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We measure the static shear viscosity η in a two-component Fermi gas near a broad collisional
(Feshbach) resonance, as a function of interaction strength and energy. We find that η has both a quadratic
and a linear dependence on the interaction strength 1=ðkFIaÞ, where a is the s-wave scattering length and
kFI is the Fermi wave vector for an ideal gas at the trap center. For energies above the superfluid transition,
the minimum in η as a function of interaction strength is significantly shifted toward the BEC side of
resonance, to 1=ðkFIaÞ≃ 0.25.
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Ultracold Fermi gases provide a unique model for
studying the properties of strongly interacting quantum
fluids [1–5]. Utilizing a collisional (Feshbach) resonance, a
bias magnetic field readily tunes interactions between spin-
up and spin-down atoms from noninteracting to strongly
repulsive or strongly attractive [6,7]. Several ground-break-
ing measurements have focused on the equilibrium thermo-
dynamic properties [8–12]. However, systematic study of
interaction-dependent hydrodynamic transport coefficients
poses new challenges. Measurement of the shear viscosity
is of particular interest in recent predictions [13–18] and in
the context of a “perfect” fluid conjecture [19], derived
using holographic duality methods [5]. The conjecture
states that for a broad class of (conformal) strongly
interacting quantum fields, the ratio of the shear viscosity
η to the entropy density s has a universal minimum, η=s ≥
ℏ=ð4πkBÞ [19]. Recent measurements of the shear viscosity
for a resonantly interacting Fermi gas [20,21] yield a
minimum η=s ratio just 4.5 times the lower bound,
comparable to that of a quark-gluon plasma [5].
Whether the shear viscosity of a Fermi gas (or the η=s
ratio) is minimized at resonance or at a finite scattering
length is an open question.
In this Letter, we describe a measurement of the shear

viscosity η in an expanding Fermi gas as a function of the
interaction strength and energy near a broad Feshbach
resonance [6,7]. The shear viscosity is determined with
high sensitivity by releasing the cloud from a cigar-shaped
optical trap with an elliptical (1∶2.7) transverse profile and
measuring the transverse aspect ratio as a function of time
after release [22]. The interaction strength is characterized
by the dimensionless parameter 1=ðkFIaÞ, where a is the s-
wave scattering length and kFI is the Fermi wave vector of
an ideal gas at the trap center. First, we determine the shear
viscosity at resonance, where 1=ðkFIaÞ ¼ 0, and then we
determine the correction to the shear viscosity as a function
of 1=ðkFIaÞ. In kinetic theory, the correction term is
expected to scale as 1=ðkFIaÞ2 [23]. However, for a given

energy, we find there is an additional linear dependence on
1=ðkFIaÞ that results in a shift of the minimum viscosity.
For the experiments, we employ a Fermi gas of 6Li atoms

in a 50-50 mixture of the two lowest hyperfine states, which
is confined in a cigar-shaped optical trap with aspect ratios
x∶y∶z ¼ 1∶2.7∶33. The cloud is tuned near a broad
Feshbach resonance and cooled by evaporation [1]. After
evaporative cooling, the interaction strength is adjusted by
tuning the bias magnetic field. Then the optical trap is
extinguished and the cloud radii are measured as a function
of time after release in all three dimensions, using two
simultaneous probe pulses interacting with different spin
states to obtain independent absorption images on two
CCD cameras [22].
We define a general, scattering-length-independent,

energy scale ~E for the trapped cloud by

~E≡ 3

N

Z
d3rp0 ¼ hr ·∇Ui0: ð1Þ

Here, p0 is the equilibrium pressure and ~E is then three
times the grand potential per particle [24]. The form on the
right follows from force balance, ∇p0 þ n0∇U ¼ 0, with
n0 the equilibrium density. ~E is given by the trap average
hr ·∇Ui0 ≡ ð1=NÞ R d3r n0ðrÞr ·∇U. For the measured
trap parameters, given below, ~E is then determined by
the measured spatial profile of the trapped cloud [25].
Hence, by fixing ~E, we fix the average density for our
measurements of viscosity at different interaction strengths.
The total trapping potential U ¼ Uopt þUmag contains

an optical part Uopt and a magnetic part Umag, arising from
curvature in the bias magnetic field. For the optical
potential, we find ωx¼2π×2210ð4Þ, ωy ¼ 2π × 830ð2Þ,
and ωzopt ¼ 2π × 60.6ð0.4Þ Hz. The additional magnetic
potential Umag ¼ ð1=2Þmω2

magðy2 þ z2 − 2x2Þ, where m is

the 6Li mass and ωmag ¼ 2π × 21.5ð0.25Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
B=834

p
Hz is

the oscillation frequency of the cloud along the y axis,
which is measured at 834 G with Uopt ¼ 0. For later use,
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we define the ideal gas Fermi energy EF ≡ ð3NÞ1=3ℏω̄, and
the corresponding wave vector kFI ¼ ð2mEF=ℏ2Þ1=2,
where N is the total number of atoms, which is typically
2 × 105 and ω̄¼ðωxωyωzÞ1=3 with ωz ¼ ðω2

zopt þ ω2
magÞ1=2.

After release from the cigar-shaped trap, the transverse
aspect ratio of the cloud exhibits elliptic flow in the x-y
plane, indicating hydrodynamic expansion [22]. The shear
viscosity pressure tensor slows the flow in the initially
narrow, rapidly expanding, x direction and transfers energy
to the more slowly expanding y direction. For a fixed time
after release, the transverse aspect ratio σx=σy then
decreases with increasing shear viscosity. In contrast to
elliptic flow measurements employing the axial z direction,
which expands slowly, the relatively high frequencies ωx
and ωy assure that σx=σy saturates on a rapid time scale,
where the expanded cloud images still have a high signal to
background ratio, and reduces sensitivity to the magnetic
potential.
The shear viscosity is given in natural units of ℏn by

η≡ αSℏn, where n is the density and αS is a dimensionless
shear viscosity coefficient [20]. The transverse aspect ratio
data are fit using a hydrodynamic model, described below,
to determine the cloud-averaged shear viscosity coefficient
hαSi, where

hαSi≡ 1

Nℏ

Z
d3r η ¼ 1

N

Z
d3r nαS: ð2Þ

At finite scattering length, hαSi is generally time dependent,
as discussed further below.
For our experiments below resonance, at low temper-

atures, a BEC would exist, and a two-fluid description
would be required. To consistently compare our measure-
ments of shear viscosity throughout the resonance region,
we therefore work in the normal fluid regime, avoiding
complications arising from two-fluid behavior that is not
observed for the conditions of our experiments. Further, we
estimate that the ratio of the collisional mean free path to
the cloud size (the Knudsen number) is small for both the
molecular and atomic components [25–27]. Hence, we
determine the trap-averaged shear viscosity coefficients by
fitting a hydrodynamic theory for a single component fluid.
For a single component fluid [25,28], the velocity field

vðr; tÞ obeys the Navier-Stokes equation [29], which
includes the scalar pressure p, the trap potential U, and,
generally,the shear and bulk viscosities [25]. With current
conservation, we obtain exact evolution equations [30] for
the mean square cloud sizes hx2i i, i ¼ x; y; z,

d2

dt2
mhx2i i
2

¼ 1

N

Z
d3rpþmhv2i i − hxi∂iUi − ℏhαSσiii;

ð3Þ
where h…i denotes an average over the cloud density, as in
Eq. (2), and σij ¼ ∂vi=∂xj þ ∂vj=∂xi − 2δij∇ · v=3.

We see that the pressure p in Eq. (3) arises only in a
volume integral, which we determine using energy con-
servation. After release of the cloud, when U is temporally
constant, we have [25],

d
dt

Z
d3r E þ

Z
d3r ð∇ · vÞp ¼ _Q; ð4Þ

where E is the energy density and _Q is the total heating
rate arising from the viscous forces [25]. Equation (4)
is used to find ð1=NÞ R d3rp by eliminating E, using
p ¼ ð2=3ÞE þ Δp, where Δp is the predicted conformal
symmetry breaking pressure, which vanishes at resonance
[22,31]. Note that the measured ~E in Eq. (1) determines the
initial condition, ð1=NÞ R d3rp0.
To solve Eqs. (3) and (4), we use a scaling approxima-

tion, which has been shown to be very accurate using
numerical viscous hydrodynamics [32]. Then, hx2i i ¼
hx2i i0b2i ðtÞ and hv2i i ¼ hx2i i0 _b2i ðtÞ, where bx; by; bz are
the expansion scale factors and hx2i i0 is the measured mean
square size just after release. In the scaling approximation,
vi ¼ xi _bi=bi and ∇ · v ¼ _Γ=Γ, where Γ≡ bxbybz is the
volume scale factor and Γ and σii are functions only of the
time. The scale factors obey

b̈i ¼
ω2
i

Γ2=3bi
½1þ CðtÞ� − ℏhαSiσii

mhx2i i0bi
− ω2

imagbi: ð5Þ

In Eq. (5), we define ω2
i ≡ ~E=ð3mhx2i i0Þ for an arbitrary

trapping potential, which need not be harmonic [25] and
ω2
ymag ¼ ω2

zmag ¼ ω2
mag and ω2

xmag ¼ −2ω2
mag (repulsive),

with ωmag defined above.
The coefficient CðtÞ ¼ CQðtÞ þ CΔpðtÞ in Eq. (5)

includes two effects exactly (within the scaling approxi-
mation): CQ is the fractional increase in the volume
integrated pressure arising from viscous heating, which
is determined by _Q [25]. CΔpðtÞ describes the correspond-
ing fractional change for a given conformal symmetry
breaking pressure change ΔpðtÞ. For the transverse aspect
ratio, σx=σy, we find that CQ is important, but that CΔp has
a negligible effect [25].
The shear viscosity coefficient hαSi is measured by using

Eq. (5) to fit the data for the transverse aspect ratio σx=σy ¼
ωybx=ðωxbyÞ as a function of time after release, while self
consistently determining ~E=EF from the measured cloud
sizes σx; σy; σz, and N. At resonance, where the scattering
length a diverges and 1=ðkFIaÞ ¼ 0, αS can be a function
only of the local reduced temperature θ ∝ T=n2=3. As the
viscosity makes a small perturbation to the flow, we
approximate the temperature within the viscosity coeffi-
cient in zeroth order; i.e., we assume that the temperature
evolves adiabatically during the expansion after the optical
trap is abruptly extinguished. Then T ∝ n2=3, so that
the local θ remains fixed at its initial value. In this case,
hαSi≡ hαSi0 is temporally constant as the cloud expands;
i.e., it is equal to the trap-averaged initial value
with n → n0.
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We determine hαSi both on resonance, where hαSi ¼
hαSi0 is temporally constant, and at finite 1=ðkFIaÞ, initially
ignoring the time dependence arising from the finite
scattering length, which we include later in Eq. (6).
Figure 1 shows the difference ΔhαSi ¼ hαSi − hαSi0
between the hαSi determined at finite 1=ðkFIaÞ and the
resonant value hαSi0. We determine hαSi0 from a poly-
nomial fit to the resonant shear viscosity as a function of
~E=EF [25].
We find that the minimum in shear viscosity occurs on

the BEC side of resonance, Fig. 1(c). Further, we note that
the ΔhαSi depends strongly on the magnitude and sign of
the interaction strength 1=ðkFIaÞ. Generally, on the BEC
side of resonance 1=ðkFIaÞ > 0, we find that ΔhαSi
increases with increasing energy, which may arise from
a corresponding decrease in the dimer fraction, as discussed
further below. On the BCS side of resonance 1=ðkFIaÞ < 0,
ΔhαSi decreases with increasing energy, which may arise
from reduced Pauli blocking; i.e., the collision rate
increases with temperature in the degenerate regime.
Clearly, a simple quadratic dependence on the interaction
strength is insufficient to encompass all the observed
behavior of ΔhαSi.
In order to investigate further, we fit a linear energy

dependence toΔhαSi for each interaction strength 1=ðkFIaÞ
as shown in Fig. 1. In Fig. 2, ΔhαSi is plotted as a function

of 1=ðkFIaÞ for a fixed energy ~E=EF ¼ 1. We see a
nominally parabolic dependence on 1=ðkFIaÞ, with the
minimum clearly shifted toward the BEC side of resonance.
Setting ΔhαSi ¼ ~c0 þ ~c1=ðkFIaÞ þ ~c2=ðkFIaÞ2, we fit the
data shown in Fig. 1 excluding the two extreme 1=ðkFIaÞ
points where a simple perturbation expansion in 1=ðkFIaÞ
is likely to break down. We find ~c0 ¼ 0.0, ~c1 ¼ −1.7, and
~c2 ¼ 4.8. Recall that we have ignored the expansion time
dependence arising from the finite scattering length.
Therefore, we can only draw qualitative conclusions from
our fit to ΔhαSi versus 1=ðkFIaÞ.
We now obtain quantitative results for the dependence of

the shear viscosity on 1=ðkFIaÞ by including the explicit
time dependence of the shear viscosity coefficients and
refitting the data. Using dimensional analysis, the leading-
order scattering-length-dependent terms in local shear
viscosity take the forms ℏnf1ðθÞ=ðkFaÞ ℏnf2ðθÞ=
ðkFaÞ2, where f1;2ðθÞ are dimensionless functions of the
reduced temperature. Then, in the scaling approximation
described above, the density n ∝ k3F decreases by the
volume scale factor Γ as the cloud expands, so that
1=kF ∝ Γ1=3ðtÞ. For the viscosity coefficients, we again
approximate the temperature to zeroth order as evolving
adiabatically, so that f1;2ðθÞ are temporally constant.
Averaging over the cloud volume, as in Eq. (2), we then
obtain the general form for the time-dependent cloud-
averaged viscosity coefficient,

hαSi ¼ hαSi0 þ c1
Γ1=3ðtÞ
kFIa

þ c2
Γ2=3ðtÞ
ðkFIaÞ2

: ð6Þ

In the spirit of a perturbation expansion in 1=ðkFIaÞ about
resonance at fixed ~E, the first term is taken to be the shear

FIG. 1 (color online). Difference in shear viscosity on and off
resonance, ΔhαSi, versus energy ~E=EF and interaction strength
1=ðkFIaÞ. On the BEC side of resonance (left column),
1=ðkFIaÞ ¼ (a) 0.83(6), (b) 0.55(5), and (c) 0.25(3). On the
BCS side of resonance (right column) 1=ðkFIaÞ ¼ (d) −0.61ð1Þ,
(e) −0.34ð1Þ, and (f) −0.16ð3Þ. Red line denotes linear fit to
ΔhαSið ~EÞ. Dotted red lines show 1-σ confidence interval. Blue
(solid) lines show the resonant shear viscosity hαSi0, (which
denotes zero by construction).

FIG. 2 (color online). Difference in shear viscosity on and
off resonance, ΔhαSi, versus interaction strength 1=ðkFIaÞ at an
energy of ~E=EF ¼ 1. Black circles represent ΔhαSi obtained
from the linear fits in Fig. 1. Vertical error bars are the 1–σ
confidence interval of the fits. The red (parabolic curve) is the
best fit of ~c0 þ ~c1=ðkFIaÞ þ ~c2=ðkFIaÞ2 to the data with
~c0 ¼ 0.0, ~c1 ¼ −1.7, and ~c2 ¼ 4.8. From the fit, the minimum
occurs at 1=ðkFaÞ ¼ 0.18.

PRL 113, 020406 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

020406-3



viscosity coefficient at resonance, which is time indepen-
dent and determined versus ~E, as described above.
We globally fit the data over discrete energy ranges

and limit the range of interaction strength to
−0.5 < 1=ðkFiaÞ < 0.7. This is accomplished by integrat-
ing Eq. (5), using Eq. (6). As hαSi0 is known as a function
of ~E, c1 and c2 are used as fit parameters, determined by a
χ2 fit to the aspect ratio data. The results are shown
in Fig. 3.
For an energy range of 0.9 < ~E=EF < 1.1, 71 points are

included in the two parameter fit with an average energy of
~E=EF ¼ 0.97ð6Þ. We obtain a normalized χ2 ¼ 1.1, with
c1 ¼ −1.22ð5Þ and c2 ¼ 2.43ð9Þ. Equation (6) then yields
a minimum in the initial (in-trap) shear viscosity at
1=ðkFIaÞ ¼ −c1=ð2c2Þ ¼ 0.25. For an energy of ~E=EF ¼
0.97, the polynomial fit for the resonant gas gives a shear
viscosity of hαSi0 ¼ 1.10, so that at t ¼ 0, hαSimin ¼
hαSi0 − c21=ð4c2Þ ¼ 0.95. Note that the smaller values of
the in-trap c1;2 compared to ~c1;2 are consistent with the
time-dependent factors in Eq. (6), since ΓðtÞ increases from
unity as the cloud expands. Complete results can be found
in Ref. [25].
The shift of the minimum shear viscosity toward the

BEC side of resonance may be explained by an enhance-
ment in the bosonic degrees of freedom [15], such as
preformed atom pairs or dimer molecules. These bosonic
degrees of freedom would suppress Pauli blocking and
increase the effective scattering rate [13]. In addition, the
collisional cross section for dimer-atom scattering is larger
than that for atom-atom scattering [27]. Therefore, since the
shear viscosity scales inversely with the scattering rate, one
would expect the observed decrease on the BEC side. We
note also that hαSi is well below the parabolic fit at the two
extreme points 1=ðkFIaÞ ¼ 0.83 and 1=ðkFIaÞ ¼ −0.61.

This may be a consequence of a divergence of the
expansion in powers 1=ðkFIaÞ, but may also be the result
of a larger dimer fraction on the BEC side of resonance. We
observe also that the location of the minimum in the shear
viscosity, −c1=ð2c2Þ, moves toward resonance with
increasing energy [25], indicating that the hαSi may scale
quadratically with 1=ðkFIaÞ at higher temperatures, as
predicted [23].
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