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Abstract. We measure the shear viscosity in a two-component Fermi gas of
atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance,
the atoms strongly interact and exhibit universal behavior, where the equilibrium
thermodynamic properties and transport coefficients are universal functions of
density n and temperature 7. We present a new calibration of the temperature
as a function of global energy, which is directly measured from the cloud
profiles. Using the calibration, the trap-averaged shear viscosity in units of %n
is determined as a function of the reduced temperature at the trap center, from
nearly the ground state to the unitary two-body regime. Low-temperature data
are obtained from the damping rate of the radial breathing mode, whereas high-
temperature data are obtained from hydrodynamic expansion measurements. We
also show that the best fit to the high-temperature expansion data is obtained for
a vanishing bulk viscosity. The measured trap-averaged entropy per particle and
shear viscosity are used to estimate the ratio of shear viscosity to entropy density,
which is compared with that conjectured for a perfect fluid.
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1. Introduction

The measurement of shear viscosity is currently of particular interest in the context of a recent
conjecture, derived using string theory methods, which defines a perfect normal fluid [1]. The
perfect fluid conjecture states that the ratio of shear viscosity 1 to entropy density s has a
universal minimum,
n, Ln
S 4 kB
One example of a nearly perfect fluid is the quark—gluon plasma produced in a collision between
two gold ions at an energy of 100 GeV per nucleon, which is thought to be a good approximation
to the state of matter that existed microseconds after the Big Bang [2]. The collision produces
a cigar-shaped plasma at a temperature of 2 x 102K that exhibits elliptic flow, where the
narrow direction of the plasma expands faster than the long direction, as observed in the
momentum distribution [3]. A second example is a strongly interacting two-component Fermi
gas of atoms, at a temperature of 10~ K. Released from a cigar-shaped optical trap, a strongly
interacting Fermi gas also exhibits elliptic flow, which is directly observed in the spatial profile
of the expanding cloud [4]. Despite a difference in temperature of 19 orders of magnitude
and a difference in density of 25 orders of magnitude, both systems exhibit nearly frictionless
hydrodynamics and have a similar /s ratio.
Ultracold strongly interacting Fermi gases are generally of broad interest, as they provide
a tunable tabletop paradigm for strongly interacting systems ranging from high-temperature
superconductors to nuclear matter. First observed in 2002, quantum degenerate, strongly
interacting Fermi gases have been widely studied recently [4—7]. To obtain strong interactions,
characterized by a divergent s-wave scattering length?, a bias magnetic field is used to tune
the gas to a broad collisional (Feshbach) resonance, where the range of the collision potential
is small compared to the interparticle spacing. In this so-called unitary regime, the two-body

(D

2 The experiments are performed far from p-wave Feshbach resonances. The relevant threshold energy for p-wave
scattering is then comparable to the barrier height. Using the known Cg coefficients, the barrier height for 4° K is
280 u K, whereas for 6L4i, it is 8 mK. Hence, for temperatures in the u K range, as used in the experiments, p-wave
scattering is negligible and s-wave scattering dominates.
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interaction potential produces no relevant length scales. Hence, the local thermodynamic and
transport properties of a resonantly interacting gas are determined by the interparticle spacing
L and the thermal de Broglie wavelength Ar, 1.e. they are universal functions of density n and
temperature 7 [8]. Unitary Fermi gases therefore provide a scale-invariant system to explore
minimum viscosity hydrodynamics.

The n/s ratio is experimentally accessible in a trapped universal Fermi gas, where
entropy and other thermodynamic properties have been measured both globally [9-13]
and, most recently, locally [14, 15]. As viscosity can be determined from hydrodynamic
experiments [16—19], the predicted minimum ratio can be directly compared with that from
Fermi gas experiments [18-20].

The scale of the n/s ratio for a unitary Fermi gas can be understood using dimensional
analysis. As noted above, there are only two natural length scales / € {L, Ar}. Shear viscosity has
the units of momentum per area. As the natural momentum is of the order of 72// and the natural
area is I, n oc i/ I?. At temperatures well below the Fermi temperature at which degeneracy
occurs, the Fermi momentum sets the scale, so [ >~ L and 1 o< /L3 o in. For a normal fluid
above the critical temperature, the scale of entropy density s ~n kg and n/s ~h/kg. For
temperatures much higher than the Fermi temperature, one expects that [ >~ Ay o< AT ~'/2, so
that the shear viscosity scales as 1 oc /A3 oc T*/2/h*.

2. Universal hydrodynamics

To properly measure the shear viscosity with high precision over a wide temperature range, we
employ two experimental methods [20]. To determine the shear viscosity at low temperatures,
we measure the damping rate of the radial breathing mode excited by releasing the cloud for a
short time and then recapturing it [21]. For the measurement at high temperatures, we observe
the aspect ratio of the cloud as a function of time after the cloud is released from a deep
optical trap. To consistently extract the viscosity from these two experiments, we use universal
hydrodynamic equations, which contain both the friction force and the viscous heating rate.
We determine the shear viscosity n in the normal fluid regime by using a hydrodynamic
description of a single component fluid, where the velocity field v(x, 7) is determined by the
scalar pressure and the shear viscosity pressure tensor
m(d,+v-V)v;, = fi+Z —3](7701, +4oy)
n

J

- 81' Utrap ’ (2)

where f=—VP/n is the force per particle arising from the scalar pressure P, Uy, is the
potential of the optical trap and m is the atom mass. The second term on the right describes
the friction forces arising from both shear n and bulk ¢ viscosities, where o;; = dv;/0x; +
9v;/9x; —28;V -v/3 and o;; = §;V - V.

For a unitary gas, the evolution equation for the pressure takes a simple form, since
P =2&/3 [8, 22], where £ is the local energy density (the sum of the kinetic and interaction
energies). Then, energy conservation and equation (2) imply that [20]

(3, +V-V+5V.v/3)P =24/3. 3)

Here, the heating rate per unit volume ¢ =7 }_,;0/2+¢(V -v)* arises from friction forces
due to relative motion (shear viscosity) and dilation (bulk viscosity) of the volume elements.
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The evolution equation for the force per particle f; is readily determined by differentiating
equation (3) with respect to x; and using the continuity equation for density
(a +V-V+%V-v>f~+Z(8~v‘)f~—§(8~V-v)£——%ai—q (4)
’ 3 e 3 n 3n’
The force balance in the trapping potential Uy,p(X), just before the release of the cloud,
determines the initial condition f;(0) = 0; Uyrp (X).

These hydrodynamic equations include both the force and the heating arising from shear
and bulk viscosities. The solution is greatly simplified when the cloud is released from a deep,
nearly harmonic trapping potential Uy, as f;(0) is then linear in the spatial coordinate. If we
neglect viscosity, the force per particle and hence the velocity field remain linear functions of the
spatial coordinates as the cloud expands. Thus 9;(V - v) = 0 and the pressure P does not appear
in equation (4). Numerical integration [23] shows that nonlinearities in the velocity field are
very small even if viscosity is not zero, because dissipative forces tend to restore a linear flow
profile. Hence, the evolution equations (2) and (4) are only weakly dependent on the precise
initial spatial profile of P and independent of the detailed thermodynamic properties.

For the expansion and breathing mode experiments, we assume that the velocity field
is exactly linear in the spatial coordinates. We take the force per particle to be of the form
fi = a;(t)x; and assume that the density changes by a scale transformation [24], n(x,t) =
nlx/by(t), y/by(t), z/b.(1)]/ T. Here I' = b,b,b, is the volume scale factor and [ d*xn(x, 1) =
N is the total number of atoms, which is conserved. Current conservation then requires that the
velocity field take the form v; = x; b; () /b; (t), so that the pressure term in equation (4) vanishes
as discussed above.

The bulk viscosity is predicted to vanish in the normal fluid phase at unitarity [25, 26], so
we initially exclude the bulk viscosity in our universal hydrodynamic equations (2) and (4), to
extract the shear viscosity. In general, the (static) shear viscosity takes the universal form

n(x, 1) =a(0)hn, (&)

where 6 = T/ Ti(n) is the local reduced temperature and Ty(n) = h*(372n)*?/(2mkg) is the
local Fermi temperature. Kinetic theory shows that n — 0 in the low-density region of the
cloud [27], as required for energy conservation.

With these assumptions, the evolution equation for the force per particle, equation (4),
yields

bi 2 b; 2
ila+2—a+2) —“La | =-20q,
nx; |a b,-a 3;19161 3 %4

where, for zero bulk viscosity (¢ = 0), the heating rateisg =17 ), i of]. /2. Here, o;; is evaluated
using d;v; = §;; b; /b;, which is spatially constant. Multiplying both sides by x; and integrating
over all space, the left-hand side yields [ d*xnx? = N(x?) = N(x?)o b} (1), where (x}), is the
equilibrium mean square size of the trapped cloud in the ith direction. Integrating by parts and
assuming that n — 0 as n — 0, the right-hand side is proportional to [ d*x n(x, ), yielding

1 /d
al+2 al+ Z_l MZ@? (6)
ij

2o bi (1)
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Similarly, equation (2) for the velocity field takes the form

B,‘ a; d’x X, t
bi_ai_ o JExn@D @
bi m m N{(x?)o b7 (1)

Here, the term w? on the right arises from the harmonic trapping potential, which is retained for
the breathing mode and set equal to zero for expansion, where the cloud is released from the
trap.

The right-hand sides of equations (6) and (7) depend on the trap-averaged viscosity
parameter, o, where

o= dxn(x, 1). ®)

The spatial integral exists, since, as discussed above, n — 0 as the density goes to zero at
the edges of the cloud [27]. As the viscosity produces a first order perturbation to perfect
hydrodynamics, we can evaluate 6 in equation (5) using a zeroth-order adiabatic approximation,
so that 6 has a zero convective derivative everywhere. Since the number of atoms in a volume
element is conserved along a stream tube, « is then time independent.

For the measurements of viscosity at high temperatures, the cloud is released from a deep
optical trap and the aspect ratio o, (t) /o, (t) = /(x2)/(z?) is observed as a function of time after
release (figure 1). Here, x and z refer to the initially narrow and long directions of the trapped
cloud, respectively. Equations (6) and (7) are solved using the measured trap frequencies and the
initial mean square cloud sizes, with the initial conditions b; (0) = 1, b;(0) = 0 and a; (0) =
The ratio 0, (t)/0,(t) = (w,/w,) b (t)/b.(t) 1s determined as a function of time and compared
with the data, yielding very good fits (figure 1), with o being the only free parameter, which is
determined by minimizing x2.

We measure the viscosity at low temperature using a breathing mode [21], which is
excited by a brief release and subsequent recapture. The oscillation of the transverse radius
of the trapped cloud is observed as a function of time after excitation and the damping rate is
measured by fitting an exponentially damped sinusoid to the data. For the breathing mode, the
amplitude is small and the cloud radii change by a scale transformation of the form b; = 1 +¢;,
with €; < 1. As the heating term in equation (6) containing 65. is oc €2, the heating rate is
negligible for the breathing mode and the force per particle evolves adiabatically to first order in
small quantities, so that equation (6) yields a; = mw?/(b?T*/?). Using this in equation (7), we
determine the breathing frequency wg and the damping rate 1/t. For a cylindrically symmetric
trap, where w, = wy = w,, wg = @, 4/10/3. The damping rate arises from the term o;;, which,
for a cylindrically symmetric trap, is proportional to ¢, =€, = €.

More generally, we assume a nearly cylindrical trap potential as used in the experiments,
with w,, wy being the transverse trap frequencies and é = (w, — wy)/ /@0, K 1. Then,
wg = /10w, w,/3. In terms of the cloud size observed for the x-direction, the damping rate
is given by

1 ho

o
T Imi (1-4). €

The transverse mean square size of the trapped cloud before excitation is given by
(x*)o = (x?)/b*(t), where (x?) is determined by imaging at a time ¢ after the cloud is released
and b, () is the calculated hydrodynamic expansion factor. We self-consistently determine b, (¢)
and o from the measured damping rate and the measured cloud size after expansion, using
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equation (9) as a constraint. Since the viscosity is small at low temperatures, we initially
calculate b,(¢) for zero viscosity to obtain an initial guess for (x2),. This yields an initial
approximation for «. This initial value is then used in equations (6) and (7) (with a)l.z =0 and
including the heating rate) to determine a better approximation to b, (), which in turn yields a
better value for (x?)y and &. This procedure quickly converges.

3. Experiments

Our experiments employ a 50 : 50 mixture of the two lowest hyperfine states of °Li fermions,
which is confined in a stable CO, laser trap [28]. The mixture exhibits a Feshbach resonance at
834 G for which the s-wave scattering length diverges [29], producing a unitary gas where the
two-body scattering cross section is inversely proportional to the relative kinetic energy.

After forced evaporation by lowering the trap depth, the trap is recompressed. At the
final trap depth, parametric resonance is used to measure the oscillation frequencies of
weakly interacting atoms. The frequencies obtained from the measurements are corrected for
anharmonicity to determine the harmonic oscillation frequencies for energies small compared
with the trap depth. For the deep optical trap used for the high-temperature measurements,
we obtain w, = 2 x (182.7+0.5)Hz, w, =27 x (5283 £ 10) Hz, w, =27 x (5052 £ 10) Hz
and @ = (w,w,w,)"* =27 x (1696 + 9) Hz. The total number of atoms ranges from N = 4.0 x
10°at E =2.3 Erto N = 6.0 x 10° at E = 4.6 Eg, where less evaporation is employed. For N =
6.0 x 10°, the Fermi energy of an ideal gas at the trap centeris Ex = (3N)'? o = kg x 9.9 uK,
which is small compared with the trap depth Uy = kg x 460 uK.

For the high-temperature experiments, the aspect ratio o,(t)/o,(t) is measured as a
function of time after release to determine « for energies E between 2.3Er and 4.6FEf;
see figure 1. We also take expansion data at one low-energy point E = 0.6Ef, where the
viscosity is small compared with that obtained at higher temperatures and the density profile is
approximately a zero-temperature Thomas—Fermi distribution. The black curve shows the fit for
zero viscosity and no free parameters. To obtain a high signal-to-background ratio, we measure
the aspect ratio only up to 1.4. For comparison, the green dashed curve shows the prediction
for a ballistic gas. In these experiments, where the total energy of the gas E is larger than 2 EF,
we find that the density profile is well fitted by a Gaussian n(x, y, z, t) = ny(t) exp(—xz/ax2 —
y*/o} —z%/a?), where o;(1) = b;(1)0;(0) is a time-dependent width, ny(r) = N/(w/*0,0,07)
is the central density and N is the total number of atoms.

For the breathing mode experiments, the gas is initially cooled to nearly the ground state,
where the total number of atoms is N = 2.0 x 10° and then the trap is recompressed. Energy is
then added by release and recapture, the gas is allowed to equilibrate and the breathing mode is
excited. The damping rate is measured for energies £ between 0.5 Er and 2.5 E. For the shallow
trap used in the breathing mode experiments, the measured parametric resonance frequencies
are w| = ,/w,oy =21 X 1696(10) Hz, w,/w, =1.107(0.004) and w, =27 x 71(3) Hz, so
that @ = (w,w,w,)"* = 2w x 589(5) Hz is the mean oscillation frequency and A = w,/w; =
0.045 is the anisotropy parameter. The typical Fermi temperature Tz = (3N)!*h®/kg of a
corresponding noninteracting gas is ~ 2.4 uK, and the trap depth is Uy/kg =35 uK. The
transverse mean square size (x2) is measured after an expansion time ¢ = 1 ms.

The initial energy per particle E is measured from the density profile of the trapped cloud
along any one direction by exploiting the virial theorem [13, 22], which holds in the unitary
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(A)
(B) 2.0
— E=0.6 E¢
—— E=23E;
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Ballistic Expansion

1.0
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0.5+
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Time after release (us)

Figure 1. Anisotropic expansion. (a) Cloud absorption images for 0.2, 0.3, 0.6,
0.9 and 1.2 ms expansion time, E = 2.3 Eg. (b) Aspect ratio versus time. The
expansion rate decreases at higher energies as viscosity increases. Solid curves:
hydrodynamic theory with viscosity as the fit parameter. Error bars denote
statistical fluctuations in the aspect ratio.

regime. For measurements of the axial density profile,
E = 3mw§(zz)[1 —K (zz)/crﬁz], (10)

where k = 15Eg/(4Uj), corrects for the anharmonicity in the trapping potential [13]. Here (z?)
is the mean square size of the axial density profile of the trapped cloud and oy, = \/2Eg/(mw?)
is the Fermi radius for the z-direction. The energy can also be measured from the mean square
size in the transverse direction, i.e. z — x. A systematic uncertainty of 3% in Ef arises from the
< 10% uncertainty in the absolute atom number N [30].

As shown in figure 1, the expansion data are very well fitted over the range of energies
studied, using « as the only free parameter. We find that the friction force produces a curvature
that matches the aspect ratio versus time data. For the expansion data, the indirect effect
of heating is significant in increasing the outward force. Including heating in the analysis
significantly increases the fitted @ compared with that obtained when heating is omitted [20], as
discussed below. For the breathing mode experiments at low temperature, the effect of heating
1s small, as discussed above.

Together, the breathing mode and expansion measurements determine the fitted viscosity
coefficients o for the entire energy range, as shown in figure 2. As shown in section 5, by
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Figure 2. Trap-averaged viscosity coefficient o = f d*xn/(AN) versus initial
energy per atom. Blue circles: breathing mode measurements; red squares:
anisotropic expansion measurements. The bars denote statistical errors arising
from the uncertainty in £ and the cloud dimensions.

calibrating the temperature, we determine « as a function of the reduced temperature 6, at
the trap center, prior to release. These results for the trap-averaged viscosity coefficient as a
function of the reduced temperature can be used to test predictions [31-33], within the local
density approximation.

Despite the large values of o at higher energies, the viscosity causes only a moderate
perturbation to the adiabatic expansion, as shown by the expansion data and fits in figure 1. The
breathing mode data and expansion data smoothly join, provided that heating rate is included
in the analysis. In contrast, omitting the heating rate produces a significant discontinuity, nearly
a factor of 2, between the high- and low-temperature viscosity data, as shown in figure 3. The
agreement between these very different measurements when heating is included shows that
hydrodynamics in the universal regime is well described by equations (2) and (4).

4. Vanishing of bulk viscosity at unitarity

The bulk viscosity is predicted to vanish in the normal fluid phase at unitarity [25, 26], which
is why we did not include the bulk viscosity in our initial analysis to extract the shear viscosity.
Energy conservation also requires the bulk viscosity to vanish in the two-body collision limit.
We show that by including the bulk viscosity in both heating and force equations, the best fit to
our anisotropic expansion data is the one for which the bulk viscosity exactly vanishes.

By including the bulk viscosity in equations (2) and (4), with the same forms as those
used above for the density profile, the velocity field and the force per particle, we can apply
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Figure 3. Effect of the heating rate in equation (4) on the measured viscosity
coefficient & versus initial energy per atom. Solid (open) circles/squares:
heating is included (excluded). Blue circles: low-energy breathing mode data;
red squares: high-energy expansion data. The high- and low-temperature data
smoothly join only when heating is included. The bars denote errors arising from
the uncertainty in £ and the cloud dimensions.

a x? fit to our anisotropic expansion data. As shown in figure 4, not only is the reduced x? of
the pure bulk viscosity fit much larger than that of the pure shear viscosity fit, but also it does
not produce the curvature that our experimental data show. This curvature arises from the fact
that the anisotropic shear viscosity pressure tensor slows the transverse expansion and speeds
up the axial expansion. In contrast, the bulk viscosity pressure tensor symmetrically slows the
expansion in all directions.

We also choose the bulk viscosity and apply a x? fit to our data using the shear viscosity as
the only free parameter®. As shown in figure 5, zero bulk viscosity gives the minimum reduced
x 2, which is consistent with the prediction on vanishing bulk viscosity in the normal fluid phase
at unitarity [25, 26].

5. Shear viscosity versus reduced temperature

For comparison with predictions on the temperature dependence of shear viscosity [17],
[31-33], we give the trap-averaged viscosity coefficient @ as a function of reduced temperature

3 The method of finding the bulk viscosity as a function of x> was suggested to us by Thomas Schifer, North
Carolina State University (2011 private communication).
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No free parameter curve

with zero shear and bulk viscosity
= Experimental data
Fitting curve with pure shear viscosity
12-4  —— Fitting curve with pure bulk viscosity

Aspect Ratio
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0 200 400 600 800 1000 1200

Time After Release (us)

Figure 4. Comparison of the best x? fit with pure shear viscosity and the best x>
fit with pure bulk viscosity. The green curve is the no free parameter prediction
with zero shear and bulk viscosity. The black dots are the anisotropic expansion
data at E/Er = 3.3. Error bars denote statistical fluctuations in the aspect ratio.
The red curve is the best x2 fit with pure shear viscosity coefficient ag = 24.4
and reduced x? = 1.6. The blue curve is the best x? fit with pure bulk viscosity
coefficient &z = 16.7 and reduced x2 = 8.6.

6y at the trap center, prior to release of the cloud,

T, T, 2/3
6o 0o _ 1o (”-’) . (11

" Tr(no)  Trr \no

Here, the local Fermi temperature at the trap center, before the cloud is released, is given by
Tr(no) = h*(3m2ny)*?/(2mkg), and Ty = Eg/ kg = Ty(ny) is the ideal gas Fermi temperature at
the trap center, with n; being the ideal gas central density for a zero-temperature Thomas—Fermi
distribution, 8N /(w%0F,0F,0F;). As shown previously, (n1/n¢)*? o« E/Eg. Hence, at higher
temperatures, where Ty/ Ty o< E / Eg, we have 6, o (E /Eg)? [20].

To measure T,/ Tg for the high-temperature expansion data, where E > 2Eg, we use the
second virial coefficient approximation to the local energy density [34],

£ = (3/2)nkgT (1 + Byni3), (12)

where 7 is the total density and Ap = h/+/2rmkgT is the thermal wavelength. B, = 1/27/? —
b,/ /2 is the second virial coefficient for a unitary gas, with b, = 1/2, which is universal and
known to be accurate for experiments in this temperature regime [12, 15]. Here, the first term
in B, arises from degeneracy for each spin state of the 50 : 50 mixture and the second term
arises from interactions between them. The force balance in the trap requires [13, 22] [ #*x € =
[ XX VUyyp(x)/2. For the Gaussian density profile observed in the high-temperature
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Figure 5. x? per degree of freedom versus bulk viscosity with shear viscosity as
the only free parameter.

experiments, one obtains

E_“_f{l_iﬁff_f_ﬁ‘f_gz]

2 Uy 0]321 6\/5 026
Note that equation (13) includes first-order corrections arising from B, and trap anharmonicity.
For the high-temperature data, where the density profile is Gaussian, we have (n;/ny)*? =
4(0?2/o},) /7', Using the initial T,/ Ty obtained from the cloud profile, we determine 6, from
equation (11).

We find T;/Tg for the low-temperature breathing mode data from our previous
measurements of energy versus entropy, for which the trap is as shallow as that used for the
low-temperature breathing mode measurements. The low-temperature E versus S data employ
the entropy S7,,, given in table 1 of [13], which is corrected for the finite interaction strength at
1200 G.* To properly calibrate the temperature with high precision over a wide range, we join
the experimental E(S) data with theoretical calculations of E and § in the high-temperature
regime by exploiting the second virial coefficient approximation for a unitary Fermi gas, as
shown in figure 6. For simplicity, we fit £(S) data using a smooth curve with a discontinuous
heat capacity [13] as follows:

E_(S)=Ey+ aS’; 0<
E.(S)=E;+ ¢S S >

(13)

- 2
In  op,

(14)

4 Note that the temperature calibration published in [13] employed the ideal gas approximation to the entropy,
figures 4 and 7 of [13], while the detailed comparisons with predictions, figure 5 of [13], employed the corrected
entropy. See table 1 of [13].
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Figure 6. Total energy per particle of a strongly interacting Fermi gas at 840 G
versus the entropy per particle. The blue dots show the entropy obtained by
adiabatically sweeping the magnetic field from 840 to 1200 G and using an exact
many-body calculation [12] for the entropy at 1200 G, where kra = —0.75. See
Sth0 1n table 1 of [13]. The red dots are the theoretical calculations using the
second virial coefficient approximation including the trap anharmonicity for the
trap condition of [10]. The green curve is the power law fit with a discontinuous
heat capacity, as described in equation (15).

Constraining the values of E; and ¢ by demanding that energy and temperature be continuous
at the joining point S., one obtains

E.(S)=Eo+aS" 0<S<S,

(15)
E-(S)=Eo+aS’[1 —b/d+b/d(S/S)"]; S=S..

We fix the ground state energy E, = 0.47 by using 8 = —0.60 [13]. Then we use a x? fit, where
we give equal weighting to the low-temperature data points and the calculated high temperature
points. We find a =0.10(1), b =1.57(15), d =2.23(3). The critical parameters obtained
from the fit are S, =2.04(39), E. =0.78(12) Eg. Then, T =0E/0S yields T. = 0.24(8) Tg;.
Note that the relatively large error bar for S. and hence 7. arises from joining measured data
with the calculated high-temperature points, and fitting E. (S) by a single power law. However,
this method yields a smooth temperature calibration that reproduces the temperatures used in
the virial calculation to better than 3%, figure 6. Then, we obtain E/EF as a function of Ty/ Tgy,
which yields 7/ Ty from the measured initial energy of the cloud, figure 7. The central density
ny, prior to release, is determined from column density of the trapped cloud by fitting the spatial
profile with a Gaussian distribution, which is adequate except at the lowest temperature where
the density profile is a zero-temperature Thomas—Fermi distribution.

Figure 8 shows the trap-averaged viscosity coefficient o versus the initial reduced
temperature at the trap center 6y, from nearly the ground state to the unitary two-body regime.
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Figure 7. The measured energy versus the temperature obtained from the
calibration of equation (15) (red dots). For comparison, we show the data
obtained by the ENS group [15] (black dots) and the theory of Hu et al [35]
(green curve).

The inset in figure 8 is the predicted local shear viscosity in the normal fluid regime versus the
local reduced temperature [33].

5.1. Temperature scaling

In the universal regime, the local viscosity at high temperatures is expected to scale as 7°/2, as
described in section 1. The viscosity at the trap center prior to release of the cloud can be written
as 1o = aph ny. In the high-temperature limit, we then have

Qp = a3 93/2, (16)

where a3/, is a universal coefficient [17]. As 6 has a zero convective derivative everywhere (in
the zeroth-order adiabatic approximation), 6, at the trap center where v =0 has a zero time
derivative and « is therefore constant as is the trap-averaged viscosity coefficient «.

We note that in the hydrodynamic regime, the local value of 1 oc T%? in the high-
temperature limit is independent of density and spatially constant, so that & formally does not
exist. To test the prediction on the 72/ temperature scaling in the high-temperature regime,
we assume that n relaxes to the equilibrium value in the center of the trap, but vanishes in the
low-density region so that @ is well defined. As noted in section 2, this behavior is predicted
by kinetic theory [27] and is required for energy conservation. Assuming that o >~ «,, we
observe the predicted 73/? temperature scaling in the high-temperature regime [20]. In this case,
fitting the data with o = a3, 93/ 2 yields a3, = 3.4. This is consistent with predictions, where
kinetic theory [36] shows that the trap-averaged T/ coefficient should be larger by a factor
of >~ 1.3 than that of the local value for the two-body unitary regime, o3, = 2.77 [17]. However,
more work is needed in order to fully understand the relation between the local viscosity and
the trap-averaged viscosity parameter measured in the experiments.
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Figure 8. The trap-averaged viscosity coefficient @ = f d*xn/(hN) versus the
reduced temperature 6y = Ty/ Tr(no) at the trap center, prior to release. Blue dots:
breathing mode measurements; red dots: anisotropic expansion measurements.
The bars denote statistical errors arising from the uncertainty in & and E and
the cloud dimensions. The green curve shows the fit @ = a3, 65’/ 2+6{1 2 98/ 2
with a3/, =2.96(3) and @;,, = 1.87(8), for the temperature from nearly the
superfluid transition point up to the two-body unitary regime. The inset shows
the theoretical prediction of the local shear viscosity « in the normal fluid phase
versus the local reduced temperature 6 = T/ Tg(n) from [33]. The red curve
shows the fit o = 032 93/2 +ay2 91/2 with O30 = 2.11 and o1 = 0.74.

In figure 8, both the experimental data and the theoretical calculations are found to scale as
T3/% in the high-temperature regime, consistent with equation (16). However, we observe that
the damping rate of the radial breathing mode reaches a plateau at higher temperatures [19, 21].
This flattening can be explained if & has a term o E, since 1/t o ¢ /E, according to equation (9).
Since 9&/ & E at higher temperatures, we fit the data of figure 8 with the two-parameter fit
function

o :&3/2 93/2+&1/298/2, (17)
where « is the trap-averaged viscosity and 6 is the local reduced temperature at the trap center.
Fitting all of the data for the normal fluid regime (E > 0.7EF), we find that a3, =2.96(3) and
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a2 = 1.87(8), where the errors are statistical from the fit. In this case, a3, = 2.96 is closer to
the local value predicted for the high-temperature two-body unitary regime, where a3, = 2.77.

We can also use the same two-parameter fit for the predicted local viscosity in the normal
fluid regime [33] (inset of figure 8),

(X:Ol3/293/2+0l1/201/2, (18)

where « is the local shear viscosity and 6 = T/ Tr(n) is the local reduced temperature. We obtain
03n = 2.11 and Q1 = 0.74.

The coefficient ¢;,, = 1.87 obtained from the data is much larger than the local value
obtained from the prediction «;/, = 0.74. However, to compare these parameters, we need the
trap average of the reduced temperature, (9'/?) =1.84 93/ 2. Hence, the fit to the calculated
viscosity yields &, = 1.84 o1 = 1.84 x 0.74 = 1.36, somewhat lower than the fit to the data.
However, if we scale the fit coefficients for the predicted viscosity by a factor 2.77/2.11 = 1.31,
then a3/, agrees by construction with the accepted high-temperature two-body limit, while the
predicted o, increases to 1.31 x 1.36 = 1.78, in good agreement with the measurements.

In the low-temperature normal fluid regime, Fermi liquid theory [37] predicts that the local
viscosity should have an upturn oc 1/62. After trap-averaging, (9~2), we find that the predicted
viscosity near the critical temperature is about a factor of 2 larger than the observed value,
with a temperature dependence that is not consistent with our data. In earlier work [17], pair
formation was suggested as a means of avoiding Pauli blocking, which would otherwise cause
the viscosity to increase with decreasing temperature. Recent predictions [31] suggest that the
onset of a normal state pairing gap and the formation of pairs may suppress the viscosity at low
temperature, which is consistent with our observations.

5.2. The ratio of shear viscosity to entropy density

To estimate the n/s ratio, we use the approximation n/s =ahn/s = (h/kg)o/(s/nkg) =
(h/kg)a /S, where S is the average entropy per particle of the trapped gas in units of kg. For the
low-temperature data, we obtain S from the fitting curve in figure 6.

To determine S for the high-temperature data, we employ the second virial coefficient
approximation of equation (12). Assuming that the density has a Gaussian profile, as observed
in the experiments and used to find the energy, we obtain the trap-averaged entropy per particle
in terms of the reduced temperature at the trap center,

4\ 3 2B, s
S=ky|4—1In T P e (19)
3J7) 2 T3

Then we calculate E versus 6, (using equations (10), (11) and (13)) to obtain E versus S.
Figure 9 shows the average entropy per particle over the measured energy range.

Figure 10 shows the estimated n/s ratio. The inset shows the low-temperature behavior,
which is about 5 times the string theory limit (red dashed line) near the critical energy [13]
E./Eg = 0.7-0.8. This result is in good agreement with recent predictions [38], where n/s =
4.7. We note also that the apparent decrease in the n/s ratio as the energy approaches the ground
state 0.48 Er [13] does not require that the local ratio — 0 as T'— 0, since contributions from
the cloud edges significantly increase S compared with the local s at the center.
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Figure 9. Calculated trap-averaged entropy per particle versus average energy
per particle for the trapped gas. Blue: low-temperature data calculated from the
fit in figure 6, where error bars arise from the energy uncertainty. Red: high-
temperature calculation for the deep trap used in the expansion experiments,
based on the second virial coefficient. Error bars arise from the energy

uncertainty.
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Figure 10. Estimated ratio of the shear viscosity to the entropy density.
Blue circles: breathing mode measurements; red squares: anisotropic expansion
measurements; inset: the red dashed line denotes the string theory limit. The bars
denote statistical errors arising from the uncertainty in £, & and S [20].
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6. Summary

We measured the trap-averaged shear viscosity coefficient as a function of the reduced
temperature at the trap center, from nearly the ground state to the two-body unitary regime.
From our measurements of global entropy and energy, we calibrated the temperature versus
energy and found it to be in very good agreement with the integrated local measurements as
well as predictions. Using the temperature calibration, we determined the trap-averaged shear
viscosity coefficient as a function of the reduced temperature at the trap center, which was then
compared with recent predictions. We showed that the best fit to our experimental expansion
data is obtained with vanishing bulk viscosity. The measured trap-averaged entropy per particle
and shear viscosity were used to estimate the ratio of shear viscosity to entropy density. Near
the transition point, the ratio was found to be >~ 5 times that of a perfect fluid. More work is
needed in order to understand the behavior of viscosity in the low-temperature regime, where
the breathing mode damping rate and hence the viscosity appear to approach 0 as 7 — 0.
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