi
temperature of an ideal Fermi gas at the trap center [14].
We determine ~E≡ hr ·∇Ui0 from the trapped cloud profile
and use it as an interaction-independent initial energy scale
[14]. The cloud is released from an anisotropic trap with a
1∶2.7∶33 aspect ratio. Two independent images, Fig. 1, are
obtained using two CCD cameras and two simultaneous,
orthogonally propagating probe beam pulses, which each
interact with a different hyperfine state. In this way, the
cloud profile is measured as a function of time after release
in all three dimensions.
We relate the acceleration of the mean square cloud

radius to the conformal symmetry breaking pressure Δp
and the bulk viscosity ζB, using the hydrodynamic equation
for the velocity field v (including pressure and viscous
forces) and the continuity equation for the density n, which
are consistent with energy conservation. Without assuming
a scaling solution, we find that a single-component fluid
comprising N atoms of mass m obeys [14]

d2

dt2
mhr2i
2

¼ hr · ∇Uopti0 þ
3

N

Z
d3r ½Δp − Δp0�

−
3

N

Z
d3r ζB∇ · v; (1)

where the subscript (0) denotes the condition at t ¼ 0, just
after the optical trap is extinguished and ζB is the local bulk
viscosity. For brevity, we include only the optical trap
potential Uopt in Eq. (1), which need not be harmonic.
However, for the analysis of our precision measurements,
we also include the small potential energy arising from the
finite curvature of the bias magnetic field [14]. As hr2i is a
scalar, the contribution of the shear viscosity pressure
tensor vanishes, since it is traceless.
The aspect ratio σx=σy of the cloud is measured at the 6Li

Feshbach resonance at 834 G [15,16] as a function of time
after release to establish that the flow is hydrodynamic and
to determine the shear viscosity. Figure 2 shows data for
~E=EF ¼ 0.66, 0.89, 1.17, 1.46. The hydrodynamic expan-
sion data at 834 G is compared to that of a noninteracting
gas taken at 528 G where aS ¼ 0 and ~E=EF ¼ 1.78. For the
noninteracting gas, which expands ballistically, the aspect
ratio saturates to unity. In contrast, for the resonantly
interacting cloud, σx=σy increases to approximately 1.5
over the time range shown, clearly demonstrating that the
cloud expands hydrodynamically. The shear viscosity
increases with increasing energy (see Fig. 5), slowing
down the rate at which the aspect ratio increases with time.
For a resonantly interacting cloud, important questions

are whether Δp ¼ p − ð2=3ÞE remains zero during expan-
sion and if the expansion is scale invariant. The bulk
viscosity ζB is predicted to vanish in the scale-invariant
regime [17–20], consistent with the bulk viscosity fre-
quency sum rule, which vanishes when Δp ¼ 0 [21]. If
these conditions hold, Eq. (1) yields

hr2i ¼ hr2i0 þ
t2

m
hr · ∇Uopti0; (2)

which corresponds to ballistic expansion of the mean
square cloud size (in the same way as a noninteracting
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FIG. 2 (color online). Transverse aspect ratio σx=σy versus time
after release showing elliptic hydrodynamic flow: Top to bottom,
resonantly interacting gas at 834 G, ~E ¼ 0.66EF, ~E ¼ 0.89EF,
~E ¼ 1.17EF, ~E ¼ 1.46EF, ballistic (noninteracting) gas at 528 G,
~E ¼ 1.78EF. Top four solid curves: Hydrodynamic theory with
the shear viscosity as the only fit parameter. Lower solid curve:
Ballistic theory with no free parameters. Error bars denote
statistical fluctuations in the aspect ratio.
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FIG. 3 (color online). Scale invariant expansion of a resonantly
interacting Fermi gas. Experimental values of τ2ðtÞ≡m½hr2i −
hr2i0�=hr · ∇Ui0 versus time t after release, for the same data as
in Fig. 2 (including noninteracting gas data) collapse onto a single
curve, demonstrating universal t2 scaling. Dashed curve
τ2ðtÞ ¼ t2, as predicted by Eq. (2) [22].
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gas), even though the individual cloud radii expand
hydrodynamically and exhibit elliptic flow, as shown in
Fig. 2 for the transverse aspect ratio.
Scale invariance of the expanding gas is now directly

tested by determining τ2ðtÞ≡m½hr2i − hr2i0�=hr ·∇Uopti0
from the measured cloud radii and the trap parameters [14].
By construction, τ2ðtÞ will be independent of the initial
cloud size and should obey τ2ðtÞ ¼ t2, according to Eq. (2),
if the system is scale invariant. Figure 3 shows the
experimental values of τ2ðtÞ versus t for the same data
as used in Fig. 2, including the noninteracting gas data. In
contrast to the aspect ratio versus time data of Fig. 2, which
varies substantially with energy due to the shear viscosity,
the combined τ2ðtÞ data fall on a t2 curve with χ2 ¼ 1.1
using no free parameters. This is consistent with Δp ¼ 0
and scale invariant expansion, which suggests that the
equation of state p ¼ ð2=3ÞE and, hence, local thermody-
namic equilibrium, are maintained in the hydrodynamic
expansion. Further, these results directly demonstrate that
scale invariance is not destroyed by shear viscosity, which
therefore may be amenable to study in Fermi gases by scale
invariant (conformal) field theory methods [8].
We investigate the breaking of scale invariance for the

expanding gas at finite scattering length by tuning the bias
magnetic field above and below the Feshbach resonance.
Figure 4 shows τ2ðtÞ data for ~E≃ 1.0EF. Compared to the
resonant case, we see qualitatively that the cloud expands
more rapidly when the scattering length is negative
1=ðkFIaSÞ ¼ −0.59 and more slowly when the scattering
length is positive, 1=ðkFIaSÞ ¼ þ0.61, where kFI ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
=ℏ. This behavior is a signature of the ½Δp −

Δp0� term in Eq. (1), where jΔpðtÞj ≤ jΔpð0Þj for any time
t after release and Δp has the same sign as the scattering
length.

To estimate Δp − Δp0 in Eq. (1), we employ for
simplicity a high-temperature, second virial coefficient
approximation [23]. We retain only the translational
degrees of freedom and ignore the contribution from
changes in the molecular population, which require
three-body collisions that occur with low probability during
the expansion time scale. In Δp, the translational temper-
ature is evaluated using an adiabatic approximation, so that
ΔpðtÞ is then a known function of time and is odd in 1=aS
[14]. We find that estimating Δp in this way yields
satisfactory agreement with the data of Fig. 4, even for
relatively low energies ~E=EF ≃ 1. The reasonable fits
suggests that two-body interactions are dominant for
1=ðkFIaSÞ≃�0.6. The expansion at finite 1=aS is energy
dependent, since Δp approaches zero as the energy is
increased [14].
We present a new precision measurement of the shear

viscosity at resonance, which serves as a reference for the
bulk viscosity measurement described below. This is
accomplished by measuring the transverse aspect ratio
as a function of time after release, Fig. 2. The shear
viscosity pressure tensor slows the flow in the rapidly
expanding, initially narrow, x direction and increases the
speed in the more slowly expanding y direction. As the
initial transverse aspect ratio is 1∶2.7 for our trap, elliptic
flow is observed for relatively short expansion times with
high signal to background ratio, enabling high sensitivity to
the shear viscosity, even at the lowest energies, which were
not accessible in our previous expansion measurements
[6,7]. We fit the data of Fig. 2 for a resonantly interacting
gas at 834 G, using a general, energy-conserving,
hydrodynamic model [6,7], valid in the scale-invariant
regime where Δp ¼ 0. At resonance, the shear viscosity
η takes the form η ¼ αSℏn, where n is the total density of
atoms and αS is a dimensionless function of the local
reduced temperature. The trap-averaged shear viscosity
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FIG. 4 (color online). Conformal symmetry breaking in the
expansion for a Fermi gas near a Feshbach resonance. The data
are the experimental values of τ2ðtÞ≡m½hr2i − hr2i0�=hr ·∇Ui0
for ~E=EF ≃ 1.0, versus time t after release. Solid curves are the
predictions using Eq. (1) with ζB ¼ 0, where the pressure change
Δp is approximated using the second virial coefficient without
any free parameters [14]. Top: 1=ðkFIaSÞ ¼ −0.59; Center:
1=ðkFIaSÞ ¼ 0; Bottom: 1=ðkFIaSÞ ¼ þ0.61.
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FIG. 5 (color online). Measurement of bulk and shear viscosity
for a scale-invariant Fermi gas: Blue (top): Trap-averaged shear
viscosity coefficient

R
d3rη=ðNℏÞ≡ ᾱS versus energy ~E=EF.

Red (bottom): Trap-averaged bulk viscosity coefficientR
d3rζB=ðNℏÞ≡ ᾱB versus energy. Bars denote statistical error.

(Dashed curves added to guide the eye.)
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coefficient ᾱS ≡ R
d3r η=ðℏNÞ is used as the only free

parameter, initially neglecting the bulk viscosity, which is
expected to be much smaller. For the shear viscosity in the
scale-invariant regime, ᾱS is an adiabatic invariant, which is
therefore temporally constant in the adiabatic approxima-
tion [6,7]. The fits to the aspect ratio obtained in this way
are shown in Fig. 2 as solid lines and yield the data shown
in Fig. 5.
The bulk viscosity is measured with high sensitivity from

the expansion of hr2i, Eq. (1), which is independent of the
shear viscosity. The divergence of the velocity field v is
easily determined from the fits to the aspect ratios using a
scaling approximation, which is adequate for the small bulk
viscosity term. Figure 3 shows that bothΔp and ζB must be
nearly zero. To estimate the bulk viscosity at resonance, we
assume that Δp ¼ p − ð2=3ÞE ¼ 0 for the expanding,
resonantly interacting gas, so that the bulk viscosity term
in Eq. (1) produces the only deviation from scale invariance
in the evolution of hr2i.
Analogous to the shear viscosity, we take the bulk

viscosity to be of the form ζB ¼ αBℏn, where αB is
dimensionless, and consider first a large finite scattering
length. Since the bulk viscosity must be positive, the
leading contribution in powers of the inverse scattering
length aS must be of the form ζB ¼ fBðθÞℏn=ðkFaSÞ2,
where kF ¼ ð3π2nÞ1=3 is the local Fermi wave vector.
Here, fBðθÞ is a dimensionless function of the reduced
temperature θ, which is an adiabatic invariant, and, hence,
time independent in the adiabatic approximation that we
use for the small bulk viscosity contribution. As the cloud
expands, the density decreases as n ∝ 1=Γ in the scaling
approximation, where the fits to the aspect ratio data in all
three dimensions accurately determine the volume scale
factor ΓðtÞ [14]. Since 1=k2F ∝ Γ2=3, the trap-averaged bulk
viscosity coefficient ᾱB ≡ R

d3rζB=ðℏNÞ is time dependent
and scales as

ᾱBðtÞ ¼ ᾱBð0ÞΓ2=3ðtÞ: (3)

With the scaling approximation ∇ · v ¼ Γ
:
=Γ, the

bulk viscosity term then takes the simple form
−3ℏᾱBð0ÞΓ

:
=Γ1=3. We determine ᾱBð0Þ with high precision

by using a least-squares fit of Eq. (1) to the measured hr2i
data [14]. In contrast to the shear viscosity coefficient,
which increases with increasing energy, Fig. 5 shows that
the bulk viscosity coefficient at resonance remains nearly
zero over the entire energy range. We find that the weighted
average ᾱBð0Þ ¼ 0.00ð0.04Þ, is consistent with zero, as
predicted for a scale-invariant cloud [17–20]. The error
estimate includes both statistical and systematic contribu-
tions. We correct the optical trapping potential for anhar-
monicity, which is measured from the expansion of a
noninteracting gas [14]. The quadrupolar potential arising
from the bias magnetic field curvature [14] produces a
maximum 1.5% change in hr2i at the longest release times.

We include this in the theory to eliminate the corresponding
systematic error. We note that the most recent precision
determination of the broad Feshbach resonance in 6Li
places it at 832.2 G [16], 2 G below the 834 G value we
employ. Using the high temperature approximations for
Δp, and a zero temperature approximation valid to leading
order in 1=ðkFIaSÞ, we find that a 2 G offset produces a
maximum systematic change in ᾱBð0Þ of 0.005, well within
our error estimate. By an order of magnitude, the system-
atic error in ᾱBð0Þ is dominated by the uncertainty in ωz
[14]. The null result for the bulk viscosity is 2 orders of
magnitude more stringent than that obtained from our
previous consistency argument [7], where only one rela-
tively high energy (E=EF ≃ 3.3) was studied with low
sensitivity, by measuring the expansion of the aspect ratio.
We also estimate the bulk viscosity for finite 1=aS. From

Fig. 4, we see that Δp, which is an odd function of 1=aS,
adequately accounts for most of the deviation from scale
invariant ballistic expansion. A nonzero bulk viscosity
would shift both finite aS curves downward. In a more
detailed analysis [14], we fit the data for finite 1=aS by
scaling the predicted high temperature Δp by a factor
λp. We also scale a recent prediction for the high temper-
ature bulk viscosity [20] by λB. Our best fits give λp ¼
1.07ð0.21Þ and λB ¼ 0.21ð0.60Þ. The bulk measurement
is consistent with zero, but places a constraint on
the maximum value that is within the range of the
prediction [20].

This research is supported by the Physics Division of
the National Science Foundation (quantum transport in
strongly interacting Fermi gases No. PHY-1067873) and by
the Division of Materials Science and Engineering, the
Office of Basic Energy Sciences, Office of Science, U.S.
Department of Energy (thermodynamics in strongly corre-
lated Fermi gases No. DE-SC0008646). Additional support
is provided by the Physics Divisions of the Army Research
Office (strongly interacting Fermi gases in reduced dimen-
sions No. W911NF-11-1-0420) and the Air Force Office of
Scientific Research (non-equilibrium Fermi gases
No. FA9550-13-1-0041). The authors are pleased to
acknowledge K. Dusling and T. Schäfer, North Carolina
State University, for stimulating conversations.

*jethoma7@ncsu.edu
[1] A. Adams, L. D. Carr, T. Schäfer, P. Steinberg, and J. E.

Thomas, New J. Phys. 14, 115009 (2012).
[2] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[3] P. F. Kolb and U. Heinz, Quark Gluon Plasma 3 (World

Scientific, Singapore, 2003), p. 634.
[4] E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004).
[5] T. Schäfer, Phys. Rev. A 76, 063618 (2007).
[6] C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schäfer,

and J. E. Thomas, Science 331, 58 (2011).

PRL 112, 040405 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

040405-4

http://dx.doi.org/10.1088/1367-2630/14/11/115009
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1016/j.ppnp.2004.02.025
http://dx.doi.org/10.1103/PhysRevA.76.063618
http://dx.doi.org/10.1126/science.1195219


[7] C. Cao, E. Elliott, H. Wu, and J. E. Thomas, New J. Phys.
13, 075007 (2011).

[8] D. T. Son and M. Wingate, Ann. Phys. (Amsterdam) 321,
197 (2006).

[9] G. Rupak and T. Schäfer, Phys. Rev. A 76, 053607 (2007).
[10] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
[11] J. E. Thomas, J. Kinast, and A. Turlapov, Phys. Rev. Lett.

95, 120402 (2005).
[12] M. Ku, A. T. Sommer, L. W. Cheuk, and M.W. Zwierlein,

Science 335, 563 (2012).
[13] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade,

and J. E. Thomas, Science 298, 2179 (2002).
[14] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.112.040405 for details.
[15] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S.

Jochim, C. Chin, J. H. Denschlag, R. Grimm, A. Simoni,
E. Tiesinga et al., Phys. Rev. Lett. 94, 103201 (2005).

[16] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S.
Julienne, and J. M. Hutson, Phys. Rev. Lett. 110, 135301
(2013).

[17] D. T. Son, Phys. Rev. Lett. 98, 020604 (2007).
[18] M. A. Escobedo, M. Mannarelli, and C. Manuel, Phys. Rev.

A 79, 063623 (2009).
[19] Y.-H. Hou, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A

87, 033620 (2013).
[20] K. Dusling and T. Schäfer, Phys. Rev. Lett. 111, 120603

(2013).
[21] E. Taylor andM. Randeria, Phys. Rev. A 81, 053610 (2010).
[22] We include a small correction jΔhr2iMagj < 0.015jhr2ij

arising from the curvature in the bias magnetic field, which
is subtracted from the hr2i data to obtain the τ2ðtÞ data that is
shown in the figure [14].

[23] T.-L. Ho and E. J. Mueller, Phys. Rev. Lett. 92, 160404
(2004).

PRL 112, 040405 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

040405-5

http://dx.doi.org/10.1088/1367-2630/13/7/075007
http://dx.doi.org/10.1088/1367-2630/13/7/075007
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://dx.doi.org/10.1103/PhysRevA.76.053607
http://dx.doi.org/10.1103/PhysRevLett.92.090402
http://dx.doi.org/10.1103/PhysRevLett.95.120402
http://dx.doi.org/10.1103/PhysRevLett.95.120402
http://dx.doi.org/10.1126/science.1214987
http://dx.doi.org/10.1126/science.1079107
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.040405
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.040405
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.040405
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.040405
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.040405
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.040405
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.040405
http://dx.doi.org/10.1103/PhysRevLett.94.103201
http://dx.doi.org/10.1103/PhysRevLett.110.135301
http://dx.doi.org/10.1103/PhysRevLett.110.135301
http://dx.doi.org/10.1103/PhysRevLett.98.020604
http://dx.doi.org/10.1103/PhysRevA.79.063623
http://dx.doi.org/10.1103/PhysRevA.79.063623
http://dx.doi.org/10.1103/PhysRevA.87.033620
http://dx.doi.org/10.1103/PhysRevA.87.033620
http://dx.doi.org/10.1103/PhysRevLett.111.120603
http://dx.doi.org/10.1103/PhysRevLett.111.120603
http://dx.doi.org/10.1103/PhysRevA.81.053610
http://dx.doi.org/10.1103/PhysRevLett.92.160404
http://dx.doi.org/10.1103/PhysRevLett.92.160404

