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We study Wigner phase-space distributions W(x, p) in position (x) and momentum ( p) for light undergoing
multiple small-angle scattering in a turbid medium. Smoothed Wigner phase-space distributions are mea-
sured by using a heterodyne technique that achieves position and momentum resolution determined by the
width and the diffraction angle of the local oscillator beam. The sample consists of 5.7-mm-radius polystyrene
spheres suspended in a water–glycerol mixture. The momentum distribution of the transmitted light is found
to contain a ballistic peak, a narrow diffractive pedestal, and a broad background. The narrow diffractive
pedestal is found to decay more slowly than the ballistic peak as the concentration of scatterers is increased.
The data are in excellent agreement with a simple theoretical model that explains the behavior of the narrow
pedestal by including multiple diffractive scattering and treating large-angle scattering as a loss. © 1998 Op-
tical Society of America [S0740-3232(98)00907-7]
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1. INTRODUCTION
Propagation of optical coherence in multiple-scattering
media is currently receiving renewed attention because of
its importance in the development of new biological and
medical imaging methods based on optical fields.1 It has
been suggested by Raymer and co-workers and indepen-
dently by John et al. that new venues for medical imaging
may be based on coherence tomography employing mea-
surement of Wigner phase-space distributions in
multiple-scattering media.2–4 Wigner distributions yield
information about the optical amplitude and phase in
terms of the joint position and momentum phase-space
distribution of the optical field.

In 1932 Wigner5 introduced a wave-mechanical phase-
space distribution function that is applicable to coherence
tomography. This distribution plays a role closely analo-
gous to that of a classical phase-space distribution in po-
sition and momentum. For a wave field varying in one
spatial dimension, E (x), the Wigner phase-space distri-
bution is given by6

W~x, p ! 5 E de

2p
exp~iep !^E * ~x 1 e/2!E ~x 2 e/2!&,

(1)

where x is the position, p is a wave vector (momentum),
and ^•& denotes a statistical average. It is easy to show
that *dp W(x, p) 5 ^uE (x)u2&, the position distribution of
the intensity, and *dx W(x, p) 5 ^uE ( p)u2&, the corre-
sponding momentum distribution. These results suggest
that W(x, p) is analogous to a classical phase-space dis-
tribution in x and p. However, Eq. (1) shows that the
Wigner distribution is Fourier transform related to the
two-point mutual coherence function and therefore is sen-
sitive to the spatially varying phase and amplitude of the
field.
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Wigner phase-space distributions obey rigorous trans-
port equations, which are derivable from the underlying
optical wave equations. Thus measurement methods
based on Wigner distributions can be placed on a firm the-
oretical footing and permit detailed study of the propaga-
tion of optical coherence in multiple-scattering media for
comparison with theory. Hence studies of Wigner distri-
butions will impact many current imaging methods, such
as optical coherence tomography (OCT)7,8 and optical co-
herence microscopy (OCM).9

Certain features of Wigner distributions have been pre-
dicted to propagate coherently over distances large com-
pared with the transport mean free path in multiple-
scattering media,4 permitting measurements through
thick samples. Further, coherence tomography based on
measurement of Wigner phase-space distributions may
provide very-high-resolution imaging, as Wigner distribu-
tions contain information on an optical wavelength scale:
according to Eq. (1), the two-point spatial coherence func-
tion and the Wigner function are Fourier transform re-
lated. Hence the spatial resolution in determining spa-
tial correlations is inversely proportional to the range of
momenta that is measured. For measurements that are
carried out for an angular region of a substantial fraction
of a radian, spatial correlations are resolved at the level of
a few optical wavelengths.

A unique feature of Wigner phase-space distributions is
that they bridge the gap between phenomenological
transport equations, on which the diffusion approxima-
tion is based, and rigorous wave equation treatments.10

In particular, the Wigner distribution is the rigorous
wave-field analog of the phenomenological specific inten-
sity. The Wigner distribution includes statistically aver-
aged coherent and incoherent contributions to the trans-
mitted or reflected light and rigorously incorporates
1998 Optical Society of America
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phase and intensity information. Therefore measure-
ment and study of such distributions is likely to lead to
new insights into the nature of light propagation in
multiple-scattering media and hence to new avenues for
sensitive, high-resolution biological imaging.

Despite their frequent use in theory11 and potential
practical importance to tomographic imaging, Wigner
phase-space distributions have received relatively little
attention in optical measurements. It has been shown
that Wigner distributions for optical fields can be deter-
mined by tomographic inversion of intensity measure-
ments obtained in a number of planes.3 The Wigner dis-
tribution can also be obtained by Fourier transformation
of the two-point coherence function measured by shearing
interferometry.2 Measurement of two-point coherence
functions by this method has been suggested and demon-
strated previously.12

Recently, we have developed a sensitive heterodyne
method for measuring smoothed Wigner phase-space dis-
tributions with the use of a simple optical system.13 The
spatial width and the diffraction angle of the local oscil-
lator (LO) beam determine the position and momentum
resolution with which the smoothed Wigner function is
measured. Very high dynamic range has been achieved:
13 orders of magnitude (130 dB) has been demonstrated
in our laboratory by using milliwatt cw lasers.14

As described below, in the heterodyne method, the
Wigner distribution of the transmitted light is smoothed
by convolution with the Wigner distribution of the LO
beam. In principle, a smoothed Wigner distribution can
be obtained by using pinholes, one near the source to de-
termine the position and a second pinhole, widely sepa-
rated from the first, to determine the momentum. In this
case the Wigner function of the transmitted light is
smoothed by convolution with the Wigner function for the
two separated pinholes. For the heterodyne method, the
Wigner function for the LO is Gaussian in momentum
and position, yielding a minimum uncertainty product.
However, the position and momentum resolution cannot
be varied independently in either case. The smoothed
Wigner distribution is therefore coarse grained and con-
tains less information on the phase and the amplitude of
the field than the true Wigner distribution of the trans-
mitted light. As noted above, the latter can be deter-
mined from the two-point coherence function measured
by shearing interferometry, where the position and mo-
mentum resolution can be independently controlled.2

Nevertheless, as shown below, the heterodyne method
provides a simple means of obtaining smoothed Wigner
distributions directly as phase-space contour plots. In
many cases of practical interest, this method can provide
substantial sensitivity to both the coherence and the in-
tensity of the light transmitted through biological materi-
als.

Smoothed Wigner distributions are obtained in our ex-
periments as mean square heterodyne beat signals.
Mean square beat signals are sensitive both to ballisti-
cally transmitted light and to light that has been multiply
scattered into the mode of the LO.14 By contrast, in OCT
the mean heterodyne beat signal is measured to suppress
all scattered light. The difference between mean and
mean square beat signals has been discussed previously
for homodyne detection.15

To exploit fully the information about the form factor of
the scattering object that is contained in the Wigner dis-
tribution, it is necessary to suppress unwanted contribu-
tions arising from diffuse scattering as much as possible.
Compared with methods that measure only the position-
dependent intensity, measurement of smoothed Wigner
distributions with high angular resolution suppresses the
contribution of diffuse scatter, which has a broad angular
distribution. In addition, the heterodyne technique per-
mits phase-space distributions to be measured with the
use of either coherent or low-coherence-length light
sources, allowing additional suppression of diffuse
scatter.16 Heterodyne measurement can be used to mea-
sure smoothed Wigner distributions for low-order scat-
tered light that retains substantial information about the
scatterer without suffering as much attenuation as the
ballistic light. Thus this method will complement cur-
rent studies of low-order light scattering.17,18

In this paper we describe measurements of smoothed
Wigner phase-space distributions for multiple small-
angle scattering in a medium consisting of 5.7-mm-radius
polystyrene spheres suspended in a water-glycerol mix-
ture. Our experiments use a helium–neon (He–Ne) laser
as a coherent light source and will serve as a basis for
comparison with future work employing low-coherence
light sources to measure smoothed Wigner phase-space
distributions for low-order scattered light in the same me-
dium.

Measurements of smoothed Wigner distributions for
small-angle scattering are relevant to OCT and OCM,
since it has been shown recently that multiple small-
angle scattering increases the effective probe field over
that expected for simple exponential decay of the ballistic
light. The probe field contains a distorted wave front
that causes structures that are small compared with the
transverse coherence length of the unscattered input
beam to be enhanced in comparison with large ones.19

The remainder of this paper is organized as follows.
The heterodyne method for measuring smoothed Wigner
phase-space distributions as contour maps is described in
Section 2. This method is used to measure the smoothed
Wigner phase-space distribution for light transmitted
through a sample of polystyrene spheres suspended in a
water–glycerol mixture. It is demonstrated that the
smoothed Wigner phase-space contours are sensitive to
both the coarse-grained intensity and the wave-front cur-
vature of the emerging light. A narrow pedestal is ob-
served in the phase-space contour and is explored in sub-
stantial detail in Section 3. An analysis is carried out in
the language of Wigner distributions, showing that the
narrow pedestal arises from multiple diffractive scatter-
ing. The experimental measurements are in excellent
agreement with a simple model that treats large-angle
scattering as a loss. These results are related to previous
analyses of small-angle scattering.

2. EXPERIMENT
We have developed a simple optical heterodyne technique
for directly measuring smoothed Wigner phase-space dis-
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tributions as phase-space contour plots with high dy-
namic range. Spatial and momentum resolutions are de-
termined by the spatial width and diffraction angle of the
LO beam. In this case the smoothed Wigner distribu-
tions that are obtained are always positive definite.20

This method is well suited for measuring small-angle
scattering distributions with high angular resolution.
We apply this technique to measure smoothed Wigner
phase-space contours for light transmitted through a tur-
bid medium.

A. Scheme
The scheme of the heterodyne experiments, shown in Fig.
1, employs a He–Ne laser beam, which is split into a
1-mW LO beam and a 1-mW input beam to the sample.
The relative frequency between the LO and the input
beam is determined by acousto-optic modulators that dif-
fer in drive frequency by 10 MHz. The transmitted beam
from the sample (signal beam) is mixed with the LO at a
50–50 beam splitter (BS2). Technical noise is sup-
pressed by employing a standard balanced detection
system.21 The beat signal at 10 MHz is measured with
an analog spectrum analyzer. An important feature of
the experiments is that the analog output of the spectrum
analyzer is squared by using a low-noise multiplier.22

The multiplier output is fed to a lock-in amplifier, which
subtracts the mean square signal and noise voltages with
the input beam on and off.23 In this way the mean
square electronic noise and the LO shot noise are sub-
tracted in real time, and the lock-in output is directly pro-
portional to the mean square beat amplitude uVBu2. The
mean square beat signal is directly proportional to the
overlap of the Wigner phase-space distributions for the
LO and signal fields,13 as shown briefly below.

The beat amplitude VB is determined in the paraxial
ray approximation by the spatial overlap of the LO and
signal (denoted by subscript S) fields in the plane of the
detector, z 5 zD .24 Using Fourier optics, we can relate
the fields in the detector plane (D1, D2) to the fields in the
source planes (z 5 0) of the input achromatic lenses L1
and L2, which have equal focal lengths f 5 6 cm. When
the input lens L2 is translated off axis by a distance dp

Fig. 1. Heterodyne measurement of smoothed Wigner phase-
space distributions.
and the mirror M1 is translated off axis by a distance dx ,
the mean square beat amplitude for a narrow-band field
takes the simple form

uVBu2 } U E dx8 E LO* ~x8, zD!E S~x8, zD!U2

} U E dx E LO* ~x 2 dx , z 5 0 !

3 E S~x, z 5 0 !expS iko
dp

f
x D U2

.

(2)

Here x8 denotes position in the detector plane, x denotes
position in the source plane, E is a slowly varying field
amplitude (band center frequency phase factor removed),
and ko 5 2p/lo is the wave vector in air. For simplicity,
the corresponding y integrals are suppressed, as is the
statistical average. It is assumed that the Rayleigh and
coherence lengths of the LO and signal fields are large
compared with dx , so that the translation of M1 simply
shifts the center of the input LO field without signifi-
cantly altering the LO optical path length before L1.
When this is not the case, a translating corner cube can
be added to the LO arm to compensate for path-length
changes arising from M1. The detectors are located in
the Fourier plane zD 5 f of the lenses L1 and L2, so that
the LO position in the detector plane remains fixed as dx
is scanned.

Using Eq. (1), we can rewrite relation (2) (suppressing
the y integration) as

uVB~dx , dp!u2 } E dxdp WLO~x 2 dx , p

1 kodp /f !WS~x, p !, (3)

where WS(x, p) is the Wigner distribution of the signal
field in the plane of L2 (z 5 0), given by Eq. (1).
WLO(x, p) is the LO Wigner distribution in the plane of
L1.

From relation (3) we see that the mean square beat sig-
nal is the convolution integral of the LO and signal field
Wigner phase-space distributions. Hence the mean
square beat signal that is obtained in real time in the ex-
periments is a smoothed Wigner distribution.20 Scan-
ning the positions of M1 by dx and L2 by dp with the use
of stepper translators yields a contour map of WS with
resolution limited by the phase-space resolution of the
LO. This method permits position measurement over a
range of 61 cm and momentum measurement over a
range of 6300 mrad. With the definitions xM 5 dx and
pM 5 2kodp /f, the mean square beat signal S can be re-
written as

S~xM' , pM'! 5 E d2x'd2p' WLO~x' 2 xM' , p'

2 pM'!WS~x' , p'!. (4)

Here the subscript ' denotes the direction perpendicular
to the z axis. The transverse Wigner distribution at the
exit of the sample (z 5 L) is given in terms of the three-
dimensional Wigner distribution by
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WS~x' , p'! 5 E dpz WS~z 5 L, x' , p!. (5)

Analogous to Eq. (1), the three-dimensional Wigner distri-
bution is defined by

W~x, p, t ! 5 E d3e

~2p!3 exp~ie • p!E * ~x 1 e/2, t !

3 E ~x 2 e/2, t !, (6)

where x denotes position and p is a wave vector (momen-
tum).

The transverse Wigner distributions that appear in Eq.
(4) have an important property. Since the transverse
momentum p' is conserved in propagation between me-
dia of different indices of refraction, the transverse
Wigner distribution does not change in propagating be-
tween the sample and the air. This is a consequence of
the boundary condition that yields Snell’s law: the mo-
mentum in the plane of the interface is conserved, al-
though the magnitude of the total momentum vector
changes. Hence the angles of incidence and refraction
must be different.

As a simple demonstration of the physical content of
Eq. (4), we have measured smoothed Wigner distributions
for Gaussian beams with curvature and for a source con-
sisting of two mutually coherent Gaussian beams.13

These measurements show how the Wigner distribution
is sensitive to the coarse-grained spatially varying phase
and amplitude of the field in the source plane of lens L2.

B. Smoothed Wigner Distribution for Light Transmitted
through a Turbid Medium
We have measured the smoothed Wigner distribution for
the field transmitted through a turbid medium consisting
of latex microspheres (n 5 1.59) in a mixture of 25% glyc-
erol and 75% water. This mixture is chosen to produce
neutral buoyancy for the microspheres. The index of re-
fraction of the mixture is found to be 1.36 by passing a
He–Ne laser beam through a triangular container similar
to an equilateral triangular prism. By noting the angu-
lar deviation, we are able to measure the index of refrac-
tion to be within 0.3% of published values for this mixture
at this wavelength. This index of refraction for the me-
dium results in a relative refractive index of 1.17 for the
latex microspheres compared with the medium.

Large spheres are specifically selected to give highly
forward-peaked scattering. The spheres used in this ex-
periment have a radius of 5.7 mm. The Mie solution25 for
the above parameters gives a total scattering cross sec-
tion sS that is 1.98 times the geometrical cross section,
i.e., sS 5 202 mm2. It is assumed that there is no ab-
sorption. The theoretical angular distribution (differen-
tial cross section) is shown in Fig. 2. The peak amplitude
has been normalized to 1. The angles are the transverse
momenta given in units of the photon wave vector ko in
vacuum. These angles have been multiplied by 1.36 to
account for the propagation from the water–glycerol mix-
ture into air, where they are detected. The differential
scattering cross section shows a central diffractive peak
that is nominally Gaussian. Its half-width at 1/e is 31.6
mrad, which corresponds to a width of 23.2 mrad in the
medium. This distribution is highly peaked in the for-
ward direction, with a low-amplitude broad background
that is not visible here. Data were taken for varying con-
centrations of spheres in water–glycerol in a precision cell
of optical path length L 5 10 mm.

Initially, we have measured the smoothed Wigner dis-
tribution for transmission of a narrow, collimated Gauss-
ian beam through this sample. Figure 3 shows a mea-
sured phase-space contour plot (log scale) for a 0.5-mm-
diameter input beam to the sample. Here the
concentration of 5.7-mm-radius spheres is r 5 2
3 106/cm3, and the ballistic contribution is attenuated
by exp(24). The ballistic light appears as a narrow is-
land in the center of the contour plot. A narrow pedestal
appears around the ballistic contribution. Both the ped-
estal and the broad large-angle scattering contribution
exhibit a correlation between momentum and position, as
expected for a diverging localized source. This corre-
sponds to a wave-front curvature of 2.1 cm, approximately
the distance between the input face of the sample and the
input plane (center) of lens L2, where the signal Wigner

Fig. 2. Mie differential cross section for scattering from 11.4-mm
polystyrene spheres, with parameters nrel 5 1.17, no 5 1.36, and
lair 5 633 nm.

Fig. 3. Smoothed Wigner distribution (log scale) for light trans-
mitted though a turbid medium for r 5 2 3 106/cm3. x denotes
the transverse position in millimeters, and p denotes the trans-
verse wave vector (momentum) in units of the wave vector in air,
ko . The central island is the ballistic contribution.
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distribution is sampled. Figure 4 shows the phase-space
contours at a higher concentration, r 5 6 3 106/cm3,
where the ballistic attenuation is exp(212). In this case
the momentum and position distributions broaden.
(Note the increased horizontal and vertical scales.) The
correlation between position and momentum indicates a
wave-front curvature of 1.5 cm, corresponding to a source
located near the center of the cell. At higher concentra-
tions the source position appears to move toward the
sample output face. From the width of the momentum
distribution at x 5 0, the transverse coherence length for
the multiply scattered light is estimated to be approxi-
mately 2 mm.

C. Wigner Distribution for Small-Angle Scattered Light
To explore in detail the shape and the amplitude of the
pedestal shown in Fig. 3, we have measured the smoothed
Wigner distributions for transmission of a large-diameter
input beam through the sample (a 5 3.8 mm half-width
at 1/e intensity). In this case the LO beam is small in
diameter (ao 5 0.38 mm) compared with the input beam,
so that the output Wigner distribution is nearly indepen-
dent of position x over the LO diameter. Further, the
momentum width of the LO is small compared with the
width of the momentum distribution of the scattered
light. In this case the measured mean square hetero-
dyne beat signal S(xM 5 0, pM) determines approxi-
mately the true transmitted Wigner distribution of the
scattered light, WS(x 5 0, pM), excluding the ballistic
contribution that is sharply peaked in the forward-
scattering direction [see Eq. (15) below].

For fixed LO position xM 5 0, plots of S(xM 5 0, pM)
5 WS(x 5 0, pM) are shown for various concentrations of
5.7-mm-radius spheres ranging from r 5 0.4
3 106/cm3 to r 5 6 3 106/cm3. In general, the scatter-
ing distribution is seen to have three components: a bal-
listic peak, a central narrow pedestal, and a broad diffuse

Fig. 4. Smoothed Wigner distribution (log scale) for r 5 6
3 106/cm3. The central island is the ballistic contribution.
Note the appearance of a narrow pedestal centered on the ballis-
tic feature.
background. The ballistic contribution is not shown, as
it is orders of magnitude larger than the narrow pedestal
and the diffuse background. The half-width at 1/e inten-
sity of the ballistic peak is 0.4 mrad, which is much nar-
rower than the widths of the scattered-light distributions.
At low concentrations the scattered-light data show a dif-
fractive peak (Fig. 5), which agrees with the Mie solution.
As the concentration is increased (Fig. 6), the diffractive
peak is seen to broaden and attenuate while the broad
background becomes more prominent, until in Fig. 7 the
diffuse background becomes comparable with the diffrac-
tive component. Here the ballistic component is still a
factor of 10 larger than the pedestal and is not shown.

Fig. 5. Smoothed Wigner distribution . W(x 5 0, p) (linear
scale, ballistic contribution not shown) for r 5 0.4 3 106/cm3.
Note that here the input beam is large compared with the diam-
eter of the LO beam. The theoretical prediction is shown as a
solid curve.

Fig. 6. Smoothed Wigner distribution . W(x 5 0, p) for large
input beam (linear scale, ballistic contribution not shown) for r
5 2 3 106/cm3. Note the narrow central pedestal arising from
diffractive scattering. The solid curve shows the theoretical pre-
diction.

Fig. 7. Smoothed Wigner distribution . W(x 5 0, p) (linear
scale, ballistic contribution not shown) for r 5 6 3 106/cm3.
Note the increase in the narrow central pedestal arising from dif-
fractive scattering. The solid curve shows the theoretical pre-
diction.
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The experimental angular distributions WS(x 5 0, p)
are fitted to two-component curves (solid curves) consist-
ing of a narrow central pedestal and a broad diffuse back-
ground. As discussed above, the ballistic contribution is
ignored, as it is localized near the origin. The central
pedestal in the two-component curve arises from multiple
diffractive scattering. The shape of this component (nor-
malized to 1 at p 5 0) is determined by using the theory
described in detail in Section 3. The amplitude of this
component is left as a free parameter and is compared be-
low with the predicted value. The broad background,
which is not of interest here, is modeled as a Gaussian
distribution in p with an undetermined amplitude.

Figure 5 shows the angular scattering distribution
WS(x 5 0, p) for a scatterer concentration of r 5 0.4
3 106/cm3. The transverse momentum p is given in
units of the optical wave vector in air, ko . The position x
is in millimeters. This figure shows data points that are
taken for angles u 5 p/k in the range from 2225 to
175 mrad. However, the fitted curve (solid curve) is
done for the data outside 630 mrad, as interference with
the Gaussian tail of the ballistic light distribution causes
these points to be unreliable. The ballistic peak is at-
tenuated at this concentration by exp(20.8) and is not
shown in this figure, as it is orders of magnitude larger
than the scattered light.

Figure 6 shows the angular scattering distribution at a
higher concentration, r 5 2 3 106/cm3. Here we can see

Fig. 8. Amplitude of the narrow pedestal arising from multiple
diffractive scattering as a function of scatterer concentration r.
The solid curve shows the prediction with no free parameters.
Note that the amplitude of the pedestal decays with an extinc-
tion coefficient that is 0.65 of the ballistic extinction coefficient of
Fig. 9.

Fig. 9. Amplitude of the ballistic component as a function of
scatterer concentration r. The solid line shows the prediction
for exponential decay with the extinction coefficient determined
from the total scattering cross section.
the broad diffuse background become significant, whereas
the central pedestal has broadened slightly. The ballistic
light at this concentration has been attenuated by
exp(24) and again is not shown here, as it is orders of
magnitude larger than the scattered intensity.

In Fig. 7 the angular scattering distribution is shown
for a scatterer concentration r 5 6 3 106/cm3. In this
plot we see that the broad background has become com-
parable in magnitude with the central pedestal. At this
concentration the ballistic light has been attenuated by
exp(212), 1 order of magnitude larger than the scattered
light, so again it is not shown.

To explore how the amplitude of the central pedestal
varies with concentration, the maximum amplitudes for
each of the fitted curves are shown in Fig. 8 as a function
of scatterer concentration. These are compared with the
predicted amplitude (solid curve) with no free param-
eters. For comparison, the amplitude of the ballistic
peak as a function of scatterer concentration is shown in
Fig. 9. Over most of the range of scatterer concentra-
tions, the amplitude of the central pedestal (Fig. 8) is
found to decay exponentially with an attenuation coeffi-
cient that is 65% of that found for the ballistic extinction
coefficient.

3. THEORY
The data obtained in the experiments exhibit a number of
interesting features that can be understood in terms of a
simple model for multiple diffractive scattering. In this
model multiple diffractive scattering is included by means
of a collision integral, but large-angle scattering is treated
as a loss. In addition, the input beam is assumed large
in diameter compared with the LO beam, so that the sys-
tem exhibits approximate translation invariance across
the output face of the sample.26 These conditions are ap-
proximately satisfied in the experiments.

In general, the transport equation for the Wigner dis-
tribution can be somewhat complicated, exhibiting nonlo-
cal scattering.4,27 However, when the Wigner distribu-
tion varies slowly in its spatial argument compared with
an optical wavelength, the transport equation is approxi-
mately local and is identical in structure to the usual ra-
diative transport equation for the specific intensity.4,27

Hence, as a first approximation, we use this equation to
model our data. For cw narrow-band excitation, the
Wigner distribution is time independent and obeys the
following approximate transport equation:

c2p

no
2v

• ¹xW~x, p! 5 2
c

no
mT~p!W~x, p!

1 E d3p8 K~p, p8!W~x, p8!.

(7)

Here the vector properties of the field are neglected. no
is the mean index of refraction of the background me-
dium, c/no is the speed of light in the medium, p is a wave
vector of magnitude p 5 k [ noko , with ko 5 v/c, and v
is the optical frequency. The extinction coefficient aris-
ing from the total scattering cross section (and absorp-
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tion) is mT (p). The total loss rate of optical phase-space
density for wave vector p is (c/no)mT(p). The collision
kernel (phase function) K(p, p8) is the arrival rate of
phase-space density from wave vector p8 to p.

A. Two-Component Kernel
For Mie scattering from 11.4-mm spheres, the differential
scattering cross section (Fig. 2) exhibits a large diffractive
scattering component that is forward peaked. In addi-
tion, there is a component that scatters broadly into 4p
solid angle. This corresponds approximately to the geo-
metrical (classical) scattering cross section. According to
the Mie differential scattering cross section, approxi-
mately 65% of the total scattering cross section arises
from the broad part and 35% from the diffractive part.
In this case the kernel can be modeled as having two dis-
tinct components, denoted as KN and KB , respectively,
where N denotes the narrow diffractive kernel and B the
broad kernel:

K~p, p8! 5 KN~p, p8! 1 KB~p, p8!. (8)

It is convenient to divide the Wigner phase-space dis-
tribution into three components:

W 5 WBALL 1 WP 1 WB . (9)

Here WBALL denotes the narrow contribution arising from
purely ballistic propagation of the input phase-space dis-
tribution with attenuation at the total loss rate, WP de-
notes the phase-space distribution of the narrow pedestal
that arises from diffractive scattering, and WB denotes a
broad background contribution arising from large-angle
scattering.

As shown in Appendix A, an evolution equation can be
derived for each of the components of the Wigner distri-
bution. The derivation is closely related to those em-
ployed in previous studies of small-angle scattering.28

The phase-space distribution for the ballistic pedestal
obtained by solving Eq. (A6) is given by

WBALL~z, x' ; p!

. exp~2mTz !WBALL
0 ~z 5 0, x' 2 zp' /k; p!. (10)

Here we have assumed that the input beam is a colli-
mated Gaussian laser beam with a half-width at 1/e in-
tensity of a and that pz . k and vz . c/no . The input
distribution just inside the medium at z 5 0 is given by

WBALL
0 ~z 5 0, x' ; p!

. d ~ pz 2 k !
1

p2 expF2
x2 1 y2

a2 2 a2~ px
2 1 py

2!G .

(11)
Note that WBALL

0 is normalized so that
*d2x'd3p WBALL

0 (x, p) 5 1. The total extinction coeffi-
cient mT 5 rsT arises from the total scattering cross sec-
tion and absorption.

An important feature of relation (10) is that it appears
to describe classical linear trajectories for the optical in-
tensity. Nevertheless, the Wigner distribution obtained
by using relation (11) correctly describes diffraction, as is
readily shown by integration of relation (10) over px and
py .13
The Wigner distribution WP for the pedestal is ob-
tained by using the approximate kernel of relation (A10)
as described in Appendix A. WP is given by Eq. (A23):

WP~L, x' ; p! 5 d ~ pz 2 k !WP~L, x' , p'!. (12)

The transverse Wigner distribution for the pedestal is
given by Eq. (A26):

WP~L, x', p'! 5
exp~2x'

2/a2!

p2uo
2k2a2 exp~2mTL !

3 E
0

`

dh' 2h'J0S h'

2p'

uok D
3 $exp@mNL exp~2h'

2!# 2 1%. (13)

Here the magnitude of the transverse momentum is de-
noted by p' 5 up'u 5 Apx

2 1 py
2. Similarly, the magni-

tude of the transverse position is x' 5 ux'u 5 Ax2 1 y2.
The scattering diffraction angle obtained from the Mie so-
lution is uo 5 23.2 mrad. The extinction coefficient mN
5 0.35mS arises from diffractive scattering only, where
mS 5 rsS is the extinction coefficient corresponding to
the total scattering cross section, i.e., the ballistic extinc-
tion coefficient excluding absorption.

B. Mean Square Beat Signal
Equation (4) gives the measured mean square beat signal
in terms of the transverse Wigner distributions for the LO
and signal fields. With the LO displaced in position and
momentum along the x axis only, the transverse Wigner
distribution for the LO field is given by

WLO~x' 2 xM' , p' 2 pM'!

5
1

p 2 expF2
~x 2 xM!2 1 y2

ao
2 G

3 exp$2ao
2@~ px 2 pM!2 1 py

2#%. (14)

Our experiments are carried out by using a LO half-
width at 1/e intensity, ao , that is small compared with
the spatial extent of the signal field, so that ao ! a. Fur-
ther, the diffraction angle of the LO is small compared
with the scattering diffraction angle: 2/(kao) ! uo . In
this case the Wigner distribution of the LO is sharply
peaked in both position and momentum compared with
that of the scattered signal field. Since the LO Wigner
distribution of Eq. (14) is normalized to 1, the mean
square beat signal for the pedestal can be evaluated by
using Eq. (4), with Eq. (14) given by the approximation

WLO~x' 2 xM' , p' 2 pM'! . d ~x 2 xM!d ~y !

3 d~ px 2 pM!d~ py!.

Hence we obtain

SP~xM , pM!

5 WP~L, x 5 xM , y 5 0; px 5 pM , py 5 0 !, (15)

where we take p' 5 Apx
2 1 py

2 5 upMu in the transverse
Wigner distribution for the pedestal, WP .
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As a reference level, the ballistic contribution to the
mean square beat signal is determined by using Eq. (14)
and relations (10) and (11) in Eq. (4):

SBALL~xM , pM! 5
ao

2

p2a2 expS 2ao
2pM

2 2
xM

2

a2 D
3 exp~2mTL !. (16)

Diffraction of the input beam is negligible in the experi-
ments and is therefore not included in Eq. (16).

Figures 5–7 show measured smoothed Wigner phase-
space distributions that are plotted as the mean square
beat signal divided by the maximum ballistic mean
square beat signal (for r 5 0 at x 5 p 5 0). The latter
is given by

SMBALL 5 hhet
2 ~ao

2/p2a2!, (17)

where hhet is the heterodyne efficiency for detection of the
ballistic light. In the experiments a/ao 5 10 and the
heterodyne efficiency is found to be 0.4, which is due to
difficulty in matching wave-front curvatures for beams of
such disparate diameters. For the pedestal, only scat-
tered light that is mode matched to the LO is detected.
Thus the heterodyne efficiency for detection of the scat-
tered light is 1.

With Eqs. (13) and (15), the smoothed Wigner distribu-
tion for the pedestal and the diffuse background normal-
ized to SMBALL is given by

S~xM 5 0, pM!

SMBALL

5 A~r!FP~ p' , r!

1 B exp@2p'
2/~DpB!2#. (18)

Here B is the amplitude, and DpB is the width of the
broad background component that is fitted to the data.
A(r) is the magnitude of the pedestal mean square beat
signal normalized to SMBALL :

A~r! 5
exp~2mTL !

hhet
2 uo

2k2ao
2 E

0

`

dh' 2h'

3 $exp@mNL exp~2h'
2!# 2 1%. (19)

FP( p') is the shape of the pedestal normalized to 1 at
p' 5 0:

FP~ p'! 5
WP~x' 5 0, p'!

WP~x' 5 0, p' 5 0 !
, (20)

where WP(x' , p') is given by Eq. (13).

4. DISCUSSION
Equation (13) describes the Wigner phase-space distribu-
tion WP(x' , p') for a pedestal that arises from multiple
diffractive scattering. This pedestal has a much broader
momentum distribution than the Wigner distribution for
the ballistically transmitted field from which it arises.

Equation (13) has a simple physical interpretation.
WP(x' , p') can be expanded as a power series in mNL
that explicitly displays the distributions for various num-
bers of multiple scatterings:
WP~L, x' , p'! 5
exp~2x'

2/a2!

pa2 exp@2~mT 2 mN!L#

3 (
n51

`

exp~2mNL !

3
~mNL !n

n!

exp@2p'
2/~nuo

2k2!#

pnuo
2k2 .

(21)

Note that x' 5 Ax2 1 y2 and similarly for p' . For each
term there is a normalized Gaussian momentum distribu-
tion of width uokAn in the x and y directions. This de-
scribes a random-walk distribution for n momentum
changes of magnitude uok. exp(2mNL)(mNL)n/n! is a Pois-
son distribution describing the probability of n scatter-
ings, where n̄ 5 mNL is the mean number of scattering
events. With exp(2mNL) incorporated into the probabil-
ity of n scatterings, the pedestal decays as exp@2(mT
2 mN)L#. The factor mB 5 mT 2 mN is just the extinction
coefficient arising from large-angle scattering (and ab-
sorption).

Note that the missing n 5 0 term in Eq. (21) that is
nonzero for mNL 5 0 represents the ballistic contribution
that was treated separately in determining the mean
square beat signals of relation (3). Separation of these
contributions is convenient, since the momentum distri-
bution of the ballistically transmitted light is narrow com-
pared with that of the LO beam whereas the momentum
distribution for WP is broad compared with that of the LO
for the conditions of the experiment.

For mNL @ 1, WP is approximately a single Gaussian
distribution. In this case we can make the approxima-
tion

exp@mNL exp~2h'
2!# 2 1 . exp@mNL~1 2 h'

2!#.

Here mNL @ 1 ensures that h'
2 ! 1 over the dominant

region of integration. In this limit the Wigner distribu-
tion for the pedestal is given by

WP~L, x' , p'! 5
exp~2x2/a2!

pa2 exp@2~mT 2 mN!L#

3
exp@2p2/~mNLuo

2k2!#

pmNLuo
2k2 . (22)

Equation (22) describes a momentum distribution for a
random walk with n̄ 5 mNL steps of size uok. This re-
sult arises because the width An̄ of the Poisson distribu-
tion of Eq. (21) is small compared with n̄ for n̄ @ 1.
Hence the term in Eq. (21) with n 5 n̄ dominates, yield-
ing Eq. (22). Neglecting absorption, the pedestal decays
as mT 2 mN 5 mB , the extinction coefficient arising from
large-angle scattering, as described above. Note that
Eqs. (21) and (22) are valid only for small-angle scatter-
ing. Further, the input beam half-width at 1/e intensity,
a, must be large enough so that uoAmNL ! a/L. Hence
there is negligible expansion of the input beam.

Theoretical Wigner phase-space distributions S(xj
5 0, p) have been fitted to the data of Figs. 5–7 by using
Eq. (18). The fits are shown as solid curves. The broad
background is fitted by using the phenomenological con-
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stants B and DpB and is not of interest here. However,
the shape of the narrow pedestal is obtained from Eq. (20)
by using the experimentally determined parameters: LO
half-width at 1/e of ao 5 0.38 mm, half-width at 1/e for
the input beam to the sample of a 5 3.8 mm, and cell
length L 5 1 cm. The index of refraction of the back-
ground medium is no 5 1.36. The optical wave vector in
the medium is k 5 noko , where ko 5 2p/lo is the wave
vector in air, with lo 5 0.63 mm as the He–Ne laser
wavelength. The heterodyne efficiency defined in Eq.
(17) is hhet 5 0.4. From the Mie solution (Fig. 2), we find
that the half-width at 1/e of the central diffractive peak in
the medium is uo 5 23.2 mrad. The total scattering
cross section is sS 5 202 mm2. The diffractive cross sec-
tion sN is estimated from the area under the diffractive
peak (for 0 < u < 0.1 rad) to be 0.35sS , and the remain-
ing classical scattering cross section, obtained by inte-
grating the differential cross section from u 5 0.1 to p
rad, is found to be 0.65sS . The density r of scatterers is
determined from the known volume fraction of the poly-
styrene spheres. Initially, the amplitude of the narrow
pedestal, A(r), is taken to be a free parameter that yields
the best fits to the data. The figures show that very good
fits are obtained.

Figure 8 shows the amplitude A(r) obtained from the
fits as a function of scatterer concentration r. Also
shown is the prediction, based on Eq. (19). The predic-
tion for the amplitude of the pedestal that arises from
multiple diffractive scattering is found to be in very good
agreement with the data using no free parameters.

For comparison, the decay of the ballistic signal with
scatterer concentration is shown in Fig. 9. The ballistic
signal decays exponentially according to exp(2mS L),
where mS 5 rsS as expected. By contrast, the pedestal
arising from near-forward diffractive scattering decays
much more slowly, as shown in Fig. 8. For concentra-
tions beyond the maximum amplitude, this signal decays
approximately exponentially with an attenuation coeffi-
cient mB 5 0.65mS .

It is not difficult to understand why the diffractive ped-
estal decays more slowly than the ballistic signal. Dif-
fractive momentum changes tend to scatter photons
within the momentum distribution of the diffractive ped-
estal. Only large momentum changes are effective in
scattering photons outside the momentum distribution of
the pedestal. Hence the pedestal decays with the attenu-
ation coefficient mB that arises from the large-angle scat-
tering cross section. By contrast, both diffractive and
large-angle momentum changes are effective in scattering
photons out of the momentum distribution of the ballistic
light, which is very narrow. Hence the ballistic distribu-
tion must decay with the extinction coefficient corre-
sponding to the total scattering cross section mS .

5. CONCLUSIONS
In conclusion, we have demonstrated heterodyne mea-
surement of smoothed Wigner phase-space distributions
for light that has undergone multiple diffractive scatter-
ing in a turbid medium. This method provides high an-
gular resolution and is well suited for direct measure-
ment of momentum distributions in the near-forward
scattering direction. The data are well fitted by a theo-
retical model that assumes that the Wigner phase-space
distributions obey an approximate transport equation
that is identical in structure to the usual transport equa-
tion for the specific intensity. By incorporating trans-
verse momentum changes arising from multiple diffrac-
tive scattering and treating large-angle classical
scattering as a loss, we find very good agreement with the
data.

These experiments show that multiple diffractive scat-
tering can produce a narrow pedestal that decays more
slowly than the ballistically transmitted component. At
high concentrations of scatterers, if the diffractive pedes-
tal is comparable with the ballistic component, it can
modify the apparent intensity of a probe beam compared
with that expected for exponential attenuation of ballistic
light. This is consistent with the anomalous probe inten-
sity observed by Yadlowsky et al. in OCM.19

Our experiments are performed in a regime that is far
outside the range where the diffusion approximation is
valid. The diffusion limit has been investigated by Ishi-
maru et al.29 In this work the position distribution is
measured for the light emerging from a turbid medium
containing small (either 0.1- or 2-mm) polystyrene spheres
for different detector fields of view. In this case a narrow
ballistic spatial peak and a broad diffuse background are
obtained that agree well with calculations of the spatial
distribution of the intensity based on the diffusion ap-
proximation. As the sphere size is increased, the differ-
ential scattering cross section becomes more forward
peaked and the diffusion approximation breaks down,
leading to disagreement with the data.

The language of Wigner distributions is well suited for
rigorous description of the heterodyne measurement
methods employed in our experiments. Wigner functions
correctly incorporate coherent and incoherent contribu-
tions to the beat power spectrum, including both ballistic
and scattered light. The good agreement between the
data and the model shows that approximating the trans-
port equation for the Wigner distribution by the usual ra-
diative transport equation is appropriate for the condi-
tions of the experiments. Since the approximate analysis
presented here is equivalent to that based on the radia-
tive transport equation for the specific intensity, it is
similar to that presented in previous studies of small-
angle scattering.28 However, we expect that when the
Wigner distribution in the medium varies substantially
over optical wavelength scales, the appropriate transport
equation may be nonlocal, and the simple approximations
used in this work may break down.4

Previously, smoothed Wigner distributions have been
identified with the specific intensity of radiative transport
theory.4,30 However, it is important to distinguish the
propagation of smoothed Wigner distributions in the me-
dium from smoothing of the output Wigner distribution
by the measurement method, as in our heterodyne detec-
tion scheme. In cases where the radiative transport
equation breaks down, the transport equation for the true
Wigner distribution may still be needed to correctly deter-
mine the output Wigner distribution that is smoothed in
the measurements.

The heterodyne method for measurement of Wigner
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distributions has a high dynamic range and can be used
to study transmitted and reflected light in dense turbid
media. Although the present work concentrated on the
momentum, the joint evolution of the position and mo-
mentum distribution can be studied by this method. In
the present experiments, which employ cw lasers, the
small-angle scattering distributions are overwhelmed by
the diffuse background as the concentration of scatterers
is increased. Hence the decay of the pedestal arising
from multiple diffractive scattering could not be studied
at very high concentrations with correspondingly high dy-
namic range. However, if similar experiments with a
low-coherence light source are performed, diffuse scatter
can be substantially suppressed and the evolution of the
diffractive pedestal can be followed to much higher scat-
terer concentrations. Experiments employing this
method to measure Wigner distributions for low-order
scattered light are currently under way in our laboratory.

APPENDIX A: WIGNER DISTRIBUTION
FOR SMALL-ANGLE SCATTERING
In this appendix we determine the Wigner distribution
for small-angle scattering under the conditions of the ex-
periments.

As discussed in Section 3, in the simplest approxima-
tion, the Wigner distribution obeys a transport equation
identical in structure to the usual radiative transport
equation for the specific intensity31:

c2p

no
2v

• ¹xW~x, p! 5 2
c

no
mT~p!W~x, p!

1E d3p8 K~p, p8!W~x, p8!.

(A1)

Here the scattering kernel K(p, p8) takes the approxi-
mate form

K~p, p8! 5 r
c2

no
2v

d S p2 2 p82

2 D uf~p, p8!u2, (A2)

where f(p, p8) is the scattering amplitude. Note that

E d3p8 K~p, p8! 5
c

no
ms~p! (A3)

is the total scattering rate, including both large- and
small-angle scattering.

As discussed in Subsection 3.A, we assume that the
kernel consists of two components, a narrow diffractive
component KN and a broad classical scattering component
KB :

K~p, p8! 5 KN~p, p8! 1 KB~p, p8!. (A4)

We further assume that the Wigner distribution can be
decomposed into three components:

W~x, p! 5 WBALL~x, p! 1 WP~x, p! 1 WB~x, p!.
(A5)

Here BALL denotes the narrow ballistic component, P de-
notes the narrow pedestal arising from multiple diffrac-
tive scattering, and B denotes the broad background.
The ballistic contribution has a very narrow momen-
tum distribution compared with the width of both KN and
KB . Hence the integral term in Eq. (A1) can be ne-
glected in its propagation, and WBALL obeys the equation

cp
nok

• ¹xWBALL~x, p! 5 2
c

no
mTWBALL~x, p!. (A6)

Using Eqs. (A4)–(A6) in Eq. (A1) yields an equation for
the narrow pedestal arising from small-angle scattering:

cp
nok

• ¹xWP~x, p! 5 2
c

no
mTWP~x, p!

1E d3p8 KN~p, p8!WP~x, p8!

1E d3p8 KN~p, p8!WBALL~x, p8!.

(A7)

The last term on the right-hand side of Eq. (A7) arises
from small-angle scattering of the ballistic phase-space
distribution. It acts as the source for the pedestal. The
first integral term on the right-hand side describes mul-
tiple scattering of the phase-space distribution of the ped-
estal. This equation can be straightforwardly solved by
Green’s-function methods as shown below.

Similarly, the broad phase-space component obeys the
equation

cp
nok

• ¹xWB~x, p! 5 2
c

no
mTWB~x, p!

1E d3p8@KN~p, p8!

1KB~p, p8!#WB~x, p8!

1E d3p8 KB~p, p8!@WBALL~x, p8!

1WP~x, p8!#. (A8)

The first integral term on the right-hand side of Eq. (A8)
contains the large-angle scattering kernel that causes
multiple scattering of the broad phase-space distribution.
The narrow kernel causes scattering within WB and does
not cause attenuation of WB . In this case the decay rate
of WB is approximately (c/no)mT 2 *d3p8 K(p, p8).
Large-angle scattering of the ballistic and narrow pedes-
tal distributions acts as the source for the broad compo-
nent of the phase-space distribution. The sum of Eqs.
(A6)–(A8) reproduces Eq. (7) with the two-component ker-
nel. Equation (A8) will not be needed, as our interest is
in the phase-space distribution for the narrow pedestal,
WP .

To model the small-angle scattering data, we assume
that large-angle scattering introduces loss for the phase-
space distribution of the pedestal, whereas diffractive
scattering causes small-angle momentum changes. In
this case the z component of momentum is approximately
constant. The diffractive component of the Mie scatter-



1906 J. Opt. Soc. Am. A/Vol. 15, No. 7 /July 1998 A. Wax and J. E. Thomas
ing solution is approximately Gaussian in shape and
yields a differential cross section of the form

uf~p, p8!u2 5
ds

dV
5

sN

puo
2 expF2

~Dp'!2

uo
2p2 G . (A9)

Here sN is the cross section for diffractive scattering, uo is
the scattering diffraction angle, of order uo . 2/(kaS),
where aS is the radius of the scatterer, and p 5 k
5 nov/c is the wave vector in the medium. The scatter-
ing angle is u 5 uDp'u/p, where Dp' 5 p' 2 p'8 is the
momentum change transverse to the z direction. The
differential cross section is normalized so that

E dV
ds

dV
. E

0

`

2pu du
sN

puo
2 expS 2

u2

uo
2D 5 sN .

Using Eq. (A9), we can simplify the collision kernel [Eq.
(A2)] for small-angle scattering. With d(p2/2 2 p82/2)
5 d(p 2 p8)/k . d(pz 2 pz8)/k, the collision kernel KN
takes the approximate form

KN~p, p8! . KN~p 2 p8! 5
c

no
mNd~ pz 2 pz8!

1

puo
2k2

3 expF2
~Dp'!2

uo
2p2 G , (A10)

where mN 5 rsN is the attenuation coefficient for diffrac-
tive scattering. The diffractive kernel is normalized so
that

E d3Dp KN~Dp! 5 GN 5
c

no
mN , (A11)

where GN is the diffractive scattering rate.
Equation (A7) is readily solved by using a Green’s-

function method with the approximations that the total
scattering rate is independent of momentum and the ker-
nel is a function of p 2 p8 only. In this case the Green’s
function Gp satisfies

S cp
nok

• ¹x 1 GTDGp~x, x8; p, p8! 2 E d3p9 K~p 2 p8!

3 Gp~x, x8; p9, p8! 5 d ~x 2 x8!d ~p 2 p8!. (A12)

Here the total loss rate is

GT 5 ~c/no!mT . (A13)

The Green’s function is easily obtained by Fourier
transform methods31 and is given by
Gp~x, x8; p, p8!

5 E d3q

~2p!3 E d3r

~2p!3

3 exp@iq • ~x 2 x8! 1 ir • ~ p 2 p8!#

3 no /cE
0

`

dl exp~2ilq • p8/k !

3 expF2E
0

l

dl8 m̃~r 1 ql8/k !G , (A14)

where k 5 nov/c is the magnitude of the optical wave
vector. Here

c
no

m̃~r! [
c

no
mT 2 K̃~r!, (A15)

where

K̃~r! 5 E d3Dp exp~2iDp!K~Dp!. (A16)

With relation (10) for the ballistic component, the
source term for the phase-space distribution of the nar-
row pedestal in Eq. (A7) is given by

S~x, p! 5 E d3p8 KN~p, p8!WBALL~x, p8!. (A17)

With use of the Green’s function [Eq. (A14)], the phase-
space distribution for the narrow pedestal of Eq. (A7) is
given by

WP~x, p! 5 E d3x8d3p8Gp~x, x8; p, p8!S~x8, p8!.

(A18)

With the approximate kernel of relation (A10), the
Green’s function [Eq. (A14)] is determined by using m̃(r)
[Eq. (A15)]. In this case m̃(r) is independent of rz , so
that

m̃~r'! 5 mT 2 mN expF2
uo

2k2

4
~rx

2 1 ry
2!G

[ mT 2 K̃8~r'!. (A19)

The source for the narrow pedestal, S(x, p) [Eq. (A17)], is

S~x, p! 5
c

no
mN

exp~2mTz !

pa2 expS 2
x2 1 y2

a2 D d~ pz 2 k !

puo
2k2

3 expS 2
px

2 1 py
2

uo
2k2 D . (A20)

Here we have assumed that the input field 1/e radius, a,
is sufficiently large that the diffraction angle of the input
field, 2/(ka), satisfies 2/(ka) ! uo , as is the case in our
experiments. Note that the source is nonzero only in the
medium, so that 0 < z < L, where z 5 L is the output
face of the sample.

The phase-space distribution for the pedestal, WP , is
now easily determined from Eq. (A18). Since m̃(r') [Eq.
(A19)] is independent of rz , the rz and qz integrals in the
Green’s function [Eq. (A14)] are readily carried out and
yield delta functions d( pz 2 pz8) and d @l 2 (z



A. Wax and J. E. Thomas Vol. 15, No. 7 /July 1998 /J. Opt. Soc. Am. A 1907
2 z8)k/pz8]. With the source function [Eq. (A20)], pz8
5 k, so that l 5 z 2 z8 5 L 2 z8 for z 5 L. With the
use of Eqs. (A16) and (A19) for K̃8(r'), it is straightfor-
ward to obtain

WP~L, x' ; p! 5 d~ pz 2 k !exp~2mTL !

3 E d2q'

~2p!2 exp~iq' • x'!

3 E d2r'

~2p!2 exp~ir' • p' 2 a2q'
2/4!

3 E
0

L

dz8 K̃8@r' 1 ~L 2 z8!q' /k#

3 expF E
0

L2z8
dl8 K̃8~r' 1 q'l8/k !G .

(A21)

The z8 integral in Eq. (A21) is just

expF E
0

L

dl8 K̃8~r' 1 q'l8/k !G 2 1.

Hence the phase-space density WP is given by

WP~L, x' ; p! 5 d~ pz 2 k !exp~2mTL !

3E d2q'

~2p!2 exp~iq' • x' 2 a2q'
2/4!

3E d2r'

~2p!2 exp~ir' • p'!

3 H expF E
0

L

dl8 K̃8~r' 1 q'l8/k !G 2 1J .

(A22)

It is convenient to define the transverse phase-space
distribution WP(L, x' , p') by

WP~L, x' ; p! 5 d~ pz 2 k !WP~L, x' , p'!. (A23)

To check the normalization of WP(L, x' , p'), note that
integrating Eq. (A22) over x' and p' yields delta func-
tions in q' and r' . Using K̃8(0) 5 mN , which follows
from Eq. (A19), one then obtains

E d2x'E d2p' W~L, x' , p'!

5 exp~2mTL !@exp~mNL ! 2 1#

5 exp~2mBL ! 2 exp~2mTL !. (A24)

Here mB [ mT 2 mN is the attenuation coefficient arising
from large-angle scattering and absorption, i.e., the mini-
mum attenuation rate for the pedestal phase-space distri-
bution. This attenuation rate occurs when the pedestal
is broad in transverse momentum compared with the dif-
fractive kernel but narrow compared with the large-angle
scattering kernel. In this case large-angle collisions and
absorption are effective in attenuating WP , but diffrac-
tive collisions are ineffective, as they cause scattering
within the distribution. The source of the pedestal is just
the diffractive scattering probability mN dz8 times the in-
tensity of the ballistic component, exp(2m T z8). The ped-
estal contribution decays as exp@2mB(L 2 z8)#. Hence
one expects an integrated output intensity given by

E
0

L

dz8 mN exp~2mTL !exp@2mB~L 2 z8!#

5 exp~2mBL ! 2 exp~2mTL !,

in agreement with Eq. (A24).
When the input field 1/e radius a is sufficiently large

that a/L @ uo , Eq. (A22) can be further simplified. Note
that q' . 1/a and l8 is at most L in the argument of K̃8.
Then the maximum value of q'l8/k is L/(ka). The maxi-
mum value of r' is of order 2/(kuo), since K̃8 → 0 if r'

. 2/(kuo). If a/L @ uo , the q' dependence in the argu-
ment of K̃8 can be neglected and the q' integral per-
formed to obtain a Gaussian spatial distribution identical
to that of the input field. This is consistent with the as-
sumption of a being large enough to achieve approximate
translation invariance. The phase-space distribution for
the pedestal then takes the simple form

WP~L, x' , p'! 5
exp~2x'

2/a2!

pa2 exp~2mTL !

3 E d2r'

~2p!2 exp~ir' • p'!

3H expFmNL expS 2
uo

2k2r'
2

4 D G 2 1J .

(A25)

In the limit mNL @ 1, the Gaussian in the exponent ap-
pearing in Eq. (A25) can be expanded to lowest order in
r'

2 to give a Gaussian function of r' for which the 1/e
width is of order 2(uokAmNL)21. In this limit multiple
diffractive scattering causes momentum diffusion. As
long as (a/L)2 @ mNL(uok/2)2, i.e., the mean square
width of the momentum distribution for mNL scatterings
is smaller than the mean square angular aperture of the
illuminated volume, the approximations used to obtain
Eq. (A25) remain valid.

The r' integral in Eq. (A25) can be simplified by intro-
ducing the dimensionless variable h' [ uokr'/2. Using
h' • p' 5 h'p' cos f and d2h' 5 h' dh'df, we have

E
0

2p df

2p
expS i

2p'

uok
h' cos f D 5 J0S h'

2p'

uok D .

Then the transverse Wigner distribution for the pedestal
is given by

WP~L, x' , p'! 5
exp~2x'

2/a2!

p2uo
2k2a2

exp~2mTL !

3 E
0

`

dh' 2h'J0Sh'

2p'

uok
D

3$exp@mNL exp~2h'
2!# 2 1%.

(A26)
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Here the transverse position is x' 5 Ax2 1 y2, and simi-
larly for the transverse momentum p' . The normaliza-
tion of Eq. (A26) is identical to that of Eq. (A24), as is
readily shown by using

E d2p' J0S h'

2p'

uok D 5
p

2
uo

2k2
d~h'!

h'

.
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